


Handbook of Financial
Risk Management



CHAPMAN & HALL/CRC 

Financial Mathematics Series

Aims and scope:

The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims 

to capture new developments and summarize what is known over the whole spectrum of this field. It will 

include a broad range of textbooks, reference works and handbooks that are meant to appeal to both 

academics and practitioners. The inclusion of numerical code and concrete real-world examples is highly 

encouraged.

Series Editors

M.A.H. Dempster

Centre for Financial Research

Department of Pure Mathematics and Statistics

University of Cambridge

Dilip B. Madan

Robert H. Smith School of Business

University of Maryland

Rama Cont

Department of Mathematics

Imperial College

Interest Rate Modeling

Theory and Practice, 2nd Edition

Lixin Wu

Metamodeling for Variable Annuities

Guojun Gan and Emiliano A. Valdez

Modeling Fixed Income Securities and Interest Rate Options

Robert A. Jarrow

Financial Modelling in Commodity Markets

Viviana Fanelli

Introductory Mathematical Analysis for Quantitative Finance

Daniele Ritelli, Giulia Spaletta 

Handbook of Financial Risk Management

Thierry Roncalli

Optional Processes

Stochastic Calculus and Applications

Mohamed Abdelghani, Alexander Melnikov

For more information about this series please visit: https://www.crcpress.com/Chapman-and-HallCRC-

Financial-Mathematics-Series/book-series/CHFINANCMTH

https://www.crcpress.com/
https://www.crcpress.com/


Handbook of Financial
Risk Management

Thierry Roncalli
University of Evry



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

c© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-50187-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and regis-
tration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a
separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Roncalli, Thierry, author.
Title: Handbook of financial risk management / Thierry Roncalli.
Description: Boca Raton : CRC Press, 2020. | Series: Chapman and Hall/CRC
financial mathematics series | Includes bibliographical references and index.
Identifiers: LCCN 2019059891 | ISBN 9781138501874 (hardback) |
ISBN 9781315144597 (ebook)
Subjects: LCSH: Financial risk management. | Risk management--Mathematical models.
Classification: LCC HD61 .R663 2020 | DDC 658.15/5--dc23
LC record available at https://lccn.loc.gov/2019059891

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2019059891
http://www.taylorandfrancis.com
http://www.crcpress.com


Contents

Preface xxi

List of Symbols and Notations xxv

1 Introduction 1
1.1 The need for risk management . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Risk management and the financial system . . . . . . . . . . . . . . 1
1.1.2 The development of financial markets . . . . . . . . . . . . . . . . . 3
1.1.3 Financial crises and systemic risk . . . . . . . . . . . . . . . . . . . 7

1.2 Financial regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Banking regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Insurance regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3 Market regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Systemic risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Financial regulation overview . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 List of supervisory authorities . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Timeline of financial regulation . . . . . . . . . . . . . . . . . . . . . 29

I Risk Management in the Financial Sector 35

2 Market Risk 37
2.1 Regulatory framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 The Basel I/II framework . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.1.1 Standardized measurement method . . . . . . . . . . . . . 38
2.1.1.2 Internal model-based approach . . . . . . . . . . . . . . . 45

2.1.2 The Basel III framework . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.2.1 Standardized approach . . . . . . . . . . . . . . . . . . . . 53
2.1.2.2 Internal model-based approach . . . . . . . . . . . . . . . 57

2.2 Statistical estimation methods of risk measures . . . . . . . . . . . . . . . . 61
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.1.1 Coherent risk measures . . . . . . . . . . . . . . . . . . . . 61
2.2.1.2 Value-at-risk . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.1.3 Expected shortfall . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1.4 Estimator or estimate? . . . . . . . . . . . . . . . . . . . . 65

2.2.2 Historical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.2.1 The order statistic approach . . . . . . . . . . . . . . . . . 67
2.2.2.2 The kernel approach . . . . . . . . . . . . . . . . . . . . . 71

2.2.3 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.3.1 Derivation of the closed-form formula . . . . . . . . . . . . 72
2.2.3.2 Linear factor models . . . . . . . . . . . . . . . . . . . . . 75
2.2.3.3 Volatility forecasting . . . . . . . . . . . . . . . . . . . . . 80
2.2.3.4 Extension to other probability distributions . . . . . . . . 84

v



vi Contents

2.2.4 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2.5 The case of options and derivatives . . . . . . . . . . . . . . . . . . 92

2.2.5.1 Identification of risk factors . . . . . . . . . . . . . . . . . 93
2.2.5.2 Methods to calculate VaR and ES risk measures . . . . . . 94
2.2.5.3 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.2.5.4 Model risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.3 Risk allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.3.1 Euler allocation principle . . . . . . . . . . . . . . . . . . . . . . . . 105
2.3.2 Application to non-normal risk measures . . . . . . . . . . . . . . . 108

2.3.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.3.2.2 Calculating risk contributions with historical and simulated

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.4.1 Calculating regulatory capital with the Basel I standardized mea-
surement method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.4.2 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.4.3 Risk measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.4.4 Value-at-risk of a long/short portfolio . . . . . . . . . . . . . . . . . 119
2.4.5 Value-at-risk of an equity portfolio hedged with put options . . . . 119
2.4.6 Risk management of exotic options . . . . . . . . . . . . . . . . . . 120
2.4.7 P&L approximation with Greek sensitivities . . . . . . . . . . . . . 121
2.4.8 Calculating the non-linear quadratic value-at-risk . . . . . . . . . . 121
2.4.9 Risk decomposition of the expected shortfall . . . . . . . . . . . . . 123
2.4.10 Expected shortfall of an equity portfolio . . . . . . . . . . . . . . . 123
2.4.11 Risk measure of a long/short portfolio . . . . . . . . . . . . . . . . . 123
2.4.12 Kernel estimation of the expected shortfall . . . . . . . . . . . . . . 124

3 Credit Risk 125
3.1 The market of credit risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.1.1 The loan market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.1.2 The bond market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.1.2.1 Statistics of the bond market . . . . . . . . . . . . . . . . 128
3.1.2.2 Bond pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.1.3 Securitization and credit derivatives . . . . . . . . . . . . . . . . . . 137
3.1.3.1 Credit securitization . . . . . . . . . . . . . . . . . . . . . 137
3.1.3.2 Credit default swap . . . . . . . . . . . . . . . . . . . . . . 141
3.1.3.3 Basket default swap . . . . . . . . . . . . . . . . . . . . . . 151
3.1.3.4 Collateralized debt obligations . . . . . . . . . . . . . . . . 155

3.2 Capital requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.2.1 The Basel I framework . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.2.2 The Basel II standardized approach . . . . . . . . . . . . . . . . . . 162

3.2.2.1 Standardized risk weights . . . . . . . . . . . . . . . . . . 162
3.2.2.2 Credit risk mitigation . . . . . . . . . . . . . . . . . . . . . 165

3.2.3 The Basel II internal ratings-based approach . . . . . . . . . . . . . 168
3.2.3.1 The general framework . . . . . . . . . . . . . . . . . . . . 168
3.2.3.2 The credit risk model of Basel II . . . . . . . . . . . . . . 169
3.2.3.3 The IRB formulas . . . . . . . . . . . . . . . . . . . . . . . 176

3.2.4 The Basel III revision . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.2.4.1 The standardized approach . . . . . . . . . . . . . . . . . . 181
3.2.4.2 The internal ratings-based approach . . . . . . . . . . . . 184

3.2.5 The securitization framework . . . . . . . . . . . . . . . . . . . . . . 185



Contents vii

3.2.5.1 Overview of the approaches . . . . . . . . . . . . . . . . . 185
3.2.5.2 Internal ratings-based approach . . . . . . . . . . . . . . . 186
3.2.5.3 External ratings-based approach . . . . . . . . . . . . . . . 188
3.2.5.4 Standardized approach . . . . . . . . . . . . . . . . . . . . 188

3.3 Credit risk modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.3.1 Exposure at default . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.3.2 Loss given default . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

3.3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.3.2.2 Stochastic modeling . . . . . . . . . . . . . . . . . . . . . . 193
3.3.2.3 Economic modeling . . . . . . . . . . . . . . . . . . . . . . 200

3.3.3 Probability of default . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.3.3.1 Survival function . . . . . . . . . . . . . . . . . . . . . . . 201
3.3.3.2 Transition probability matrix . . . . . . . . . . . . . . . . 206
3.3.3.3 Structural models . . . . . . . . . . . . . . . . . . . . . . . 214

3.3.4 Default correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.3.4.1 The copula model . . . . . . . . . . . . . . . . . . . . . . . 220
3.3.4.2 The factor model . . . . . . . . . . . . . . . . . . . . . . . 225
3.3.4.3 Estimation methods . . . . . . . . . . . . . . . . . . . . . 227
3.3.4.4 Dependence and credit basket derivatives . . . . . . . . . . 234

3.3.5 Granularity and concentration . . . . . . . . . . . . . . . . . . . . . 241
3.3.5.1 Difference between fine-grained and concentrated portfolios 241
3.3.5.2 Granularity adjustment . . . . . . . . . . . . . . . . . . . . 245

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
3.4.1 Single- and multi-name credit default swaps . . . . . . . . . . . . . 247
3.4.2 Risk contribution in the Basel II model . . . . . . . . . . . . . . . . 248
3.4.3 Calibration of the piecewise exponential model . . . . . . . . . . . . 249
3.4.4 Modeling loss given default . . . . . . . . . . . . . . . . . . . . . . . 250
3.4.5 Modeling default times with a Markov chain . . . . . . . . . . . . . 251
3.4.6 Continuous-time modeling of default risk . . . . . . . . . . . . . . . 252
3.4.7 Derivation of the original Basel granularity adjustment . . . . . . . 253
3.4.8 Variance of the conditional portfolio loss . . . . . . . . . . . . . . . 255

4 Counterparty Credit Risk and Collateral Risk 257
4.1 Counterparty credit risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

4.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.1.2 Modeling the exposure at default . . . . . . . . . . . . . . . . . . . 260

4.1.2.1 An illustrative example . . . . . . . . . . . . . . . . . . . . 260
4.1.2.2 Measuring the counterparty exposure . . . . . . . . . . . . 264
4.1.2.3 Practical implementation for calculating counterparty ex-

posure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
4.1.3 Regulatory capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

4.1.3.1 Internal model method . . . . . . . . . . . . . . . . . . . . 268
4.1.3.2 Non-internal model methods (Basel II) . . . . . . . . . . . 269
4.1.3.3 SA-CCR method (Basel III) . . . . . . . . . . . . . . . . . 270

4.1.4 Impact of wrong way risk . . . . . . . . . . . . . . . . . . . . . . . . 275
4.1.4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.1.4.2 Calibration of the α factor . . . . . . . . . . . . . . . . . . 276

4.2 Credit valuation adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 278
4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

4.2.1.1 Difference between CCR and CVA . . . . . . . . . . . . . 279
4.2.1.2 CVA, DVA and bilateral CVA . . . . . . . . . . . . . . . . 279



viii Contents

4.2.1.3 Practical implementation for calculating CVA . . . . . . . 282
4.2.2 Regulatory capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

4.2.2.1 The 2010 version of Basel III . . . . . . . . . . . . . . . . 284
4.2.2.2 The 2017 version of Basel III . . . . . . . . . . . . . . . . 285

4.2.3 CVA and wrong/right way risk . . . . . . . . . . . . . . . . . . . . . 289
4.3 Collateral risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
4.3.2 Capital allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
4.4.1 Impact of netting agreements in counterparty credit risk . . . . . . 300
4.4.2 Calculation of the effective expected positive exposure . . . . . . . . 301
4.4.3 Calculation of the capital charge for counterparty credit risk . . . . 302
4.4.4 Calculation of CVA and DVA measures . . . . . . . . . . . . . . . . 302
4.4.5 Approximation of the CVA for an interest rate swap . . . . . . . . . 303
4.4.6 Risk contribution of CVA with collateral . . . . . . . . . . . . . . . 303

5 Operational Risk 305
5.1 Definition of operational risk . . . . . . . . . . . . . . . . . . . . . . . . . . 305
5.2 Basel approaches for calculating the regulatory capital . . . . . . . . . . . 307

5.2.1 The basic indicator approach . . . . . . . . . . . . . . . . . . . . . . 308
5.2.2 The standardized approach . . . . . . . . . . . . . . . . . . . . . . . 308
5.2.3 Advanced measurement approaches . . . . . . . . . . . . . . . . . . 310
5.2.4 Basel III approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

5.3 Loss distribution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
5.3.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 315

5.3.2.1 Estimation of the loss severity distribution . . . . . . . . . 315
5.3.2.2 Estimation of the loss frequency distribution . . . . . . . . 321

5.3.3 Calculating the capital charge . . . . . . . . . . . . . . . . . . . . . 327
5.3.3.1 Monte Carlo approach . . . . . . . . . . . . . . . . . . . . 327
5.3.3.2 Analytical approaches . . . . . . . . . . . . . . . . . . . . 331
5.3.3.3 Aggregation issues . . . . . . . . . . . . . . . . . . . . . . 336

5.3.4 Incorporating scenario analysis . . . . . . . . . . . . . . . . . . . . . 339
5.3.4.1 Probability distribution of a given scenario . . . . . . . . . 339
5.3.4.2 Calibration of a set of scenarios . . . . . . . . . . . . . . . 340

5.3.5 Stability issue of the LDA model . . . . . . . . . . . . . . . . . . . . 342
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

5.4.1 Estimation of the loss severity distribution . . . . . . . . . . . . . . 342
5.4.2 Estimation of the loss frequency distribution . . . . . . . . . . . . . 343
5.4.3 Using the method of moments in operational risk models . . . . . . 344
5.4.4 Calculation of the Basel II required capital . . . . . . . . . . . . . . 345
5.4.5 Parametric estimation of the loss severity distribution . . . . . . . . 345
5.4.6 Mixed Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . 346

6 Liquidity Risk 347
6.1 Market liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

6.1.1 Transaction cost versus volume-based measures . . . . . . . . . . . 348
6.1.1.1 Bid-ask spread . . . . . . . . . . . . . . . . . . . . . . . . . 348
6.1.1.2 Trading volume . . . . . . . . . . . . . . . . . . . . . . . . 349
6.1.1.3 Liquidation ratio . . . . . . . . . . . . . . . . . . . . . . . 350
6.1.1.4 Liquidity ordering . . . . . . . . . . . . . . . . . . . . . . . 352



Contents ix

6.1.2 Other liquidity measures . . . . . . . . . . . . . . . . . . . . . . . . 353
6.1.3 The liquidity-adjusted CAPM . . . . . . . . . . . . . . . . . . . . . 355

6.2 Funding liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.2.1 Asset liability mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.2.2 Relationship between market and funding liquidity risks . . . . . . 358

6.3 Regulation of the liquidity risk . . . . . . . . . . . . . . . . . . . . . . . . . 360
6.3.1 Liquidity coverage ratio . . . . . . . . . . . . . . . . . . . . . . . . . 360

6.3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
6.3.1.2 Monitoring tools . . . . . . . . . . . . . . . . . . . . . . . 364

6.3.2 Net stable funding ratio . . . . . . . . . . . . . . . . . . . . . . . . . 365
6.3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
6.3.2.2 ASF and RSF factors . . . . . . . . . . . . . . . . . . . . . 366

6.3.3 Leverage ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

7 Asset Liability Management Risk 369
7.1 General principles of the banking book risk management . . . . . . . . . . 369

7.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.1.1.1 Balance sheet and income statement . . . . . . . . . . . . 370
7.1.1.2 Accounting standards . . . . . . . . . . . . . . . . . . . . . 373
7.1.1.3 Role and importance of the ALCO . . . . . . . . . . . . . 375

7.1.2 Liquidity risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
7.1.2.1 Definition of the liquidity gap . . . . . . . . . . . . . . . . 376
7.1.2.2 Asset and liability amortization . . . . . . . . . . . . . . . 377
7.1.2.3 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . 385
7.1.2.4 Liquidity hedging . . . . . . . . . . . . . . . . . . . . . . . 392

7.1.3 Interest rate risk in the banking book . . . . . . . . . . . . . . . . . 393
7.1.3.1 Introduction on IRRBB . . . . . . . . . . . . . . . . . . . 393
7.1.3.2 Interest rate risk principles . . . . . . . . . . . . . . . . . . 396
7.1.3.3 The standardized approach . . . . . . . . . . . . . . . . . . 396

7.1.4 Other ALM risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.1.4.1 Currency risk . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.1.4.2 Credit spread risk . . . . . . . . . . . . . . . . . . . . . . . 403

7.2 Interest rate risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7.2.1 Duration gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 405

7.2.1.1 Relationship between Macaulay duration and modified du-
ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

7.2.1.2 Relationship between the duration gap and the equity du-
ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

7.2.1.3 An illustration . . . . . . . . . . . . . . . . . . . . . . . . . 408
7.2.1.4 Immunization of the balance sheet . . . . . . . . . . . . . 409

7.2.2 Earnings-at-risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
7.2.2.1 Income gap analysis . . . . . . . . . . . . . . . . . . . . . . 410
7.2.2.2 Net interest income . . . . . . . . . . . . . . . . . . . . . . 412
7.2.2.3 Hedging strategies . . . . . . . . . . . . . . . . . . . . . . . 419

7.2.3 Simulation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
7.2.4 Funds transfer pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 421

7.2.4.1 Net interest and commercial margins . . . . . . . . . . . . 422
7.2.4.2 Computing the internal transfer rates . . . . . . . . . . . . 425

7.3 Behavioral options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
7.3.1 Non-maturity deposits . . . . . . . . . . . . . . . . . . . . . . . . . 427

7.3.1.1 Static and dynamic modeling . . . . . . . . . . . . . . . . 428



x Contents

7.3.1.2 Behavioral modeling . . . . . . . . . . . . . . . . . . . . . 431
7.3.2 Prepayment risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

7.3.2.1 Factors of prepayment . . . . . . . . . . . . . . . . . . . . 438
7.3.2.2 Structural models . . . . . . . . . . . . . . . . . . . . . . . 439
7.3.2.3 Reduced-form models . . . . . . . . . . . . . . . . . . . . . 440
7.3.2.4 Statistical measure of prepayment . . . . . . . . . . . . . . 446

7.3.3 Redemption risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
7.3.3.1 The funding risk of term deposits . . . . . . . . . . . . . . 447
7.3.3.2 Modeling the early withdrawal risk . . . . . . . . . . . . . 448

7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
7.4.1 Constant amortization of a loan . . . . . . . . . . . . . . . . . . . . 449
7.4.2 Computation of the amortization functions S (t, u) and S? (t, u) . . 450
7.4.3 Continuous-time analysis of the constant amortization mortgage

(CAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
7.4.4 Valuation of non-maturity deposits . . . . . . . . . . . . . . . . . . 451
7.4.5 Impact of prepayment on the amortization scheme of the CAM . . 452

8 Systemic Risk and Shadow Banking System 453
8.1 Defining systemic risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

8.1.1 Systemic risk, systematic risk and idiosyncratic risk . . . . . . . . . 454
8.1.2 Sources of systemic risk . . . . . . . . . . . . . . . . . . . . . . . . . 456

8.1.2.1 Systematic shocks . . . . . . . . . . . . . . . . . . . . . . . 456
8.1.2.2 Propagation mechanisms . . . . . . . . . . . . . . . . . . . 458

8.1.3 Supervisory policy responses . . . . . . . . . . . . . . . . . . . . . . 459
8.1.3.1 A new financial regulatory structure . . . . . . . . . . . . 460
8.1.3.2 A myriad of new standards . . . . . . . . . . . . . . . . . . 461

8.2 Systemic risk measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
8.2.1 The supervisory approach . . . . . . . . . . . . . . . . . . . . . . . . 463

8.2.1.1 The G-SIB assessment methodology . . . . . . . . . . . . . 463
8.2.1.2 Identification of G-SIIs . . . . . . . . . . . . . . . . . . . . 466
8.2.1.3 Extension to NBNI SIFIs . . . . . . . . . . . . . . . . . . . 466

8.2.2 The academic approach . . . . . . . . . . . . . . . . . . . . . . . . . 467
8.2.2.1 Marginal expected shortfall . . . . . . . . . . . . . . . . . 467
8.2.2.2 Delta conditional value-at-risk . . . . . . . . . . . . . . . . 469
8.2.2.3 Systemic risk measure . . . . . . . . . . . . . . . . . . . . 471
8.2.2.4 Network measures . . . . . . . . . . . . . . . . . . . . . . . 474

8.3 Shadow banking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
8.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
8.3.2 Measuring the shadow banking . . . . . . . . . . . . . . . . . . . . . 478

8.3.2.1 The broad (or MUNFI) measure . . . . . . . . . . . . . . . 478
8.3.2.2 The narrow measure . . . . . . . . . . . . . . . . . . . . . 481

8.3.3 Regulatory developments of shadow banking . . . . . . . . . . . . . 485
8.3.3.1 Data gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
8.3.3.2 Mitigation of interconnectedness risk . . . . . . . . . . . . 486
8.3.3.3 Money market funds . . . . . . . . . . . . . . . . . . . . . 486
8.3.3.4 Complex shadow banking activities . . . . . . . . . . . . . 487



Contents xi

II Mathematical and Statistical Tools 489

9 Model Risk of Exotic Derivatives 491
9.1 Basics of option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

9.1.1 The Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . . 491
9.1.1.1 The general framework . . . . . . . . . . . . . . . . . . . . 491
9.1.1.2 Application to European options . . . . . . . . . . . . . . 492
9.1.1.3 Principle of dynamic hedging . . . . . . . . . . . . . . . . 495
9.1.1.4 The implied volatility . . . . . . . . . . . . . . . . . . . . . 508

