Personal
Finance with
Python

Using pandas, Requests, and Recurrent

Max Humber

ApPress’

Personal Finance
with Python

Using pandas, Requests,
and Recurrent

Max Humber

Apress’

Personal Finance with Python: Using pandas, Requests, and Recurrent

Max Humber
Toronto, Ontario, Canada

ISBN-13 (pbk): 978-1-4842-3801-1 ISBN-13 (electronic): 978-1-4842-3802-8
https://doi.org/10.1007/978-1-4842-3802-8

Library of Congress Control Number: 2018951264

Copyright © 2018 by Max Humber

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint,
paperback, or audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484238011. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3802-8

Table of Contents

About the AUthOrcccuscmmmissmmmssssnmsssssmsssssmssssssssssssssnnsssnnssssnnssssnnnsns vii
About the Technical REVIEWETcccusemmmmsssssnnsmsssssnsnssssssssnssssssnnnsssssnns ix
Introductionccccinissemmnmmsssnnnmnssssnsnmsssssnsnnssssnnnesssnnnnessssnnnnenssnnnnnessnn Xi
Chapter 1: Setup ... —————— 1
ANACONUA ... e 1
NEEIACK.....ce e —————————————— 5
0116 I 53 - 1| S 8

Data......c e —————————————— 8
Chapter 2: Profitcccuncmmmmmmemmmmmmsssnmmmsssnmmmsssssmmssssssmsssssssssssssns 9
11 11 T S 10
3 T VTV 11
3] VTV 12
e)T 12
PANAAS ...oerieieie e e nae s 15
[T (0 =) (1< PSSR 15
(101 17

{1 OSSN 20
AGAINT ... s 22
0] T 111 (0] o 24

iii

TABLE OF CONTENTS

Chapter 3: Convert.........cccinummnnmnmsnnnnmmsssssnmsssssssssssssssssesssssnssessssnnnnes 25
0PENEXCNANGEIALES.0NG ...ccueirerrererrerre s enan 26
RS (S 27
DOCUMENTALION.......ceeeeeerrecr e 28
ENCAPSUIALEcoeeerieecerir e e s 31

SHOW_ @ EINALIVE ... 33
APPIY e ————————————————— 34
0] T 111 (0] o 38

Chapter 4: AMOItize.......cccememmmnnrnssssssssssssnnnnmsssssssssssssnnsesssssssssnnnnnnnnnnss 39
BANKSoccirerie s e 40
AMOTTIZALON.......coviricccr 41
PAYMENT...... oo 41
00 o S 42
LOOP B e e e e 46
FUNCLIONIZE.....c.e et 48
EVAIUALE ... e 49
0] T 11T (0] o 52

Chapter 5: Budget.........cccoirmnnmmmmmmmmsssnnnmmssssssnmmssssssnmssssssssssssssssssssssnnnnns 53
DALES ... e nne s 53

AEHME ... ——————— 55
LTS3 = 1 oS 55
JIOMMALIZE....coccirece s 56
3 [0] 70 o TR 57
FIOWS....ccececee et s 58
0] 72 3SR 61

iv

TABLE OF CONTENTS

VISUANIZALION.......ceeeecereer e 62
L0 00 L o 63
L1 T L0 SRS 65
ENGLISH ettt 67
GEL_dALES ..o ————————— 69
FUN e —— 71
YANLovititiirinesesess s ss st ss st ss s s ssssssssanasanas 74
FUNCLIONIZE......ce et 76
L1 T L0 | TR 77
LOAMING YAML......co e s 79
[0 e 11 SRS 80
Chapter 6: Investcuunemmmmmmmmmimmnssssssssssr s sssssssssenes 81
Trad-0ffS c.veueereerrrere s 82
INSEANTALEccvceeiceer e ———————— 82
o T 87
L0 1] 88
DEPOSIL......eiece e ————————— 90
SIMUILE ... e 91
QUOTES ... 92
GEL_PIICE o ——————— 95
get_historiCal..........ccovvirinirsr s —————— 98
0] (0] o TSSOSO 100
REDAIANCE ...t ——————— 101
{0] T 11T (0] o 102

TABLE OF CONTENTS

Chapter 7: Spendccccccmmrnsssmnnmmssssssnsmssssssssesssssnsssssssssssssssssnnnssssnnns 103
PrOPREL..... o —————— 103
PUFCN@SEScovreeereeeriecrerese s 104
FOTBCAST ... s 105
VISUANIZE......ccvrveerreeresess e sr e nr e 107
0] T 11 (0] o 109

Appendix: NeXtccccccmrrrmmmmsssssssmmmmmmmssssssssssnsesesssssssssssssnseessssssnnnnnns 111

INA@X.ueeeiisnnnsssnnnsssnnnsssanssssanssssanssssanssssannssssnnssssnnssssnnssssnnssssnnnsssnnnsnnns 115

About the Author

Max Humber is a Data Engineer interested in improving finance with
technology. He works for Wealthsimple and previously served as the first
data scientist for the online lending platform Borrowell. He has spoken at
Pycon, ODSC, PyData, useR, and BigDataX in Colombia, London, Berlin,
Brussels, and Toronto.

vii

About the Technical Reviewer

Michael Thomas has worked in software
development for more than 20 years as an
individual contributor, team lead, program
manager, and vice president of engineering.
Michael has more than 10 years of experience
working with mobile devices. His current focus
is in the medical sector, using mobile devices

to accelerate information transfer between
patients and healthcare providers.

ix

Introduction

This book is about Python and personal finance and how you can
effectively mix the two together. It is a crash course on how deal with
data, how to build up financial formulas in code from scratch, and how to
evaluate and think about money in your day-to-day life.

Although each chapter is driven by an idea in personal finance, this
book is not an exhaustive compendium on the topic. I try to provide just
enough theory in each chapter to get you going, but I made a conscious
effort to abstract away and hide a lot of the math so that we don’t get stuck
in the weeds.

If I'm being completely honest with you (and myself), this book is
my love letter to pandas,' the main data manipulation library in Python.
pandas is a wonderful tool and has become the bedrock on top of which a
lot (if not most) machine learning is built. If you get good at pandas (and
this book should help!), you will be well positioned to dive into the world
of machine learning. But if machine learning isn’t your thing, don’t worry,
I promise that you can still get a lot of value out of this book.

The content of this book was inspired by a presentation I delivered
in Medellin, Colombia, in 2018 entitled Personal Pynance. It has been
adapted, refactored, stretched, extended, and polished for your enjoyment.
I hope you enjoy it!

'https://pandas.pydata.org/

https://pandas.pydata.org/

INTRODUCTION

Me! Presenting Personal Pynance at Pycon, Colombia (Photo Credit:

Moisés Vargas*)

What This Book Covers

This book covers the following topics.

Profit

You'll explore the idea of spending money to make money with a timely
motivating example. You will learn about DataFrames, the basics of
loading data in pandas, how to get Python to play nicely with Excel, how to

*https://twitter.com/moisesvw/status/962414647272976384

xii

https://twitter.com/moisesvw/status/962414647272976384

INTRODUCTION

think about and calculate net present value and internal rate return, and
how to apply functions to data.

Convert

You'll learn how to convert currency with Python. You will learn how to
query a third-party API, how to coerce API responses into something
usable, how to manage secrets, how to handle errors, and how to create
Python classes.

Amortize

You'll learn how to evaluate a buffet of loan options from different financial
institutions. You will learn about how to calculate fixed-rate payments with
numpy, how to build amortization schedules from scratch, how to build
loops, and how to make those loops ultra-efficient and wicked quick.

Budget

You'll explore how to generate a budget that provides day-by-day cash
flow resolution. You will learn how to deal with dates in Python, how to
visualize data, how to use the recurrent library to parse English sentences,
and how to work with the YAML file format.

Invest

You'll explore how to build a portfolio rebalancer. You will learn how to
instantiate a portfolio, how to fetch stock quotes, how to update values in a
DataFrame, and how to simulate order processing.

xiii

INTRODUCTION

Spend

You'll explore how to forecast spending. You will learn how to use pandas
and Prophet and how to use the past to generate values into the future.
This chapter is a bit silly, but it provides a little window into the world of
machine learning with Python and pandas.

Who This Book Is For

This book is for anyone interested in Python, personal finance, or how to
combine the two! It is geared toward those who want to better understand
how to manage money more effectively and toward those who just want to
learn or improve their Python.

Although this book assumes some (minimal) familiarity with
programming and the Python language, if you don’t have any, don'’t
worry! Everything is built up piece by piece, and the first chapters are slow
enough to start. A background in finance is not required.

What You Need for This Book

To ensure that you can run all the code in the book, it is recommended
that you install Python (3.6 or newer) with Anaconda. All the setup and
configuration details can be found in Chapter 1.

Code Examples

To get the most out of this book, you should actually run the code
examples on your own machine as you follow along. Running the code,
seeing how it works, and playing with it will help you to internalize
everything that is presented.

Xiv

INTRODUCTION
Code that you should execute will look like this:
import pandas as pd

Code that generates output (like a print statement, table, or chart) will
look similar to this, with its output:

ages = pd.DataFrame(data = {
"name’: ['max', 'sunny'],
'age': [24, 22]

}

print(ages)

age name
24 max
22 sunny

Here’s another input-output code example:
print(ages['name'])
0 max

1 sunny
Name: name, dtype: object

Reader Feedback

Feedback is always welcome. Let me know what you think about this
book—what you liked or may have disliked.

To provide general feedback, simply send me an e-mail and mention
the book title in the subject of your message:

max.humber@gmail.com

INTRODUCTION

Acknowledgments

The following reviewers provided valuable feedback on the first draft

of this book: David Tingle, Radovan Kavicky, Matthew Braymer-Hayes,
Daniel Schissler, Zecca Lehn, Owen Jones, Jesus Rogel-Salazar, Thomas
Koller, Burhan ul hagq, Eija-Leena Koponen, Moisés Vargas Martinez,
Francisco Pérez Cuadrado, David Asboth, and Costin Apostol. This book is
far better than it might have been because of them.

Thanks to Apress for taking a chance on me and to the following
individuals for their hard work on getting this book out of the red zone and
into the end zone: Steve Anglin, Matthew Moodie, Mark Powers, Amrita
Stanley, Nirmal Selvaraj, Joseph Quatela, and technical reviewer Michael
Thomas.

Finally, I'd like to dedicate this book to my parents, Kim and Rich. I
wouldn’t be where I am today without them.

CHAPTER 1

Setup

To run the code examples in this book, you will need Python 3.6 (or newer),
Jupyter, and a bunch of libraries from the Python data stack.

Anaconda

The easiest way to get everything that you'll need for this book is to install
Anaconda.! Just go to the Anaconda website and download the relevant

distribution for your operating system.

'https://www.anaconda.com/

© Max Humber 2018
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_1

https://www.anaconda.com/

CHAPTER 1 SETUP

® @) Downloads | Anaconda x (=]
“ C @ Secure https://www.anaconda.com/download/#macos ¥ B® O % O
{D ANACONDA =

Download for Your Preferred Platform

‘ macQOS

Anaconda 5.1 For macOS Installer

Python 3.6 version ”

Anaconda works on Windows, macOS, and Linux. I run macOS, so I'm
going to demo that install process.

For those who are not on macOS, Anaconda has some excellent install
documentation available online.?

Once you've downloaded the distribution, open the installer and click
through all the prompts.

*https://docs.anaconda.com/anaconda/install/

https://docs.anaconda.com/anaconda/install/

CHAPTER 1 SETUP

Install Anaconda3 [

This package will run a program to

7 ; determine if the software can be installed.
To keep your computer secure, you should only run
programs or install software from a trusted source. If

you're not sure about this software's source, click
Cancel to stop the program and the installation.

Cancel Continue

AN ATE

_)

ANACONDA

Go Back Continue

Anaconda will install an up-to-date Python 3.6 and above release,
as well as a bunch of useful Python packages such as pandas, numpy,*
and beautifulsoup.*

*Www . numpy . org/
*https://www.crummy.com/software/BeautifulSoup/

http://www.numpy.org/
https://www.crummy.com/software/BeautifulSoup/

CHAPTER 1 SETUP

O ‘e Install Anaconda3 [*]

Important Information

The packages included in this installation are:

@ Introduction - defaults::alabaster 0.7.10
« Read Me = defaults::anaconda-client 1.6.9
i = defaults::anaconda-project 0.8.2
HLEIED - defaults::appnope 0.1.0
Destination Select - defaults::appscript 1.0.1

- defaults::asnlcrypto 0.24.0

= defaults::astroid 1.6.1

Installation - defaults::astropy 2.0.3

Microsoft VSCode - defaults::attrs 17.4.0

- defaults::babel 2.5.3

- defaults::backports 1.0

. - defaults::backports.shutil get terminal size 1.0.0
J - defaults::beautifulsoup4 4.6.0

. - defaults::bitarray 0.8.1

defaults::bkcharts 0.2

ANACONDA © defoults.blaze 0.11.3

- defaults::bleach 2.1.2

Installation Type

Summary

Print... Save... Go Back Continue

After installation, open Terminal—or your preferred command-line
interface—and run all the bits after the $ to make sure that Anaconda did
its thing.

| N max — python — 84x30

Last login: Sun Jan 28 10:04:87 on console

max-mbp:~ max$ which python

/Users/max/anaconda3/bin/python

max-mbp:~ max$ which conda

/Users/max/anaconda3/bin/conda

max-mbp:~ max$ python

Python 3.6.4 |Anaconda custom (64-bit)| (default, Jan 16 2018, 12:04:33)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_4@1/final)] on darwin
Typel'halp", “copyright”, “"credits" or "license" for more information.
23>

If your Python is in Users/<your name>/anaconda3/bin/python and
typing in python spits out something like Python 3.6.4 |Anaconda, then
you're almost ready to rock and roll. Just one more thing...

CHAPTER 1 SETUP

nteract

Note If you already know how to use Jupyter Notebooks, this step
isn’t strictly necessary. However, nteract is pretty darn slick; you
should give it a fair shake!

To actually run Python code, you'll need a Jupyter® Notebook interface
called nteract. While Jupyter is an open-source web application that allows
you to create documents that contain live code (and was installed for you
with Anaconda), nteract is a super user-friendly desktop-based skin for
Jupyter. You can download nteract from the nteract.io website.®

] @ (@) nteract: The nteract Desktop = e

<« C @ Secure https:f/nteract.io/desktop o B e » O

Notebooks on youf
desktop

ﬂ Download for macOS (alpha)

*https://jupyter.org/
https://nteract.io/

https://jupyter.org/
https://nteract.io/

CHAPTER 1 SETUP

Once it's downloaded and installed, you can load a fresh Jupyter
Notebook by clicking the nteract icon. You will be greeted with a screen
that looks like this:

® @ Untitled - idle

Python 3 | idle Mot saved yet

With a blank slate, you can now run arbitrary Python code inside
empty cells, the results of which will be printed just below the input cell.