9.1.2 Interest rate risk modeling . . . . . . . . . . . . . . . . . . . . . . . 513
9.1.2.1 Pricing zero-coupon bonds with the Vasicek model . . . . 514
9.1.2.2 The calibration issue of the yield curve . . . . . . . . . . . 516
9.1.2.3 Caps, floors and swaptions . . . . . . . . . . . . . . . . . . 518
9.1.2.4 Change of numéraire and equivalent martingale measure . 519
9.1.2.5 The HJM model . . . . . . . . . . . . . . . . . . . . . . . . 522
9.1.2.6 Market models . . . . . . . . . . . . . . . . . . . . . . . . 525

9.2 Volatility risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
9.2.1 The uncertain volatility model . . . . . . . . . . . . . . . . . . . . . 530

9.2.1.1 Formulation of the partial differential equation . . . . . . 530
9.2.1.2 Computing lower and upper pricing bounds . . . . . . . . 531
9.2.1.3 Application to ratchet options . . . . . . . . . . . . . . . . 532

9.2.2 The shifted log-normal model . . . . . . . . . . . . . . . . . . . . . 535
9.2.2.1 The fixed-strike parametrization . . . . . . . . . . . . . . . 537
9.2.2.2 The floating-strike parametrization . . . . . . . . . . . . . 538
9.2.2.3 The forward parametrization . . . . . . . . . . . . . . . . . 539
9.2.2.4 Mixture of SLN distributions . . . . . . . . . . . . . . . . 540
9.2.2.5 Application to binary, corridor and barrier options . . . . 541

9.2.3 Local volatility model . . . . . . . . . . . . . . . . . . . . . . . . . . 546
9.2.3.1 Derivation of the forward equation . . . . . . . . . . . . . 546
9.2.3.2 Duality between local volatility and implied volatility . . . 549
9.2.3.3 Dupire model in practice . . . . . . . . . . . . . . . . . . . 551
9.2.3.4 Application to exotic options . . . . . . . . . . . . . . . . 559

9.2.4 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . . . 560
9.2.4.1 General analysis . . . . . . . . . . . . . . . . . . . . . . . . 560
9.2.4.2 Heston model . . . . . . . . . . . . . . . . . . . . . . . . . 562
9.2.4.3 SABR model . . . . . . . . . . . . . . . . . . . . . . . . . 568

9.2.5 Factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
9.2.5.1 Linear and quadratic Gaussian models . . . . . . . . . . . 575
9.2.5.2 Dynamics of risk factors under the forward probability

measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
9.2.5.3 Pricing caplets and swaptions . . . . . . . . . . . . . . . . 577
9.2.5.4 Calibration and practice of factor models . . . . . . . . . . 578

9.3 Other model risk topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
9.3.1 Dividend risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

9.3.1.1 Understanding the impact of dividends on option prices . 581
9.3.1.2 Models of discrete dividends . . . . . . . . . . . . . . . . . 582

9.3.2 Correlation risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
9.3.2.1 The two-asset case . . . . . . . . . . . . . . . . . . . . . . 583
9.3.2.2 The multi-asset case . . . . . . . . . . . . . . . . . . . . . 587
9.3.2.3 The copula method . . . . . . . . . . . . . . . . . . . . . . 589

9.3.3 Liquidity risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591



xii Contents

9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
9.4.1 Option pricing and martingale measure . . . . . . . . . . . . . . . . 593
9.4.2 The Vasicek model . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
9.4.3 The Black model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
9.4.4 Change of numéraire and Girsanov theorem . . . . . . . . . . . . . 594
9.4.5 The HJM model and the forward probability measure . . . . . . . . 596
9.4.6 Equivalent martingale measure in the Libor market model . . . . . 597
9.4.7 Displaced diffusion option pricing . . . . . . . . . . . . . . . . . . . 598
9.4.8 Dupire local volatility model . . . . . . . . . . . . . . . . . . . . . . 599
9.4.9 The stochastic normal model . . . . . . . . . . . . . . . . . . . . . . 599
9.4.10 The quadratic Gaussian model . . . . . . . . . . . . . . . . . . . . . 601
9.4.11 Pricing two-asset basket options . . . . . . . . . . . . . . . . . . . . 602

10 Statistical Inference and Model Estimation 603
10.1 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

10.1.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
10.1.1.1 Least squares estimation . . . . . . . . . . . . . . . . . . . 604
10.1.1.2 Relationship with the conditional normal distribution . . . 608
10.1.1.3 The intercept problem . . . . . . . . . . . . . . . . . . . . 610
10.1.1.4 Coefficient of determination . . . . . . . . . . . . . . . . . 611
10.1.1.5 Extension to weighted least squares regression . . . . . . . 612

10.1.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . 614
10.1.2.1 Definition of the estimator . . . . . . . . . . . . . . . . . . 614
10.1.2.2 Asymptotic distribution . . . . . . . . . . . . . . . . . . . 616
10.1.2.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . 618
10.1.2.4 Some examples . . . . . . . . . . . . . . . . . . . . . . . . 620
10.1.2.5 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 621

10.1.3 Generalized method of moments . . . . . . . . . . . . . . . . . . . . 628
10.1.3.1 Method of moments . . . . . . . . . . . . . . . . . . . . . . 628
10.1.3.2 Extension to the GMM approach . . . . . . . . . . . . . . 631
10.1.3.3 Simulated method of moments . . . . . . . . . . . . . . . . 635

10.1.4 Non-parametric estimation . . . . . . . . . . . . . . . . . . . . . . . 637
10.1.4.1 Non-parametric density estimation . . . . . . . . . . . . . 637
10.1.4.2 Non-parametric regression . . . . . . . . . . . . . . . . . . 641

10.2 Time series modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
10.2.1 ARMA process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

10.2.1.1 The VAR(1) process . . . . . . . . . . . . . . . . . . . . . 644
10.2.1.2 Extension to ARMA models . . . . . . . . . . . . . . . . . 646

10.2.2 State space models . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
10.2.2.1 Specification and estimation of state space models . . . . . 647
10.2.2.2 Some applications . . . . . . . . . . . . . . . . . . . . . . . 650

10.2.3 Cointegration and error correction models . . . . . . . . . . . . . . 655
10.2.3.1 Nonstationarity and spurious regression . . . . . . . . . . 655
10.2.3.2 The concept of cointegration . . . . . . . . . . . . . . . . . 657
10.2.3.3 Error correction model . . . . . . . . . . . . . . . . . . . . 659
10.2.3.4 Estimation of cointegration relationships . . . . . . . . . . 660

10.2.4 GARCH and stochastic volatility models . . . . . . . . . . . . . . . 664
10.2.4.1 GARCH models . . . . . . . . . . . . . . . . . . . . . . . . 664
10.2.4.2 Stochastic volatility models . . . . . . . . . . . . . . . . . 667

10.2.5 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
10.2.5.1 Fourier analysis . . . . . . . . . . . . . . . . . . . . . . . . 670



Contents xiii

10.2.5.2 Definition of the spectral density function . . . . . . . . . 672
10.2.5.3 Frequency domain localization . . . . . . . . . . . . . . . . 673
10.2.5.4 Main properties . . . . . . . . . . . . . . . . . . . . . . . . 675
10.2.5.5 Statistical estimation in the frequency domain . . . . . . . 683
10.2.5.6 Extension to multidimensional processes . . . . . . . . . . 687
10.2.5.7 Some applications . . . . . . . . . . . . . . . . . . . . . . . 692

10.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
10.3.1 Probability distribution of the t-statistic in the case of the linear

regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
10.3.2 Linear regression without a constant . . . . . . . . . . . . . . . . . . 705
10.3.3 Linear regression with linear constraints . . . . . . . . . . . . . . . . 705
10.3.4 Maximum likelihood estimation of the Poisson distribution . . . . . 706
10.3.5 Maximum likelihood estimation of the exponential distribution . . . 707
10.3.6 Relationship between the linear regression and the maximum

likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
10.3.7 The Gaussian mixture model . . . . . . . . . . . . . . . . . . . . . . 707
10.3.8 Parameter estimation of diffusion processes . . . . . . . . . . . . . . 707
10.3.9 The Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
10.3.10 Derivation of Kalman filter equations . . . . . . . . . . . . . . . . . 709
10.3.11 Steady state of time-invariant state space model . . . . . . . . . . . 710
10.3.12 Kalman information filter versus Kalman covariance filter . . . . . . 711
10.3.13 Granger representation theorem . . . . . . . . . . . . . . . . . . . . 712
10.3.14 Probability distribution of the periodogram . . . . . . . . . . . . . . 712
10.3.15 Spectral density function of structural time series models . . . . . . 713
10.3.16 Spectral density function of some processes . . . . . . . . . . . . . . 714

11 Copulas and Dependence Modeling 715
11.1 Canonical representation of multivariate distributions . . . . . . . . . . . . 715

11.1.1 Sklar’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
11.1.2 Expression of the copula density . . . . . . . . . . . . . . . . . . . . 716
11.1.3 Fréchet classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

11.1.3.1 The bivariate case . . . . . . . . . . . . . . . . . . . . . . . 718
11.1.3.2 The multivariate case . . . . . . . . . . . . . . . . . . . . . 719
11.1.3.3 Concordance ordering . . . . . . . . . . . . . . . . . . . . . 719

11.2 Copula functions and random vectors . . . . . . . . . . . . . . . . . . . . . 722
11.2.1 Countermonotonicity, comonotonicity and scale invariance property 722
11.2.2 Dependence measures . . . . . . . . . . . . . . . . . . . . . . . . . . 724

11.2.2.1 Concordance measures . . . . . . . . . . . . . . . . . . . . 724
11.2.2.2 Linear correlation . . . . . . . . . . . . . . . . . . . . . . . 727
11.2.2.3 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . 730

11.3 Parametric copula functions . . . . . . . . . . . . . . . . . . . . . . . . . . 731
11.3.1 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 732

11.3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
11.3.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
11.3.1.3 Two-parameter Archimedean copulas . . . . . . . . . . . . 734
11.3.1.4 Extension to the multivariate case . . . . . . . . . . . . . . 734

11.3.2 Normal copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
11.3.3 Student’s t copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

11.4 Statistical inference and estimation of copula functions . . . . . . . . . . . 741
11.4.1 The empirical copula . . . . . . . . . . . . . . . . . . . . . . . . . . 741
11.4.2 The method of moments . . . . . . . . . . . . . . . . . . . . . . . . 743



xiv Contents

11.4.3 The method of maximum likelihood . . . . . . . . . . . . . . . . . . 745
11.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

11.5.1 Gumbel logistic copula . . . . . . . . . . . . . . . . . . . . . . . . . 748
11.5.2 Farlie-Gumbel-Morgenstern copula . . . . . . . . . . . . . . . . . . . 748
11.5.3 Survival copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
11.5.4 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
11.5.5 Correlated loss given default rates . . . . . . . . . . . . . . . . . . . 749
11.5.6 Calculation of correlation bounds . . . . . . . . . . . . . . . . . . . 750
11.5.7 The bivariate Pareto copula . . . . . . . . . . . . . . . . . . . . . . 751

12 Extreme Value Theory 753
12.1 Order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

12.1.1 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
12.1.2 Extreme order statistics . . . . . . . . . . . . . . . . . . . . . . . . . 755
12.1.3 Inference statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
12.1.4 Extension to dependent random variables . . . . . . . . . . . . . . . 760

12.2 Univariate extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . 762
12.2.1 Fisher-Tippet theorem . . . . . . . . . . . . . . . . . . . . . . . . . 763
12.2.2 Maximum domain of attraction . . . . . . . . . . . . . . . . . . . . 765

12.2.2.1 MDA of the Gumbel distribution . . . . . . . . . . . . . . 767
12.2.2.2 MDA of the Fréchet distribution . . . . . . . . . . . . . . . 767
12.2.2.3 MDA of the Weibull distribution . . . . . . . . . . . . . . 768
12.2.2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . 769

12.2.3 Generalized extreme value distribution . . . . . . . . . . . . . . . . 770
12.2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
12.2.3.2 Estimating the value-at-risk . . . . . . . . . . . . . . . . . 771

12.2.4 Peak over threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
12.2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
12.2.4.2 Estimating the expected shortfall . . . . . . . . . . . . . . 775

12.3 Multivariate extreme value theory . . . . . . . . . . . . . . . . . . . . . . . 777
12.3.1 Multivariate extreme value distributions . . . . . . . . . . . . . . . 778

12.3.1.1 Extreme value copulas . . . . . . . . . . . . . . . . . . . . 778
12.3.1.2 Deheuvels-Pickands representation . . . . . . . . . . . . . 779

12.3.2 Maximum domain of attraction . . . . . . . . . . . . . . . . . . . . 781
12.3.3 Tail dependence of extreme values . . . . . . . . . . . . . . . . . . . 783

12.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
12.4.1 Uniform order statistics . . . . . . . . . . . . . . . . . . . . . . . . . 783
12.4.2 Order statistics and return period . . . . . . . . . . . . . . . . . . . 784
12.4.3 Extreme order statistics of exponential random variables . . . . . . 784
12.4.4 Extreme value theory in the bivariate case . . . . . . . . . . . . . . 784
12.4.5 Maximum domain of attraction in the bivariate case . . . . . . . . . 785

13 Monte Carlo Simulation Methods 787
13.1 Random variate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

13.1.1 Generating uniform random numbers . . . . . . . . . . . . . . . . . 787
13.1.2 Generating non-uniform random numbers . . . . . . . . . . . . . . . 789

13.1.2.1 Method of inversion . . . . . . . . . . . . . . . . . . . . . . 790
13.1.2.2 Method of transformation . . . . . . . . . . . . . . . . . . 793
13.1.2.3 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . 794
13.1.2.4 Method of mixtures . . . . . . . . . . . . . . . . . . . . . . 798

13.1.3 Generating random vectors . . . . . . . . . . . . . . . . . . . . . . . 799



Contents xv

13.1.3.1 Method of conditional distributions . . . . . . . . . . . . . 799
13.1.3.2 Method of transformation . . . . . . . . . . . . . . . . . . 802

13.1.4 Generating random matrices . . . . . . . . . . . . . . . . . . . . . . 807
13.1.4.1 Orthogonal and covariance matrices . . . . . . . . . . . . . 807
13.1.4.2 Correlation matrices . . . . . . . . . . . . . . . . . . . . . 809
13.1.4.3 Wishart matrices . . . . . . . . . . . . . . . . . . . . . . . 813

13.2 Simulation of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . 813
13.2.1 Discrete-time stochastic processes . . . . . . . . . . . . . . . . . . . 814

13.2.1.1 Correlated Markov chains . . . . . . . . . . . . . . . . . . 814
13.2.1.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . 815

13.2.2 Univariate continuous-time processes . . . . . . . . . . . . . . . . . 818
13.2.2.1 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . 818
13.2.2.2 Geometric Brownian motion . . . . . . . . . . . . . . . . . 819
13.2.2.3 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . 819
13.2.2.4 Stochastic differential equations without

an explicit solution . . . . . . . . . . . . . . . . . . . . . . 820
13.2.2.5 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . 824
13.2.2.6 Jump-diffusion processes . . . . . . . . . . . . . . . . . . . 827
13.2.2.7 Processes related to Brownian motion . . . . . . . . . . . . 828

13.2.3 Multivariate continuous-time processes . . . . . . . . . . . . . . . . 833
13.2.3.1 Multidimensional Brownian motion . . . . . . . . . . . . . 833
13.2.3.2 Multidimensional geometric Brownian motion . . . . . . . 833
13.2.3.3 Euler-Maruyama and Milstein schemes . . . . . . . . . . . 835

13.3 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
13.3.1 Computing integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

13.3.1.1 A basic example . . . . . . . . . . . . . . . . . . . . . . . . 838
13.3.1.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . 839
13.3.1.3 Extension to the calculation of mathematical expectations 841

13.3.2 Variance reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
13.3.2.1 Antithetic variates . . . . . . . . . . . . . . . . . . . . . . 844
13.3.2.2 Control variates . . . . . . . . . . . . . . . . . . . . . . . . 850
13.3.2.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . 856
13.3.2.4 Other methods . . . . . . . . . . . . . . . . . . . . . . . . 860

13.3.3 MCMC methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
13.3.3.1 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . 871
13.3.3.2 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . 873
13.3.3.3 Sequential Monte Carlo methods and particle filters . . . . 878

13.3.4 Quasi-Monte Carlo simulation methods . . . . . . . . . . . . . . . . 880
13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

13.4.1 Simulating random numbers using the inversion method . . . . . . . 885
13.4.2 Simulating random numbers using the transformation method . . . 886
13.4.3 Simulating random numbers using rejection sampling . . . . . . . . 887
13.4.4 Simulation of Archimedean copulas . . . . . . . . . . . . . . . . . . 889
13.4.5 Simulation of conditional random variables . . . . . . . . . . . . . . 889
13.4.6 Simulation of the bivariate Normal copula . . . . . . . . . . . . . . 890
13.4.7 Computing the capital charge for operational risk . . . . . . . . . . 890
13.4.8 Simulating a Brownian bridge . . . . . . . . . . . . . . . . . . . . . 891
13.4.9 Optimal importance sampling . . . . . . . . . . . . . . . . . . . . . 891



xvi Contents

14 Stress Testing and Scenario Analysis 893
14.1 Stress test framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894

14.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
14.1.1.1 General objective . . . . . . . . . . . . . . . . . . . . . . . 894
14.1.1.2 Scenario design and risk factors . . . . . . . . . . . . . . . 894
14.1.1.3 Firm-specific versus supervisory stress testing . . . . . . . 896

14.1.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
14.1.2.1 Historical approach . . . . . . . . . . . . . . . . . . . . . . 899
14.1.2.2 Macroeconomic approach . . . . . . . . . . . . . . . . . . . 900
14.1.2.3 Probabilistic approach . . . . . . . . . . . . . . . . . . . . 903

14.2 Quantitative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
14.2.1 Univariate stress scenarios . . . . . . . . . . . . . . . . . . . . . . . 904
14.2.2 Joint stress scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 906

14.2.2.1 The bivariate case . . . . . . . . . . . . . . . . . . . . . . . 906
14.2.2.2 The multivariate case . . . . . . . . . . . . . . . . . . . . . 908

14.2.3 Conditional stress scenarios . . . . . . . . . . . . . . . . . . . . . . . 909
14.2.3.1 The conditional expectation solution . . . . . . . . . . . . 909
14.2.3.2 The conditional quantile solution . . . . . . . . . . . . . . 912

14.2.4 Reverse stress testing . . . . . . . . . . . . . . . . . . . . . . . . . . 916
14.2.4.1 Mathematical computation of reverse stress testing . . . . 917
14.2.4.2 Practical solutions . . . . . . . . . . . . . . . . . . . . . . 919

14.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
14.3.1 Construction of a stress scenario with the GEV distribution . . . . 919
14.3.2 Conditional expectation and linearity . . . . . . . . . . . . . . . . . 920
14.3.3 Conditional quantile and linearity . . . . . . . . . . . . . . . . . . . 920

15 Credit Scoring Models 923
15.1 The method of scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

15.1.1 The emergence of credit scoring . . . . . . . . . . . . . . . . . . . . 923
15.1.1.1 Judgmental credit systems versus credit scoring systems . 923
15.1.1.2 Scoring models for corporate bankruptcy . . . . . . . . . . 924
15.1.1.3 New developments . . . . . . . . . . . . . . . . . . . . . . 924

15.1.2 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
15.1.2.1 Choice of the risk factors . . . . . . . . . . . . . . . . . . . 925
15.1.2.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . 927
15.1.2.3 Variable selection . . . . . . . . . . . . . . . . . . . . . . . 932

15.1.3 Score modeling, validation and follow-up . . . . . . . . . . . . . . . 938
15.1.3.1 Cross-validation approach . . . . . . . . . . . . . . . . . . 938
15.1.3.2 Score modeling . . . . . . . . . . . . . . . . . . . . . . . . 941
15.1.3.3 Score follow-up . . . . . . . . . . . . . . . . . . . . . . . . 942

15.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
15.2.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 944

15.2.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
15.2.1.2 Dimension reduction . . . . . . . . . . . . . . . . . . . . . 948

15.2.2 Parametric supervised methods . . . . . . . . . . . . . . . . . . . . 958
15.2.2.1 Discriminant analysis . . . . . . . . . . . . . . . . . . . . . 958
15.2.2.2 Binary choice models . . . . . . . . . . . . . . . . . . . . . 969

15.2.3 Non-parametric supervised methods . . . . . . . . . . . . . . . . . . 974
15.2.3.1 k-nearest neighbor classifier . . . . . . . . . . . . . . . . . 974
15.2.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . 975
15.2.3.3 Support vector machines . . . . . . . . . . . . . . . . . . . 989



Contents xvii

15.2.3.4 Model averaging . . . . . . . . . . . . . . . . . . . . . . . . 1001
15.3 Performance evaluation criteria and score consistency . . . . . . . . . . . . 1008

15.3.1 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
15.3.1.1 Definition and properties . . . . . . . . . . . . . . . . . . . 1009
15.3.1.2 Application to scoring . . . . . . . . . . . . . . . . . . . . 1010

15.3.2 Graphical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
15.3.2.1 Performance curve, selection curve and discriminant curve 1012
15.3.2.2 Some properties . . . . . . . . . . . . . . . . . . . . . . . . 1013

15.3.3 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
15.3.3.1 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . 1015
15.3.3.2 Gini coefficient . . . . . . . . . . . . . . . . . . . . . . . . 1016
15.3.3.3 Choice of the optimal cut-off . . . . . . . . . . . . . . . . . 1018

15.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
15.4.1 Elastic net regression . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
15.4.2 Cross-validation of the ridge linear regression . . . . . . . . . . . . . 1022
15.4.3 K-means and the Lloyd’s algorithm . . . . . . . . . . . . . . . . . . 1023
15.4.4 Derivation of the principal component analysis . . . . . . . . . . . . 1024
15.4.5 Two-class separation maximization . . . . . . . . . . . . . . . . . . 1024
15.4.6 Maximum likelihood estimation of the probit model . . . . . . . . . 1025
15.4.7 Computation of feed-forward neural networks . . . . . . . . . . . . 1025
15.4.8 Primal and dual problems of support vector machines . . . . . . . . 1026
15.4.9 Derivation of the AdaBoost algorithm as the solution of the additive

logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
15.4.10 Weighted estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029

Conclusion 1031

A Technical Appendix 1033
A.1 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033

A.1.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
A.1.1.1 Eigendecomposition . . . . . . . . . . . . . . . . . . . . . . 1033
A.1.1.2 Generalized eigendecomposition . . . . . . . . . . . . . . . 1034
A.1.1.3 Schur decomposition . . . . . . . . . . . . . . . . . . . . . 1034

A.1.2 Approximation methods . . . . . . . . . . . . . . . . . . . . . . . . 1035
A.1.2.1 Spline functions . . . . . . . . . . . . . . . . . . . . . . . . 1035
A.1.2.2 Positive definite matrix approximation . . . . . . . . . . . 1036
A.1.2.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . 1037
A.1.2.4 Finite difference methods . . . . . . . . . . . . . . . . . . . 1041

A.1.3 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . . 1046
A.1.3.1 Quadratic programming problem . . . . . . . . . . . . . . 1046
A.1.3.2 Non-linear unconstrained optimization . . . . . . . . . . . 1047
A.1.3.3 Sequential quadratic programming algorithm . . . . . . . . 1049
A.1.3.4 Dynamic programming in discrete time with finite states . 1049

A.2 Statistical and probability analysis . . . . . . . . . . . . . . . . . . . . . . . 1051
A.2.1 Probability distributions . . . . . . . . . . . . . . . . . . . . . . . . 1051

A.2.1.1 The Bernoulli distribution . . . . . . . . . . . . . . . . . . 1051
A.2.1.2 The binomial distribution . . . . . . . . . . . . . . . . . . 1051
A.2.1.3 The geometric distribution . . . . . . . . . . . . . . . . . . 1052
A.2.1.4 The Poisson distribution . . . . . . . . . . . . . . . . . . . 1052
A.2.1.5 The negative binomial distribution . . . . . . . . . . . . . 1052
A.2.1.6 The gamma distribution . . . . . . . . . . . . . . . . . . . 1052



xviii Contents

A.2.1.7 The beta distribution . . . . . . . . . . . . . . . . . . . . . 1053
A.2.1.8 The noncentral chi-squared distribution . . . . . . . . . . 1053
A.2.1.9 The exponential distribution . . . . . . . . . . . . . . . . . 1054
A.2.1.10 The normal distribution . . . . . . . . . . . . . . . . . . . 1054
A.2.1.11 The Student’s t distribution . . . . . . . . . . . . . . . . . 1055
A.2.1.12 The log-normal distribution . . . . . . . . . . . . . . . . . 1055
A.2.1.13 The Pareto distribution . . . . . . . . . . . . . . . . . . . 1056
A.2.1.14 The generalized extreme value distribution . . . . . . . . . 1056
A.2.1.15 The generalized Pareto distribution . . . . . . . . . . . . . 1057
A.2.1.16 The skew normal distribution . . . . . . . . . . . . . . . . 1057
A.2.1.17 The skew t distribution . . . . . . . . . . . . . . . . . . . . 1059
A.2.1.18 The Wishart distribution . . . . . . . . . . . . . . . . . . . 1060

A.2.2 Special results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060
A.2.2.1 Affine transformation of random vectors . . . . . . . . . . 1060
A.2.2.2 Change of variables . . . . . . . . . . . . . . . . . . . . . . 1061
A.2.2.3 Relationship between density and quantile functions . . . 1062
A.2.2.4 Conditional expectation in the case of the normal

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 1062
A.2.2.5 Calculation of a useful integral function in credit risk

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063
A.3 Stochastic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064

A.3.1 Brownian motion and Wiener process . . . . . . . . . . . . . . . . . 1065
A.3.2 Stochastic integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
A.3.3 Stochastic differential equation and Itô’s lemma . . . . . . . . . . . 1067

A.3.3.1 Existence and uniqueness of a stochastic differential
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067

A.3.3.2 Relationship with diffusion processes . . . . . . . . . . . . 1068
A.3.3.3 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
A.3.3.4 Extension to the multidimensional case . . . . . . . . . . . 1069

A.3.4 Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
A.3.5 Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072
A.3.6 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . 1072
A.3.7 Reflection principle and stopping times . . . . . . . . . . . . . . . . 1073
A.3.8 Some diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . 1074

A.3.8.1 Geometric Brownian motion . . . . . . . . . . . . . . . . . 1074
A.3.8.2 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . 1075
A.3.8.3 Cox-Ingersoll-Ross process . . . . . . . . . . . . . . . . . . 1076
A.3.8.4 Multidimensional processes . . . . . . . . . . . . . . . . . . 1077

A.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
A.4.1 Discrete-time random process . . . . . . . . . . . . . . . . . . . . . 1078
A.4.2 Properties of Brownian motion . . . . . . . . . . . . . . . . . . . . . 1078
A.4.3 Stochastic integral for random step functions . . . . . . . . . . . . . 1078
A.4.4 Power of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . 1079
A.4.5 Exponential of Brownian motion . . . . . . . . . . . . . . . . . . . . 1079
A.4.6 Exponential martingales . . . . . . . . . . . . . . . . . . . . . . . . 1080
A.4.7 Existence of solutions to stochastic differential equations . . . . . . 1080
A.4.8 Itô calculus and stochastic integration . . . . . . . . . . . . . . . . . 1080
A.4.9 Solving a PDE with the Feynman-Kac formula . . . . . . . . . . . . 1081
A.4.10 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . 1081
A.4.11 Dynamic strategy based on the current asset price . . . . . . . . . . 1081
A.4.12 Strong Markov property and maximum of Brownian motion . . . . 1082



Contents xix

A.4.13 Moments of the Cox-Ingersoll-Ross process . . . . . . . . . . . . . . 1083
A.4.14 Probability density function of Heston and SABR models . . . . . . 1083
A.4.15 Discrete dynamic programming . . . . . . . . . . . . . . . . . . . . 1084
A.4.16 Matrix computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084

Subject Index 1121

Author Index 1135



http://taylorandfrancis.com


Preface

Teaching risk management in finance
This book is a handbook for students of Master’s in finance, who want to learn risk

management. It corresponds to the lecture notes of my course “Risk Management & Finan-
cial Regulation” at the University of Paris Saclay. This title highlights the role of financial
regulation. Indeed, it appears that financial regulation is an important component to under-
stand the practice of risk management in finance. This is particularly true in the banking
sector, but it is also valid in other financial sectors. At first sight, it may be curious to teach
for example the standards developed by the Basel Committee. They are freely available
and any student may consult them. However, the regulation is so complex and the docu-
mentation produced is so abundant that students (but also professionals) may be lost when
they want to have an overview on a specific topic or seek particular information. Therefore,
I consider that the primary role of a course in risk management is to understand in gen-
eral terms the financial regulation and be able to navigate between the various regulatory
standards. This is all the more important that financial regulation is everywhere since the
2008 Global Financial Crisis (GFC). Today, most of the resources of a risk management
department within a bank are dedicated to the regulation, and this is also the case of big
projects. Understanding risk management requires them to know the regulation. Neverthe-
less, teaching risk management cannot be limited to the study of the regulation. Another
important component of risk management is risk measurement. This requires having a sta-
tistical model for calculating the probability of a loss. A brief review shows that there are
many risk models from the simplest to the most complicated because there are many types
of risk and many risk factors. Moreover, the modeling of risk factors is not an easy task and
requires making assumptions, and the complexity of a model can increase with the likeli-
hood of these assumptions1. Therefore, the second role of a course in risk management is to
distinguish between the mathematical models of risk measurement and study those that are
actually used by professionals. From an academic point of view, some models may appear
to be outdated or old-fashioned. However, they can continue to be used by risk managers
for many reasons: more robust, easier to calibrate, etc. For example, the most important
risk measurement model is certainly the historical value-at-risk. This is why it is important
to choose the right models to study. A handbook cannot be a comprehensive catalogue of
risk management methods. But it must present the most frequently used models and the
essential mathematical tools in order to help the Master student when he will be faced with
reality and situations that will require a more complex modeling.

1However, a complex model does not mean that the assumptions are more realistic.
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xxii Preface

About this book
These lecture notes are divided into two parts. After an introductory chapter presenting

the main concepts of risk management and an overview of the financial regulation, the first
part is dedicated to the risk management in the banking sector and is made up of seven
chapters: market risk, credit risk, counterparty credit risk, operational risk, liquidity risk,
asset liability management risk and systemic risk. I begin with the market risk, because
it allows to introduce naturally the concept of risk factor, describe what a risk measure
is and define the risk allocation approach. For each chapter, I present the corresponding
regulatory framework and the risk management tools. I continue with five chapters that are
mainly focused on the banking sector. However, even if these six chapters are dedicated to
the banking sector, these materials also establish the basics of risk management in other
financial sectors. They are the common language that is shared by all risk managers in
finance. This first part ends with a eighth chapter on systemic risk and shadow banking
system. In particular, this chapter supplements the introductory chapter and shows that
the risk regulation culture has affected the other non-banking financial sectors such as asset
management, insurance, pension funds and market infrastructure. The second part of these
lecture notes develops the mathematical and statistical tools used in risk management. It
contains seven chapters: model risk of exotic derivatives, statistical inference and model
estimation, copula functions, extreme value theory, Monte Carlo simulation, stress testing
methods and credit scoring models. Each chapter of these lecture notes is extensively il-
lustrated by numerical examples and contains also tutorial exercises. Finally, a technical
appendix completes the lecture notes and contains some important elements on numerical
analysis.

The writing of these lecture notes started in April 2015 and is the result of twenty years
of academic courses. When I began to teach risk management, a large part of my course
was dedicated to statistical tools. Over the years, financial regulation became however in-
creasingly important. I am convinced that risk management is now mainly driven by the
regulation, not by the progress of the mathematical models. The writing of this book has
benefited from the existing materials of my French book called “La Gestion des Risques
Financiers”. Nevertheless, the structure of the two books is different, because my previous
book only concerned market, credit and operational risk before Basel III. Some years ago, I
decided to extend the course to other financial sectors, especially insurance, asset manage-
ment and market infrastructure. In fact, it appears that the quantitative methods of risk
management are the same across the different financial areas even if each sector presents its
particular aspects. But they differ mainly by the regulation, not by the mathematical tools.
The knowledge of the different regulations is not an easy task for students. However, it is
necessary if one would like to understand what the role of risk management is in financial
institutions in the present-day world. Moreover, reducing the practice of risk management
to the assimilation of the regulation rules is not sufficient. The sound understanding of the
financial products and the mathematical models are essential to know where the risks are.
This is why some parts of this book can be difficult because risk management is today com-
plex in finance. A companion book, which contains the solutions of the tutorial exercises, is
available in order to facilitate learning and knowledge assimilation at the following internet
web page:

http://www.thierry-roncalli.com/RiskManagementBook.html

http://www.thierry-roncalli.com/
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List of Symbols and Notations

Symbol Description

× Arithmetic multiplication
· Scalar, vector and matrix multipli-

cation
∗ Convolution
◦ Hadamard product: (x ◦ y)i =

xiyi
⊗ Kronecker product A⊗B
|E| Cardinality of the set E
≺ Concordance ordering
〈x, x′〉 Inner product of x and x′
1 Vector of ones
1 {A} The indicator function is equal to

1 if A is true, 0 otherwise
1A {x} The characteristic function is

equal to 1 if x ∈ A, 0 otherwise
0 Vector of zeros
(Ai,j) Matrix A with entry Ai,j in row i

and column j
A−1 Inverse of the matrix A
A1/2 Square root of the matrix A
A> Transpose of the matrix A
A+ Moore-Penrose pseudo-inverse of

the matrix A
b Vector of weights (b1, . . . , bn) for

the benchmark b
Bt (T ) Price of the zero-coupon bond at

time t for the maturity T
B (t, T ) Alternative form of Bt (T )
B (p) Bernoulli distribution with pa-

rameter p
B (n, p) Binomial distribution with param-

eter n and p
βi Beta of asset i with respect to

portfolio w
βi (w) Another notation for the symbol

βi
β (w | b) Beta of portfolio w when the

benchmark is b

B (α, β) Beta distribution with parameter
α and β

B (α, β) Beta function defined as∫ 1
0 t

α−1 (1− t)β−1 dt
B (x;α, β) Incomplete beta function∫ x

0 t
α−1 (1− t)β−1 dt

ccc Coupon rate of the CDS premium
leg

C (or ρ) Correlation matrix
C OTC contract
C (u1, u2) Copula function
C Set of copula functions
C (i) Mapping function
C̆ (u1, u2) Survival copula
C− Fréchet lower bound copula
C⊥ Product copula
C+ Fréchet upper bound copula
Ct Price of the call option at time t
C (tm) Coupon paid at time tm
Cn (ρ) Constant correlation matrix of di-

mension n with ρi,j = ρ
CE (t0) Current exposure at time t0
cov (X) Covariance of the random vector

X
χ2 (ν) Chi-squared distribution with ν

degrees of freedom
D Covariance matrix of idiosyncratic

risks
D (t) Liquidity duration of the new pro-

duction
D? (t) Liquidity duration of the produc-

tion stock
Dk (x) Debye function
det (A) Determinant of the matrix A
diag v Diagonal matrix with elements

(v1, . . . , vn)
∆t Delta of the option at time t
∆h Difference operator ∆hVt = Vt −

Vt−h with lag h

xxv
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∆ CoVaRi Delta CoVaR of institution i
∆tm Time interval tm = tm−1
δx (y) Dirac delta function
ei The value of the vector is 1 for the

row i and 0 elsewhere
E [X] Mathematical expectation of the

random variable X
E (λ) Exponential probability distribu-

tion with parameter λ
e (t) Potential future exposure at time

t
EE (t) Expected exposure at time t
EEE (t) Effective expected exposure at

time t
EEPE (0; t) Effective expected positive ex-

posure for the time period [0, t]
EnE (t) Risk-neutral expected negative

exposure at time t
EpE (t) Risk-neutral expected positive ex-

posure at time t
EPE (0; t) Expected positive exposure for

the time period [0, t]
ESα (w) Expected shortfall of portfolio w

at the confidence level α
exp (A) Exponential of the matrix A
f (x) Probability density function
fi:n (x) Probability density function of the

order statistic Xi:n
fy (λ) Spectral density function of the

stochastic process yt
F (x) Cumulative distribution function
Fi:n (x) Cumulative distribution function

of the order statistic Xi:n
F−1 (α) Quantile function
Fn? n-fold convolution of the probabil-

ity distribution F with itself
F Vector of risk factors (F1, . . . ,Fm)
Fj Risk factor j
Ft Filtration
ft (T ) Instantaneous forward rate at

time t for the maturity T
f (t, T ) Alternative form of ft (T )
Ft (T1, T2) Forward interest rate at time t for

the period [T1, T2]
F (t, T1, T2) Alternative form of Ft (T1, T2)
F (ν1, ν2) Fisher-Snedecor distribution with

parameters ν1 and ν2
G (p) Geometric distribution with pa-

rameter p
G (α) Standard gamma distribution

with parameter α

G (α, β) Gamma distribution with param-
eters α and β

γ1 Skewness
γ2 Excess kurtosis
Γt Gamma of the option at time t
Γ (α) Gamma function defined as∫∞

0 tα−1e−t dt
γ (α, x) Lower incomplete gamma function

defined as
∫ x

0 t
α−1e−t dt

Γ (α, x) Upper incomplete gamma func-
tion defined as

∫∞
x
tα−1e−t dt

GEV (µ, σ, ξ) GEV distribution with param-
eters µ, σ and ξ

GPD (σ, ξ) Generalized Pareto distribution
with parameters σ and ξ

h Holding period
hhh Kernel or smoothing parameter
H− Lower half-space
H+ Upper half-space
H Hyperplane
H (X) Shannon entropy of X
H (X,Y ) Cross-entropy of X and Y
H (Y | X) Conditional entropy of Y with re-

spect to X
i Asset (or component) i
In Identity matrix of dimension n
I (X,Y ) Mutual information of X and Y
I (θ) Information matrix
IB (x;α, β) Regularized incomplete beta

function
J (θ) Fisher information matrix
K Regulatory capital
K (x, x′) Kernel function of x and x′
` (θ) Log-likelihood function with θ the

vector of parameters to estimate
`t Log-likelihood function for the ob-

servation t
L Lag operator: Lyt = yt−1
L or L (w) Loss of portfolio w
L (x;λ) Lagrange function, whose La-

grange multiplier is λ
lnA Logarithm of the matrix A
LG (α, β) Log-gamma distribution with pa-

rameters α and β
LL (α, β) Log-logistic distribution with pa-

rameters α and β
LN

(
µ, σ2) Log-normal distribution with pa-

rameters µ and σ
λ Parameter of exponential survival

times
λ (t) Hazard function
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λ− Lower tail dependence
λ+ Upper tail dependence
Λ (x) Gumbel distribution
Λ (t) Markov generator
MDA (G) Maximum domain of attraction of

the extreme value distribution G
MESi Marginal expected shortfall of in-

stitution i
MPEα (0; t) Maximum peak exposure for the

time period [0, t] with a confidence
level α

MRi Marginal risk of asset i
MtM Mark-to-market of the portfolio
µ Vector of expected returns

(µ1, . . . , µn)
µi Expected return of asset i
µm Expected return of the market

portfolio
µ̂ Empirical mean
µ (w) Expected return of portfolio w
µ (X) Mean of the random vector X
µm (X) m-th centered moment of the ran-

dom vector X
µ′m (X) m-th moment of the random vec-

tor X
N
(
µ, σ2) Normal distribution with mean µ

and standard deviation σ
N (µ,Σ) Multivariate normal distribution

with mean µ and covariance ma-
trix Σ

nS Number of scenarios or simula-
tions

N (t) Poisson counting process for the
time interval [0, t]

N (t1; t2) Poisson counting process for the
time interval [t1, t2]

NB (r, p) Negative binomial distribution
with parameters r and p

Ω Covariance matrix of risk factors
P Markov transition matrix
P Historical probability measure
P (Σ) Cholesky decomposition of Σ
P (λ) Poisson distribution with parame-

ter λ
p (k) Probability mass function of an

integer-valued random variable
Pt Price of the put option at time t
P (α, x−) Pareto distribution with parame-

ters α and x−
P (α, θ) Pareto distribution with parame-

ters α and θ

PEα (t) Peak exposure at time t with a
confidence level α

PVt (L) Present value of the leg L
Π or Π (w) P&L of the portfolio w
φ (x) Probability density function of the

standardized normal distribution
φ2 (x1, x2; ρ) Probability density function of

the bivariate normal distribution
with correlation ρ

φn (x; Σ) Probability density function of the
multivariate normal distribution
with covariance matrix Σ

Φ (x) Cumulative density function of
the standardized normal distribu-
tion

Φ−1 (α) Inverse of the cdf of the standard-
ized normal distribution

Φ2 (x1, x2; ρ) Cumulative density function of
the bivariate normal distribution
with correlation ρ

Φn (x; Σ) Cumulative density function of
the multivariate normal distribu-
tion with covariance matrix Σ

Φα (x) Fréchet distribution
Ψα (x) Weibull distribution
ϕX (t) Characteristic function of the ran-

dom variable X
qα (nS) Integer part of αnS
qᾱ (nS) Integer part of (1− α)nS
Q Risk-neutral probability measure
QT Forward probability measure
R (t) Rating of the entity at time t
r Return of the risk-free asset
R Vector of asset returns

(R1, . . . , Rn)
Ri Return of asset i
Ri,t Return of asset i at time t
Rm,t Return of the market portfolio at

time t
R (w) Return of portfolio w
R (w) Risk measure of portfolio w
R (L) Risk measure of loss L
R (Π) Risk measure of P&L Π
Rt (T ) Zero-coupon rate at time t for the

maturity T
RCi Risk contribution of asset i
RC?i Relative risk contribution of asset

i
R Recovery rate
RPV01 Risky PV01
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ρ (or C) Correlation matrix of asset re-
turns

ρi,j Correlation between asset returns
i and j

ρ (x, y) Correlation between portfolios x
and y

s Credit spread
S (x) Survival function
S Stress scenario
St Price of the underlying asset at

time t
St (T ) Survival function of T at time t
S (t, u) Amortization function of the new

production
S? (t, u) Amortization function of the pro-

duction stock
S (yt) Stationary form of the process yt
SESi Systemic expected shortfall of in-

stitution i
SN (ξ,Ω, η) Skew normal distribution
SRISKi Systemic risk contribution of insti-

tution i
ST (ξ,Ω, η, ν) Skew t distribution
SVt (L) Stochastic discounted value of the

leg L
Σ Covariance matrix
Σ̂ Empirical covariance matrix
σi Volatility of asset i
σm Volatility of the market portfolio
σ̃i Idiosyncratic volatility of asset i
σ̂ Empirical volatility
σ (w) Volatility of portfolio w
σ (X) Standard deviation of the random

variable X
tν Student’s t distribution with ν de-

grees of freedom
tn (Σ, ν) Multivariate Student’s t distribu-

tion with ν degrees of freedom and
covariance matrix Σ

t (x; ν) Probability density function of
the univariate t distribution with
number of degrees of freedom ν

tn (x; Σ, ν) Probability density function of
the multivariate t distribution
with parameters Σ and ν

t2 (x1, x2; ρ, ν) Probability density function
of the bivariate t distribution with
parameters ρ and ν

T Maturity date
T (x; ν) Cumulative density function of

the univariate t distribution with
number of degrees of freedom ν

T−1 (α; ν) Inverse of the cdf of the Student’s
t distribution with ν the number
of degrees of freedom

Tn (x; Σ, ν) Cumulative density function of
the multivariate t distribution
with parameters Σ and ν

T2 (x1, x2; ρ, ν) Cumulative density function
of the bivariate t distribution with
parameters ρ and ν