CHAPTER 1 SETUP

® @ Untitled - idle

name = 'max'

print(name)

max

Python 3 | idle Not saved yet

To execute code inside a cell, just hit Shift+Enter. To insert a new cell,
just select Edit » New Code Cell or use the shortcut Cmd+Shift+N. You can
find a list of all the macOS (and Windows) shortcuts in the nteract
USER_GUIDE.md.”

Quickly make sure that imports are working for you by running the
following:

import pandas as pd

If everything is in working order, nothing should’'ve happened!
Howevey, if after executing import pandas as pdyou get something
like this:

"https://github.com/nteract/nteract/blob/master/USER_GUIDE.md

https://github.com/nteract/nteract/blob/master/USER_GUIDE.md

CHAPTER 1 SETUP

ModuleNotFoundError Traceback (most recent call last)
in ()

----> 1 import pandas as pd
ModuleNotFoundError: No module named 'pandas’

then reinstall Anaconda and make sure your PATH is properly configured.?

pip install

Sometimes you'll hit a legitimate ModuleNotFoundError: No module
named [PACKAGE NAME] error. This happens when a module/library/
package (I'll use these terms interchangeably) isn’t yet installed on your
machine. Often these errors can be remedied by running the following in a
Notebook cell, or without the leading ! inside Terminal:

Ipip install [PACKAGE NAME]

I'll try my best to call out these installs when you need them. But if you
hit a ModuleNotFoundError, I trust that you'll know what to do (Google is
your friend)!

Data

Some examples in the following chapters will require data that I've curated
specifically for this book. You can download these data files by clicking the
Download Source Code button located at www.apress.com/9781484238011,
or by navigating to my personal Github repository, located at
https://github.com/maxhumber/pfwp.

®https://stackoverflow.com/questions/39438049/how-to-set-the-default-
python-path-for-anaconda

www.apress.com/9781484238011
https://github.com/maxhumber/pfwp
https://stackoverflow.com/questions/39438049/how-to-set-the-default-python-path-for-anaconda
https://stackoverflow.com/questions/39438049/how-to-set-the-default-python-path-for-anaconda

CHAPTER 2

Profit

You know, you got to spend money to make money.
—Chief Keef

A couple of weeks ago my grandma asked me if she should put some
money into Bitcoin. I didn’t know what to tell her. But I knew that in a book
about finance I would have to at least give Bitcoin and cryptocurrencies at
least a little bit of lip service.

For the uninitiated, cryptocurrencies like Bitcoin (and Ethereum,
Dogecoin, and Zcash) are digital assets that are designed to function as a
medium of exchange and that use cryptography to secure transactions, to
control the creation of new money, and to verify asset transfer.

Because I think it’s hilarious, I'm going to use Dogecoin' as the glue for
the rest of this chapter. But honestly, these ideas extend beyond Dogecoin
(and crypto for that matter). They apply whenever you have to spend
money to make money.

So, if you're not a fan of crypto or Dogecoin (I certainly don’t blame
you), bear with me. Dogecoin just seemed like a lot more fun to talk about
than something else random, like a lemonade stand.

'https://en.wikipedia.org/wiki/Dogecoin

© Max Humber 2018
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_2

https://en.wikipedia.org/wiki/Dogecoin

CHAPTER 2 PROFIT

Mining

If you're interested in Dogecoin and want to own some, you can do one of
the following:

e Buyit
o Generate it through a process called mining

Buying Dogecoin is straightforward. But mining is more interesting. To
grossly oversimplify things, to mining Dogecoin requires the installation
of a program, on your computer that uses your hardware to solve
computationally expensive math problems.

10

CHAPTER 2 PROFIT

Solve a problem. Get a Dogecoin. Easy-peasy.

While you can run mining applications on your laptop, those serious
about mining—for Dogecoin or otherwise—opt to run these sorts of
applications on specialized rigs. A decent rig can be incredibly expensive,
though. A mining rig requires specialized graphical processing units
(GPUs), a good motherboard, a lot of RAM, a decent CPU, a case, some
fans, and a bunch of other components. Casually dropping $3,000 on parts
for a mining setup is pretty standard these days.

For the purposes of this chapter, let’s pretend that we front $3,000 for
the necessary components.

If we mine $6,000 on top of our initial investment, some quick math
will tell us that our realized profit is $3,000 and our return on investment
(ROI) is as follows:

6000
i = 3000
print(f'{(r - i) / i * 100}%")

r

100.0%

ROI

Dope, right? Nope, because ROl is a super-misleading measurement. It’s
misleading because it doesn’t factor in how long it took to make back our
money.

Perhaps we mined $6,000 in six months. Or, maybe it took us six years.
Whether months or years, the calculation and the answer are the same.
Bothyield a 100 percent ROL.

11

CHAPTER 2 PROFIT

IRR

The fact that ROI nets out to the same value for different time horizons
should bug us (it bugs me). Time is money after all, right? And $3,000
today is worth more than $3,000 tomorrow, or the next year for that matter.
On top of that, investing in something like a mining rig precludes
us from investing in something else, like a lemonade stand. ROI doesn’t
capture any of that.
The internal rate of return (IRR), however, does. IRR is the discount
rate at which the net present value of a potential investment is 0.
Importantly, if your investment has an expected IRR of 5 percent
but your cost of borrowing is 8 percent, you should not invest in the
opportunity or venture. But when the numbers are reversed—that is to say
that the IRR exceeds the cost of borrowing—you should invest!

=IRR()

At this point in our imaginary example we're in for $3,000. But instead of
doubling our money, let’s bring things ever so slightly back to Earth and
pretend that our Dogecoin rig generates $1,000 in passive income each
year over the next four years.

date income expenses
0 2017-01-01 0 -3000
1 2018-01-01 1000 0
2 2019-01-01 1000 0
3 2020-01-01 1000 0
4 2021-01-01 1000 0

12

CHAPTER 2 PROFIT

To calculate the IRR for this example, we can fire up Excel, total up the

inflows and outflows, and use the built-in =IRR() formula to get what we need.

date income expenses total
0 2017-01-01 0 -3000 -3000
1 2018-01-01 1000 0 1000
2 2019-01-01 1000 0 1000
3 2020-01-01 1000 0 1000
4 2021-01-01 1000 0 1000

If total is in Excel column D, then applying the formula =IRR(D0:D4)

will get us something close to 13 percent. However, =IRR() is a bit clunky

and inflexible. The formula assumes that our inflows and outflows occur

on a regular basis.

If our mining rig instead generates income that flows like this:

date income expenses total

0 2017-01-01 40 -3000 -2960
1 2017-01-25 40 -50 -10

2 2017-02-12 80 -50 30

3 2017-02-14 100 -30 70

4 2017-03-04 100 -20 80

5 2017-04-23 160 -30 130
6 2017-05-07 140 -20 120

7 2017-05-21 140 -40 100
8 2017-06-04 80 -40 40

9 2017-06-19 180 -30 150
10 2017-07-16 360 -40 320

(continued)

13

CHAPTER 2 PROFIT

date income expenses total
11 2017-08-27 160 -30 130
12 2017-09-24 240 -20 220
13 2017-10-21 420 -50 370
14 2017-11-19 400 -20 380
15 2017-12-03 340 -40 300
16 2017-12-17 360 -40 320
17 2017-12-31 540 -40 500

then =IRR() will yield the wrong result because the formula doesn’t have
any concept of the dates attached. Thankfully, IRR() has a companion
function named =XIRR() that allows us to deal with irregular cash flows.

The XIRR formula maps dollar values to date values, so running
=XIRR(D0:D17, A0:A17) will yield the correct IRR, while =IRR(D0:D17)
will return something super wonky.

14

CHAPTER 2 PROFIT

pandas

Although Excel is perfectly suitable for calculating IRR/XIRR, it’s time
we move this party to Python and pandas. Because while Excel excels at
this simple stuff, it’s not going to cut it when we get to the fun (and more
complex) parts of this book.

So, let’s switch gears now, fire up nteract (or a Jupyter Notebook), and
start cooking with pandas.

read_excel

One of the really nice things about pandas is that it’s well equipped to
deal with all of our existing .x1sx and .x1s data. The pandas read excel
function is a great place to start as it can turn sheets and workbooks into
the panda-native DataFrame format.

15

CHAPTER 2 PROFIT

Note [I've stored the data for this chapter in a folder called data/
no ../data.If the xirr.x1lsx file you downloaded from the setup
chapter file is somewhere different, like in your Downloads folder,
change the path to match. You'll use either 'Downloads/xirr.x1sx"
or 'Downloads/data/xirr.x1lsx’.

import pandas as pd
df = pd.read_excel('data/xirr.x1lsx', sheet name="regular")
df

date income expenses
0 2017-01-01 0 -3000
1 2018-01-01 1000 0
2 2019-01-01 1000 0
3 2020-01-01 1000 0
4 2021-01-01 1000 0

To replicate the IRR workflow we just ran in Excel, we first have to
create a new total column in our DataFrame object by using the pandas
square-bracket notation.

df['total'] = df.income + df.expenses

df

date income expenses total
0 2017-01-01 0 -3000 -3000
1 2018-01-01 1000 0 1000
2 2019-01-01 1000 0 1000
3 2020-01-01 1000 0 1000
4 2021-01-01 1000 0 1000

CHAPTER 2 PROFIT

Once the total column is created, we can run xirr () on top of the
.total and .date columns.

xirr(df.total, df.date)
0.1258660808393406

And boom. That’s it. Chapter. Over.

SIKE!?

Unfortunately, if you try to run xirr () right now, you'll hit a
NameError: name 'xirr' is not defined.It’s not defined because
Python doesn’t actually come with an xirr function.

It’s cool, though. We'll roll our own!®

Xnpv

Just before we roll our own, remember when I said that the internal rate of
return (IRR/XIRR) is tightly coupled with net present value (NPV/XNPV)?
Well, if we want to define an xirr function, we first have to build an xnpv
function.

Here itis:

def xnpv(rate, values, dates):
""'Replicates the XNPV() function'"'
min_date = min(dates)
return sum([
value / (1 + rate)**((date - min_date).days / 365)
for value, date
in zip(values, dates)

D

*https://gph.is/1VRbuEc

Shttps://www.quora.com/Computer-Science-Where-did-the-phrase-Roll-
your-own-come-from-and-why-is-it-used-in-CS?share=1

17

https://gph.is/1VRbuEc
https://www.quora.com/Computer-Science-Where-did-the-phrase-Roll-your-own-come-from-and-why-is-it-used-in-CS?share=1
https://www.quora.com/Computer-Science-Where-did-the-phrase-Roll-your-own-come-from-and-why-is-it-used-in-CS?share=1

CHAPTER 2 PROFIT

Don’t worry! I know it looks kind of intimidating, but I promise it’s not
that bad.

Let’s slow things down and break apart xpnv so that we can actually see
what’s going on. The essential part of the function is just this thing:

value / (1 + rate)**((date - min_date).days

If we grab all the values and dates from the df object, we can see what
it does.

values = df.total

dates = df.date
print('Values:', list(values))
print('Dates:', list(dates))

Values: [-3000, 1000, 1000, 1000, 1000]

Dates: [Timestamp('2017-01-01 00:00:00"), Timestamp('2018-01-01
00:00:00"), Timestamp('2019-01-01 00:00:00"'), Timestamp('2020-01-01
00:00:00"'), Timestamp('2021-01-01 00:00:00")]

We also need a random discount rate (don’t worry, we're going
to change it later; just think of this as the cost of borrowing) and the
minimum date in the dates list.

rate = 0.05
min_date = min(dates)
print(min_date)

2017-01-01 00:00:00

Once we have these pieces, we can run the meat of the xpnv function
on top of the first values in each list (Python starts indexing at 0, so the first
value is at data[0]).

18

CHAPTER 2 PROFIT

date = dates[0]
value = values[0]
value / (1 + rate)**((date - min_date).days / 365)

-3000.0

All we did was bring -$3,000 to the present, but it was already in the
present because it was attached to the first (minimum) date value.

If we turn to the second cash flow ($1,000) and bring it to the present,
things become a little bit more instructive.

date = dates[1]

value = values[1]

print(value)

value / (1 + rate)**((date - min_date).days / 365)

1000
952.3809523809523

We could continue running this formula for each date-value pair, or we
could be lazy and wrap everything in a list comprehension and use zip to
bring all the cash flows to the present at the same time.

intermediate step = [
value / (1 + rate)**((date - min_date).days / 365)
for value, date
in zip(values, dates)

]

print(intermediate step)

[-3000.0, 952.3809523809523, 907.0294784580499, 863.837598531476,
822.5925101174964]

19

CHAPTER 2 PROFIT

Note List comprehensions are a really easy way to create lists
in Python. They follow this format: [expression for item in
list if conditional].

And zip just acts like a zipper, aggregating values from two different
lists and returning one thing.

With a list of all the present values stored in the object intermediate
step, the only thing left is to sum up all the values and print out the result.

print(sum(intermediate step))
xnpv(0.05, df.total, df.date)

545.8405394879746
545.8405394879746

See, xnpv isn’t that bad!

What does it all mean? Well, at a discount rate of 5 percent (we
randomly picked this value, but think of it as your cost of capital or the
return you might get from another potential investment opportunity), the
net present value of all our expected cash flows is $545.84.

Xirr

With xnpv in the bag and out of the way, building an xirr function is
somewhat trivial. It’s trivial because IRR is just NPV but set to 0. If we
want, we can actually derive the internal rate of return manually through a
process of trial and error.

20

CHAPTER 2 PROFIT

xnpv(0.05, df.total, df.date)

545.8405394879746

print(xnpv(0.04, df.total, df.date))
print(xnpv(0.06, df.total, df.date))
print(xnpv(0.07, df.total, df.date))
print(xnpv(0.08, df.total, df.date))
print(xnpv(0.09, df.total, df.date))
print(xnpv(0.11, df.total, df.date))
print(xnpv(0.12, df.total, df.date))
print(xnpv(0.125, df.total, df.date))
print(xnpv(0.1255, df.total, df.date))
print(xnpv(0.1258, df.total, df.date))
print(xnpv(0.12583, df.total, df.date))
print(xnpv(0.12586, df.total, df.date))

629.8033770546891
464.97917229138625
387.0698546137953
311.9718737447598
239.55263528320688
102.25737356965487
37.15205553499129
5.437960934594116
2.2965732963834853
0.4143376303915147
0.22622105096445466
0.038123913067124704

Exhausting but doable!

Because the last value is pretty damn close to 0, we can conclude
that the IRR for our mining rig is around 12.586 percent. Great! However,
futzing around with our xnpv function is from ideal. It would be nice if we
had a function that could find the zero for us.

21

CHAPTER 2 PROFIT

This is a lot harder, so instead of rolling our own “zero-finder,” let’s lean
on the Newton-Raphson optimization method from the SciPy library.

from scipy.optimize import newton

def xirr(values, dates):
""'Replicates the XIRR() function'"''
return newton(lambda r: xnpv(r, values, dates), 0)

xirr(df.total, df.date)
0.1258660808393406

Breaking down the newton () function is a bit outside the scope of this
book. If you're curious to learn more, Wikipedia* has a great page on how it
all works.