T return period
tr (A) Trace of the matrix A
θ Vector of parameters
θ̂ Estimator of θ
Θt Theta of the option at time t
τ Default time
τ Time to maturity T − t
U[a,b] Uniform distribution between a

and b
var (X) Variance of the random variableX
VaRα (w) Value-at-risk of portfolio w at the

confidence level α
υt Vega of the option t
w Vector of weights (w1, . . . , wn) for

portfolio w
wi Weight of asset i in portfolio w
W (t) Wiener process
X Random variable
x+ Maximum value between x and 0
Xi:n ith order statistic of a sample of

size n
yt Discrete-time stochastic process
y Yield to maturity

Abbreviations

ABCP Asset-backed commercial paper
ABS Asset-backed security
ADF Augmented Dickey-Fuller unit root

test
ADV Average daily volume
AER Annual equivalent rate

AFME Association for Financial Markets
in Europe

AFS Available-for-sale
AIC Akaike information criterion
AIFMD Alternative investment fund man-

agers directive
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AIRB Advanced internal ratings-based
approach (credit risk)

ALCO ALM committee
ALM Asset liability management
AM-CVA Advanced method (credit valua-

tion adjustment)
AMA Advanced measurement approaches

(operational risk)
AMF Autorité des Marchés Financiers
AMLF ABCP money market mutual fund

liquidity facility
AR Autoregressive process
ARCH Autoregressive conditional het-

eroscedasticity process
ARMA Autoregressive moving average pro-

cess
AT1 Additional tier 1
ATM At-the-money (option)
BA-CVA Basic approach (credit valuation

adjustment)
BAC Binary asset-or-nothing call option
BaFin Bundesanstalt für Finanzdienstleis-

tungsaufsicht
BAP Binary asset-or-nothing put option
BCBS Basel Committee on Banking Su-

pervision
BCC Binary cash-or-nothing call option
BCP Binary cash-or-nothing put option
BCVA Bilateral CVA
BD Broker-dealer
BFGS Broyden-Fletcher-Goldfarb-

Shanno algorithm
BGD Batch gradient descent
BIA Basic indicator approach (opera-

tional risk)
BIS Bank for International Settlements
BLUE Best linear unbiased estimator
BoJ Bank of Japan
BS Black-Scholes model
BSM Basic structural model
BUE Best unbiased estimator
CAD Capital adequacy directive
CAM Constant amortization mortgage
CaR Capital-at-risk
CB Conservation buffer (CET1)
CBO Collateralized bond obligation
CCB Countercyclical capital buffer

(CET1)
CCF Credit conversion factor
CCP Central counterparty clearing

house

CCR Counterparty credit risk
CDF Cumulative distribution function
CDO Collateralized debt obligation
CDS Credit default swap
CDT Credit default tranche
CDX Credit default index
CE Current exposure
CEM Current exposure method (CCR)
CET1 Common equity tier 1
CFH Cash flow hedge
CFI Captive financial institution
CFO Chief financial officer
CGFS Committee on the Global Financial

System
CIR Cox-Ingersoll-Ross process
CISC Constant inter-sector correlation

model
CLO Collateralized loan obligation
CMBS Commercial mortgage-backed secu-

rity
CMO Collateralized mortgage obligation
CoVaR Conditional value-at-risk
CP Consultation paper
CPM Constant payment mortgage
CPR Conditional prepayment rate
CRA Credit rating agency
CRD Capital requirements directive
CRM Comprehensive risk measure
CRO Chief risk officer
CRR Capital requirements regulation
CSRBB Credit spread risk in the banking

book
CVA Credit valuation adjustment
DF Dickey-Fuller unit root test
DFAST Dodd-Frank Act stress testing
DFP Davidon-Fletcher-Powell algorithm
DFT Discrete Fourier transform
DGAP Duration gap
DIC Down-and-in call option
DIP Down-and-in put option
DOC Down-and-out call option
DOP Down-and-out put option
DP Dynamic programming
DRC Default risk capital
DV01 Dollar value of a one basis point de-

crease in interest rates
DVA Debit valuation adjustment
EAD Exposure at default
EaR Earnings-at-risk
EAR Effective annual rate
EBA European Banking Authority
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ECB European Central Bank
ECM Error correction model
ECRA External credit risk assessment
EE Expected exposure
EEE Effective expected exposure
EEPE Effective expected positive expo-

sure
EL Expected loss
EMIR European market infrastructure

regulation
ENE Expected negative exposure
EPE Expected positive exposure
ERBA External ratings-based approach
ES Expected shortfall
ESMA European Securities and Markets

Authority
ETF Exchange traded fund
EV Economic value
EVaR Economic value-at-risk
EVE Economic value of equity
EVT Extreme value theory
FASB Financial Accounting Standards

Board
FBA Fall-back approach
FC Finance company
FDIC Federal Deposit Insurance Corpo-

ration
FDML Frequency domain maximum likeli-

hood
FFT Fast Fourier transform
FHFA Federal Housing Finance Agency
FICO Fair Isaac Corporation score
FIR Finite impulse response filter
FIRB Foundation internal ratings-based

approach (credit risk)
FNMA Fannie Mae
FRA Forward rate agreement
FRB Board of Governors of the Federal

Reserve System
FRTB Fundamental review of the trading

book
FSAP Financial sector assessment pro-

gram
FSB Financial Stability Board
FtD First-to-default swap
FTP Funds transfer pricing
FV Fair value
FVA Founding valuation adjustment
FVH Fair value hedge
FVOCI Fair value through other compre-

hensive income

FVTPL Fair value through profit and loss
FWN Fractional white noise
GAAP Generally accepted accounting

principles (US)
GARCH Generalized autoregressive condi-

tional heteroscedasticity process
GBM Geometric Brownian motion
GCV Generalized cross-validation
GEV Generalized extreme value distribu-

tion
GFC Global Financial Crisis (2008)
GMM Generalized method of moments
GMM Gaussian mixture model
GNMA Ginnie Mae
GPD Generalized Pareto distribution
HELOC Home equity line of credit
HF Hedge fund
HFT Held-for-trading
HJM Heath-Jarrow-Morton model
HLA Higher loss absorbency
HPP Homogeneous Poisson process
HQLA High-quality liquid assets
HTM Held-to-maturity
HY High yield entity
IAIS International Association of Insur-

ance Supervisors
IAS International accounting standards
ICAAP Internal capital adequacy assess-

ment process
ICP Insurance Core Principles
ICPF Insurance companies and pension

funds
IF Investment fund
IFG Infinitely fine-grained portfolio
IFRS International financial reporting

standards
IG Investment grade entity
ILAAP Internal liquidity adequacy assess-

ment process
IMA Internal model-based approach

(market risk)
IMCC Internally modelled capital charge

(Basel III)
IMF International Monetary Fund
IMM Internal model method (counter-

party credit risk)
IOSCO International Organization of Secu-

rities Commissions
IPP Integration by parts
IRB Internal ratings-based approach

(credit risk)
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IRRBB Interest rate risk in the banking
book

IRC Incremental risk charge
IRS Interest rate swap
ISDA International Swaps and Deriva-

tives Association
ITM In-the-money (option)
JTD Jump-to-default
KF Kalman filter
KIC Knock-in call option
KIP Knock-in put option
KOC Knock-out call option
KOP Knock-out put option
KPSS Kwiatkowski-Phillips-Schmidt-

Shin stationary test
KRI Key risk indicator
L&R Loans and receivables
LAD Least absolute deviation estimator
LCG Linear congruential generator
LCR Liquidity coverage ratio
LDA Loss distribution approach (opera-

tional risk)
LDA Linear discriminant analysis
LDCE Loss data collection exercise
LEE Loan equivalent exposure
LGD Loss given default
LL Local level model
LLT Local linear trend model
LMM Libor market model
LTA Look-through approach
LtD Last-to-default swap
LTI Linear time-invariant filter
LTV Loan-to-value ratio
M Effective maturity
MA Moving average process
MBS Mortgage-backed security
MC Monte Carlo
MCMC Markov chain Monte Carlo
MCR Minimum capital requirement
MDA Maximum domain of attraction
MDB Multilateral development bank
MES Marginal expected shortfall
MEV Multivariate extreme value
MF Mutual fund
MGD Mini-batch gradient descent
MiFID Markets in financial instruments di-

rective
MiFIR Markets in financial instruments

regulation
ML Maximum likelihood
MLE Maximum likelihood estimator

MM Method of moments
MMF Money market fund
MPE Maximum peak exposure
MPOR Margin period of risk
MPP Mixed Poisson process
MSMVE Min-stable multivariate exponen-

tial distribution
MtM Mark-to-market
MUNFI Monitoring universe of non-bank fi-

nancial intermediation
NHPP Non-homogeneous Poisson process
NIH Net investment hedge
NII Net interest income
NIM Net interest margin
NIS Net interest spread
NMD Non-maturity deposit
NMF Non-negative matrix factorization
NN Neural network
NOW Negotiable order of withdrawal
NQD Negative quadrant dependence
NSFR Net stable funding ratio
OCC Office of the Comptroller of the

Currency
ODE Ordinary differential equation
OFI Other financial intermediary
OLS Ordinary least squares
ORSA Own risk and solvency assessment
OTC Over-the-counter
OTM Out-of-the-money (option)
OTS Office of Thrift Supervision
OU Ornstein-Uhlenbeck process
P&L Profit and loss
PCA Principal component analysis
PD Probability of default
PDE Partial differential equation
PDF Probability density function
PE Peak exposure
PFE Potential future exposure
PLA Profit and loss attribution (Basel

III)
PMF Probability mass function
POT Peak over threshold
PP Phillips-Perron unit root test
PQD Positive quadrant dependence
PRESS Predicted residual error sum of

squares
PSE Public sector entity
PV01 Present value of one bp
QDA Quadratic discriminant analysis
QIS Quantitative impact study
QMC Quasi-Monte Carlo
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QP Quadratic programming
RBC Risk-based capital (US insurance)
REIT Real estate investment trust
RFET Risk factor eligibility test (Basel

III)
RLS Recursive least squares
RMBS Residential mortgage-backed secu-

rity
ROE Return-on-equity
RRAO Residual risk add-on
RW Risk weight
RWA Risk-weighted asset
RWR Right way risk
SA Standardized approach (credit risk)
SA-CCR Standardized approach (counter-

party credit risk)
SA-CVA Standardized approach (credit val-

uation adjustment)
SA-TB Standardized approach for the

trading book (market risk)
SABR Stochastic alpha-beta-rho model
SBE Shadow banking entity
SBS Shadow banking system
SCR Solvency capital requirement
SCRA Standardized credit risk approach
SDE Stochastic differential equation
SES Systemic expected shortfall
SFT Securities financing transaction
SFV Structured finance vehicle
SGD Stochastic gradient descent
SIFI Systemically important financial

institution
SIFMA Securities Industry and Financial

Markets Association
SIR Sampling importance resampling
SIS Sequential importance sampling
SIV Structured investment vehicle
SLA Single loss approximation
SLN Shifted log-normal model
SM-CCR Standardized method (counter-

party credit risk)
SM-CVA Standardized method (credit valu-

ation adjustment)
SMC Sequential Monte Carlo
SME Small and medium-sized enter-

prises
SMM Standardized measurement method

(market risk)
SMM Swap market model

SN Skew normal distribution
SPV Special purpose vehicle
SQP Sequential quadratic programming
SRC Specific risk charge
SREP Supervisory review and evaluation

process
SRISK Systemic risk contribution
SRP Supervisory review process
SSFA Simplified supervisory formula ap-

proach
SSM Single supervisory mechanism
SSM State space model
ST Skew t distribution
STC Simple, transparent and compara-

ble (securitization)
StD Second-to-default swap
SVaR Stressed value-at-risk
SVI Stochastic volatility inspired
SVM Support vector machine
T1 Tier 1
T2 Tier 2
TC Trust company
TDML Time domain maximum likelihood
TDRR Term deposit redemption ratio
TLAC Total loss absorbing capacity
TSA The standardized approach (opera-

tional risk)
UCITS Undertakings for collective invest-

ment in transferable securities (di-
rective)

UCVA Unilateral CVA
UDVA Unilateral DVA
UL Unexpected loss
UIC Up-and-in call option
UIP Up-and-in put option
UOC Up-and-out call option
UOP Up-and-out put option
UVM Uncertain volatility model
VaR Value-at-risk
VAR Vector autoregressive process
VARMAVector autoregressive moving aver-

age process
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Chapter 1
Introduction

The idea that risk management creates value is largely accepted today. However, this has
not always been the case in the past, especially in the financial sector (Stulz, 1996). Rather,
it has been a long march marked by a number of decisive steps. In this introduction, we
present an outline of the most important achievements from a historical point of view. We
also give an overview of the current financial regulation, which is a cornerstone in financial
risk management.

1.1 The need for risk management
The need for risk management is the title of the first section of the leadership book

by Jorion (2007), who shows that risk management can be justified at two levels. At the
firm level, risk management is essential for identifying and managing business risk. At
the industry level, risk management is a central factor for understanding and preventing
systemic risk. In particular, this second need is the ‘raison d’être’ of the financial regulation
itself.

1.1.1 Risk management and the financial system
The concept of risk management has evolved considerably since its creation, which is

believed to be in the early fifties1. In November 1955, Wayne Snider gave a lecture entitled
‘The Risk Manager ’ where he proposed creating an integrated department responsible for
risk prevention in the insurance industry (Snider, 1956). Some months later, Gallagher
(1956) published an article to outline the most important principles of risk management
and to propose the hiring of a full-time risk manager in large companies. For a long time,
risk management was systematically associated with insurance management, both from a
practical point of view and a theoretical point of view. For instance, the book of Mehr and
Hedges (1963) is largely dedicated to the field of insurance with very few applications to
other industries. This is explained by the fact that the collective risk model2 has helped
to apply the mathematical and statistical tools for measuring risk in insurance companies
since 1930. A new discipline known as actuarial science has been developed at the same
time outside the other sciences and has supported the generalization of risk management in
the insurance industry.

Simultaneously, risk became an important field of research in economics and finance.
Indeed, Arrow (1964) made an important step by extending the Arrow-Debreu model of
general equilibrium in an uncertain environment3. In particular, he showed the importance

1See Crockford (1982) or Snider (1991) for a retrospective view on the risk management development.
2It is also known as the ruin theory or the compound Poisson risk model.
3This paper was originally presented in 1952 and was also published in Cahiers du CNRS (1953).
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of hedging and introduced the concept of payoff. By developing the theory of optimal al-
location for a universe of financial securities, Markowitz (1952) pointed out that the risk
of a financial portfolio can be diversified. These two concepts, hedging and diversification,
together with insurance, are the main pillars of modern risk management. These concepts
will be intensively used by academics in the 1960s and 1970s. In particular, Black and Sc-
holes (1973) showed the interconnection between hedging and pricing problems. Their work
had a strong impact on the development of equity, interest rates, currency and commodity
derivatives, which are today essential for managing the risk of financial institutions. With
the Markowitz model, a new era had begun in portfolio management and asset pricing.
First, Sharpe (1964) showed how risk premia are related to non-diversifiable risks and de-
veloped the first asset pricing model. Then, Ross (1976) extended the CAPM model of
Sharpe and highlighted the role of risk factors in arbitrage pricing theory. These academic
achievements will support the further development of asset management, financial markets
and investment banking.

In commercial and retail banking, risk management was not integrated until recently.
Even though credit scoring models have existed since the fifties, they were rather designed
for consumer lending, especially credit cards. When banks used them for loans and credit
issuances, they were greatly simplified and considered as a decision-making tool, playing a
minor role in the final decision. The underlying idea was that the banker knew his client
better than a statistical model could. However, Banker Trust introduced the concept of
risk-adjusted return on capital or RAROC under the initiative of Charles Sanford in the
late 1970s for measuring risk-adjusted profitability. Gene Guill mentions a memorandum
dated February 1979 by Charles Sanford to the head of bank supervision at the Federal
Reserve Board of New York that helps to understand the RAROC approach:

“We agree that one bank’s book equity to assets ratio has little relevance for
another bank with a different mix of businesses. Certain activities are inherently
riskier than others and more risk capital is required to sustain them. The truly
scarce resource is equity, not assets, which is why we prefer to compare and
measure businesses on the basis of return on equity rather than return on assets”
(Guill, 2009, page 10).

RAROC compares the expected return to the economic capital and has become a standard
model for combining performance management and risk management. Even if RAROC is a
global approach for allocating capital between business lines, it has been mainly used as a
credit scoring model. Another milestone was the development of credit portfolio manage-
ment when Vasicek (1987) adapted the structural default risk approach of Merton (1974)
to model the loss distribution of a loan portfolio. He then jointly founded KMV Corpora-
tion with Stephen Kealhofer and John McQuown, which specializes in quantitative credit
analysis tools and is now part of Moody’s Analytics.

In addition to credit risk, commercial and retail banks have to manage interest rate
and liquidity risks, because their primary activity is to do asset, liquidity and maturity
transformations. Typically, a commercial bank has long-term and illiquid assets (loans) and
short-term and liquid liabilities (deposits). In such a situation, a bank faces a loss risk that
can be partially hedged. This is the role of asset liability management(ALM). But depositors
also face a loss risk that is virtually impossible to monitor and manage. Consequently, there
is an information asymmetry between banks and depositors.

In the banking sector, the main issue centered therefore around the deposit insurance.
How can we protect depositors against the failure of the bank? The 100% reserve proposal
by Fisher (1935) required banks to keep 100% of demand deposit accounts in cash or
government-issued money like bills. Diamond and Dybvig (1983) argued that the mixing
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policy of liquid and illiquid assets can rationally produce systemic risks, such as bank runs.
A better way to protect the depositors is to create a deposit insurance guaranteed by the
government. According to the Modigliani-Miller theorem on capital structure4, this type of
government guarantee implied a higher cost of equity capital. Since the eighties, this topic
has been highly written about (Admati and Hellwig, 2014). Moreover, banks also differ
from other companies, because they create money. Therefore, they are at the heart of the
monetary policy. These two characteristics (implicit guarantee and money creation) imply
that banks have to be regulated and need regulatory capital. This is all the more valid with
the huge development of financial innovations, which has profoundly changed the nature of
the banking system and the risk.

1.1.2 The development of financial markets
The development of financial markets has a long history. For instance, the Chicago Board

of Trade (CBOT) listed the first commodity futures contract in 1864 (Carlton, 1984). Some
authors even consider that the first organized futures exchange was the Dojima Rice Market
in Osaka in the 18th century (Schaede, 1989). But the most important breakthrough came
in the seventies with two major financial innovations. In 1972, the Chicago Mercantile
Exchange (CME) launched currency futures contracts after the US had decided to abandon
the fixed exchange rate system of Bretton Woods (1946). The oil crisis of 1973 and the need
to hedge currency risk have considerably helped in the development of this market. After
commodity and currency contracts, interest rate and equity index futures have consistently
grown. For instance, US Treasury bond, S&P 500, German Bund, and Euro Stoxx 50 futures
were first traded in 1977, 1982, 1988 and 1998 respectively. Today, the Bund futures contract
is the most traded product in the world.

The second main innovation in the seventies concerned option contracts. The CBOT
created the Chicago Board of Options (CBOE) in 1973, which was the first exchange spe-
cialized in listed stock call options. The same year, Black and Scholes (1973) published
their famous formula for pricing a European option. It has been the starting point of the
intensive development of academic research concerning the pricing of financial derivatives
and contingent claims. The works of Fisher Black, Myron Scholes and Robert Merton5 are
all the more significant in that they consider the pricing problem in terms of risk hedging.
Many authors had previously found a similar pricing formula, but Black and Scholes in-
troduced the revolutionary concept of the hedging portfolio. In their model, they derived
the corresponding dynamic trading strategy to hedge the option contract, and the option
price is therefore equivalent to the cost of the hedging strategy. Their pricing method had
a great influence on the development of the derivatives market and more exotic options, in
particular path-dependent options6.

Whereas the primary goal of options is to hedge a directional risk, they will be largely
used as underlying assets of investment products. In 1976, Hayne Leland and Mark Rubin-
stein developed the portfolio insurance concept, which allows for investing in risky assets
while protecting the capital of the investment. In 1980, they founded LOR Associates, Inc.
with John O’Brien and proposed structured investment products to institutional investors
(Tufano and Kyrillos, 1995). They achieved very rapid growth until the 1987 stock market

4Under some (unrealistic) assumptions, Modigliani and Miller (1958) showed that the market value of a
firm is not affected by how that firm is financed (by issuing stock or debt). They also established that the
cost of equity is a linear function of the firm’s leverage measured by its debt/equity ratio.

5As shown by Bernstein (1992), the works of Black and Scholes cannot be dissociated from the research
of Merton (1973). This explains why they both received the 1997 Nobel Prize in Economics for their option
pricing model.

6See Box 1 for more information about the rise of exotic options.
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crash7, and were followed by Wells Fargo, J.P. Morgan and Chase Manhattan as well as
other investment banks. This period marks the start of financial engineering applied to
structured products and the development of popular trading strategies, such as constant
proportion portfolio insurance (CPPI) and option based portfolio insurance (OBPI). Later,
they will be extensively used for designing retail investment products, especially capital
guaranteed products.'
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Box 1

Evolution of financial innovations
1864 Commodity futures
1970 Mortgage-backed securities
1971 Equity index funds
1972 Foreign currency futures
1973 Stock options
1977 Put options
1979 Over-the-counter currency options
1980 Currency swaps
1981 Interest rate swaps
1982 Equity index futures
1983 Equity index options

Interest rate caps/floors
Collateralized mortgage obligations

1985 Swaptions
Asset-backed securities

1987 Path-dependent options (Asian, look-back, etc.)
Collateralized debt obligations

1992 Catastrophe insurance futures and options
1993 Captions/floortions

Exchange-traded funds
1994 Credit default swaps
1996 Electricity futures
1997 Weather derivatives
2004 Volatility index futures
2006 Leveraged and inverse ETFs
2008 Green bonds
2009 Crypto currencies

Source: Jorion (2007) and author’s research.

After options, the next great innovation in risk management was the swap. In a swap
contract, two counterparties exchange a series of cash flows of one financial instrument for
those of another financial instrument. For instance, an interest rate swap (IRS) is an ex-
change of interest rate cash flows from a fixed rate to a floating rate or between two floating

7In fact, portfolio insurance was blamed by the Brady Commission report (1988) for the stock market
crash of October 1987. See for instance Leland and Rubinstein (1988), Shiller (1987), Gennotte and Leland
(1990) and Jacklin et al. (1992) for a discussions about the impact of portfolio insurance on the October
1987 crash.
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rates. Swaps have become an important tool for managing balance sheets, in particular
interest rate and currency risks in the banking book. The original mechanism of cash flow
exchanges has been extended to other instruments and underlying assets: inflation-indexed
bonds, stocks, equity indices, commodities, etc. But one of the most significant advances in
financial innovations was the creation of credit default swaps (CDS) in the mid-nineties, and
more generally credit derivatives. In the simplest case, the cash flows depend on the default
of a loan, a bond or a company. We refer then to single-name instruments. Otherwise, they
depend on credit events or credit losses of a portfolio (multi-name instruments). However,
the development of credit derivatives was made possible thanks to securitization. This is
a process through which assets are pooled in a portfolio and securities representing inter-
ests in the portfolio are issued. Securities backed by mortgages are called mortgage-backed
securities (MBS), while those backed by other types of assets are asset-backed securities
(ABS).

Derivatives are traded either in organized markets or in over-the-counter markets (OTC).
In organized exchanges, the contracts are standardized and the transactions are arranged
by the clearing house, which is in charge of clearing and settlement. By contrast, in OTC
markets, the contracts are customized and the trades are done directly by the two counter-
parties. This implies that OTC trades are exposed to the default risk of the participants.
The location of derivatives trades depends on the contract:

Contract Futures Forward Option Swap
On-exchange X X
Off-exchange X X X

For instance, the only difference between futures and forward contracts is that futures are
traded in organized markets whereas forwards are traded over-the-counter. Contrary to
options which are negotiated in both markets, swaps are mainly traded OTC. In Table 1.1,
we report the outstanding amount of exchange-traded derivatives concerning futures and
options published by the Bank for International Settlements (2019). In December 2018,
their notional amount is equal to $94.8 tn, composed of $39.0 tn in futures (41.2%) and
$55.7 tn in options (58.8%). For each instrument, we indicate the split between interest
rates and currencies8. We notice that exchange-traded derivatives on interest rates are the
main contributor. The evolution of the total notional amount is reported in Figure 1.1. The
size of exchange-traded derivative markets has grown rapidly since 2000, peaking in June
2007 with an aggregated amount of $86.6 tn. This trend ended with the financial crisis since
we observe a decrease between 2007 and 2016. This is only recently that the outstanding
amount of exchange-traded derivatives exceeds the 2007 figure.

Statistics9 concerning OTC derivative markets are given in Table 1.2. These markets
are between six and ten times bigger than exchange-traded markets in terms of outstanding
amount (Figure 1.3). In June 2018, the aggregated amount of forwards, swaps and options
is equal to $594.8 tn. Contrary to exchange-traded derivative markets, the notional out-
standing amount of OTC derivative markets continues to increase after the crisis period,
but declines recently since 2014 (Figure 1.2). In terms of instruments, swaps dominate and
represent 65.0% of the total. Like in exchange-traded markets, the main asset class remains
fixed income. We also notice the impact of the 2008 financial crisis on credit default swaps,

8The BIS decided in September 2015 to discontinue the compilation of equity index exchange-traded
derivatives statistics. This is why these statistics do not include the equity index futures and options. In
December 2014, equity index futures and options represented 11.1% of exchange-traded derivatives.

9In order to compute these statistics, we have done some assumptions because we don’t have a perfect
granularity of the data. For equity and commodity buckets, we don’t have the split between forwards
and swaps. We allocate 50% of the amount in each category. We also attribute the full amount of credit
derivatives to the swap bucket.
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TABLE 1.1: Notional outstanding amount of exchange-traded derivatives
2004 2007 2010 2014 2018

Futures 42.6% 37.9% 34.1% 44.4% 41.2%
Interest rate 99.4% 99.3% 99.2% 99.1% 99.3%
Short-term 94.7% 94.0% 94.9% 93.6% 92.6%
Long-term 5.3% 6.0% 5.1% 6.4% 7.4%

Currency 0.6% 0.7% 0.8% 0.9% 0.7%
Options 57.4% 62.1% 65.9% 55.6% 58.8%

Interest rate 99.8% 99.7% 99.6% 99.6% 99.8%
Short-term 98.2% 98.6% 98.9% 97.7% 98.3%
Long-term 1.9% 1.4% 1.1% 2.3% 1.7%

Currency 0.2% 0.3% 0.4% 0.5% 0.3%
Total (in $ tn) 43.0 71.5 62.3 57.6 94.8

Source: Bank for International Settlements (2019) and author’s calculations.

FIGURE 1.1: Notional outstanding amount of exchange-traded derivatives (in $ tn)

Source: Bank for International Settlements (2019) and author’s calculations.
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which represented more than 10% of the OTC derivative markets in December 2007. Ten
years after, they represent less than 2.0% of these markets.

TABLE 1.2: Notional outstanding amount of OTC derivatives
2004 2007 2010 2014 2018

Forwards 12.9% 11.8% 15.4% 20.2% 24.0%
Swaps 71.1% 73.3% 73.2% 69.4% 65.0%
Options 15.9% 14.9% 11.4% 10.3% 10.8%
Unallocated 0.1% 0.0% 0.0% 0.1% 0.1%
Currency 13.4% 11.4% 11.3% 13.1% 16.1%
Interest rate 79.5% 73.8% 81.9% 82.8% 80.9%
Equity 2.0% 1.6% 1.0% 1.1% 1.2%
Commodity 0.6% 1.6% 0.6% 0.3% 0.4%
Credit 4.5% 11.6% 5.2% 2.7% 1.4%
Unallocated 0.1% 0.0% 0.0% 0.0% 0.0%
Total (in $ tn) 258.6 585.9 601.0 627.8 594.8

Source: Bank for International Settlements (2019) and author’s calculations.

Whereas the notional outstanding amount is a statistic to understand the size of the
derivatives markets, the risk and the activity of these markets may be measured by the
gross market value and the turnover:

• The gross market value of outstanding derivatives contracts represents “the cost of
replacing all outstanding contracts at market prices prevailing on the reporting date.
It corresponds to the maximum loss that market participants would incur if all coun-
terparties failed to meet their contractual payments and the contracts were replaced
at current market prices” (Bank for International Settlements, 2014).

• The turnover is defined as “the gross value of all new deals entered into during a given
period, and is measured in terms of the nominal or notional amount of the contracts.
It provides a measure of market activity, and can also be seen as a rough proxy for
market liquidity.” (Bank for International Settlements, 2014).

In June 2018, the gross market value is equal to $10.3 tn for OTC derivatives. It is largely
lower than the figure of $34.9 tn in December 2008. This decrease is explained by less
complexity in derivatives, but also by a lower volatility regime. For OTC derivatives, it is
difficult to measure a turnover, because the contracts are not standardized. This statistic is
more pertinent for exchange-traded markets. In December 2018, the daily average turnover
is equal to $8.1 tn for futures contacts and $1.8 tn for options. This means that each day,
almost $10 tn of new derivative exposures are negotiated in exchange-traded markets. The
consequence of this huge activity is a growing number of financial losses for banks and
financial institutions (Reinhart and Rogoff, 2009).

1.1.3 Financial crises and systemic risk
A financial institution generally faces five main risks: (1) market risk, (2) credit risk, (3)

counterparty credit risk, (4) operational risk and (5) liquidity risk. Market risk is the risk of
losses due to changes in financial market prices. We generally distinguish four major types
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FIGURE 1.2: Notional outstanding amount of OTC derivatives (in $ tn)

Source: Bank for International Settlements (2019).

FIGURE 1.3: Ratio OTC derivatives/exchange-traded derivatives

Source: Bank for International Settlements (2019).
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of market risk: equity risk, interest rate risk, currency risk and commodity risk. These risks
are present in trading activities, but they also affect all activities that use financial assets.
Credit risk is the risk of losses due to the default of a counterparty to fulfill its contractual
obligations, that is to make its required payments. It principally concerns debt transactions
such as loans and bonds. Counterparty credit risk is another form of credit risk, but concerns
the counterparty of OTC transactions. Examples include swaps and options, security lending
or repo transactions. Operational risk is the risk of losses resulting from inadequate or failed
internal processes, people and systems, or from external events. Examples of operational
risk are frauds, natural disasters, business disruption, rogue trading, etc. Finally, liquidity
risk is the risk of losses resulting from the failure of the financial institution to meet its
obligations on time. This definition corresponds more to funding liquidity, but liquidity risk
also concerns market liquidity, which is the cost to buy or sell assets on the market.

'
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Box 2

An history of financial losses
1974 Herstatt Bank: $620 mn (foreign exchange trading)
1994 Metallgesellschaft: $1.3 bn (oil futures)
1994 Orange County: $1.8 bn (reverse repo)
1994 Procter & Gamble: $160 mn (ratchet swap)
1995 Barings Bank: $1.3 bn (stock index futures)
1997 Natwest: $127 mn (swaptions)
1998 LTCM: $4.6 bn (liquidity crisis)
2001 Dexia Bank: $270 mn (corporate bonds)
2006 Amaranth Advisors: $6.5 bn (gaz forward contracts)
2007 Morgan Stanley: $9.0 bn (credit derivatives)
2008 Société Générale: $7.2 bn (rogue trading)
2008 Madoff: $65 bn (fraud)
2011 UBS: $2.0 bn (rogue trading)
2012 JPMorgan Chase: $5.8 bn (credit derivatives)

Source: Jorion (2007) and author’s research.

In Box 2, we have reported some famous financial losses. Most of them are related to the
market risk or the operational risk10. In this case, these losses are said to be idiosyncratic
because they are specific to a financial institution. Idiosyncratic risk is generally opposed to
systemic risk: systemic risk refers to the system whereas idiosyncratic risk refers to an entity
of the system. For instance, the banking system may collapse, because many banks may
be affected by a severe common risk factor and may default at the same time. In financial
theory, we generally make the assumption that idiosyncratic and common risk factors are
independent. However, there exist some situations where idiosyncratic risk may affect the
system itself. It is the case of large financial institutions, for example the default of big
banks. In this situation, systemic risk refers to the propagation of a single bank distressed
risk to the other banks.

10We have excluded the credit risk losses due to the 2008 global financial crisis. Even if the true cost of
this crisis will never be known, it is very high, certainly larger than $10 tn.
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The case of Herstatt Bank is an example of an idiosyncratic risk that could result in a
systemic risk. Herstatt Bank was a privately German bank. On 26 June 1974, the German
Banking Supervisory Office withdrew Herstatt’s banking licence after finding that the bank’s
foreign exchange exposures amounted to three times its capital (BCBS, 2014d). This episode
of settlement risk caused heavy losses to other banks, adding a systemic dimension to the
individual failure of Herstatt Bank. In response to this turmoil, the central bank governors
of the G10 countries established the Basel Committee on Banking Supervision at the end
of 1974 with the aim to enhance the financial stability at the global level.

Even if the default of a non-financial institution is a dramatic event for employees, depos-
itors, creditors and clients, the big issue is its impact on the economy. Generally, the failure
of a company does not induce a macro-economic stress and is well located to a particular
sector or region. For instance, the decade of the 2000s had faced a lot of bankruptcies, e.g.
Pacific Gas and Electric Company (2001), Enron (2001), WorldCom (2002), Arthur Ander-
sen (2002), Parmalat (2003), US Airways (2004), Delta Air Lines (2005), Chrysler (2009),
General Motors (2009) and LyondellBasell (2009). However, the impact of these failures
was contained within the immediate environment of the company and was not spread to
the rest of the economy.

In the financial sector, the issue is different because of the interconnectedness between
the financial institutions and the direct impact on the economy. And the issue is especially
relevant that the list of bankruptcies in finance is long including, for example: Barings
Bank (1995); HIH Insurance (2001); Conseco (2002); Bear Stearns (2008), Lehman Broth-
ers (2008); Washington Mutual (2008); DSB Bank (2008). The number of banking and
insurance distresses is even more impressive, for example: Northern Rock (2007); Coun-
trywide Financial (2008); Indy Mac Bank (2008); Fannie Mae/Freddie Mac (2008); Merrill
Lynch (2008); AIG (2008); Wachovia (2008); Depfa Bank (2008); Fortis (2009); Icelandic
banks (2008-2010); Dexia (2011). In Figure 1.4, we report the number of bank failures com-
puted by the Federal Deposit Insurance Corporation (FDIC), the organization in charge of
insuring depositors in the US. We can clearly identify three periods of massive defaults11:
1935-1942, 1980-1994 and 2008-2014. Each period corresponds to a banking crisis12 and
lasts long because of delayed effects. Whereas the 1995–2007 period is characterized by a
low default rate with no default in 2005–2006, there is a significant number of bank defaults
these last years (517 defaults between 2008 and 2014).

The Lehman Brothers collapse is a case study for understanding the systemic risk.
Lehman Brothers filed for Chapter 11 bankruptcy protection on 15 September 2008 after
incurring heavy credit and market risk losses implied by the US subprime mortgage crisis.
The amount of losses is generally estimated to be about $600 bn, because Lehman Brothers
had at this time $640 bn in assets and $620 bn in debt. However, the cost for the system is far
greater than this figure. On equity markets, about $10 tn went missing in October 2008. The
post-Lehman Brothers default period (from September to December 2008) is certainly one of
the most extreme liquidity crisis experienced since many decades. This forced central banks
to use unconventional monetary policy measures by implementing quantitative easing (QE)
programmes. For instance, the Fed now holds more than five times the amount of securities
it had prior before September 2008. The collapse of Lehman Brothers had a huge impact on
the banking industry, but also on the asset management industry. For instance, four days
after the Lehman Brothers bankruptcy, the US government extended temporary guarantee
on money market funds. At the same time, the hedge fund industry suffered a lot because
of the stress on the financial markets, but also because Lehman Brothers served as prime
broker for many hedge funds.

11We define these periods when the yearly number of defaults is larger than 15.
12They are the Great Depression, the savings and loan crisis of the 1980s and the subprime crisis.
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FIGURE 1.4: Number of bank defaults in the US

Source: Federal Deposit Insurance Corporation, Historical Statistics on Banking – Failures &
Assistance Transactions, www.fdic.gov/bank/individual/failed.

The 2008 Global Financial Crisis also demonstrated that banks are not the only layer
of systemic risk. In fact, a systemic risk implies that the entire financial system is seriously
affected, but also participates to the creation of this risk:

“[...] there are both old and new components in both the origins and the prop-
agation of the subprime shock. Old components include government financial
subsidies for bearing risk, accommodative monetary policy, and adverse selec-
tion facilitated by asymmetric information. New components include the central
role of agency problems in asset management, the ability of financial institutions
to raise new capital from external sources, the activist role of the United States
Treasury Department and Federal Reserve, and improvements in U.S. financial
system diversification resulting from deregulation, consolidation, and globaliza-
tion” (Calomiris, 2009, page 6).

This implies that all financial components, and not only the banking system, can potentially
be a source of systemic risk. This is why the bankruptcy of a financial institution cannot be
compared to the bankruptcy of a corporate company. Nevertheless, because of the nature
of the systemic risk, it is extremely difficult to manage it directly. This explains that the
financial supervision is principally a micro-prudential regulation at the firm level. This is
only recently that it has been completed by macro-prudential policies in order to mitigate
the risk of the financial system as a whole. While the development of risk management was
principally due to the advancement of internal models before the 2008 financial crisis, it is
now driven by the financial regulation, which completely reshapes the finance industry.

http://www.fdic.gov/
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1.2 Financial regulation
The purpose of supervision and regulatory capital has been to control the riskiness

of individual banks and to increase the stability of the financial system. As explained in
the previous section, it is a hard task whose bounds are not well defined. Among all the
institutions that are participating to this work (see Table 1.3), four international authorities
have primary responsibility of the financial regulation:

1. The Basel Committee on Banking Supervision (BCBS)

2. The International Association of Insurance Supervisors (IAIS)

3. The International Organization of Securities Commissions (IOSCO)

4. The Financial Stability Board (FSB)

The Basel Committee on Banking Supervision provides a forum for regular cooperation on
banking supervisory matters. Its main objective is to improve the quality of banking super-
vision worldwide. The International Association of Insurance Supervisors is the equivalent
of the Basel Committee for the insurance industry. Its goal is to coordinate local regulations
and to promote a consistent and global supervision for insurance companies. The Interna-
tional Organization of Securities Commissions is the international body that develops and
implements standards and rules for securities and market regulation. While these three au-
thorities are dedicated to a specific financial industry (banks, insurers and markets), the
FSB is an international body that makes recommendations about the systemic risk of the
global financial system. In particular, it is in charge of defining systemically important fi-
nancial institutions or SIFIs. Among those different regulators, the BCBS is by far the most
active and the banking regulation is certainly the most homogeneous between countries.

These four international bodies define standards at the global level and promote con-
vergence between local supervision. The implementation of the rules is the responsibility
of national supervisors or regulators13. In the case of the European Union, they are the
European Banking Authority (EBA), the European Insurance and Occupational Pensions
Authority (EIOPA), the European Securities and Markets Authority (ESMA) and the Eu-
ropean System of Financial Supervision (ESFS). A fifth authority, the European Systemic
Risk Board (ESRB), completes the European supervision system.

The equivalent authorities in the US are the Board of Governors of the Federal Reserve
System, also known as the Federal Reserve Board (FRB), the Federal Insurance Office (FIO)
and the Securities and Exchange Commission (SEC). In fact, the financial supervision is
more complicated in the US as shown by Jickling and Murphy (2010). The supervisor of
banks is traditionally the Federal Deposit Insurance Corporation (FDIC) for federal banks
and the Office of the Comptroller of the Currency (OCC) for national banks. However, the
Dodd-Frank Act created the Financial Stability Oversight Council (FSOC) to monitor sys-
temic risk. For banks and other financial institutions designated by the FSOC as SIFIs, the
supervision is directly done by the FRB. The supervision of markets is shared between the
SEC and the Commodity Futures Trading Commission (CFTC), which supervises deriva-
tives trading including futures contracts and options14.

13The regulator is responsible of setting rules and policy guidelines. The supervisor evaluates the safety
and soundness of individual banks and verifies that the regulation rules are applied. In Europe, the regulator
is EBA while the supervisor is ECB.

14A complete list of supervisory authorities by countries are provided on page 28.
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TABLE 1.3: The supervision institutions in finance
Banks Insurers Markets All sectors

Global BCBS IAIS IOSCO FSB
EU EBA/ECB EIOPA ESMA ESFS
US FDIC/FRB FIO SEC FSOC

1.2.1 Banking regulation
The evolution of the banking supervision has highly evolved since the end of the eighties.

Here are the principal dates:
1988 Publication of “International Convergence of Capital Measurement and Capital Stan-

dards”, which is better known as “The Basel Capital Accord”. This text sets the rules
of the Cooke ratio.

1993 Development of the Capital Adequacy Directive (CAD) by the European Commission.

1996 Publication of “Amendment to the Capital Accord to incorporate Market Risks”.
This text includes the market risk to compute the Cooke ratio.

2001 Publication of the second consultative document “The New Basel Capital Accord”
of the Basel II framework.

2004 Publication of “International Convergence of Capital Measurement and Capital Stan-
dards – A Revisited Framework”. This text establishes the Basel II framework.

2006 Implementation of the Basel II framework.

2010 Publication of the Basel III framework.

2013 Beginning of the implementation of the Basel III framework. Its finalization is ex-
pected for January 2027.

2017 Finalization of Basel III reforms.

2019 Publication of “Minimum Capital Requirements for Market Risk”. This is the final
version of the Basel III framework for computing the market risk.

This list places the three Basel Accords within a timeframe. However, it gives a misleading
image of the banking supervision dynamics. In order to have a better view, we have reported
the cumulative number of standards15 that have been published by the Basel Committee
on Banking Supervision in Figure 1.5.

In 1988, the Basel Committee introduced the Cooke ratio16, which is the minimum
amount of capital a bank should maintain in case of unexpected losses. Its goal is to:
• provide an adequation between the capital held by the bank and the risk taken by the
bank;

• enhance the soundness and stability of the banking system;

• and reduce the competitive inequalities between banks17.
15They can be found by using the website of the BCBS: https://www.bis.org/bcbs/publications.htm

and selecting the publication type ‘Standards’.
16This ratio took the name of Peter Cooke, who was the Chairman of the BCBS between 1977 and 1988.
17This was particularly true between Japanese banks, which were weakly capitalized, and banks in the

US and Europe.

https://www.bis.org/
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FIGURE 1.5: The huge increase of the number of banking supervision standards

Source: Basel Committee on Banking Supervision and author’s calculations.

It is measured as follows:
Cooke Ratio = C

RWA
where C and RWA are the capital and the risk-weighted assets of the bank. A risk-weighted
asset is simply defined as a bank’s asset weighted by its risk score or risk weight (RW).
Because bank’s assets are mainly credits, the notional is generally measure by the exposure
at default (EAD). To compute risk-weighted assets, we then use the following formula:

RWA = EAD ·RW

The original Basel Accord only considers credit risk and classifies bank’s exposures into four
categories depending on the value of the risk weights18 (0%, 20%, 50% and 100%). Con-
cerning off-balance sheet exposures, engagements are converted to credit risk equivalents
by multiplying the nominal amount by a credit conversion factor (CCF) and the result-
ing amounts are risk-weighted according to the nature of the counterparty. Concerning the
numerator of the ratio, the Basel Committee distinguishes tier 1 capital and tier 2 capi-
tal. Tier 1 capital19 (or core capital) is composed of (1) common stock (or paid-up share

18These categories are defined as follows: (1) cash, gold, claims on OECD governments and central banks,
claims on governments and central banks outside OECD and denominated in the national currency are
risk-weighted at 0%; (2) claims on all banks with a residual maturity lower than one year, longer-term
claims on OECD incorporated banks, claims on public-sector entities within the OECD are weighted at
20%; (3) loans secured on residential property are risk-weighted at 50%; (4) longer-term claims on banks
incorporated outside the OECD, claims on commercial companies owned by the public sector, claims on
private-sector commercial enterprises are weighted at 100%.