Again!

Now that we have all the pieces built and a solid workflow for calculating
IRR, let’s apply our process to the irregular cash flow schedule from earlier.

df = pd.read excel('data/xirr.x1lsx', sheet name="irregular")
df['total'] = df.income + df.expenses
df

*https://simple.wikipedia.org/wiki/Newton’s_method

22

https://simple.wikipedia.org/wiki/Newton’s_method

CHAPTER2 PROFIT

date income expenses total
0 2017-01-01 40 -3000 -2960
1 2017-01-25 40 -50 -10
2 2017-02-12 80 -50 30
3 2017-02-14 100 -30 70
4 2017-03-04 100 -20 80
5 2017-04-23 160 -30 130
6 2017-05-07 140 -20 120
7 2017-05-21 140 -40 100
8 2017-06-04 80 -40 40
9 2017-06-19 180 -30 130
10 2017-07-16 360 -40 320
11 2017-08-27 160 -30 130
12 2017-09-24 240 -20 220
13 2017-10-21 420 -50 370
14 2017-11-19 400 -20 380
15 2017-12-03 340 -40 300
16 2017-12-17 360 -40 320
17 2017-12-31 540 -40 500

xirr(df.total, df.date)

0.13812581670383556

To the moon!

23

CHAPTER 2 PROFIT

Conclusion

Before we close out this chapter, I should lay down a couple of things.

Please don’t invest in Dogecoin (or crypto or mining) because of me
or because of this chapter. The space is crazy, and if 'm honest, you're
probably going to get burned playing with the stuff. If you want to get into
mining, do your homework!

It’s possible that you're thinking, “That was a lot of work to calculate
the IRR when Excel does it for free. Why do I need Python?” That’s a super-
fair question. Although Python has a steep learning curve, the payoffs are
huge. My hope is that the need for Python will become self-evident in the
chapters to follow.

24

CHAPTER 3

Convert

All this foreign money I can’t count what I'm making.

—Yung Lean

You probably didn't notice, but all the values in the previous chapter were in

Canadian dollars (CAD). Everything was in CAD because I'm from Canada.
Confusing and annoying, right? Like what even is a Canadian

dollar, and what in Drake’s name is it worth? Alright, I shouldn’t be that

patronizing; you probably have a decent idea about the value of a dollar in

Canada as it’s closely coupled with a United States dollar (USD).

But we should be precise. It's not enough to say that CAD is just kind of

like USD! Let’s actually figure out the exact exchange rate.

GQ gle 3000 cad to usd L& Q

All News Shopping Images More Seltings Tools

About 982,000 results (0.34 seconds)

3,000 Canadian Dollar equals

2,342.19 US Dollar

3000 canadian Dollar =

0.8
234219 USDollar B w

Disclaimer

© Max Humber 2018
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_3

25

CHAPTER 3 CONVERT

Although Googling for the answer is totally legit, there’s no fun in
that! And if we have a couple hundred values and need to convert them to
handful of different currencies, Google might not be the best solution.

Faced with a repetitive problem, I'm quick to reach for Python.

Unfortunately, though, when it comes to converting in Python, the
story is a lot like IRR. The language can do it; it just can’t do it on its own.

Python needs a little help—help in the form of an exchange rate API
and the requests’ library.

You can install requests by executing the following:

Ipip install requests

openexchangerates.org

If and when I need to convert a bunch of values, I like to use the Open
Exchange Rates API.

e It'seasyto use.
o It’s updated hourly for more than 200 currencies.
o It’sfree (for up to 1,000 requests per month).

To follow along, sign up and register? for a free API key.

'http://docs.python-requests.org/en/master/
*https://openexchangerates.org/signup

26

http://docs.python-requests.org/en/master/
https://openexchangerates.org/signup

CHAPTER 3 CONVERT

aboutus documentation help & support api status pricing

Our currency data APl powers the Internet's most
dynamic startups, brands and organisations.

Consistent, reliable exchange rate data and
currency conversion for your business.

Flexible, fast, affordable - find out why more than
80,000 developers trust our API.

take a test drive or Get Instant Access

Secrets

Once you've registered, you can find your unique API key in the Open
Exchange Rates Dashboard. Your key will look something like this:

“9a156a49bc841849fde848"

Every request we make against the Open Exchange Rates API will need
this key attached; otherwise, we won’t get any data back from the service.

You might be inclined to shove your key into a Python script or Jupyter
Notebook. Resist the urge! Keeping secrets (like a key) in plain sight is a
recipe for disaster. If you decide to share your code with someone, they will
have access to your key and can—if they’re so inclined—abuse it and get
your key blacklisted.

To hack ourselves out of this problem, we need to keep our API key a
secret. There are a bunch of ways to handle secrets in Python. One way is
to use environment variables and the dotenv? library.

I'pip install -U python-dotenv

Shttps://github.com/theskumar/python-dotenv
27

https://github.com/theskumar/python-dotenv

CHAPTER 3 CONVERT

With dotenv, you create and save an .env file (with Atom, VS Code,
TextEdit or something similar) in the same director/folder that contains
your script or Jupyter Notebook and then stuff your secrets inside of it.

£ env
OPX_KEY = 9al17f58dfd528cc7356fdbc848c3cc7d

Once that’s defined, you can load up your secrets by following the pattern.

import os
from dotenv import load dotenv, find dotenv
load dotenv(find dotenv())

API KEY = os.environ.get('OPX KEY")

print (API_KEY)
>>> 9a156a49bc84f8cel156a4749bc848

Again, your key will be different. Mine is fake, so don’t even try.

Documentation

With our keys properly hidden, we can start making requests against the
Open Exchange Rates API. Reading through the API documentation,* we
can see that our queries have to conform to the following structure:

*https://docs.openexchangerates.org/docs/latest-json

28

https://docs.openexchangerates.org/docs/latest-json

CHAPTER 3 CONVERT

Definition

https://openexchangerates.org/api/latest.json

Parameters

Query Params

app_id: string Required
Your unique App ID
base: string optional
Change base currency (3-letter code, default: USD)
symbols: string Optional
Limit results to specific currencies (comma-separated list of 3-letter codes)
prettyprint: boolean Cptional
Set to false to reduce response size (removes whitespace)
show_alternative: boolean Optional
Extend returned values with alternative, black market and digital currency rates

Examples
HTTP - [Query

https://openexchangerates.org/opi/latest. json?app_id=YOUR_APP_ID

Loading up a browser and sticking a URL? into the search bar will yield
the following:

{

"disclaimer": "Usage subject to terms:
https://openexchangerates.org/terms",

"license": "https://openexchangerates.org/license”,
"timestamp": 1519588738,

"base": "USD",

*https://openexchangerates.org/api/latest.json?app_id=9a156a49bc84f8ce
156a4749bc8488symbols;=CAD,USD&show; alternative=true

29

https://openexchangerates.org/api/latest.json?app_id=9a156a49bc84f8ce156a4749bc848&symbols;=CAD,USD&show;_alternative=true
https://openexchangerates.org/api/latest.json?app_id=9a156a49bc84f8ce156a4749bc848&symbols;=CAD,USD&show;_alternative=true

CHAPTER 3 CONVERT

"rates": {
"CAD": 1.303016,
"Usb": 1

}

Sick. We got data back!

However, manually coercing everything into a URL is not the best or
preferred way of doing things.

Instead, it’s a lot better (and a lot easier) to build on top of the requests
library and fit all of our “query params” into a params payload, like so:

import requests
API KEY = os.environ.get('OPX KEY")

T = requests.get(
"https://openexchangerates.org/api/latest.json’,
params = {
"app_id': API KEY,
"symbols': 'CAD,USD',
"show_alternative': 'true'
}

)

The response from Open Exchange Rates will now be stored as JSON
inside the r object and can be accessed with the following:

rates_ = r.json()['rates']
rates_

{'CAD": 1.303016, 'USD': 1}

30

CHAPTER 3 CONVERT

Given that rates_ is just a dictionary, we can access key-value pairs
with the . get method and run some conversions according to the formula.

symbol from = 'CAD'
symbol to = 'USD'
value = 3000

value * 1/rates .get(symbol from) * rates .get(symbol to)
2302.350853711697

Your values will probably be different because exchange rates move all
the time.

Encapsulate

Although we did just successfully convert from CAD to USD, we have a lot
of variables swirling around our environment that can quickly turn our
code into spaghetti. To get out of our impending pasta doom, we should
encapsulate all of our logic into a Python class.

class CurrencyConverter:
def init (self, symbols, API KEY):

self.API_KEY = API_KEY
self.symbols = symbols
self. symbols = ','.join([str(s) for s in symbols])

r = requests.get(
"https://openexchangerates.org/api/latest.json’,
params = {

"app_id': self.API KEY,
'symbols': self. symbols,
'show_alternative': 'true'

}

31

CHAPTER 3 CONVERT

self.rates = r.json()['rates']
self.rates ['USD'] = 1

def convert(self, value, symbol from, symbol to, round output=True):

try:
x = (value
* 1/self.rates_.get(symbol from)
* self.rates_.get(symbol to))
if round output:
return round(x, 2)
else:
return x
except TypeError:
print('Unavailable or invalid symbol")
retuxrn None

You can think of classes in Python as just a nice way to keep all our
code together and a bit more legible.

Most everything in the CurrencyConverter class should look familiar.
The only new bits are the following:

self. symbols = ',".join([str(s) for s in symbols])

This takes a list like ['CAD', 'USD'] and turns it into the comma-
separated format required by the API and some error handling in the
.convert method (the name for a function attached to a class).

With everything now inside of a class, we can instantiate a currency
converter with this:

API KEY = os.environ.get("OPX KEY")
c = CurrencyConverter(['CAD', 'USD'], API KEY)

32

CHAPTER 3 CONVERT
Converting values now just requires us to use the .convert method.

print(c.convert(3000, 'CAD', 'USD'))
print(c.convert(5000, 'USD', 'CAD'))

2302.35
6515.08

show_alternative

The Open Exchange Rates API is incredibly robust, and it actually includes
access points for alternative cryptocurrencies. This means that it’s totally
legit to instantiate a new CurrencyConverter with ETH (Ethereum), BTC
(Bitcoin), and DOGE (Dogecoin) on top of CAD and USD.

¢ = CurrencyConverter(['CAD', 'USD', 'DOGE', 'ETH', 'BTC'], API KEY)

With all the currencies stored inside of a dictionary attached to the
CurrencyConverter object:

c.rates_

{'BTC': 0.00013350885,
"CAD': 1.303016,
'DOGE"': 289.975486957,
"ETH': 0.0017451855,
'UsD': 1}

we can, again, run the .convert method and find out that $3,000 CAD is
equal to the following:

c.convert(3000, 'CAD', 'DOGE")

667625.31

33

CHAPTER 3 CONVERT

.apply

The whole point of this chapter was to figure out what the values from
previous chapter were in USD instead of CAD. With a working converter,
let’s load the mining income data and get to it.

import pandas as pd

df = pd.read _excel('data/xirr.xlsx', sheet name="irregular")
df['total'] = df.income + df.expenses
df

34

CHAPTER 3 CONVERT

date income expenses total

0 2017-01-01 40 -3000 -2960
1 2017-01-25 40 -50 -10
2 2017-02-12 80 -50 30

3 2017-02-14 100 -30 70
4 2017-03-04 100 -20 80

5 2017-04-23 160 -30 130
6 2017-05-07 140 -20 120
7 2017-05-21 140 -40 100
8 2017-06-04 80 -40 40

9 2017-06-19 180 -30 150
10 2017-07-16 360 -40 320
11 2017-08-27 160 -30 130
12 2017-09-24 240 -20 220
13 2017-10-21 420 -50 370
14 2017-11-19 400 -20 380
15 2017-12-03 340 -40 300
16 2017-12-17 360 -40 320
17 2017-12-31 540 -40 500

To convert everything at once, we just have to use an anonymous
lambda function® and nest our converter inside of an .apply call.

Shttps://stackoverflow.com/questions/16501/what-is-a-lambda-function#16509

35

https://stackoverflow.com/questions/16501/what-is-a-lambda-function#16509

CHAPTER 3 CONVERT

df['total'].apply(lambda x: c.convert(x, 'CAD', 'USD"))

0 -2271.65
1 -7.67
2 23.02
3 53.72
4 61.40
5 99.77
6 92.09
7 76.75
8 30.70
9 115.12
10 245.58
11 99.77
12 168.84
13 283.96
14 291.63
15 230.24
16 245.58
17 383.73

Name: total, dtype: float64

And if we want to take a page of Xzibit’s book (I couldn’t get the
rights for the original meme, so please accept this do-it-yourself bargain
image), we can convert our Dogecoin mining income back to Dogecoin
from CAD.

36

CHAPTER 3 CONVERT

Y0 DAWG | HEARD YOU
LIKE DOGEGOIN...

df['total'].apply(lambda x: c.convert(x, 'CAD', 'DOGE'))

0
1
2
3
4
5
6
7
8

-658723.
-2225.
6676.
15577.
17803.
28930.
26705.
22254.
8901.

64
42
25
92
34
43
01
18
67

37

CHAPTER 3 CONVERT

9 33381.27
10 71213.37
11 28930.43
12 48959.19
13 82340.45
14 84565.87
15 66762.53
16 71213.37
17 111270.88
Name: total, dtype: float64

Conclusion

We kicked off this chapter by converting CAD to USD with Google. In
working through the Python examples, you should be starting to see how
powerful the language can be. Just imagine trying to do everything that we
just did in Excel (I can’t!).

38

CHAPTER 4

Amortize

Yeah, I'm paid, and I don’t got a debt (hah).
—Migos

I have a personal aversion to debt. It seems like a lot of Millennials do.
Even though I try to avoid it, I can appreciate that debt can be a fantastic
tool, if (and when) it’s used correctly. It’s just that...most people don’t use
it correctly.

In my opinion, debt is used incorrectly when you buy stuff that won't
help you get back out of debt. A vacation is a good example. However, if
you take on debt to buy something that will propel you forward and will
help you pay it back, debt can super powerful.

A couple of chapters ago we talked about Dogecoin mining. Implicit
in the example was the concept of spending money to make money. The
chapter assumed that a decent mining rig would set us back about $3,000
CAD (or as we learned previous chapter, around $2,341 USD). Most people
don’t have that kind of money sitting liquid.

If you have only a couple hundred dollars to your name, the Dogecoin
game is out of the question, unless, of course, you decide to go into debt.

(If you're sick of Dogecoin at this point, pretend that you need $3,000
for a new laptop!)

Quick disclaimer: debt is a super-complex subject. To narrow the focus
for this book, we'll just explore a personal loan.

© Max Humber 2018 39
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_4

CHAPTER 4 AMORTIZE

Banks

-y

® -

14 months 20 months 8 months

5.75% 3.99% 8.99%

When it comes to the amount of total interest that you will pay on a
personal loan, banks often obfuscate the details.

Let’s say we need $3,000 for our Dogecoin rig. We shop around and
come back with three viable options from Pineapple Imperial Bank,
Orange National Bank, and Banana Dominion Bank.

Our decision will, of course, be dependent on the monthly payment we
can realistically afford; however, let’s eschew that constraint for a moment
and evaluate things on a total interest basis.

Here are the options: Pineapple Imperial is offering us $3,000 at an
interest rate of 5.75 percent for 14 months. Orange National will do $3,000
at 3.99 percent for 20 months. And, Banana Dominion is prepared to lend
us what we need at 8.99 percent for 8 months. Notice that each bank lists
only the term length and the interest rate.

If the term lengths were all the same, Orange National would be a no-
brainer. But given that each option has a different term length, how do we
choose between them? To figure out which option is the least expensive on
a total interest cost basis, we need to turn to amortization schedules.

40

CHAPTER 4 AMORTIZE

Amortization

An amortization schedule is a table that details each periodic payment
on an amortizing loan (like a personal loan). Amortization refers to the
process of paying off a loan over time through regular payments. On
an amortizing loan, a portion of each payment is for interest, while the
remaining amount is applied against the principal balance.

Payment

Because each of the three options are fixed-payment personal loans, we
can calculate the monthly payments with the following formula:

__r(pv)

where:

P = Payment

PV = Present value (the loan)
r = Rate per period

Number of periods

If we use the Pineapple Imperial loan to start, we can apply the
payment formula in Python with the following code block:

loan = 3000.00
rate = 0.0575
term = 14

payment = loan * (rate / 12) / (1 - (1 + (rate / 12))**(-term))
print(round(payment, 2))

222.07

41

CHAPTER 4 AMORTIZE

There are a couple of things to note. First, the double asterisk (**) is
Python notation for exponentiation. Second, we divide the (interest) rate
by 12 because most banks charge interest on a monthly basis (and there
are 12 months in a year).

If you can’t be bothered to remember the payment formula for an
amortizing loan, numpy has a handy pmt function that can do it for you.

import numpy as np
payment = np.round(-np.pmt(rate/12, term, loan), 2)
print(payment)

222.07

Loop A

With the payment calculated, we can build an amortization schedule on
top of a pandas DataFrame. To start, let’s instantiate the first row of the
schedule.

import pandas as pd

balance = loan

df = pd.DataFrame({
'month': [0],
"payment’: [np.NaN],
"interest': [np.NaN],
"principal’: [np.NaN],
'balance': [balance]

1)
print(df)

balance interest month payment principal
0 3000.0 NaN 0 NaN NaN

42

CHAPTER 4 AMORTIZE

While the first row (at index 0) has the balance set to the amount
borrowed, the interest, payment, and principal (remaining) are all set to
NaN (not a number) because loan payments kick in after a full month has
elapsed.

With our DataFrame instantiated, we can now calculate the interest
and principal portions for the first payment by running the following:

interest = round(rate/12 * balance, 2)
principal = payment - interest
balance = balance - principal

print(interest)
print(principal)
print(balance)

14.38
207.69
2792.31

To execute these calculations for each payment in sequence, we can
wrap the logic in a loop and append the calculated values to the df object
with month 0 already filled in.

balance = loan

for i in range(1, term + 1):
interest = round(rate/12 * balance, 2)
principal = payment - interest
balance = balance - principal

df = df.append(
pd.DataFrame({
"month': [i],
"payment’: [payment],
"interest': [interest],

43

CHAPTER 4 AMORTIZE

"principal’: [principal],
"balance': [balance]
1)
)

df = df.reset_index(drop=True)
df[['month', 'payment', 'interest', 'principal', 'balance']]

month payment interest principal balance
0 0 NaN NaN NaN 3000.00
1 1 222.07 14.38 207.69 2792.31
2 2 222.07 13.38 208.69 2583.62
3 3 222.07 12.38 209.69 2373.93
4 4 222.07 11.38 210.69 2163.24
5 5 222.07 10.37 211.70 1951.54
6 6 222.07 9.35 212.72 1738.82
7 7 222.07 8.33 213.74 1525.08
8 8 222.07 7.31 214.76 1310.32
9 9 222.07 6.28 215.79 1094.53
10 10 222.07 5.24 216.83 877.70
11 11 222.07 4.21 217.86 659.84
12 12 222.07 3.16 218.91 440.93
13 13 222.07 2.11 219.96 220.97
14 14 222.07 1.06 221.01 -0.04

Yay, our amortization logic worked! (We're a few pennies off zero, but
that’s okay because we had to round the payment to two decimal places
because there’s no such thing as a fractional penny.)

44

CHAPTER 4 AMORTIZE

Though we did just successfully build an amortization schedule in
Python and pandas, the loop strategy that we used isn’t exactly super
efficient.

What we just did basically looks like this:

| |

\'é\

While appending rows onto rows is fine for when we have to loop
through only a couple of items, if and when faced with several hundred
thousand (or even millions of) rows, things will quickly slow to a crawl.

45

CHAPTER 4 AMORTIZE

Loop B

An alternative (and more efficient) way to construct an amortization
schedule with a loop involves building all the rows that we need before we
iterate instead of appending them at runtime.

Building everything (or pre-allocating space) at the beginning allows
us to achieve some pretty incredible speed gains and kind of looks like this:

i
lJ'
i

|

46

CHAPTER 4 AMORTIZE

With all of the rows prebuilt, we basically fill them up with values as
we calculate them.

Adjusting our code to fit this pre-allocation pattern is pretty easy. All
we have to do is build out an empty DataFrame with 5 columns and 15
rows (15 because the example requires 14 months plus a zeroth month).

balance = loan

index = range(0, term + 1)

columns = ['month', 'payment', 'interest', 'principal', 'balance’]
df = pd.DataFrame(index=index, columns=columns)

Instantiating the first row can be achieved with the .iloc method from
pandas.

df.iloc[0]['month'] = 0
df.iloc[0]['balance'] = balance

Running the actual loop is accomplished with df.iloc[i][COLUMN] for
each column.

I've stopped the loop prematurely so that we can see what’s happening
at each step.

for i in range(1, 11):
interest = round(rate/12 * balance, 2)
principal = payment - interest
balance = balance - principal

df.iloc[i]['month'] = i
df.iloc[i]['payment'] = payment
df.iloc[i]['interest'] = interest
[1][
[1][

df.iloc[i]["
df.iloc[i

principal'] = principal
'balance'] = balance

df

47

CHAPTER 4 AMORTIZE

month payment interest principal balance
0 0 NaN NaN NaN 3000
1 1 222.07 14.38 207.69 2792.31
2 2 222.07 13.38 208.69 2583.62
3 3 222.07 12.38 209.69 2373.93
4 4 222.07 11.38 210.69 2163.24
5 5 222.07 10.37 211.7 1951.54
6 6 222.07 9.35 212.72 1738.82
7 7 222.07 8.33 213.74 1525.08
8 8 222.07 7.31 214.76 1310.32
9 9 222.07 6.28 215.79 1094.53
10 10 222.07 5.24 216.83 877.7
11 NaN NaN NaN NaN NaN
12 NaN NaN NaN NaN NaN
13 NaN NaN NaN NaN NaN
14 NaN NaN NaN NaN NaN

Atindex 10 the remaining balance of the loan is $877, and we have four
more payments to make. Without truncating the loop at range(1, 11),
the amortization schedule will continue to run through month 14 and will
generate the same schedule as before.

Functionize

Now that we have the efficient amortization logic assembled, let’s wrap our
code into a function called am.

48

CHAPTER 4 AMORTIZE
def am(loan, rate, term):

payment = np.round(-np.pmt(rate/12, term, loan), 2)
balance = loan

index = range(0, term + 1)
columns = ['month’, 'payment’', 'interest’, 'principal’, 'balance’]
df = pd.DataFrame(index=index, columns=columns)

df.iloc[0]['month'] = 0
df.iloc[0]['balance'] = balance

for i in range(1, term + 1):
interest = round(rate/12 * balance, 2)
principal = payment - interest
balance = balance - principal

df.iloc[i]['month'] = i

df.iloc[i]['payment'] = payment
df.iloc[i]['interest'] = interest
df.iloc[i]['principal'] = principal
df.iloc[i]['balance'] = balance

return df

Evaluate

With am defined, we can run the function on top of the Pineapple Imperial
(5.75 percent, 14 months), Orange National (3.99 percent, 20 months),
and Banana Dominion (8.99 percent, 8 months) loans without repeating
ourselves.

loan = 3000

pineapple = am(loan, 0.0575, 14)

orange = am(loan, 0.0399, 20)

banana = am(loan, 0.0889, 8)

49

CHAPTER 4 AMORTIZE

Peering into one of the schedules, we can see everything working as

expected.
orange

month payment interest principal balance
0 0 NaN NaN NaN 3000
1 1 155.29 9.97 145.32 2854.68
2 2 155.29 9.49 145.8 2708.88
3 3 155.29 9.01 146.28 2562.6
4 4 155.29 8.52 146.77 2415.83
5 5 155.29 8.03 147.26 2268.57
6 6 155.29 7.54 147.75 2120.82
7 7 155.29 7.05 148.24 1972.58
8 8 155.29 6.56 148.73 1823.85
9 9 155.29 6.06 149.23 1674.62
10 10 155.29 5.57 149.72 1524.9
11 11 155.29 5.07 150.22 1374.68
12 12 155.29 4.57 150.72 1223.96
13 13 155.29 4.07 151.22 1072.74
14 14 155.29 3.57 151.72 921.02
15 15 155.29 3.06 152.23 768.79
16 16 155.29 2.56 152.73 616.06
17 17 155.29 2.05 153.24 462.82
18 18 155.29 1.54 153.75 309.07
19 19 155.29 1.03 154.26 154.81
20 20 155.29 0.51 154.78 0.03

a
o

CHAPTER 4 AMORTIZE

Because each object is an amortization schedule inside of a pandas
DataFrame, we can access the interest column like this:

banana['interest’]

NaN
22.23
19.52
16.79
14.04
11.28

8.49

5.68

2.85
Name: interest, dtype: object

0O N O VT B W N B O

We sum everything up with a call to . sum().
banana['interest'].sum()
100.88

We sum up the interest for each loan.

print(banana['interest'].sum())
print(orange['interest'].sum())
print(pineapple['interest'].sum())

100.88
105.82999999999997
108.93999999999998

We can see that the Banana Dominion Bank loan is the best bang for
our buck (if by bang we mean the least amount of interest paid).
However, it’s important to note that the monthly payment for
the Banana Dominion option is a lot more than the Orange National
loan. Because of this, we might decide that an extra $5, for what would
ultimately be less of a monthly burden, is worth it!

51

CHAPTER 4 AMORTIZE

Conclusion

I casually dropped the idea that you should pre-allocate where possible
and expected you to believe me on faith. Never believe anyone without
evidence!

If you want to see how much quicker Loop B is against Loop A, you can
run some %%timeit Jupyter magic against the function.

%ktimeit
am(3000, 0.0575, 14)
6.9 ms + 877 ps per loop (mean + std. dev. of 7 runs, 100 loops each)

Unfortunately, we never wrapped the logic for Loop A into a function.
So, consider it homework! Once you've functionized Loop A, you can run
the same %%timeit magic on top of it and see the speed difference for
yourself.

Try it with a few rows and then with a whole bunch more. The speed
differences become incredible as the number of rows increases!

52

CHAPTER 5

Budget

Going broke is not an option, always on that cash flow.

—AS$AP Rocky

I've been obsessed with budgeting for as long as I can remember, first with
pen and paper, then with Excel, then with R, and now with Python.

There are some wonderful online tools that can help you build a
budget; however, I've always found them to be lacking. While most budget
apps are great for measuring monthly inflows and outflows, I haven'’t
found them to be particularly great for scenario planning or for capturing
the holistic cash flow picture.

When I build a budget, I want to know what my bank balance will be
at each moment in time so that I might allocate more money to savings,
spend less on booze, or plan when I can take a vacation.

When budgeting, it’s important to remember that cash flow is king. If at
any moment during the month your budget has you spending more money
than you actually have, it really doesn’t matter if everything balances at the
end of the month. Everything needs to balance every day.

Dates

To build a budget, we have to work with dates. Unfortunately, working with
dates is a bit of a nightmare in Python. There are effectively six separate
date/time formats in Python that are commonly used, but making each
format work in concert is tricky and requires some conversion.

© Max Humber 2018 53
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_5

CHAPTER5 BUDGET

Here’s a great “state of the union” picture posted on StackOverflow' in
2014 (sadly not much has changed in four years):

Dd-:o'_dmﬂr‘-ﬂ

tto_datetime() Pd.Timestamp(|

pd-to_datetimel)

- ol 1— { Wy
;'wml:l N?'_\mlll dtypes’datetimetd]ns]" |
A

np.datetimetd , ‘ns)

A full discussion of date formatting is beyond the scope of this
book; however, I'm going to enforce two rules that will make our lives
tremendously more easy and allow us to sidestep most of the inherent
problems in working with dates in Python.

Here are my two rules:

o Coerce everything into a Timestamp.

e .normalize all the things.

'https://i.stack.imgur.com/uiXQd.png

54

https://i.stack.imgur.com/uiXQd.png

CHAPTER5 BUDGET

datetime

Python ships with datetime. Consequently, we can create datetime.
datetime objects and datetime.date objects out of the box like this:

import datetime

date 1 = datetime.datetime.now()
print(date 1)
print(date 1. repr ())
print(type(date 1))

date 2 = datetime.date.today()
print(date 2)
print(date 2. repr_ ())
print(type(date 2))

2018-05-29 21:34:10.877373
datetime.datetime(2018, 5, 29, 21, 34, 10, 877373)

2018-05-29
datetime.date(2018, 5, 29)

datetime.date and datetime.datetime objects can also be created
manually by filling out each object according to the following pattern:
(year, month, day, hour, minute, second, millisecond).

datetime.datetime(1993, 6, 7, 15, 16, 0)
datetime.datetime(1993, 6, 7, 15, 16)

Timestamp

pandas ships with the Timestamp type that largely behaves like a datetime.
datetime object but plays nice with DataFrames and DatetimeIndexes (both
of which we’ll leverage later in the chapter). Additionally, Timestamp comes
packaged with a couple of really neat features (namely, .normalize).