19At least 50% of the tier 1 capital should come from the common equity.
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capital) and (2) disclosed reserves (or retained earnings), whereas tier 2 capital represents
supplementary capital such as20 (1) undisclosed reserves, (2) asset revaluation reserves, (3)
general loan-loss reserves (or general provisions), (4) hybrid debt capital instruments and
(5) subordinated debt. The Cooke ratio required a minimum capital ratio of 8% when con-
sidering both tier 1 and tier 2 capital, whereas tier 1 capital ratio should be at least half of
the total capital or 4%.

Example 1 The assets of a bank are composed of $100 mn of US treasury bonds, $100
mn of Brazilian government bonds, $50 mn of residential mortgage, $300 mn of corporate
loans and $20 mn of revolving credit loans. The bank liability structure includes $25 mn of
common stock and $13 mn of subordinated debt.

For each asset, we compute the RWA by choosing the right risk weight factor. We obtain
the following results:

Asset EAD RW RWA
US treasury bonds 100 0% 0

Brazilian Gov. bonds 100 100% 100
Residential mortgage 50 50% 25

Corporate loans 300 100% 300
Revolving credit 20 100% 20

Total 445

The risk-weighted assets of the bank are then equal to $445 mn. We deduce that the capital
adequacy ratio is:

Cooke Ratio = 38
445 = 8.54%

This bank meets the regulatory requirements, because the Cooke ratio is higher than 8%
and the tier 1 capital ratio21 is also higher than 4%. Suppose now that the capital of the
bank consists of $13 mn of common stock and $25 mn of subordinated debt. In this case,
the bank does not satisfy the regulatory requirements, because the tier 2 capital cannot
exceed the tier 1 capital, meaning that the Cooke ratio is equal to 8.54% and the capital
tier 1 ratio is equal to 2.92%.

The Basel Accord, which has been adopted by more than 100 countries, has been imple-
mented in the US by the end of 1992 and in Europe in 1993. In 1996, the Basel Committee
published a revision of the original Accord by incorporating market risk. This means that
banks have to calculate capital charges for market risk in addition to the credit risk. The
major difference with the previous approach to measure credit risk is that banks have the
choice between two methods for applying capital charges for the market risk:

• the standardized measurement method (SMM);

• the internal model-based approach22 (IMA).

Within the SMM, the bank apply a fixed capital charge for each asset. The market risk
requirement is therefore the sum of the capital charges for all the assets that compose the
bank’s portfolio. With IMA, the bank estimates the market risk capital charge by computing
the 99% value-at-risk of the portfolio loss for a holding period of 10 trading days. From a

20The comprehensive definitions and restrictions to define all the elements of capital are defined in Ap-
pendix 1 in BCBS (1988).

21The tier 1 capital ratio is equal to 25/445 = 5.26%.
22The use of the internal model-based approach is subject to the approval of the national supervisor.
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statistical point of view, the value-at-risk23 with a confidence level α is defined as the
quantile α associated to the probability distribution of the portfolio loss (see Figure 1.6).

FIGURE 1.6: Probability distribution of the portfolio loss

Another difference with credit risk is that the bank directly computes the market risk
capital requirement KMR with these two approaches24. Therefore, the Cooke ratio be-
comes25:

CBank

RWA +12.5×KMR
≥ 8%

We deduce that:
CBank ≥ 8%× RWA︸ ︷︷ ︸

KCR

+ KMR

meaning that 8% × RWA can be interpreted as the credit risk capital requirement KCR,
which can be compared to the market risk capital charge KMR.

Example 2 We consider Example 1 and assume that the bank has a market risk on an
equity portfolio of $25 mn. The corresponding risk capital charge for a long exposure on a
diversified portfolio of stocks is equal to 12%. Using its internal model, the bank estimates
that the 99% quantile of the portfolio loss is equal to $1.71 mn for a holding period of 10
days.

23In the Basel III framework, the expected shortfall, which is defined as the average loss beyond the
value-at-risk, replaces the value-at-risk for computing the market risk.

24We use the symbols C and K in order to make the distinction between the capital of the bank and the
regulatory capital requirement.

25When considering market risk, the total capital may include tier 3 capital, consisting of short-term
subordinated debt with an original maturity of at least 2 years.
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In the case of the standardized measurement method, the market risk capital requirement
is equal to $3 mn26. The capital ratio becomes:

Cooke Ratio = 25
445 + 12.5× 3 = 7.88%

In this case, the bank does not meet the minimum capital requirement of 8%. If the bank
uses its internal model, the Cooke ratio is satisfied:

Cooke Ratio = 25
445 + 12.5× 1.71 = 8.15%

The Basel Accord has been highly criticized, because the capital charge for credit risk is
too simplistic and too little risk sensitive: limited differentiation of credit risk, no maturity,
granularity of risk weights, etc. These resulted in regulatory arbitrage through the use of
securitization between assets with same regulatory risk but different economic risk. In June
1999, the Basel Committee produced an initial consultative document with the objective
to replace the 1988 Accord by a new capital adequacy framework. This paper introduces
some features about Basel II, but this is really the publication of the second consultative
paper in January 2001 that marks a milestone for the banking regulation. Indeed, the
2001 publication is highly detailed and comprehensive, and the implementation of this new
framework seemed very complex at that time. The reaction of the banking industry was
negative and somehow hostile at the beginning, in particular because the Basel Committee
introduced a third capital charge for operational risk besides credit and market risks and
the implementation costs were very high. It has taken a long time until the Basel Committee
and the banking industry converge to an accord. Lastly, the finalized Basel II framework is
published in June 2004.

TABLE 1.4: The three pillars of the Basel II framework

Pillar 1 Pillar 2 Pillar 3

Minimum Capital Supervisory Review Market Discipline
Requirements Process

Credit risk Review & reporting Capital structure
Market risk Capital above Pillar 1 Capital adequacy
Operational risk Supervisory monitor- Models & parameters

ing Risk management

As illustrated in Table 1.4, the new Accord consists of three pillars:

1. the first pillar corresponds to minimum capital requirements, that is, how to compute
the capital charge for credit risk, market risk and operational risk;

2. the second pillar describes the supervisory review process; it explains the role of the
supervisor and gives the guidelines to compute additional capital charges for specific
risks, which are not covered by the first pillar;

26We have:
KMR = 12%× 25 = 3
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3. the market discipline establishes the third pillar and details the disclosure of required
information regarding the capital structure and the risk exposures of the bank.

Regarding the first pillar, the Cooke ratio becomes:
CBank

RWA +12.5×KMR + 12.5×KOR
≥ 8%

where KOR is the capital charge for operational risk. This implies that the required capital
is directly computed for market risk and operational risk whereas credit risk is indirectly
measured by risk-weighted assets27.

Example 3 We assume that the risk-weighted assets for the credit risk are equal to $500
mn, the capital charge for the market risk is equal to $10 mn and the capital charge for the
operational risk is equal to $3 mn.

We deduce that the required capital for the bank is:

K = 8%× (RWA +12.5×KMR + 12.5×KOR)
= 8%× RWA +KMR + KOR

= 8%× 500 + 10 + 3
= $53 mn

This implies that credit risk represents 75.5% of the total risk.
With respect to the original Accord, the Basel Committee did not change the market

risk approach whereas it profoundly changed the methods to compute the capital charge
for the credit risk. Two approaches are proposed:

• The standardized approach (SA)
This approach, which is more sensitive than Basel I, is based on external ratings
provided by credit rating agencies. The capital charge is computed by considering a
mapping function between risk weights and credit ratings.

• The internal ratings-based approach (IRB)
This approach can be viewed as an external risk model with internal and external
risk parameters. The key parameter is the default probability of the asset, which is
deduced from the internal credit rating model of the bank. The Basel Committee
makes the distinction between two methods. In the foundation IRB (FIRB), the bank
only estimates the probability of default and uses standard values for the other risk
parameters of the model. In the advanced IRB (AIRB), the bank may estimate all
the risk parameters.

Regarding operational risk, the Basel Committee propose three approaches to compute the
required capital:

• The Basic Indicator Approach (BIA)
In this case, the capital charge is a fixed percentage of the gross income.

• The Standardized Approach (TSA)
This method consists of dividing bank’s activities into eight business lines. For each
business line, the capital charge is a fixed percentage β of its gross income. The
parameter β depends on the riskiness of the business line. The total capital is the sum
of the eight regulatory capital charges.

27In fact, we can define risk-weighted assets for each category of risk. We have the following relationships
RWAR = 12.5×KR and KR = 8%× RWAR where KR is the required capital for the risk R. The choice
of defining either RWAR or KR is a mere convention.
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• Advanced Measurement Approaches (AMA)
In this approach, the bank uses a statistical model with internal data for estimating
the total capital.

A summary of the different options is reported in Figure 1.7.

SA

FIRB

Credit
Risk IRB AIRB

SMM

Basel II
Market
Risk IMA

BIA

Operational
Risk TSA

AMA

FIGURE 1.7: Minimum capital requirements in the Basel II framework

The European Union has adopted the Basel II framework in June 2006 with the capital
requirements directive28 (CRD). In the United States, Basel II is partially applied since 2006
and only concerns the largest banking institutions (Getter, 2014). Since the 2004 publication,
more than 40 countries have fully implemented Basel II (Hong Kong in January 2007, Japan
in March 2007, Canada in November 2007, South Korea in December 2007, Australia in
January 2008, South Africa in January 2008, etc.). However, the subprime crisis in 2007 and
the collapse of Lehman Brothers in September 2008 illustrated the limits of the New Accord
concerning the issues of leverage and liquidity. In response to the financial market crisis,
the Basel Committee enhances then the New Accord by issuing a set of documents between
2009 and 2010. In July 2009, the Basel Committee approved a package of measures to
strengthen the rules governing trading book capital, particularly the market risk associated

28It replaces CAD II (or the 98/31/EEC directive), which is the revision of the original CAD and incor-
porates market risk.
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to securitization and credit-related products. Known as the Basel 2.5 framework, these new
rules can be summarized into four main elements, which are:

1. the incremental risk charge (IRC), which is an additional capital charge to capture
default risk and migration risk for unsecuritized credit products;

2. the stressed value-at-risk requirement (SVaR), which is intended to capture stressed
market conditions;

3. the comprehensive risk measure (CRM), which is an estimate of risk in the credit
correlation trading portfolio (CDS baskets, CDO products, etc.);

4. new standardized charges on securitization exposures, which are not covered by CRM.

In addition to these elements affecting the first pillar, the Basel Committee also expands the
second pillar (largest exposures and risk concentrations, remuneration policies, governance
and risk management) and enhances the third pillar (securitization and re-securitization
exposures). The coming into force of Basel 2.5 was December 2011 in the European Union29
and January 2013 in the United States (BCBS, 2015b).

In December 2010, the Basel Committee published a new regulatory framework in order
to enhance risk management, increase the stability of the financial markets and improve
the banking industry’s ability to absorb macro-economic shocks. The Basel III framework
consists of micro-prudential and macro-prudential regulation measures concerning;

• a new definition of the risk-based capital;

• the introduction of a leverage ratio;

• the management of the liquidity risk.

The capital is redefined as follows. Tier 1 capital is composed of common equity tier 1
capital (common equity and retained earnings or CET1) and additional tier 1 capital (AT1).
The new capital ratios are 4.5% for CET1, 6% for tier 1 and 8% for total capital (T1 +
T2). Therefore, Basel III gives preference to tier 1 capital rather than tier 2 capital whereas
the tier 3 risk capital is eliminated. BCBS (2010) introduced also a surplus of CET1, which
is “designed to ensure that banks build up capital buffers outside periods of stress which
can be drawn down as losses are incurred”. This capital conservation buffer (CB), which
is equal to 2.5% of RWA, applies at all the times outside periods of stress. The aim is to
reduce the distribution of earnings and to support the business of bank through periods
of stress. A macro-prudential approach completes capital requirements by adding a second
capital buffer called the countercyclical capital buffer (CCB). During periods of excessive
credit growth, national authorities may require an additional capital charge between 0%
and 2.5%, which increases the CET1 ratio until 9.5% (including the conservation buffer).
The underlying idea is to smooth the credit cycle, to reduce the procyclicality and to help
banks to provide credit during bad periods of economic growth. The implementation of
this new framework is progressive from April 2013 until March 2019. A summary of capital
requirements30 and transitional periods is given in Table 1.5.

This new definition of the capital is accompanied by a change of the required capital
for counterparty credit risk (CCR). In particular, BCBS (2010) adds a credit valuation

29The Basel 2.5 framework was adopted in two stages: CRD II (or the 2009/111/EC directive) in November
2009 and CRD III (or the 2010/76/EU directive) in December 2010.

30Basel III defines a third capital buffer for systemic banks, which can vary between 1% and 3.5%. This
topic will be presented later on the paragraph dedicated to systemically important financial institutions on
page 26.
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TABLE 1.5: Basel III capital requirements
Capital ratio 2013 2014 2015 2016 2017 2018 2019

CET1 3.5% 4.0% 4.5% 4.5%
CB 0.625% 1.25% 1.875% 2.5%

CET1 + CB 3.5% 4.0% 4.5% 5.125% 5.75% 6.375% 7.0%
Tier 1 4.5% 5.5% 6.0% 6.0%
Total 8.0% 8.0%

Total + CB 8.0% 8.625% 9.25% 9.875% 10.5%
CCB 0%− 2.5%

Source: Basel Committee on Banking Supervision, www.bis.org/bcbs/basel3.htm.

adjustment charge (CVA) for OTC derivative trades. CVA is defined as the market risk of
losses caused by changes in the credit spread of a counterparty due to changes in its credit
quality. It also corresponds to the market value of counterparty credit risk.

Basel III also includes a leverage ratio to prevent the build-up of excessive on- and
off-balance sheet leverage in the banking sector. BCBS (2014a) defines this ratio as follows:

Leverage ratio = Tier 1 capital
Total exposures ≥ 3%

where the total exposures is the sum of on-balance sheet exposures, derivative exposures and
some adjustments concerning off-balance sheet items. The leverage ratio can be viewed as
the second macro-prudential measure of Basel III. Indeed, during credit boom, we generally
observe compression of risk weight assets and a growth of the leverage, because the number of
profitable projects increases during economic good times. For instance, Brei and Gambacorta
(2014) show that the Basel III leverage ratio is negatively correlated with GDP or credit
growth. By introducing a floor value, the Basel Committee expects that the leverage ratio
will help to reduce the procyclicality like the countercyclical capital buffer.

The management of the liquidity is another important issue of Basel III. The bankruptcy
of Lehman Brothers was followed by a lack of liquidity, which is one of the main sources
of systemic risk. For instance, Brunnermeier and Pedersen (2009) demonstrated that a
liquidity dry-up event arising from a fight-to-quality environment can result in runs, fire
sales, and asset liquidations in general transforming the market into a contagion mechanism.
In order to prevent such events, the Basel Committee proposed several liquidity rules and
introduced in particular two liquidity ratios: the liquidity coverage ratio (LCR) and the net
stable funding ratio (NSFR). The objective of the LCR is to promote short-term resilience
of the bank’s liquidity risk profile. It is expressed as:

LCR = HQLA
Total net cash outflows ≥ 100%

where HQLA is the stock of high quality liquid assets and the denominator is the total net
cash outflows over the next 30 calendar days. Therefore, the LCR is designed to ensure that
the bank has the necessary assets to face a one-month stressed period of outflows. On the
contrary, NSFR is designed in order to promote long-term resilience of the bank’s liquidity
profile. It is defined as the amount of available stable funding (ASF) relative to the amount
of required stable funding (RSF):

NSFR = Available amount of stable funding
Required amount of stable funding ≥ 100%

http://www.bis.org/
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The amount of available stable funding is equal to the regulatory capital31 plus the other
liabilities to which we apply a scaling factor between 0% and 100%. The amount of required
stable funding is the sum of two components: risk-weighted assets and off-balance sheet
exposures.

The implementation of Basel III was due to January 2013, but some countries have
delayed the adoption of the full package. According to BCBS (2015b), the rules for risk-based
capital are more adopted than those concerning the liquidity ratio or the leverage ratio. In
the US, the rules for risk-based capital and the leverage ratio are effective since January
2014, while the LCR rule came into effect in January 2015. In the European Union, the Basel
III agreement is transposed on July 2013 into two texts: the CRD IV (or the 2013/36/EU
directive) and the capital requirements regulation (CRR) (or the 575/2013 EU regulation).
Therefore, Basel III is effective since January 2014 for the rules of risk-based capital and
leverage ratio and October 2015 for the LCR rule.

Even before Basel III is fully implemented, the Basel Committee has published a set of
consultative documents, which has been viewed as the basis of a future Basel IV Accord.
The guiding principle of these works is to simplify the different approaches to compute the
regulatory capital and to reduce the risk of arbitrage between standardized and advanced
methods. These new proposals concern review of the market risk measurement (BCBS,
2013b, 2014h, 2016a), revision to the standardized approach for credit (BCBS, 2015d) and
operational risks (BCBS, 2014f, 2016b), minimum capital requirements for interest rate risk
in the banking book (BCBS, 2016d) and a modified framework for the CVA risk (BCBS,
2015c). Finally, the Basel Committee created in 2017 a surprise by announcing that all
these reforms correspond to the finalization of the Basel III Accord. The changes are very
significant. For instance, it replaces the VaR measure by the expected shortfall measure.
The risk weight of residential real estate exposures will depend on the loan-to-value (LTV)
ratio. It also imposes some constraints on the use of internal credit risk models, in particular
the remove of the IRB approach for bank, large corporate and equity exposures. CVA
requirements will be based on two approaches: SA-CVA and BA-CVA. For counterparty
credit risk, the IMM-CCR method will be constrained by a floor with respect to the SA-
CCR method. In the case of operational risk, the three approaches (BIA, TSA and AMA)
are replaced by a unique approach called the Standardized Measurement Approach (SMA).
For market risk, the boundary between trading book and banking book is changed, and the
standard approach is fully revisited and is based on risk sensitivities. Finally, the interest
rate risk of the banking book continues to be monitored in Pillar 2, but its measure is highly
reinforced.

1.2.2 Insurance regulation
Contrary to the banking industry, the regulation in insurance is national. The Inter-

national Association of Insurance Supervisors (IAIS) is an association to promote globally
consistent supervision. For that, the IAIS is responsible for developing principles and stan-
dards, which form the Insurance Core Principles (ICP). For instance, the last release of ICP
was in November 2018 and contained 26 ICPs32. However, its scope of intervention is more
limited than this of the BCBS. In particular, the IAIS does not produce any methodologies
of risk management or formula to compute risk-based capital. In Europe, the regulatory
framework is the Solvency II directive (or the 2009/138/EC directive), which harmonizes
the insurance regulation and capital requirements in the European Union. In the US, the

31Excluding tier 2 instruments with residual maturity of less than one year.
32ICP 1 concerns the objectives, powers and responsibilities of the supervisor, ICP 17 is dedicated to

capital adequacy, ICP 24 presents the macro-prudential surveillance and insurance supervision, etc.
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supervisor is the National Association of Insurance Commissioners (NAIC). In 2008, it has
created a Solvency Modernization Initiative (SMI) in order to reform the current framework
in the spirit of Solvency II. However, the convergence across the different jurisdictions is far
to being reached.

Solvency I (or the 2002/13/EC directive) is a set of rules to define the insurance solvency
regime and was put in place on January 2004 in the European Union. It defined how an
insurance company should calculate its liabilities and the required capital. In this framework,
the capital is the difference between the book value of assets and the technical provisions
(or insurance liabilities). This capital is decomposed in the solvency capital requirement (or
SCR) and the surplus (see Figure 1.8). One of the main drawbacks of Solvency I is that
assets and liabilities are evaluated using an accounting approach (historical or amortized
cost).

Book Value
of Assets

Technical
Provisions

Solvency
Capital

Requirement

Surplus

FIGURE 1.8: Solvency I capital requirement

In an address to the European Insurance Forum 2013, Matthew Elderfield, Deputy
Governor of the Central Bank of Ireland, justifies the reform of the insurance regulation in
Europe as follows:

“[...] it is unacceptable that the common regulatory framework for insurance in
Europe in the 21st-century is not risk-based and only takes account, very crudely,
of one side of the balance sheet. The European Union urgently needs a new
regulatory standard which differentiates solvency charges based on the inherent
risk of different lines of business and which provides incentives for enhanced risk
management. It urgently needs a framework that takes account of asset risks
in an insurance company. It urgently needs a framework that encourages better
governance and management of risk. And it urgently needs a framework that
provides better disclosure to market participants” (Elderfield, 2013, page 1).

With Solvency II, capital requirements are then based on an economic valuation of the
insurer balance sheet, meaning that:
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• assets are valued at their market value;

• liabilities are valued on a best estimate basis.