55

CHAPTER5 BUDGET

To convert from a datetime.datetime or datetime.date object to
a Timestamp, we can lean on the to_datetime function or just wrap our
objectin a Timestamp. Both ways are valid.

import pandas as pd

print(pd.Timestamp(date 1))
print(pd.to datetime(date 1))

2018-05-29 21:34:10.877373
2018-05-29 21:34:10.877373

What’s more, we can create Timestamps from scratch by manually
filling in the function arguments much like we did for datetime.datetime().

date 3 = pd.Timestamp(1993, 6, 7, 15, 16, 0)
date 3

Timestamp('1993-06-07 15:16:00")

.normalize

Normalizing in the context of datetimes means stripping all of the time
information and just leaving the date bits attached to the object. If
everything is in a Timestamp, this is trivial:

print(date 1)

date 1 = pd.Timestamp(date 1)
print(date 1)

print(date 1.normalize())

2018-05-29 21:34:10.877373
2018-05-29 21:34:10.877373
2018-05-29 00:00:00

Asyou can see, the .normalize method sets the time metadata to
00:00:00, which will help us to glue things together later.

56

CHAPTER5 BUDGET

Horizon

To build a budget, we need a time horizon. I like to constrain everything
to a year because, honestly, predicting further into the future is a fool’s
errand.

I'll be referencing the globals defined here for the rest of the chapter, so
make sure you run this code:

TODAY = pd.Timestamp(today').normalize()
print(TODAY)

END = TODAY + datetime.timedelta(days=365)
print(END)

2018-05-29 00:00:00
2019-05-29 00:00:00

Feel free to arbitrarily adjust the TODAY (start) and END variables to
match your needs.?

Just please remember to .normalize everything! Otherwise, you're going
to smash your head against the wall as we work through all the examples.

After we've defined our start and end dates, we can create an empty
calendar object with pandas that leverages a DatetimeIndex created by the
date_range function.

calendar = pd.DataFrame(index=pd.date range(start=TODAY, end=END))

*https://en.wikipedia.org/wiki/ISO 8601

57

https://en.wikipedia.org/wiki/ISO_8601

CHAPTER5 BUDGET

Peeking inside the DataFrame object with .head(), we can see that
there are a bunch of dates that increment by one day.

print(calendar.head())

Empty DataFrame

Columns: []

Index: [2018-05-29 00:00:00, 2018-05-30 00:00:00, 2018-05-31
00:00:00, 2018-06-01 00:00:00, 2018-06-02 00:00:00]

The pd.date_range function is super flexible. It can accept different
date increments by passing offset aliases® to the freq argument.

Two offset aliases that are endlessly useful in budgeting are SM and
MS. The former, an alias for “semi-month-end frequency (15th and end
of month),” is great for something like income, and the latter, an alias for
“month start frequency” is useful for an expense like rent.

Flows

Here are some examples of how to use the offset aliases:

semi-month end frequency (15th and end of month)
print('Semi-month End:")

sm = pd.date_range(start=TODAY, end=END, freq='SM")
print(sm)

print('\n')

month start frequency

print('Month Start:')

ms = pd.date range(start=TODAY, end=END, freq='MS")
print(ms)

Shttps://pandas.pydata.org/pandas-docs/stable/timeseries.
html#offset-aliases

58

https://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

Semi-month End:

DatetimeIndex(['2018-05-31",
'2018-07-31",
'2018-09-30",
'2018-11-30",
'2019-01-31",
'2019-03-31",

Month Start:

CHAPTER5 BUDGET

'2018-06-15", '2018-06-30', '2018-07-15",
'2018-08-15", '2018-08-31', '2018-09-15',
'2018-10-15", '2018-10-31"', '2018-11-15',
'2018-12-15", '2018-12-31', '2019-01-15',
'2019-02-15", '2019-02-28"', '2019-03-15',

'2019-04-15", '2019-04-30', '2019-05-15'],

dtype="datetime64[ns]', freq="SM-15")

DatetimeIndex(['2018-06-01", '2018-07-01', '2018-08-01', '2018-09-01',
'2018-10-01', '2018-11-01', '2018-12-01', '2019-01-01',
'2019-02-01", '2019-03-01', '2019-04-01', '2019-05-01'],

dtype="datetime64[ns]', freq="MS")

If we want to map earnings ($1,000 bimonthly, for example) onto our

calendar object, we can create a new DataFrame with an index that spans

the entire year and that has freq="SM".

income = pd.DataFrame(
data={"income': 1000},

index=pd.date_range(start=TODAY, end=END, freq='SM"')

)

print(income.head())

2018-05-31
2018-06-15
2018-06-30
2018-07-15
2018-07-31

income

1000
1000
1000
1000
1000

59

CHAPTER5 BUDGET

Similarly, for rent ($1,500 per month, for instance), we can wrap a
DataFrame around a DatetimeIndex (created by the convenient date
range function) with freq="MS".

rent = pd.DataFrame(
data={"'rent': -1500},
index=pd.date_range(start=TODAY, end=END, freq='MS")

)
print(rent.head())

rent
2018-06-01 -1500
2018-07-01 -1500
2018-08-01 -1500
2018-09-01 -1500
2018-10-01 -1500

Now that we have an empty calendar object with each date for an
entire year and two “cash flow” objects (income and rent), we can stitch
these DataFrames together with pd.concat. If your Timestamps aren’t
normalized, this won’t work.

calendar

pd.concat([calendar, income], axis=1).fillna(0)
calendar = pd.concat([calendar, rent], axis=1).fillna(0)
calendar.head(5)

income rent
2018-05-29 0.0 0.0
2018-05-30 0.0 0.0
2018-05-31 1000.0 0.0
2018-06-01 0.0 -1500.0
2018-06-02 0.0 0.0

60

CHAPTER 5 BUDGET
Note the following:

o axisissettolinpd.concat to tell pandas that we want
to stitch (concatenate) along the column’s axis.

o The .fillna(0) method is called after each
concatenate operation to fill NaN values with 0.
(Because we pay rent on the first of each month, the
cell for rent at index 2018-XX-02 will be a NaN value.)

Peeking inside this “filled-in” calendar object with . loc (a
label-location-based indexer method from pandas), we can see that
concatenations worked!

calendar.loc|
(calendar.index »= '2019-01-30") &
(calendar.index <= '2019-02-02")

]
income rent
2019-01-30 0.0 0.0
2019-01-31 1000.0 0.0
2019-02-01 0.0 -1500.0
2019-02-02 0.0 0.0
Totals

Now, to get a holistic picture of our cash flows for each moment in time,
we just have to total up the income and rent columns for each day and
compute the running total with cumsum().

calendar['total'] = calendar.sum(axis=1)
calendar['cum total'] = calendar['total’].cumsum()

calendar.tail(1)

61

CHAPTER5 BUDGET

income rent total cum_total

2019-05-29 0.0 0.0 0.0 6000.0

Running the .tail method on the calendar object, we can see that
we're meant to end the year with $6,000 in the bank. Great! However, we
can’t celebrate just yet because there’s a problem lurking in our budget
that can be unearthed with some plotting.

Visualization

Running some vanilla matplotlib on top of our total and cum_total
columns yields the following:

from matplotlib import pyplot as plt
%Zmatplotlib inline

plt.figure(figsize=(10, 5))

plt.plot(calendar.index, calendar.total, label='Daily Total')
plt.plot(calendar.index, calendar.cum total, label='Cumulative
Total')

plt.legend()
—— Daily Total
€000 4 Cumulative Total l l —
|
5000 | | i
| ~
4000 | | < [U
r " | b .
3000 1 | | — |)
2000 - ‘ — L
x [y
1000 -
u.
J
-1000 A
2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

62

CHAPTER5 BUDGET

Although our budget has us ending the year with $6,000 in the bank,
there’s a moment near the start of the year where we will be forced into
overdraft because of how our rent outflows stack against our income inflows.
Again, your graph might be different depending on your starting date.

Updating

Because we're working with a toy example, we can just wave a magic wand
over the problem and add $2,000 to our starting bank account balance
(if only life were that easy).

bank = pd.DataFrame(
data={"bank': 2000},
index=pd.date_range(start=TODAY, end=TODAY)

)
print(bank)

bank
2018-05-29 2000

calendar = pd.concat([calendar, bank], axis=1).fillna(0)

That should fix things! Now we have to recalculate our totals.
Unfortunately, there’s another problem. If we run . sum on the entire
DataFrame, it will add the totals to the totals and our daily values will get

wacky.
calendar.sum(axis=1).head()

2018-05-29 2000.0
2018-05-30 0.0
2018-05-31 3000.0
2018-06-01 -3500.0
2018-06-02 -500.0
Freq: D, dtype: float64

63

CHAPTER5 BUDGET

To prevent this from happening, we can either drop the total and cum_
total columns or set them to zero.

I'll demonstrate the first option. And because we're going to be doing
this a couple more times, it probably makes sense to wrap up the logicin a
function.

def update totals(df):
check to see if these columns exit in our dataframe
if df.columns.isin(['total', 'cum total']).any():
if they do exist set the them to 0
df["total'] = 0
df["'cum total'] = 0
recalculate total and cumulative_total
df['total'] = df.sum(axis=1)
df['cum _total'] = df['total'].cumsum()
return df

Note DataFrames kind of behave like lists/sets/dictionaries, so we
can check column membership with a simple in call.

calendar = update totals(calendar)

calendar.tail(1)
income rent total cum_total bank
2019-05-29 0.0 0.0 0.0 8000.0 0.0

Great! Now we’re meant to end the year on $8,000.

64

CHAPTER5 BUDGET

Let’s plot our calendar object again to make sure that we stay positive

for the entire year. And while we're at it, we might as well capture our

plotting logic in a function.

def plot budget(df):
plt.figure(figsize=(10, 5))
plt.plot(df.index, df.total, label='Daily Total')
plt.plot(df.index, df.cum total, label='Cumulative Total')
plt.legend()

plot budget(calendar)

8000 4

€000 1

4000 A

2000 1

=2000

—— Daily Total
Cumulative Total I l

L]
BERE

2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

Problems solved! We're cash flow positive, and our totals aren’t wonky.

Vacation |

Given that we're cash flow positive and on an upward trajectory for the

entire year, let’s go on vacation! What do you think about spending $2,500

at the beginning of July (or 2 months from your TODAY date) for a trip to

Colombia? Sounds good to me! We can add a vacation to our budget in the

same fashion as rent or income.

65

CHAPTER5 BUDGET

vacation = pd.DataFrame(
data={"'vacation': -2500},
index=[pd.Timestamp('2018-07-01").normalize()]

)

print(vacation)

vacation
2018-07-01 -2500

calendar

pd.concat([calendar, vacation], axis=1).fillna(0)

calendar = update totals(calendar)

plot budget(calendar)

ol [Y
4000 - | |‘|I_J L
| A

20001 1L ‘[.glj_
D A
e NN

2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

Whoa. Hold up. If we spend $2,500 in July, we're going to get wiped out.

I think we should postpone our imaginary vacation by a couple of
months or figure out how to do Colombia on a shoestring budget.

For now let’s drop the vacation and consider some more “pressing”

issues.

calendar = calendar.drop('vacation', axis=1)

66

CHAPTER5 BUDGET

English

Cash flows are irregular. We might have expenses that occur on specific
days or get paid on increasingly weird schedules. It would be nice to define
these frequencies in raw English, instead of having to rely on pandas offset
aliases.

Fortunately, there’s a wonderful library called Recurrent* that can do
most of the heavy lifting parsing for us.

For instance, we can define an arbitrary frequency in English.

frequency = 'every week until July 10th' # try a couple of
different month-day combinations!

We then import the RecurringEvent class from recurrent
Ipip install recurrent
from recurrent import RecurringEvent

We then parse it with the . parse method.

r = RecurringEvent()
r.parse(frequency)

"RRULE : INTERVAL=1; FREQ=WEEKLY;UNTIL=20180710"

.parse will allow us to generate a recurrence rule (called an rrule) that
is iCalendar RFC® compliant. The corresponding rrule will enable us to do
a bunch of cool things such as checking for the first occurrence before or
after an arbitrary date, calculating how many times an event will occur in a
given timeframe, or, for our purposes, generating a schedule of dates.

To handle rrules, we’'ll need one more import.

from dateutil import rrule

*https://github.com/kvh/recurrent
*https://www.ietf.org/rfc/rfc2445.txt

67

https://github.com/kvh/recurrent
https://www.ietf.org/rfc/rfc2445.txt

CHAPTER5 BUDGET

Passing the RFC rrule string from our RecurrentEvent to rrule.
rrulestr will create the rrule object that we need.

rr = rrule.rrulestr(r.get RFC_rrule())
Y

Now that “every week until July 10th” has been transformed into an
rrule, we can generate all the dates that will happen between today and a
year from today.

rr.between(TODAY, END)

[datetime.datetime(2018, 5, 29, 21, 38, 42),
datetime.datetime(2018, 6, 5, 21, 38, 42),
datetime.datetime(2018, 6, 12, 21, 38, 42),
datetime.datetime(2018, 6, 19, 21, 38, 42),
datetime.datetime(2018, 6, 26, 21, 38, 42),
datetime.datetime(2018, 7, 3, 21, 38, 42)]

I think that the output of this is hugely impressive. However, the
.between method breaks both of the date rules we set at the beginning of
this chapter.

The output isn’t of type Timestamp, and the values aren’t normalized.
Let’s fix both problems at the same time with a list comprehension.

[pd.to _datetime(date).normalize() for date im rr.between(TODAY, END)]

[Timestamp('2018-05-29 00:00:00"),
Timestamp('2018-06-05 00:00:00"),
Timestamp('2018-06-12 00:00:00"),
Timestamp('2018-06-19 00:00:00"),
Timestamp('2018-06-26 00:00:00"),
Timestamp('2018-07-03 00:00:00")]

68

CHAPTER5 BUDG

get_dates

Now, we could wrap a DatetimeIndex around these dates and put them
inside of a DataFrame object. But before we do, let’s create a get_dates

ET

function that outputs a list of normalized dates of type Timestamp and that

can handle raw dates (like “2018-06-07") and English (like “every week
until July 10th”):

def get dates(frequency):
let pandas try and handle single dates
try:
return [pd.Timestamp(frequency).normalize()]
except ValueError:
pass
parse frequency with recurrent
try:
r = RecurringEvent()
r.parse(frequency)
rr = rrule.rrulestr(r.get RFC rrule())
return |
pd.to datetime(date).normalize()
for date in rr.between(TODAY, END)
]
except ValueError as e:
raise ValueError('Invalid frequency')

The logic in this function is mostly identical to the operations that we
performed earlier; however, I've added some additional error handling
in the pattern of “Ask forgiveness, not permission”® that tries to let
pd.Timestamp do its thing with raw dates and then falls back on . parse
from the Recurrent library.