Market Value
of Assets

Technical
Provisions

SCR

(MCR)

Surplus

Best Estimate

Risk Margin

FIGURE 1.9: Solvency II capital requirement

In this framework, the economic value of liabilities corresponds to the expected present
value of the future cash flows. Technical provisions are then the sum of the liabilities best
estimate and a risk margin (or prudence margin) in order to take into account non-hedgeable
risk components. Solvency II defines two levels of capital requirements. The minimum cap-
ital requirement (MCR) is the required capital under which risks are considered as be-
ing unacceptable. The solvency capital requirement (SCR) is the targeted required capital
(SCR ≥ MCR). The underlying idea is to cover the different source of risk at a 99.5%
confidence level33 for a holding period of one year. The insurance company may opt for the
standard formula or its own internal model for computing the required capital. In the case
of the standard formula method, the SCR of the insurer is equal to:

SCR =

√√√√ m∑
i,j

ρi,j · SCRi ·SCRj + SCROR

where SCRi is the SCR of the risk module i, SCROR is the SCR associated to the operational
risk and ρi,j is the correlation factor between risk modules i and j. Solvency II considers
several risk components: underwriting risk (non-life, life, health, etc.), market risk, default
and counterpart credit risk34. For each risk component, a formula is provided to compute
the SCR of the risk factors. Regarding the capital C, own funds are classified into basic
own funds and ancillary own funds. The basic own funds consist of the excess of assets over

33It is set to 85% for the MCR.
34Solvency II is an ambitious and complex framework because it mixes both assets and liabilities, risk

management and ALM.
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liabilities, and subordinated liabilities. The ancillary own funds correspond to other items
which can be called up to absorb losses. Examples of ancillary own funds are unpaid share
capital or letters of credit and guarantees. Own funds are then divided into tiers depending
on their permanent availability and subordination. For instance, tier 1 corresponds to basic
own funds which are immediately available and fully subordinated. The solvency ratio is
then defined as:

Solvency Ratio = C

SCR
This solvency ratio must be larger than 33% for tier 1 and 100% for the total own funds.

The quantitative approach to compute MCR, SCR and the technical provisions define
Pillar 1 (Figure 1.9). As in Basel II framework, it is completed by two other pillars. Pillar 2
corresponds to the governance of the solvency system and concerns qualitative requirements,
rules for supervisors and own risk and solvency assessment (ORSA). Pillar 3 includes market
disclosures and also supervisory reporting.

1.2.3 Market regulation
Banks and insurers are not the only financial institutions that are regulated and the

financial regulatory framework does not reduce to Basel III and Solvency II. In fact, a whole
variety of legislation measures helps to regulate the financial market and the participants.

In Europe, the markets in financial instruments directive or MiFID35 came in force
since November 2007. Its goal was to establish a regulatory framework for the provision
of investment services in financial instruments (such as brokerage, advice, dealing, portfo-
lio management, underwriting, etc.) and for the operation of regulated markets by market
operators. The scope of application concerns various aspects such as passporting, client
categorization (retail/professional investor), pre-trade and post-trade transparency or best
execution procedures. In August 2012, MiFID is completed by the European market in-
frastructure regulation (EMIR), which is specifically designed to increase the stability of
OTC derivative markets by promoting central counterparty clearing and trade reposito-
ries. In June 2014, MiFID is revised (MiFID 2) and the regulation on markets in financial
instruments (MiFIR) replaces EMIR. According to ESMA36, this supervisory framework
concerns 104 European regulated markets at the date of May 2015. On April 2014, the
European parliament completes the framework by publishing new rules to protect retail in-
vestors (packaged retail and insurance-based investment products or PRIIPS). These rules
complete the various UCITS directives, which organize the distribution of mutual funds in
Europe.

In the US, the regulation of the market dates back to the 1930s:

• The Securities Act of 1933 concerns the distribution of new securities.

• The Securities Exchange Act of 1934 regulates trading securities, brokers, and ex-
changes, whereas the Commodity Exchange Act regulates the trading of commodity
futures.

• The Trust Indenture Act of 1939 defines the regulating rules for debt securities.

• The Investment Company Act of 1940 is the initial regulation framework of mutual
funds.

• The Investment Advisers Act of 1940 is dedicated to investment advisers.
35It corresponds to the 2004/39/EC directive.
36See the website www.esma.europa.eu/databases-library/registers-and-data.

http://www.esma.europa.eu/
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At the same time, the Securities and Exchange Commission (SEC) was created to monitor
financial markets (stocks and bonds). Now, the area of SEC supervision is enlarged and con-
cerns stock exchanges, brokers, mutual funds, investment advisors, some hedge funds, etc.
In 1974, the Commodities Futures Trading Commission Act established the Commodity Fu-
tures Trading Commission (CFTC) as the supervisory agency responsible for regulating the
trading of futures contracts. The market regulation in the US has not changed significantly
until the 2008 Global Financial Crisis (GFC). In 2010, President Barack Obama signed
an ambitious federal law, the Dodd-Frank Wall Street Reform and Consumer Protection
Act also named more simply Dodd-Frank, which is viewed as a response to the crisis. This
text has an important impact on various areas of regulation (banking, market, investors,
asset managers, etc.). It also introduces a new dimension in regulation. It concerns the co-
ordination among regulators with the creation of the Financial Stability Oversight Council
(FSOC), whose goal is to monitor the systemic risk.

1.2.4 Systemic risk
The 2008 financial crisis has an unprecedent impact on the financial regulation. It was

responsible for Basel III, Dodd-Frank, Volcker rule, etc., but it has also inspired new consid-
erations on the systemic risk. Indeed, the creation of the Financial Stability Board (FSB)
in April 2009 was motivated to establish an international body that monitors and makes
recommendations about the global financial system, and especially the associated systemic
risk. Its area of intervention covers not only banking and insurance, but also all the other
financial institutions including asset managers, finance companies, market intermediaries,
investors, etc.

The main task of the FSB is to develop assessment methodologies for defining sys-
temically important financial institutions (SIFIs) and to make policy recommendations for
mitigating the systemic risk of the financial system. According to FSB (2010), SIFIs are
institutions whose “distress or disorderly failure, because of their size, complexity and sys-
temic interconnectedness, would cause significant disruption to the wider financial system
and economic activity”. By monitoring SIFIs in a different way than other financial institu-
tions, the objective of the supervisory authorities is obviously to address the ‘too big too fail’
problem. A SIFI can be global (G-SIFI) or domestic (D-SIFI). The FSB also distinguishes
between three types of G-SIFIs:

1. G-SIBs correspond to global systemically important banks.

2. G-SIIs designate global systemically important insurers.

3. The third category is defined with respect to the two previous ones. It incorporates
other SIFIs than banks and insurers (non-bank non-insurer global systemically im-
portant financial institutions or NBNI G-SIFIs).

The FSB/BCBS framework for identifying G-SIBs is a scoring system based on five cat-
egories: size, interconnectedness, substitutability/financial institution infrastructure, com-
plexity and cross-jurisdictional activity (BCBS, 2014g). In November 2018, there were 29
G-SIBs (FSB, 2015b). Depending on the score value, the bank is then assigned to a spe-
cific bucket, which is used to calculate the higher loss absorbency (HLA) requirement. This
additional capital requirement is part of the Basel III framework and ranges from 1% to
3.5% common equity tier 1. According to FSB (2018b), the most systemically important
bank is JPMorgan Chase, which is assigned to an additional capital buffer of 2.5% CET1.
This means that the total capital for this banks can go up to 15.5% with the following
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decomposition: tier 1 = 6.0%, tier 2 = 2.0%, conservation buffer = 2.5%, countercyclical
buffer = 2.5% and systemic risk capital = 2.5%.

For insurers, the assessment methodology is close to the methodology for G-SIBs and is
based on five categories: size, global activity, interconnectedness, non-traditional insurance
and non-insurance activities and substitutability (IAIS, 2013a). However, this quantitative
approach is completed by a qualitative analysis and the final list of G-SIIs is the result
of the IAIS supervisory judgment. In November 2015, there were 9 G-SIIs (FSB, 2015c).
The associated policy measures are documented in IAIS (2013b) and consist of three main
axes: recovery and resolution planning requirements, enhanced supervision and higher loss
absorbency requirements.

Concerning NBNI SIFIs, FSB and IOSCO are still in a consultation process in order to
finalize the assessment methodologies (FSB, 2015a). Indeed, the second consultation paper
considers three categories of participants in the financial sectors that it identifies as potential
NBNI SIFIs:

1. finance companies;

2. market intermediaries, especially securities broker-dealers;

3. investment funds, asset managers and hedge funds.

The final assessment methodology was planned for the end of 2015, but it has never been
published until now. However, the fact that the FSB already considers that there are other
SIFIs than banks and insurers suggests that financial regulation will be strengthened for
many financial institutions including the three previous categories but also other financial
institutions such as pension funds, sovereign wealth funds, etc.

The identification of SIFIs is not the only task of the FSB. The other important objective
is to monitor the shadow banking system and to understand how it can pose systemic risk.
The shadow banking system can be described as “credit intermediation involving entities and
activities outside the regular banking system” (FSB, 2011). It is also called non-bank credit
intermediation. The shadow banking system may expose the traditional banking system to
systemic risk, because they may be spill-over effects between the two systems. Moreover,
shadow banking entities (SBEs) are not subject to tight regulation like banks. However, it
runs bank-like activities such as maturity transformation, liquidity transformation, leverage
and credit risk transfer. Examples of shadow banking are for instance money market funds,
securitization, securities lending, repos, etc. The task force formed by the FSB follows a
three-step process:

• the first step is to scan and map the overall shadow banking system and to understand
its risks;

• the second step is to identify the aspects of the shadow banking system posing systemic
risk or regulatory arbitrage concerns;

• the last step is to assess the potential impact of systemic risk induced by the shadow
banking system.

Even if this process is ongoing, shadow banking regulation can be found in Dodd-Frank or
2015 consultation paper of the EBA. However, until now regulation is principally focused
on money market funds.
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1.3 Financial regulation overview
1.3.1 List of supervisory authorities

We use the following correspondence: B for banking supervision, I for insurance super-
vision, M for market supervision and S for systemic risk supervision.

International authorities
BCBS Basel Committee on Banking Supervision; www.bis.org/bcbs; B
FSB Financial Stability Board; www.fsb.org; S
IAIS International Association of Insurance Supervisors; www.iaisweb.org; I
IOSCO International Organization of Securities Commissions; www.iosco.org; M

European authorities
EBA European Banking Authority; eba.europa.eu; B
ECB/SSM European Central Bank/Single Supervisory Mechanism; www.bankingsupervi

sion.europa.eu; B
EIOPA European Insurance and Occupational Pensions Authority; eiopa.europa.eu;

I
ESMA European Securities and Markets Authority; www.esma.europa.eu; M
ESRB European Systemic Risk Board; www.esrb.europa.eu; S

US authorities
CFTC Commodity Futures Trading Commission; www.cftc.gov; M
FRB Federal Reserve Board; www.federalreserve.gov/supervisionreg.htm; B/S
FDIC Federal Deposit Insurance Corporation; www.fdic.gov; B
FIO Federal Insurance Office; home.treasury.gov/policy-issues/financial-ma

rkets-financial-institutions-and-fiscal-service/federal-insuranc
e-office; I

FSOC Financial Stability Oversight Council; home.treasury.gov/policy-issues/
financial-markets-financial-institutions-and-fiscal-service/fsoc;
S

OCC Office of the Comptroller of the Currency; www.occ.gov; B
SEC Securities and Exchange Commission; www.sec.gov; M

Some national authorities

Canada
CSA Canadian Securities Administrators; www.securities-administrators.ca; M
OSFI Office of the Superintendent of Financial Institutions; www.osfi-bsif.gc.ca;

B/I
IIROC Investment Industry Regulatory Organization of Canada; www.iiroc.ca; M

China
CBRC China Banking Regulatory Commission; www.cbrc.gov.cn; B
CIRC China Insurance Regulatory Commission; www.circ.gov.cn; I
CSRC China Securities Regulatory Commission; www.csrc.gov.cn; M

http://www.bis.org/
http://www.fsb.org
http://www.iaisweb.org
http://www.iosco.org
http://eba.europa.eu
http://www.bankingsupervision.europa.eu
http://www.bankingsupervision.europa.eu
http://eiopa.europa.eu
http://www.esma.europa.eu
http://www.esrb.europa.eu
http://www.cftc.gov
http://www.federalreserve.gov/
http://www.fdic.gov
http://home.treasury.gov/
http://home.treasury.gov/
http://home.treasury.gov/
http://home.treasury.gov/
http://home.treasury.gov/
http://www.occ.gov
http://www.sec.gov
http://www.securities-administrators.ca
http://www.osfi-bsif.gc.ca
http://www.iiroc.ca
http://www.cbrc.gov.cn
http://www.circ.gov.cn
http://www.csrc.gov.cn
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France
AMF Autorité des Marchés Financiers; www.amf-france.org; M
ACPR Autorité de Contrôle Prudentiel et de Résolution; acpr.banque-france.fr;

B/I

Germany
BAFIN Bundesanstalt für Finanzdienstleistungsaufsicht; www.bafin.de; B/I/M

Italy
BdI Banca d’Italia; www.bancaditalia.it; B
CONSOB Commissione Nazionale per le Società e la Borsa; www.consob.it; M
IVASS Istituto per la Vigilanza sulle Assicurazioni; www.ivass.it; I

Japan
FSA Financial Services Agency; www.fsa.go.jp; B/I/M

Luxembourg
CAA Commissariat aux Assurances; www.caa.lu; I
CSSF Commission de Surveillance du Secteur Financier; www.cssf.lu; B/M

Spain
BdE Banco de España; www.bde.es; B
CNMV Comisión Nacional del Mercado de Valores; www.cnmv.es; M
DGS Dirección General de Seguros y Pensiones; www.dgsfp.mineco.es; I

Switzerland
FINMA Swiss Financial Market Supervisory Authority; www.finma.ch; B/I/M

United Kingdom
FCA Financial Conduct Authority; www.fca.org.uk; M
PRA Prudential Regulation Authority; www.bankofengland.co.uk/prudential-r

egulation; B/I

1.3.2 Timeline of financial regulation
In this section, we give the major dates which marketed the important stages of the

financial regulation. We can consider four periods: before 1980, the years 1980 – 2000, the
period until the 2008 Global Financial Crisis and the last 10 years.

Before 1980

Before 1980, the financial regulation is mainly developed in the US with several acts,
which are voted in after the Great Depression in the 1930s. These acts concerns a wide
range of financial activities, in particular banking, markets and investment sectors. The
Basel Committee on Banking Supervision was established in 1974. In Europe, two directives
established a regulatory framework for insurance companies.

http://www.amf-france.org
http://acpr.banque-france.fr
http://www.bafin.de
http://www.bancaditalia.it
http://www.consob.it
http://www.ivass.it
http://www.fsa.go.jp
http://www.caa.lu
http://www.cssf.lu
http://www.bde.es
http://www.cnmv.es
http://www.dgsfp.mineco.es
http://www.finma.ch
http://www.fca.org.uk
http://www.bankofengland.co.uk/
http://www.bankofengland.co.uk/prudential-regulation
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Banking
Regulation

1913 Federal Reserve Act (establishment of the Federal Reserve
System as the central banking system of the US)

1933 Glass-Steagall Act (separation of commercial and invest-
ment banking in the US)

1933 US Banking Act (creation of FDIC and insurance deposit)
BCBS 1974 Creation of the Basel Committee on Banking Supervision

Solvency I

1973-07-24 Publication of the non-life insurance directive (73/239/
EEC) dedicated to solvency margin requirements

1979-03-05 Publication of the life insurance directive (79/267/EEC)
dedicated to solvency margin requirements

Market
Regulation

1933-05-27 Securities Act (registration and prospectus of securities)
1934-06-06 Securities Exchange Act (regulation of the secondary mar-

kets and creation of the SEC)
1936-06-15 Commodity Exchange Act (regulation of the commodity

futures)
1939-08-03 Trust Indenture Act (regulation of debt securities)
1940-08-22 Investment Advisers Act (regulation of investment advisers)
1940-08-22 Investment Company Act (regulation of mutual funds)
1974-10-23 Commodity Futures Trading Commission Act (the CFTC

replaces the Commodity Exchange Commission)

The years 1980 – 2000

The years 1980 – 2000 were marked by the development of the banking regulation and
the publication of the Basel Accord dedicated to credit risk. Moreover, the end of the 1990s
saw the implementation of the regulatory framework concerning market risks. In Europe,
the UCITS directive is also an important step concerning the investment industry. In the
US, the insurance regulation is reformed with the risk-based capital framework whereas
Solvency I is reinforced in Europe.

Basel I
1987-12-15 Publication of the consultative paper on the Cooke ratio
1988-07-04 Publication of the Basel Capital Accord
1996-01-18 Publication of the amendment to incorporate market risks

CAD
1993-03-15 Publication of the Capital Adequacy Directive (93/6/EEC)

known as CAD I
1998-06-22 Revision of the CAD (98/31/EEC) known as CAD II

Solvency I

1988-06-22 Second non-life insurance directive 88/357/EEC
1990-11-08 Second life insurance directive 90/619/EEC
1992-06-18 Third non-life insurance directive 92/49/EEC
1992-11-10 Third life insurance directive 92/96/EEC

RBC

1990 NAIC created the US RBC regime
1992 Implementation of RBC in US insurance
1993 Finalization of the RBC formula for life insurance
1994 Finalization of the RBC formula for property and casuality

insurance
1998 Finalization of the RBC formula for health insurance

Market
Regulation

1985-12-20 Publication of the first UCITS Directive (85/611/EEC)
2000-12-14 Commodity Futures Modernization Act (regulation of OTC

derivatives in the US)
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The years 2000 – 2008

In the 2000s, banks and regulators have invested significant effort and resources to put
in place the Basel II framework. This is during this period that modern risk management
was significantly developed in the banking sector. The Solvency II reform emerged in 2004
and intensive work was underway to calibrate this new proposition on insurance regulation.

Basel II

1999-06-02 Publication of the first CP on Basel II
2001-01-29 Publication of the second CP on Basel II
2001-11-05 Results of the QIS 2
2002-06-25 Results of the QIS 2.5
2003-04-29 Publication of the third CP on Basel II
2003-05-05 Results of the QIS 3
2004-06-10 Publication of the Basel II Accord
2004–2005 Conduct of QIS 4 (national impact study and tests)
2005-07-30 Publication of “The Application of Basel II to Trading Ac-

tivities and the Treatment of Double Default Effects”
2006-06-16 Results of the QIS 5
2006-06-30 Publication of the Basel II Comprehensive Version (including

Basel I, Basel II and 2005 revisions)

CRD 2006-05-14 Publication of the directive 2006/48/EC
2006-05-14 Publication of the directive 2006/49/EC (CRD)

Solvency I
2002-03-05 Non-life insurance directive 2002/13/EC (revision of sol-

vency margin requirements)
2002-11-05 Life insurance recast directive 2002/83/EC

Solvency II

2004 Initial works on Solvency II
2006-03-17 Report on the first QIS
2007 Report on the second QIS
2007-11-01 Report on the third QIS

Market
Regulation

2002-01-22 Publication of the directives 2001/107/EC and 2001/108/EC
(UCITS III)

2004-04-21 Publication of the directive 2004/39/EC (MiFID 1)

The years 2008 – 2019

The 2008 Global Financial Crisis completely changed the landscape of financial reg-
ulation. Under political pressures, we assist to a frenetic race of regulatory reforms. For
instance, the Basel Committee had published 21 regulatory standards before 2007. From
January 2008 to December 2014, this number has dramatically increased with 34 new reg-
ulatory standards. With Basel 2.5, new capital requirements are put in place for market
risk. The Basel III framework is published at the end of 2010 and introduces new stan-
dards for managing the liquidity risk. However, the finalized version of Basel III reforms
will be only published in 2017. In Europe, market regulation is the new hot topic for regula-
tors. However, the major event of the beginning of this decade concerns systemic risk. New
regulations have emerged and new financial activities are under scrutiny (shadow banking
system, market infrastructures, investment management).
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Basel 2.5
2007-10-12 Publication of the first CP on the incremental risk charge
2008-07-22 Proposed revisions to the Basel II market risk framework
2009-07-13 Publication of the final version of Basel 2.5

Basel III

2010-12-16 Publication of the original version of Basel III
2011-06-01 Revised version of the Basel III capital rules reflecting the

CVA modification
2013-01-07 Publication of the rules concerning the liquidity coverage ratio
2013-10-31 Fundamental review of the trading book (FRTB)
2013-12-13 Capital requirements for banks’ equity investments in funds
2014-01-12 Publication of the leverage ratio
2014-03-31 Publication of SA-CCR
2014-04-10 Capital requirements for bank exposures to central counter-

parties
2014-04-15 Supervisory framework for measuring and controlling large

exposures
2014-10-31 Publication of the rules concerning the net stable funding ra-

tio
2016-04-21 Interest rate risk in the banking book (IRRBB)
2016-07-11 Revisions to the securitization framework
2017-12-07 Final version of Basel III reforms
2019-01-14 Publication of the Basel III comprehensive version for market

risk

CRD/CRR

2009-09-16 Directive 2009/111/EC (CRD II)
2010-09-24 Directive 2010/76/EU (CRD III)
2013-06-26 Directive 2013/36/EU (CRD IV)
2013-06-26 Publication of the capital requirements regulation 575/2013

(CRR)
2013-10-15 Council regulation 1024/2013 concerning the European Cen-

tral Bank and the prudential supervision
2014-10-10 Commission delegated regulation 2015/62 of on the leverage

ratio
2017-12-12 Regulation 2017/2401 on securitizations
2019 Publication of CRD V & CRR 2

Solvency II

2008-11-19 Report on the fourth QIS
2009-11-25 Solvency II directive 2009/138/EC
2011-03-14 Report on the fifth QIS
2014-04-16 Publication of the Omnibus II directive 2014/51/UE
2015-10-10 Publication of the commission delegated regulation 2015/35
2015-12-02 Commission implementing regulation 2015/2450

Market
Regulation

2009-07-13 Directive 2009/65/EC (UCITS IV)
2010-06-08 AIFM directive (2011/61/EU)
2012-07-04 EU regulation 648/2012 (EMIR)
2014-05-15 Directive 2014/65/EU (MiFID II)
2012-05-15 EU regulation 600/2014 (MiFIR)
2014-07-23 Directive 2014/91/EU (UCITS V)
2014-11-26 EU regulation 1286/2014 (PRIIPS)
2015-11-25 EU regulation 2015/2365 on securities financing transactions
2016-06-08 EU regulation 2016/1011 on indices and benchmarks
2017-06-14 EU regulation 2017/1131 on money market funds

Continued on next page
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Continued from previous page

Systemic
Risk

2009-04 Creation of the Financial Stability Board (FSB)
2010-07-21 Dodd-Frank Wall Street Reform and Consumer Protection

Act
2010-07-21 Volcker Rule (§619 of the Dodd-Frank Act)
2011-11-04 Publication of the G-SIB assessment methodology (BCBS)
2013-07-03 Update of the G-SIB assessment methodology (BCBS)
2015-03-04 Second CP on assessment methodologies for identifying

NBNI-SIFIs (FSB-IOSCO)
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Chapter 2
Market Risk

This chapter begins with the presentation of the regulatory framework. It will help us to
understand how the supervision on market risk is organized and how the capital charge is
computed. Then we will study the different statistical approaches to measure the value-at-
risk and the expected shortfall. Specifically, a section is dedicated to the risk management of
derivatives and exotic products. We will see the main concepts, but we will present the more
technical details later in Chapter 9 dedicated to model risk. Advanced topics like Monte
Carlo methods and stress testing models will also be addressed in Part II. Finally, the last
part of the chapter is dedicated to risk allocation.