Shttps://stackoverflow.com/questions/12265451/
ask-forgiveness-not-permission-explain

69

https://stackoverflow.com/questions/12265451/ask-forgiveness-not-permission-explain
https://stackoverflow.com/questions/12265451/ask-forgiveness-not-permission-explain

CHAPTER 5 BUDGET
Let’s take our new function for a spin.
get dates('2019-01-01")
[Timestamp('2019-01-01 00:00:00")]
get dates('every week until July 10th")

[Timestamp('2018-05-29 00:00:00"),
Timestamp('2018-06-05 00:00:00"),
Timestamp('2018-06-12 00:00:00"),
Timestamp('2018-06-19 00:00:00"),
Timestamp('2018-06-26 00:00:00"),
Timestamp('2018-07-03 00:00:00")]

get dates('this will not work")

ValueError Traceback (most recent call last)
in get dates(frequency)
10 r.parse(frequency)
---> 11 rr = rrule.rrulestr(r.get RFC rrule())
12 return [pd.to datetime(date).normalize() for

date in rr.between(TODAY, END)]
ValueError: not enough values to unpack (expected 2, got 1)

in get dates(frequency)

12 return [
13 pd.to datetime(date).normalize()
14 for date in rr.between(TODAY, END)
15]
16 except ValueError as e:

---> 17 raise ValueError('Invalid frequency')

ValueError: Invalid frequency

It looks like everything seems to be behaving as expected!

70

CHAPTER5 BUDGET

Fun

Our budget is still fairly simplistic. Honestly, living exactly according to
it doesn’t inspire much fun. In this toy example, we work (to generate an
income) to pay off our rent, and, well, that’s pretty much it. Plus, we had to
scrap a vacation because we couldn’t afford it.

Let’s fix our bleak imaginary lives in this section by embedding some
nights out ($40 each Friday and Saturday).

dates = get dates('every week on Friday and Saturday')
dates[:10] # first ten instances of the recurrance rule
[Timestamp('2018-06-01 00:00:00"),
Timestamp('2018-06-02 00:00:00"),
Timestamp('2018-06-08 00:00:00"),
Timestamp('2018-06-09 00:00:00"),
Timestamp('2018-06-15 00:00:00"),
Timestamp('2018-06-16 00:00:00"),
Timestamp('2018-06-22 00:00:00"),
Timestamp('2018-06-23 00:00:00"),
Timestamp('2018-06-29 00:00:00"),
Timestamp('2018-06-30 00:00:00")]

To wrap these dates into a DataFrame object, we have to turn the list
into a DatetimeIndex object. The only problem is that pd.DatetimeIndex
accepts only a pandas Series. But it’s actually no problem!

pd.Series(dates).head()

0 2018-06-01
1 2018-06-02
2 2018-06-08
3 2018-06-09
4 2018-06-15

dtype: datetime64[ns]

71

CHAPTER 5

BUDGET

pd.DatetimeIndex(pd.Series(dates))

DatetimeIndex(['2018-06-01', '2018-06-02', '2018-06-08"', '2018-06-09',

'2018-06-15", '2018-06-16', '2018-06-22', '2018-06-23",
'2018-06-29', '2018-06-30",

'2019-04-26", '2019-04-27', '2019-05-03', '2019-05-04',
'2019-05-10", '2019-05-11', '2019-05-17', '2019-05-18",
'2019-05-24", '2019-05-25'],

dtype="datetime64[ns]', length=104, freq=None)

If we wrap our list of Timestamps in a Series in a DatetimeIndex, we can

follow largely the same pattern that we've been using for the entire chapter.

dates = get dates('every week on Friday and Saturday')

fun = pd.DataFrame(
data={"fun': -40},
index=pd.DatetimeIndex(pd.Series(dates))

)

print(fun.head())

2018-06-01
2018-06-02
2018-06-08
2018-06-09
2018-06-15

72

fun
-40
-40
-40
-40
-40

CHAPTER 5 BUDGET
Stitching this fun object onto our calendar object is a cinch.

calendar

pd.concat([calendar, fun], axis=1).fillna(0)
calendar = update totals(calendar)
plot_budget(calendar)

—— Daily Total

Cumulative Total
4000

J FHI I“\ ™

|
INREEEHRG
2000 | LJM fi”\ﬁfij W\JWJL u Jxk

L

=1000 -

2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

calendar.tail()

income rent total cum_total bank fun

2019-05-25 0.0 0.0 -40.0 3840.0 0.0 -40.0
2019-05-26 0.0 0.0 0.0 3840.0 0.0 0.0
2019-05-27 0.0 0.0 0.0 3840.0 0.0 0.0
2019-05-28 0.0 0.0 0.0 3840.0 0.0 0.0
2019-05-29 0.0 0.0 0.0 3840.0 0.0 0.0

It looks like our budget can stomach a little weekend fun!

73

CHAPTER5 BUDGET

YAML

Although it’s worked so far, adding a new outflow/inflow to our budget
is a bit of an arduous process. We have to first generate the DataFrame
object, stitch it onto our main calendar object, and then update the totals.
It would be nice to define our budget items all at once and calculate the
totals just once.

YAML to the rescue! YAML is a file format that’s a bit like JSON but is
slightly more human-readable. We can take all of our budget items and
stuff it into a YAML file like this:

Note PyYAML should have been installed with Anaconda. If not, try
the following:

I'pip install pyyaml

import yaml

budget = yaml.load(
bank:
frequency: today
amount: 2000
income:
frequency: every 2 weeks on Friday
amount: 1000
rent:
frequency: every month
amount: -1500
fun:
frequency: every week on Friday and Saturday
amount: -40

")

74

CHAPTER 5 BUDGET
After running yaml. load, this just turns everything into a Python dict.
budget

{"bank': {"amount': 2000, 'frequency': 'today'},
“fun': {'amount': -40, 'frequency': 'every week on Friday and
Saturday'},
"income': {'amount': 1000, 'frequency': 'every 2 weeks on Friday'},
‘rent': {'amount': -1500, 'frequency': 'every month'}}

With our budget in a dictionary, we can now iterate through all of the
keys (k) and values (v), get the frequency and amounts attached to each
v, create a DataFrame object, and concatenate it to the main calendar
object. After this point we can compute the totals without having to update
them after each step.

calendar = pd.DataFrame(index=pd.date range(start=TODAY, end=END))

for k, v in budget.items():
frequency = v.get('frequency')
amount = v.get('amount")
dates = get dates(frequency)
i = pd.DataFrame(
data={k: amount},
index=pd.DatetimeIndex(pd.Series(dates))

)

calendar = pd.concat([calendar, i], axis=1).fillna(0)

calendar['total'] = calendar.sum(axis=1)
calendar['cum total'] = calendar['total'].cumsum()

plot budget(calendar)

75

CHAPTER5 BUDGET

—— Daily Total ~—
Cumulative Total l“l j .
6000 [qu
l . ~
~
4000 1 AN N Y
| [[—~
| ~ (['
2000 M r\JH | -
-~
0 4
-2000 T : . ; : v .
2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06
Functionize

Let’s quickly functionize our budget logic so that we might test a couple

more scenarios.

def build calendar(budget):

76

calendar = pd.DataFrame(index=pd.date_range(start=TODAY,
end=END))

for k, v in budget.items():
frequency = v.get('frequency')
amount = v.get('amount")
dates = get dates(frequency)
i = pd.DataFrame(
data={k: amount},
index=pd.DatetimeIndex(pd.Series(dates))

)

calendar = pd.concat([calendar, i], axis=1).fillna(0)

CHAPTER5 BUDGET
calendar['total'] = calendar.sum(axis=1)
calendar['cum total'] = calendar['total'].cumsum()

return calendar

Vacation Il

Although we might not be able to stomach $2,500 in Colombia in July,
what if we did Halifax in August for $1,000?

budget = yaml.load('"'
bank:
frequency: today
amount: 2000
income:
frequency: every 2 weeks on Friday
amount: 1000
rent:
frequency: every month
amount: -1500
fun:
frequency: every week on Friday and Saturday
amount: -40
vacation:
frequency: 2018-08-01
amount: -1000

III)
calendar = build calendar(budget)

plot_budget(calendar)

77

CHAPTER5 BUDGET

—— Daily Total . ~
6000 Cumulative Total l’ l . 1 |
5000 M | “
] J
4000 n [
J . l .] | |'_\ d
3000 - ™~ | L
~r o nNJH -
2000 - | el I l
~ J — 1 | -~ | I | | |
1000 - | L - |
0 E
-=1000 4
2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

Looks good! And, it looks like we might even be able to stow away
some money for a rainy day. Let’s sketch out what $50 to savings on
“every Monday starting in August” would look like.

budget = yaml.load('"'
bank:
frequency: today
amount: 2000
income:
frequency: every 2 weeks on Friday
amount: 1000
rent:
frequency: every month
amount: -1500
fun:
frequency: every week on Friday and Saturday
amount: -40
vacation:
frequency: 2018-08-01
amount: -1000

78

CHAPTER5 BUDGET

savings:
frequency: every Monday starting in August
amount: -50

")

calendar = build calendar(budget)
plot_budget(calendar)

—— Daily Total N n I~
4000 Cumulative Total | 1 w | '
|

I p

3000 A | l N | _ll U _.|

2000 | Hll [—\Jlﬁ \ lh" '7 N ™ [
’_\J e ||"\J|'H‘_I|f‘_ ‘HJ - L_l LJ

1000

=1000 -

2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

Loading YAML

We have been defining our budget as inline YAML. If you want to keep
your inputs separate from your code (which is a good idea), we can adjust
our workflow ever so slightly to accommodate.
with open('data/budget.yaml’, 'r') as f:

inputs = yaml.load(f)
calendar = build calendar(budget)
plot budget(calendar)

79

CHAPTER5 BUDGET

4000 A Cumulative Total

—— Daily Total ﬂ r\ l"‘w r‘-\

oo q l \ [_\J' U |

2000 ™ N |N M | NN
NS IN/INININASREN

1000

=1000 -

2018-06 2018-08 2018-10 2018-12 2019-02 2019-04 2019-06

Using a with block to open and close the .yaml file is really the only
adjustment that we have to make!

Conclusion

I'hope you had fun with this chapter. had a bunch of fun writing it. But a
word of caution: although this budget tool can be incredibly powerful, if
you do decide to use it, don’t be obsessive about it. Update your .yaml file
every quarter to see where you're at and where you're headed. Otherwise,
if you try to update it every day, you're going to go crazy.

80

CHAPTER 6

Invest

Invest in your future, don’t dilute your finances.

—Kendrick Lamar

I am not an authority on investing. So, I can’t (and won’t) tell you which
stocks you should pick or how you should structure your personal
investment portfolio. I can, however, give you an awesome mechanism
for setting up asset allocations and adhering to a routine of continuous
rebalancing.

Rebalancing' your investment portfolio against target allocations is
a good idea because it keeps risk in check and forces you to remove the
emotion from your investment decisions.

When your portfolio is up, it’s really hard to sell, and when you take
a hit, it’s just as hard to buy. A strategy of automated or semi-automated
rebalancing will force you to buy and sell even when your emotions are
trying to get the best of you.

But before we explore investing and rebalancing with Python, here are
a couple of words on trade-offs.

'https://www.moneyunder30.com/rebalance-your-portfolio

© Max Humber 2018 81
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_6

https://www.moneyunder30.com/rebalance-your-portfolio

CHAPTER6 INVEST

Trade-0ffs

I had a hard time writing the technical parts for this chapter because you
can really go hard on all this stuff if you want to (and I encourage you to!).
Initially, I wrote everything so that it was encapsulated in a Python
class, then I refactored everything to work with SQLite, and then

I refactored it all again to simple functions powered by pandas.

I ultimately settled on pandas and functions because this is a pandas
book and it kept with the theme. Besides, functions are just way easier to
read and use. Pandas might not be the best choice for scaling things up to
production.

There are real trade-offs in programming. Often we have to choose
between good enough and heavily polished, with the latter often taking ten
times the time and effort of the former. Polished will get you coverage for
all the edge cases, but good enough will get you where you need to go fast.

I'm all in for “good enough.”

Instantiate

With the preamble out of the way, let’s design a portfolio and get investing!

I've chosen three random stocks to get us started: Amazon (AMZN?), Cisco

(CSCO0?®), and General Electric (GE*). We'll try to hold the securities in

target allocations of 40 percent, 30 percent, and 30 percent, respectively.
To maintain balance against our target allocations, we will need

to execute buy and sell trades after market movements, deposits, and

withdrawals.

*https://finance.yahoo.com/quote/AMZN
*https://finance.yahoo.com/quote/CSCO
*https://finance.yahoo.com/quote/GE

82

https://finance.yahoo.com/quote/AMZN
https://finance.yahoo.com/quote/CSCO
https://finance.yahoo.com/quote/GE

CHAPTER 6 INVEST
Let’s start by defining our target allocations as a dictionary.

targets = {
"AMZN': 0.40, # Amazon
'"CSCO': 0.30, # Cisco
'GE': 0.30 # GE

To instantiate a portfolio, we might build up a DataFrame from scratch
like this:

import pandas as pd
import numpy as np

portfolio = pd.DataFrame(
index=1list(targets.keys()) + ['CASH'],
data={
'date': '2018-01-01',
"price': [np.NaN, np.NaN, np.NaN, 1],
"target': [0.4, 0.3, 0.3, 0],
'allocation': [0, 0, 0, 1],
'shares': [0, 0, 0, 10000],
'market _value': [0, 0, 0, 10000]

}
)
print(portfolio)

allocation date market value price shares target
AMZN 0 2018-01-01 0 NaN 0 0.4
csco 0 2018-01-01 0 NaN 0 0.3
GE 0 2018-01-01 0 NaN 0 0.3
CASH 1 2018-01-01 10000 1.0 10000 0.0

83

CHAPTER6 INVEST

Alternatively, we can build a reusable function that will work for
arbitrary stocks and targets.

def instantiate portfolio(targets, starting balance):
targets['CASH'] = 0
tickers = list(targets.keys())

df = pd.DataFrame(
index=tickers,
columns=([
'date’, 'price’, 'target’,
'allocation’, 'shares', 'market value

)

df.shares = 0
df.market value = 0
df.allocation = 0
df.update(
pd.DataFrame
.from dict(targets, orient="index")
.rename(columns={0: 'target'})

)

df.at['CASH', 'shares'] = starting balance
return df
Instantiating a portfolio with this function will look like this:

portfolio = instantiate portfolio(
{"AMZN': 0.4, 'CSCO': 0.3, 'GE': 0.3},
10000

)

print(portfolio)

84

CHAPTER6 INVEST

date price target allocation shares market_value

AMZN NaN NaN 0.4 0 0 0
CSCO NaN NaN 0.3 0 0 0
GE NaN NaN 0.3 0 0 0
CASH NaN NaN 0 0 10000 0

Given that I've packed a lot into the instantiate_portfolio function,
let’s spend a few moments unpacking it.

First, you might've noticed that we set targets['CASH'] = 0. This is
required because cash will behave a little differently from regular securities
in our model portfolio.

Though we will rebalance stocks, we don’t have to, nor should we,
rebalance cash. Cash in our portfolio will just act as a buffer and overflow.
Adding CASH to our dictionary has this effect:

print(targets)
targets['CASH'] = 0
print(targets)

{'AMZN': 0.4, 'CSCO': 0.3, 'GE': 0.3}
{"AMZN': 0.4, 'CSCO': 0.3, 'GE': 0.3, 'CASH': 0}

Second, just after the line where we set the value for the CASH key,
there’s this: 1list(targets.keys()).

This code snippet converts all the dictionary keys to a list so that we
can use it as an index to build a pandas DataFrame.

list(targets.keys())
['AMZN', 'CSCO', 'GE']

Further down the instantiate portfolio function, we call
.from_dict. This piece of code simply generates a pandas DataFrame
from a dictionary.

85

CHAPTER6 INVEST

print(pd.DataFrame.from dict(targets, orient="index"'))

0
AMZN 0.4
CSCO 0.3
GE 0.3

Unfortunately, the method isn’t smart enough to set the column name,
so we manually rename the 0 column.

print(
pd.DataFrame
.from dict(targets, orient="index')
.rename(columns={0: 'target'})

)

target
AMZN 0.4
Csco 0.3
GE 0.3

This DataFrame created by . from_dict is used in a call to update the
target values at their respective index locations.

The last piece of the instantiate portfolio function worth
highlighting is the .at method. Using .at is a great way to set values at
specific index and column locations.

Here’s how .at works in practice:

df = pd.DataFrame(index=['CASH', 'GE'], data={'shares': [0, 1]})
print(df)

df.at['CASH', 'shares'] = 10000

print(df)

86

CHAPTER6 INVEST

shares
CASH 0
GE 1

shares
CASH 10000
GE 1
Prices

At this point our portfolio is instantiated, but there are still a lot of gaps in
the data structure. Gaps are caused by a lack of prices.

print(portfolio)

date price target allocation shares market value
AMZN NaN NaN 0.4 0 0 0
CSCO NaN NaN 0.3 0 0 0
GE NaN NaN 0.3 0 0 0
CASH NaN NaN 0 0 10000 0

To fill in these gaps, let’s build a function with which we can update
prices. Although we could theoretically use the .at method from before to
build this function, the .update method is a little more legible here.

def update prices(portfolio, prices):
prices['CASH'] = 1
portfolio.update(pd.DataFrame({ price': prices}))
portfolio.date = prices.name
portfolio.market value = portfolio.shares * portfolio.price

To use update_prices, we pass the function our portfolio and a pandas
Series object that contains prices for a specific day.

87

CHAPTER6 INVEST

fake for right now

prices = pd.Series(
name='2018-01-01",
data={"'AMZN': 945.21,'CSCO"': 30.52, 'GE': 29.27}

)

print(prices)

update prices(portfolio, prices)

AMZN 945.21

csco 30.52

GE 29.27

Name: 2018-01-01, dtype: float64

The neat thing about this function is that it updates the values in place.
Running print(portfolio) in a Jupyter cell, we can see how the function

changed the object.
print(portfolio)

date price target allocation shares market value
AMZN 2018-01-01 945.21 0.4 0 0 0
CSCO 2018-01-01 30.52 0.3 0 0 0
GE 2018-01-01 29.27 0.3 0 0 0
CASH 2018-01-01 1 0 0 10000 10000

Right now all the market_values are set to 0 because we haven't
executed any buy orders yet.

Orders

With our portfolio object complete, let’s build a get_order function
that will calculate the buy and sell orders we need to execute to achieve
balance against target allocations at arbitrary moments in time.

88

CHAPTER6 INVEST

def get order(portfolio):
total value = portfolio.market value.sum()

order = (
(total value * portfolio.target // portfolio.price)
- portfolio.shares

).drop('CASH")

return order

The get_order function is fairly straightforward; the only interesting
part is this thing: //.

The // is the Python floor division operator. get_order uses floor
division because we can’t buy fractional shares on the stock market!

If we want to buy AMZN, we have to buy whole shares.

total value = 10000

target = 0.4

price = 945.21

AMZN = (total value * target // price) - 0
print (AMZN)

4.0

Without floor division, the get_order function would tell us to buy

fractional units.
(total value * target / price) - o
4.231863818622316

Using get_order is as simple as passing the function our portfolio
object as the sole argument.

order = get order(portfolio)
print(order)

89

CHAPTER6 INVEST

AMZN 4
Csco 98
GE 102

dtype: object

Importantly, get_order doesn’t actually do anything to the portfolio
object. This because we might want to maintain control over whether to
place the order and make the necessary trades to rebalance, or not.

Deposit

Because we're disciplined investors (wink wink), let’s add a deposit
function into the mix. Most of this should be self-explanatory.

def deposit(portfolio, amount):
portfolio.at['CASH', 'shares'] += amount
portfolio.at['CASH', 'market value'] = portfolio.at['CASH',
'shares']

deposit(portfolio, 1000)
Running get_order on top of portfolio now yields the following:

order = get order(portfolio)

print(order)
AMZN 4
Csco 108
GE 112

dtype: object

That's pretty much it! With the instantiate_portfolio, update prices,
get order, and deposit functions built, we have all the ingredients we
need to rebalance any basket of securities.

90

CHAPTER6 INVEST

It’s a bit anticlimatic, isn’t it?

Let’s keep going and put all our functions into action. While we’re at

it, we might as well use real stock quotes, instead of faking it like when we

teste

d update_prices.

Simulate

Because our get_order function doesn’t alter the portfolio object, let’s

impl
def

ement a function that simulates the execution of buy/sell orders.

simulate process order(portfolio, order):
starting cash = portfolio.at['CASH', 'shares']
cash_adjustment = np.sum(order * portfolio.price)
portfolio.shares += order
portfolio.market value = portfolio.shares * portfolio.price
portfolio.at['CASH', 'shares'] = starting cash - cash_adjustment
portfolio.market value = portfolio.shares * portfolio.price
portfolio.allocation = (

portfolio.market value / portfolio.market value.sum()

)

The simulate_process_order function takes the portfolio object and

a pandas series object to buy and sell securities.

simulate process order(portfolio, order)
print(portfolio)

date price target allocation shares market value
AMZN 2018-01-01 945.21 0.4 0.343713 4 3780.84
CSCO 2018-01-01 30.52 0.3 0.299651 108 3296.16
GE 2018-01-01 29.27 0.3 0.298022 112 3278.24
CASH 2018-01-01 1 0 0.0586145 644.76 644.76

91

CHAPTER6 INVEST

Quotes

Years ago everyone was using the Google and Yahoo Finance APIs to
access financial market data. For some reason both companies shuttered
access to these services, and ever since we’ve all been scrambling to find a
replacement.

As of this writing, I'm using a free API from Alpha Vantage to access
stock quotes. It’s a bit clunky, but it’s accurate and will be perfect for our
purposes.

Given that the process for connecting to the Alpha Vantage API closely
parallels the process for connecting to the Open Exchange Rates API, I'm
going to go through this section a bit more quickly.

Register for an API key at alphavantage.co.?

® @ A alphaVantage - Free APls for % e

< C @ Secure https://www.alphavantage.co #* @O0 %0

© ALPHA VANTAGE ABOUT DOCUMENTATION COMMUNITY SUPPORT

ALPHA
VANTAGE

© Free APIs in JSON and CSV formats
© Realtime and historical equity data

© Bitcoin & other digital currencies
© 50+ technical indicators
© Chart-ready time series

Shttps://www.alphavantage.co/

92

https://www.alphavantage.co/

CHAPTER6 INVEST

(You barely have to create an account; it’s awesome.)

® @ A customer Support | Alpha Var x e

@ Secure | https://www.alphavantage.co/support/#api-key * @8 > 0

Claim your API Key

Alpha Va Support

Claim your free AP| key with lifetime access. We do not send promotional or
marketing materials to cur users - we will reach out only in the event of launching new

Claim your AP key

Lo AP features or server-side updates.

First Name:

Last Name:

‘Which of the following best describes you?

Investor B

Email:

The API has a couple of different API endpoints. We're going to work
with the TIME_SERIES DAILY ADJUSTED endpoint for this chapter.

93

CHAPTER6 INVEST

® ® A AP Documentation | Alpha Vo %

C @ Secure https://www.alphavantage.co/documentation/ rES

Stock Time Series Data Realtime

High Usage

HighUsage

High Usage

Realtime

High Usage

High Usage

TIME_SERIES_DAILY_ADJUSTED

This API returns daily time series (date, daily open, daily high, daily low, daily close,
daily volume, daily adjusted close, and split/dividend events) of the equity specified,
covering up to 20 years of historical data.

The most recent data point is the cumulative prices and volume information of the
current trading day, updated realtime.

AP| Parameters

I Required: function

The time series of your cheice. In this case,
I

function=TIME_SE

ES_DAILY_ADJUSTED

1 Required: symbol

The name of the equity of your choice. For example: sy
1 Optional: cutputsize

By default, o
following specifications: compact returns only the latest 100 data points; full

ize=compact .Strings compact and full are accepted with the

returns the full-length time series of up to 20 years of historical data. The “compact®
option is recommended if you would like to reduce the data size of each AP call.

1 Optional: da

Further down the documentation page we can see how requests

against the API are supposed to be structured.

94

CHAPTER 6 INVEST
I Required: apikey

Your API key. Claim your free APl key here.

Examples (click for JSON output)
https://www.alphavantage.co/query?

function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=demo

https://www.alphavantage.co/query?

function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo

Downloadable CSV file:

https://www.alphavantage.co/query?

function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&apikey=demo&datatype=csv

With our key in hand, let’s store it in an .env file and load everything
(if you skipped Chapter 3, I suggest going back and reviewing how to use
.env files).

import requests
from dotenv import load dotenv, find dotenv
load dotenv(find dotenv())

API _KEY = os.environ.get('AV_KEY")
TODAY = pd.Timestamp.today().normalize()

get_price

Now we can write a get_price function that hits Alpha Vantage, does a bit
of data cleaning, and returns a pandas DataFrame.

95

CHAPTER6 INVEST

def get price(ticker, outputsize='compact', most recent=False):
URL = "https://www.alphavantage.co/query?’
payload = {
"function': 'TIME _SERIES DAILY ADJUSTED',
"symbol': ticker,
"apikey': API KEY,
"outputsize': outputsize
}
r = requests.get(URL, params=payload)
p = pd.DataFrame(r.json()['Time Series (Daily)']).T['4. close']
df = pd.DataFrame({ticker: p.apply(float)})
df.index = pd.to datetime(df.index)
if most recent:
return df.tail(1)
return df

print(get price('AMZN')[:10])

AMZN
2018-01-04 1209.59
2018-01-05 1229.14
2018-01-08 1246.87
2018-01-09 1252.70
2018-01-10 1254.33
2018-01-11 1276.68
2018-01-12 1305.20
2018-01-16 1304.86
2018-01-17 1295.00
2018-01-18 1293.32

96

CHAPTER6 INVEST
If we dissect the requests call inside the get price function, we get this:

URL = "https://www.alphavantage.co/query?’
payload = {
"function': 'TIME SERIES DAILY ADJUSTED',
"symbol': "AMZN',
"apikey': API_KEY,
"outputsize': 'compact’
}
r = requests.get(URL, params=payload)
print(r.json().keys())

dict _keys(['Meta Data', 'Time Series (Daily)'])

We can see that the data that we need will be returned in the Time
Series (Daily) key of the JSON object.

p = pd.DataFrame(r.json()['Time Series (Daily)'])
print(p.head()[p.columns[:4]])

2018-01-04 2018-01-05 2018-01-08 2018-01-09

1. open 1205.0000 1217.5100 1236.0000 1256.9000
2. high 1215.8700 1229.1400 1253.0800 1259.3300
3. low 1204.6600 1210.0000 1232.0300 1241.7600
4. close 1209.5900 1229.1400 1246.8700 1252.7000
5. adjusted close 1209.5900 1229.1400 1246.8700 1252.7000

Unfortunately, the data returned is “wide” instead of “long.” Let’s tidy
it up® and transpose it to long with a call to . T. At the same time, let’s grab
justthe '4. close' column and ignore the rest.

p = pd.DataFrame(r.json()['Time Series (Daily)']).T['4. close']
p.head()

http://vita.had.co.nz/papers/tidy-data.pdf

97

http://vita.had.co.nz/papers/tidy-data.pdf

CHAPTER6 INVEST

2018-01-04 1209.5900
2018-01-05 1229.1400
2018-01-08 1246.8700
2018-01-09 1252.7000
2018-01-10 1254.3300
Name: 4. close, dtype: object

Because all the values returned are strings, we have to apply a couple
more transformations to the object. Let’s convert the numbers to floats,
stuff it back into a DataFrame, and convert the dates to dates.

ticker = 'AMZN'

df = pd.DataFrame({ticker: p.apply(float)})
df.index = pd.to_datetime(df.index)
print(df.head())

AMZN
2018-01-04 1209.59
2018-01-05 1229.14
2018-01-08 1246.87
2018-01-09 1252.70
2018-01-10 1254.33

Given that we are constructing portfolios with multiple tickers, let’s
wrap our get_prices function in something bigger that can handle
multiple tickers.

get_historical

Here’s the code for get_historical:

def get historical(tickers, start date, end date):
df = pd.DataFrame(index=pd.date range(start date, end date,
freq="D"))

98

CHAPTER6 INVEST

for t in tickers:
df = pd.concat([

df,
get price(t, outputsize='full')],
axis=1,
join_axes=[df.index]
)
df = df.fillna(method="ffill").dropna()
return df

This get_historical function will loop through each ticker and
bind the cleaned-up response to a main DataFrame object. The function
will enable us to fetch data and close prices for any number of listed
companies across any arbitrary length of time.

historical prices = get historical(
tickers=['AMZN', 'CSCO', 'GE'],
start date=pd.Timestamp(2016, 1, 1),
end_date=TODAY

)

print(historical prices.tail())

AMZN CSCO GE
2018-05-25 1610.15 43.26 14.63
2018-05-26 1610.15 43.26 14.63
2018-05-27 1610.15 43.26 14.63
2018-05-28 1610.15 43.26 14.63
2018-05-29 1612.87 42.97 14.18

99

CHAPTER6 INVEST

With all the historical prices stored inside a DataFrame, we can grab
prices for a specific date by using . loc.

prices = historical prices.loc['2016-01-04"]
prices

AMZN 636.99
csco 26.41
GE 30.71
Name: 2016-01-04 00:00:00, dtype: float64

Portfolio

Because I know you just want to see the full thing in action, here itis:

portfolio = instantiate portfolio(targets, 100000.00)
prices = historical prices.loc['2017-01-01"]

update prices(portfolio, prices)

order = get order(portfolio)

simulate process order(portfolio, order)
portfolio.market value.sum()

100000.0

This will be our starting portfolio:

print(portfolio)

date price target allocation shares market value
AMZN 2017-01-01 749.87 0.4 0.397431 53 39743.1
CSCO 2017-01-01 30.22 0.3 0.299782 992 29978.2
GE 2017-01-01 31.6 0.3 0.299884 949 29988.4
CASH 2017-01-01 1 0 0.0029025 290.25 290.25

100

CHAPTER6 INVEST

Rebalance

To test our rebalancing logic, we'll back-test across 2017 and execute orders
on a quarterly-end frequency by using the Q offset alias from pandas.

dates = pd.date_range('2017-01-01", '2017-12-31', freg='Q").tolist()
for d in dates:

prices = historical prices.loc[d]

update_prices(portfolio, prices)

order = get order(portfolio)

print(f'{d}:\n{order}")

simulate process order(portfolio, order)

portfolio.market value.sum()

2017-03-31 00:00:00:

AMZN -4
Csco -24
GE 149

dtype: object
2017-06-30 00:00:00:

AMZN -5
Csco 63
GE 97

dtype: object
2017-09-30 00:00:00:

AMZN 0
Csco -83
GE 124

dtype: object
2017-12-31 00:00:00:
AMZN -7

csco -79

101

CHAPTER6 INVEST

GE 589
dtype: object

111030.14

After four rebalancing moves, we can verify that our portfolio will
follow and maintain target allocations quite closely.

print(portfolio)

date price target allocation shares market value
AMZN 2017-12-31 1169.47 0.4 0.389718 37 43270.4
CSCO 2017-12-31 38.3 0.3 0.299763 869 33282.7
GE 2017-12-31 17.45 0.3 0.29987 1908 33294.6
CASH 2017-12-31 1 0 0.0106498 1182.45 1182.45
Conclusion

In this chapter, you learned how to build a portfolio in pandas, update
values in a DataFrame, generate buy and sell orders that aim to hold target
allocations in balance, retrieve stock quotes from Alpha Vantage, and
simulate back-testing.

If you want to actually put these pieces to work, you will need to set up
an account with an online brokerage and manually exercise buy and sell
orders on its platform.

The good news is that if you think that rebalancing is an appropriate
investment strategy for you, you don’t actually have to do it that often. If
you adhere to monthly or quarterly rebalancing, you’ll be money!

102

CHAPTER 7

Spend

We ain’t ‘bout to go and spend money just to flex on 'em.
—Lil Dickey

Think of this as a bonus chapter. I've included it in this book to give you a
taste of how open-source projects and tools such as scikit-learn,' XGBoost,?
and Prophet build on the work of pandas.

I promised in the introduction to this book that if you built a
foundation in pandas, you would be well positioned to dive into machine
learning. I want to attempt to deliver on that promise.

A quick disclaimer before we continue: machine learning is a massive
and complex topic. Given that this book uses personal finance as the glue,
I will defer on most of the theory. Additionally, I'll focus on only one small
slice of machine learning: time-series forecasting.

Prophet

There are hundreds of open-source libraries for forecasting in Python. One
that I really like is Prophet. According to the GitHub repo,® “Prophet is a
procedure for forecasting time series data. It is based on an additive model

'http://scikit-learn.org/stable/index.html
*https://github.com/dmlc/xgboost
Shttps://github.com/facebook/prophet

© Max Humber 2018 103
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8_7

http://scikit-learn.org/stable/index.html
https://github.com/dmlc/xgboost
https://github.com/facebook/prophet

CHAPTER 7 SPEND

where non-linear trends are fit with yearly and weekly seasonality, plus
holidays. It works best with daily periodicity data with at least one year of
historical data. Prophet is robust to missing data, shifts in the trend, and
large outliers.” That’s all to say that if you give Prophet historical data, it will
attempt to extrapolate into the future for you.

Installing Prophet on your machine is a bit more involved, but the
README! is incredibly detailed. Install the library now before you
continue with this chapter.

Purchases

To demonstrate how Prophet works, we need some historical data. Given
that this book concerns personal finance, I thought it would be fun to go
ultra-personal and curate data on me.

The purchases.csv file, which was included in the initial data
download from Chapter 1, contains all of my Amazon purchases since
2012. It has 83 rows and 2 columns (date and amount spent).

Note If you don’t care for my data (and you really shouldn’t!), just
coerce your own values into the same structure, and you’ll be ready
to rock.

Load pandas and the purchases data.

import pandas as pd
purchases = pd.read _csv('data/purchases.csv')

We can see that I spent $17.99 on January 7, 2018, and $158.19 on
January 31, 2018.

*https://github.com/facebook/prophet#installation-in-python

104

https://github.com/facebook/prophet#installation-in-python

CHAPTER 7 SPEND

print(purchases.tail())

date amount
78 2017-12-24 62.53
79 2017-12-27 43.99
80 2017-12-28 21.99
81 2018-01-07 17.99
82 2018-01-31 158.19

Rolling the values into a running total can be accomplished with the
following:

purchases['cumsum'] = purchases['amount'].cumsum()
print(purchases.tail())

date amount cumsum
78 2017-12-24 62.53 4906.19
79 2017-12-27 43.99 4950.18
80 2017-12-28 21.99 4972.17
81 2018-01-07 17.99 4990.16
82 2018-01-31 158.19 5148.35

We can now see that I've spent a grand total of $5,148.35 on Amazon
since 2012. Crazy!

Forecast

To forecast with Prophet, we need to massage the purchases DataFrame
to conform to a specific input structure. Prophet inputs are always a
DataFrame with two columns: ds and y. The ds (datestamp) column must
contain a date, and the y column must be numeric and represents the
measurement we want to forecast.

purchases = purchases[['date', 'cumsum']]
purchases.columns = ['ds', 'y']
print(purchases.head())

105

CHAPTER 7 SPEND

ds y
2012-07-25 82.55
2012-12-10 143.56
2013-02-19 155.10
2013-02-24 221.77
2013-04-20 229.76

N w N R O

Let’s import Prophet.
from fbprophet import Prophet

Instantiate an instance of the Prophet class and fit it into the purchases
data.

m = Prophet(daily seasonality=False)
m.fit(purchases)

To forecast values one year into the future, we need to use the
.make_future dataframe method with the periods argument set to 365.

future = m.make future dataframe(periods=365)
print(future.tail())

ds
443 2019-01-27
444 2019-01-28
445 2019-01-29
446 2019-01-30
447 2019-01-31

Predicting my total spending on Amazon through 2018 and into 2019
is now dead simple. We just have to call the predict method on top of the
future DataFrame that we created earlier.

forecast = m.predict(future)

Let’s inspect the forecast object:
forecast[['ds', 'yhat', 'yhat lower', 'yhat upper']].tail()
106

CHAPTER 7 SPEND

ds yhat yhat_lower yhat_upper
443 2019-01-27 7914.330291 7656.482987 8137.708873
444 2019-01-28 7891.583392 7633.735995 8129.905842
445 2019-01-29 7875.415396 7619.920169 8102.319783
446 2019-01-30 7924.375719 7667.813754 8148.685988
447 2019-01-31 7985.795633 7740.228707 8224.416333

We can see that I am meant to spend a cumulative total of $7,985 (yhat)
on Amazon. But now that I know that, I'm keen to ratchet back my spending!

Visualize

Prophet comes packaged with a really great plot convenience method.
Running it on top of the m object, we can get a better sense of the trend.

%matplotlib inline

m.plot(forecast)

6000

2000 4

2013

2015

2016 2017

2018 2019

107

CHAPTER 7 SPEND

The library also includes a plot_components method that prints panels
for trend, weekly, and yearly seasonalities if present.

m.plot_components(forecast)

8000
6000
2 4000
B
2000
o T T T T T T T
2013 014 2015 2016 2017 2018 2019
ds
200
100
g
2
=100
=200
January 1 March 1 May 1 July 1 September1 Novemberl January 1
Day of year
€0
40
3z
g
0
=20
_40 T T T T T T T
Sunday Monday Tuesd Wednesday Thursday Friday Saturday
Day of week

Based on these panels, we can see that I spend a lot on Amazon in June
and on Thursdays and that ever since I got Prime 2015 my spending has

been growing significantly!

108

CHAPTER 7 SPEND

Conclusion

If you think that using my own personal spending data is a bit silly, you're
100 percent right. Honestly, I could have borrowed a more “professional”
dataset from somewhere else, but where’s the fun in that?

Like I said, this chapter was mostly meant to be a bonus. But in all
seriousness, I hope you can see that learning pandas pays incredible
dividends because it is the industry standard for managing and working
with data in Python.

If you get good at pandas (and you should be by now!), you can extend
that knowledge into some pretty interesting areas, such as time-series
forecasting.

109

APPENDIX

Next

If you've made it to this chapter, congrats! I hope you've learned something!
If you enjoyed this book and got a thrill out of learning about Python
programming, I encourage you to keep at it. It’s a really great language.
If you want to learn more, plenty of wonderful books and resources are
available. This appendix gives a few recommendations.
Hllustrated Guide to Python 3 by Matt Harrison

This book brings developers and others who are
anxious to learn Python up to speed quickly.

Not only does it teach the basics of syntax, but it
condenses years of experience. You will learn warts,
gotchas, best practices, and hints that have been
gleaned through the years by the author. You will hit
the ground running in the right way.

The Hitchhiker’s Guide to Python by Kenneth Reitz and Tanya Schlusser

This book takes the journeyperson Pythonista

to true expertise. More than any other language,
Python was created with the philosophy of
simplicity and parsimony. Now 25 years old, Python
has become the primary or secondary language
(after SQL) for many business users. With popularity
comes diversity—and possibly dilution.

© Max Humber 2018 111
M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8

https://doi.org/10.1007/978-1-4842-3802-8

APPENDIX NEXT

Think Python by Allen B. Downey

This book is an introduction to computer science
using the Python programming language. It covers
the basics of computer programming, including
variables and values, functions, conditionals and
control flow, program development, and debugging.
Later chapters cover basic algorithms and data
structures.

Python for Data Analysis: Data Wrangling with Pandas, Numpy, and

IPython by Wes McKinney

Looking for complete instructions on manipulating,
processing, cleaning, and crunching structured
data in Python? The second edition of this hands-on
guide—updated for Python 3.5 and pandas 1.0—is
packed with practical cases studies that show you
how to effectively solve a broad set of data analysis
problems, using Python libraries such as NumPy,
pandas, Matplotlib, and IPython.

Python Data Science Handbook: Tools and Techniques for Developers

by Jake VanderPlas

112

For many researchers, Python is a first-class

tool mainly because of its libraries for storing,
manipulating, and gaining insight from data. Several
resources exist for individual pieces of this data
science stack, but only with this book do you get
them all—IPython, NumPy, pandas, Matplotlib,
scikit-learn, and other related tools.

APPENDIX NEXT

Finally, please e-mail me if you have any concerns, questions, or
comments about this book. Your feedback is tremendously valuable, and
I'will do my best to respond to each e-mail. Again, I can be reached via

e-mail.
max{dot}humber{at}gmail{dot}com

I'look forward to hearing from you!

113

Index

A

Alpha Vantage
API key, 92
TIME_SERIES_DAILY_
ADJUSTED endpoint, 93
am function, 49
Amortization, 41
evaluate, 49-51
functionize, 48
Anaconda, 1-4

B

Banks, 40
Bitcoin, 9
Budget
adding vacation, 65-66
cash flow, 53
dates, 53
flows, 58
cash flow objects, 60
date_range function, 60
fillna(0) method, 61
month start, 59
semi-month end, 59
fun object, 73
functionize, 76

© Max Humber 2018

time horizon, 57
pd.date_range function, 58
timestamp
date-time.datetime
object, 55
totals
cumsum(), 61
.tail method, 62
updating, 63-65
visualization, 63
vanilla matplotlib, 62
YAML, 74

C

CAD to USD, converting
documentation, 28-31
encapsulate, 31-33

.apply, 34-38
show_alternative, 33
openexchangerates.org, 26

secrets, 27-28

Calendar object, 75

Canadian dollars (CAD), 25
See also CAD to USD,

converting

Computer programming, 112

115

M. Humber, Personal Finance with Python, https://doi.org/10.1007/978-1-4842-3802-8

https://doi.org/10.1007/978-1-4842-3802-8

INDEX

D,E,FG,H
Data, 8
Dates
date formatting rules, 54
datetime.date objects, 55
datetime.datetime objects, 55
get_dates function, 69-70
Python, 54
Datetimelndex object, 71-72
Dogecoin, 9
IRR, 12
=IRR(), 12-14
irregular cash flow
schedule, 22-24
mining, 10-11
pandas
read_excel function, 15-17
xirr function, 20-22
xnpv function, 17-18, 20
ROI, 11

Internal rate of return (IRR), 12
Investment portfolio, 100
deposit function, 90
design, 82
adding cash, 85
.at method, 86
DataFrame, 83
instantiate_portfolio
function, 85
reusable function, 84

116

get_order function, 88-89
prices

gaps, 87
print(portfolio) function, 88
.update method, 87

rebalance, 101-102
simulate_process_order

function, 91

stock quotes access

Alpha Vantage API, 92
get_historical

function, 98, 100
get_price function, 95, 97-98

J, K, L

Jupyter, 5

Month start frequency, 58

N,O

nteract, 5
blank state, 6
macQOS, 7
pip install, 8

PQ

Pandas, 82
DataFrame, .from_dict code, 85
Series, 71

Pandas 1.0, 112
Payment, 41
loop A, 42-45
loop B, 46-48
Personal investment portfolio, 81
Prophet, 104
definition, 103
forecast
datestamp column, 105
.make_future_dataframe
method, 106
numeric column, 105
predict method, 106
purchases, 105
purchases.csv file, 104
visualize, 108
plot convenience method, 107
plot_components
method, 108
Python
floor division operator, 89
forecasting
libraries, 112
programming, 111

R

Recurrence rule (rrule), 67
.between method, 68
Recurrent library, 67, 69

INDEX

S

Semi-month-end
frequency, 58

=

Time Series (Daily) key, 97
Time-series forecasting, 103
Timestamp
normalizing, 56
.normalize method, 56
to_datetime function, 56

U

United States dollar (USD), 25
See also CAD to USD,
converting

VW, X

Vacation budget, 77-79

Y,Z
YAML
Anaconda, 74
loading, 79
with block, 80
totals, 75

117

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Setup
	Anaconda
	nteract
	pip install

	Data

	Chapter 2: Profit
	Mining
	ROI
	IRR
	=IRR()

	pandas
	read_excel
	xnpv
	xirr

	Again!
	Conclusion

	Chapter 3: Convert
	openexchangerates.org
	Secrets
	Documentation
	Encapsulate
	show_alternative
	.apply

	Conclusion

	Chapter 4: Amortize
	Banks
	Amortization
	Payment
	Loop A
	Loop B
	Functionize
	Evaluate
	Conclusion

	Chapter 5: Budget
	Dates
	datetime

	Timestamp
	.normalize

	Horizon
	Flows
	Totals
	Visualization
	Updating
	Vacation I
	English
	get_dates

	Fun
	YAML
	Functionize
	Vacation II
	Loading YAML
	Conclusion

	Chapter 6: Invest
	Trade-Offs
	Instantiate
	Prices
	Orders
	Deposit
	Simulate
	Quotes
	get_price
	get_historical

	Portfolio
	Rebalance
	Conclusion

	Chapter 7: Spend
	Prophet
	Purchases
	Forecast
	Visualize
	Conclusion

	Appendix: Next
	Index