2.1 Regulatory framework
We recall that the original Basel Accord only concerned credit risk in 1988. However, the

occurrences of market shocks were more important and the rapid development of derivatives
created some stress events at the end of the eighties and the beginning of the nineties. On 19
October 1987, stock markets crashed and the Dow Jones Industrial Average index dropped
by more than 20% in the day. In 1990, the collapse of the Japanese asset price bubble (both
in stock and real estate markets) caused a lot of damage in the Japanese banking system
and economy. The unexpected rise of US interest rates in 1994 resulted in a bond market
massacre and difficulties for banks, hedge funds and money managers. In 1994-1995, several
financial disasters occurred, in particular the bankruptcy of Barings and the Orange County
affair (Jorion, 2007).

In April 1993, the Basel Committee published a first consultative paper to incorporate
market risk in the Cooke ratio. Two years later, in April 1995, it accepted the idea to
compute the capital charge for market risks with an internal model. This decision is mainly
due to the publication of RiskMetrics by J.P. Morgan in October 1994. Finally, the Basel
Committee published the amendment to the capital accord to incorporate market risks in
January 1996. This proposal has remained the supervisory framework for market risk during
many years. However, the 2008 Global Financial Crisis had a big impact in terms of market
risk. Just after the crisis, a new approach called Basel 2.5 has been accepted. In 2012, the
Basel Committee launched a major project: the fundamental review of the trading book
(FRTB). These works resulted in the publication of a new comprehensive framework in
January 2019 (BCBS, 2019). This is the Basel III framework for computing the minimum
capital requirements for market risk as of January 2022.

According to BCBS (2019), market risk is defined as “the risk of losses (in on- and
off-balance sheet positions) arising from movements in market prices. The risks subject to
market risk capital requirements include but are not limited to:
• default risk, interest rate risk, credit spread risk, equity risk, foreign exchange (FX)
risk and commodities risk for trading book instruments;

• FX risk and commodities risk for banking book instruments.”
37
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The following table summarizes the perimeter of markets risks that require regulatory cap-
ital:

Portfolio Fixed Income Equity Currency Commodity Credit
Trading X X X X X
Banking X X

The Basel Committee makes the distinction between the trading book and the banking
book. Instruments to be included in the trading book are subject to market risk capital
requirements, while instruments to be included in the banking book are subject to credit risk
capital requirements (with the exception of foreign exchange and commodity instruments).
The trading book refers to positions in assets held with trading intent or for hedging other
elements of the trading book. These assets are systematically valuated on a fair value (mark-
to-market or mark-to-model) basis, are actively managed and their holding is intentionally
for short-term resale. Examples are proprietary trading, market-making activities, hedging
portfolios of derivatives products, listed equities, repo transactions, etc. The banking book
refers to positions in assets that are expected to be held until the maturity. These assets
may be valuated at their historic cost or with a fair value approach. Examples are unlisted
equities, real estate holdings, hedge funds, etc.

The first task of the bank is therefore to define trading book assets and banking book
assets. For instance, if the bank sells an option on the Libor rate to a client, a capital
charge for the market risk is required. If the bank provides a personal loan to a client with
a fixed interest rate, there is a market risk if the interest rate risk is not hedged. However, a
capital charge is not required in this case, because the exposure concerns the banking book.
Exposures on stocks may be included in the banking book if the objective is a long-term
investment.

2.1.1 The Basel I/II framework
To compute the capital charge, banks have the choice between two approaches:

1. the standardized measurement method (SMM);

2. the internal model-based approach (IMA).

The standardized measurement method has been implemented by banks at the end of
the nineties. However, banks quickly realized that they can sharply reduce their capital
requirements by adopting internal models. This explained that SMM was only used by a
few number of small banks in the 2000s.

2.1.1.1 Standardized measurement method

Five main risk categories are identified: interest rate risk, equity risk, currency risk,
commodity risk and price risk on options and derivatives. For each category, a capital
charge is computed to cover the general market risk, but also the specific risk. According
to the Basel Committee, specific risk includes the risk “that an individual debt or equity
security moves by more or less than the general market in day-to-day trading and event risk
(e.g. takeover risk or default risk)”. The use of internal models is subject to the approval
of the supervisor and the bank can mix the two approaches under some conditions. For
instance, the bank may use SMM for the specific risk and IMA for the general market risk.
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In this approach, the capital charge K is equal to the risk exposure E times the capital
charge weight K:

K = E ·K

For the specific risk, the risk exposure corresponds to the notional of the instrument, whether
it is a long or a short position. For the general market risk, long and short positions on
different instruments can be offset. In what follows, we give the main guidelines and we
invite the reader to consult BCBS (1996a, 2006) to obtain the computational details.

Interest rate risk Let us first consider the specific risk. The Basel Committee makes the
distinction between sovereign and other fixed income instruments. In the case of government
instruments, the capital charge weights are:

AAA A+ BB+ Below
B−Rating to to to NR

AA− BBB− B−
Maturity 0−6M 6M−2Y 2Y+
K 0% 0.25% 1.00% 1.60% 8% 12% 8%

This capital charge depends on the rating and also the residual maturity for A+ to BBB−
issuers1. The category NR stands for non-rated issuers. In the case of other instruments
issued by public sector entities, banks and corporate companies, the capital charge weights
are:

AAA BB+ Below
BB−Rating to to NR

BBB− BB−
Maturity 0−6M 6M−2Y 2Y+
K 0.25% 1.00% 1.60% 8% 12% 8%

Example 4 We consider a trading portfolio with the following exposures: a long position
of $50 mn on Euro-Bund futures, a short position of $100 mn on three-month T-Bills and
a long position of $10 mn on an investment grade (IG) corporate bond with a three-year
residual maturity.

The underlying asset of Euro-Bund futures is a German bond with a long maturity
(higher than 6 years). We deduce that the capital charge for specific risk for the two sovereign
exposures is equal to zero, because both Germany and US are rated above A+. Concerning
the corporate bond, we obtain:

K = 10× 1.60% = $160 000

For the general market risk, the bank has the choice between two methods: the maturity
approach and the duration approach. In the maturity approach, long and short positions are
slotted into a maturity-based ladder comprising fifteen time-bands (less than one month,
between one and three months, . . . between 12 and 20 years, greater than 20 years). The
risk weights depend on the time band and the value of the coupon2, and apply to the
net exposure on each time band. For example, a capital charge of 8% is used for the net

1Three maturity periods are defined: 6 months or less, greater than 6 months and up to 24 months, more
than 24 months.

2We distinguish coupons less than 3% (small coupons or SC) and coupons 3% or more (big coupons or
BC).
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exposure of instruments (with small coupons), whose maturity is between 12 and 20 years.
For reflecting basis and gap risks, the bank must also include a 10% capital charge to
the smallest exposure of the matched positions. This adjustment is called the ‘vertical
disallowance’. The Basel Committee considers a second adjustment for horizontal offsetting
(the ‘horizontal disallowance’). For that, it defines 3 zones (less than 1 year, one year to
four years and more than four years). The offsetting can be done within and between the
zones. The adjustment coefficients are 30% within the zones 2 and 3, 40% within the zone
1, between the zones 1 and 2, and between the zones 2 and 3, and 100% between the zones
1 and 3. Therefore, the regulatory capital for the general market risk is the sum of the three
components:

K = KOP + KVD + KHD

where KOP, KVD and KHD are the required capital for the overall net open position, the
vertical disallowance and the horizontal disallowance.

With the duration approach, the bank computes the price sensitivity of each position
with respect to a change in yield ∆y , slots the sensitivities into a duration-based ladder
and applies adjustments for vertical and horizontal disallowances. The computation of the
required capital is exactly the same as previously, but with a different definition of time
bands and zones.

Equity risk For equity exposures, the capital charge for specific risk is 4% if the portfolio
is liquid and well-diversified and 8% otherwise. For the general market risk, the risk weight
is equal to 8% and applies to the net exposure.

Example 5 We consider a $100 mn short exposure on the S&P 500 index futures contract
and a $60 mn long exposure on the Apple stock.

The capital charge for specific risk is3:

KSpecific = 100× 4% + 60× 8%
= 4 + 4.8
= 8.8

The net exposure is −$40 mn. We deduce that the capital charge for the general market
risk is:

KGeneral = |−40| × 8%
= 3.2

It follows that the total capital charge for this equity portfolio is $12 mn.

Remark 1 Under Basel 2.5, the capital charge for specific risk is set to 8% whatever the
liquidity of the portfolio.

Foreign exchange risk The Basel Committee includes gold in this category and not in
the commodity category because of its specificity in terms of volatility and its status of
safe-heaven currency. The bank has first to calculate the net position (long or short) of each
currency. The capital charge is then 8% of the global net position defined as the sum of:

3We assume that the S&P 500 index is liquid and well-diversified, whereas the exposure on the Apple
stock is not diversified.
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• the maximum between the aggregated value LFX of long positions and the aggregated
value SFX of short positions and,

• the absolute value of the net position NGold in gold.

We have:
K = 8%× (max (LFX,SFX) + |NGold|)

Example 6 We consider a bank which has the following long and short positions expressed
in $ mn4:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Li 170 0 25 37 11 3 8 33
Si 80 50 12 9 28 0 8 6

We first compute the net exposure Ni for each currency:

Ni = Li − Si

We obtain the following figures:

Currency EUR JPY GBP CHF CAD AUD ZAR Gold
Ni 90 −50 13 28 −17 3 0 27

We then calculate the aggregated long and short positions:

LFX = 90 + 13 + 28 + 3 + 0 = 134
SFX = 50 + 17 = 67
NGold = 27

We finally deduce that the capital charge is equal to $12.88 mn:

K = 8%× (max (134, 67) + |27|)
= 8%× 161
= 12.88

Commodity risk Commodity risk concerns both physical and derivative positions (for-
ward, futures5 and options). This includes energy products (oil, gas, ethanol, etc.), agricul-
tural products (grains, oilseeds, fiber, livestock, etc.) and metals (industrial and precious),
but excludes gold which is covered under foreign exchange risk. The Basel Committee makes
the distinction between the risk of spot or physical trading, which is mainly affected by the
directional risk and the risk of derivative trading, which includes the directional risk, the
basis risk, the cost-of-carry and the forward gap (or time spread) risk. The SMM for com-
modity risk includes two options: the simplified approach and the maturity ladder approach.

Under the simplified approach, the capital charge for directional risk is 15% of the
absolute value of the net position in each commodity. For the other three risks, the capital
charge is equal to 3% of the global gross position. We have:

K = 15%×
m∑
i=1
|Li − Si|+ 3%×

m∑
i=1

(Li + Si)

4We implicity assume that the reporting currency of the bank is the US dollar.
5The most traded futures contracts are crude oil, brent, heating oil, gas oil, natural oil, rbob gasoline

silver, platinum, palladium, zinc, lead, aluminium, cocoa, soybeans, corn, cotton, wheat, sugar, live cattle,
coffee and soybean oil.
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where m is the number of commodities, Li is the long position on commodity i and Si is
the short position on commodity i.

Example 7 We consider a portfolio of five commodities. The mark-to-market exposures
expressed in $ mn are the following:

Commodity Crude Oil Coffee Natural Gas Cotton Sugar
Li 23 5 3 8 11
Si 0 0 19 2 6

The aggregated net exposure
∑5
i=1 |Li − Si| is equal to $55 mn whereas the gross

exposure
∑5
i=1 (Li + Si) is equal to $77 mn. We deduce that the required capital is

15%× 55 + 3%× 77 or $10.56 mn.
Under the maturity ladder approach, the bank should spread long and short exposures of

each commodity to seven time bands: 0-1M, 1M-3M, 3M-6M, 6M-1Y, 1Y-2Y, 2Y-3Y, 3Y+.
For each time band, the capital charge for the basis risk is equal to 1.5% of the matched
positions (long and short). Nevertheless, the residual net position of previous time bands
may be carried forward to offset exposures in next time bands. In this case, a surcharge
of 0.6% of the residual net position is added at each time band to cover the time spread
risk. Finally, a capital charge of 15% is applied to the global net exposure (or the residual
unmatched position) for directional risk.

Option’s market risk There are three approaches for the treatment of options and
derivatives. The first method, called the simplified approach, consists of calculating sepa-
rately the capital charge of the position for the option and the associated underlying. In the
case of an hedged exposure (long cash and long put, short cash and long call), the required
capital is the standard capital charge of the cash exposure less the amount of the in-the-
money option. In the case of a non-hedged exposure, the required capital is the minimum
value between the mark-to-market of the option and the standard capital charge for the
underlying.

Example 8 We consider a variant of Example 5. We have a $100 mn short exposure on the
S&P 500 index futures contract and a $60 mn long exposure on the Apple stock. We assume
that the current stock price of Apple is $120. Six months ago, we have bought 400 000 put
options on Apple with a strike of $130 and a one-year maturity. We also decide to buy 10 000
ATM call options on Google. The current stock price of Google is $540 and the market value
of the option is $45.5.

We deduce that we have 500 000 shares of the Apple stock. This implies that $48 mn
of the long exposure on Apple is hedged by the put options. Concerning the derivative
exposure on Google, the market value is equal to $0.455 mn. We can therefore decompose
this portfolio into three main exposures:

• a directional exposure composed by the $100 mn short exposure on the S&P 500 index
and the $12 mn remaining long exposure on the Apple stock;

• a $48 mn hedged exposure on the Apple stock;

• a $0.455 mn derivative exposure on the Google stock.
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For the directional exposure, we compute the capital charge for specific and general market
risks6:

K = (100× 4% + 12× 8%) + 88× 8%
= 4.96 + 7.04
= 12

For the hedged exposure, we proceed as previously but we deduce the in-the-money value7:

K = 48× (8% + 8%)− 4
= 3.68

The market value of the Google options is $0.455 mn. We compare this value to the standard
capital charge8 to determine the capital charge:

K = min (5.4× 16%, 0.455)
= 0.455

We finally deduce that the required capital is $16.135 mn.
The second approach is the delta-plus method. In this case, the directional exposure

of the option is calculated by its delta. Banks will also required to compute an additional
capital charge for gamma and vega risks. We consider different options and we note j ∈ Ai
when the option j is written on the underlying asset i. We first compute the (signed) capital
charge for the 4 risks at the asset level:

KSpecific
i =

∑
j∈Ai

Nj ·∆j

 · Si ·KSpecific
i

KGeneral
i =

∑
j∈Ai

Nj ·∆j

 · Si ·KGeneral
i

KGamma
i = 1

2

∑
j∈Ai

Nj · Γj

 · (Si ·KGamma
i

)2
KVega
i =

∑
j∈Ai

Nj · υj · (25% · Σj)

where Si is the current market value of the asset i, KSpecific
i and KGeneral

i are the corre-
sponding standard capital charge for specific and general market risk and KGamma

i is the
capital charge for gamma impact9. Here, Nj , ∆j , Γj and υj are the exposure, delta, gamma
and vega of the option j. For the vega risk, the shift corresponds to ±25% of the implied
volatility Σj . For a portfolio of assets, the traditional netting rules apply to specific and
general market risks. The total capital charge for gamma risk corresponds to the opposite
of the sum of the negative individual capital charges for gamma risk whereas the total cap-
ital charge for vega risk corresponds to the sum of the absolute value of individual capital
charges for vega risk.

6The net short exposure is equal to $88 mn.
7It is equal to 400 000×max (130− 120, 0).
8It is equal to 10 000× 540× (8% + 8%).
9It is equal to 8% for equities, 8% for currencies and 15% for commodities. In the case of interest rate

risk, it corresponds to the standard value K (t) for the time band t (see the table on page 8 in BCBS
(1996a)).
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Example 9 We consider a portfolio of 4 options written on stocks with the following char-
acteristics:

Option Stock Exposure Type Price Strike Maturity Volatility
1 A −5 call 100 110 1.00 20%
2 A −10 call 100 100 2.00 20%
3 B 10 call 200 210 1.00 30%
4 B 8 put 200 190 1.25 35%

This means that we have 2 assets. For stock A, we have a short exposure on 5 call options
with a one-year maturity and a short exposure on 10 call options with a two-year maturity.
For stock B, we have a long exposure on 10 call options with a one-year maturity and a
long exposure on 8 put options with a maturity of one year and three months.

Using the Black-Scholes model, we first compute the Greek coefficients for each option j.
Because the options are written on single stocks, the capital charges KSpecific

i , KGeneral
i and

KGamma
i are all equal to 8%. Using the previous formulas, we then deduce the individual

capital charges for each option10:

j 1 2 3 4
∆j 0.45 0.69 0.56 −0.31
Γj 0.02 0.01 0.01 0.00
υj 39.58 49.91 78.85 79.25

KSpecific
j −17.99 −55.18 89.79 −40.11

KGeneral
j −17.99 −55.18 89.79 −40.11

KGamma
j −3.17 −3.99 8.41 4.64
KVega
j −9.89 −24.96 59.14 55.48

We can now aggregate the previous individual capital charges for each stock. We obtain:

Stock KSpecific
i KGeneral

i KGamma
i KVega

i

A −73.16 −73.16 −7.16 −34.85
B 49.69 49.69 13.05 114.61

Total 122.85 23.47 7.16 149.46

To compute the total capital charge, we apply the netting rule for the general market risk,
but not for the specific risk. This means that KSpecific = |−73.16| + |49.69| = 122.85 and
KGeneral = |−73.16 + 49.69| = 23.47. For gamma risk, we only consider negative impacts
and we have KGeneral = |−7.16| = 7.16. For vega risk, there is no netting rule: KVega =
|−34.85|+ |114.61| = 149.46. We finally deduce that the overall capital is 302.94.

The third method is the scenario approach. In this case, we evaluate the profit and loss
(P&L) for simultaneous changes in the underlying price and in the implied volatility of the
option. For defining these scenarios, the ranges are the standard shifts used previously. For
instance, we use the following ranges for equities:

Si
−8% +8%

Σj
−25%
+25%

10For instance, the individual capital charge of the second option for the gamma risk is

KGamma
j =

1
2
× (−10)× 0.0125× (100× 8%)2 = −3.99



Market Risk 45

The scenario matrix corresponds to intermediate points on the 2 × 2 grid. For each cell of
the scenario matrix, we calculate the P&L of the option exposure11. The capital charge is
then the largest loss.

Securitization instruments The treatment of specific risk of securitization positions
is revised in Basel 2.5 and is based on external ratings. For instance, the capital charge
for securitization exposures is 1.6% if the instrument is rated from AAA to AA−. For
resecuritization exposures, it is equal to 3.2%. If the rating of the instrument is from BB+
to BB−, the risk capital charges becomes respectively12 28% and 52%.

2.1.1.2 Internal model-based approach

The use of an internal model is conditional upon the approval of the supervisory au-
thority. In particular, the bank must meet certain criteria concerning different topics. These
criteria concerns the risk management system, the specification of market risk factors, the
properties of the internal model, the stress testing framework, the treatment of the specific
risk and the backtesting procedure. In particular, the Basel Committee considers that the
bank must have “sufficient numbers of staff skilled in the use of sophisticated models not
only in the trading area but also in the risk control, audit, and if necessary, back office
areas”. We notice that the Basel Committee first insists on the quality of the trading de-
partment, meaning that the trader is the first level of risk management. The validation of
an internal model does not therefore only concern the risk management department, but
the bank as a whole.

Qualitative criteria BCBS (1996a) defines the following qualitative criteria:

• “The bank should have an independent risk control unit that is responsible for the
design and implementation of the bank’s risk management system. [...] This unit
must be independent from business trading units and should report directly to senior
management of the bank”.

• The risk management department produces and analyzes daily reports, is responsible
for the backtesting procedure and conducts stress testing analysis.

• The internal model must be used to manage the risk of the bank in the daily basis. It
must be completed by trading limits expressed in risk exposure.

• The bank must document internal policies, controls and procedures concerning the
risk measurement system (including the internal model).

It is today obvious that the risk management department should not report to the
trading and sales department. Twenty-five years ago, it was not the case. Most of risk man-
agement units were incorporated to business units. It has completely changed because of
the regulation and risk management is now independent from the front office. The risk man-
agement function has really emerged with the amendment to incorporate market risks and
even more with the Basel II reform, whereas the finance function has long been developed
in banks. For instance, it’s very recent that the head of risk management13 is also a member
of the executive committee of the bank whereas the head of the finance department14 has
always been part of the top management.

11It may include the cash exposure if the option is used for hedging purposes.
12See pages 4-7 of BCBS (2009b) for the other risk capital charges.
13He is called the chief risk officer or CRO.
14He is called the chief financial officer or CFO.
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From the supervisory point of view, an internal model does not reduce to measure the
risk. It must be integrated in the management of the risk. This is why the Basel Committee
points out the importance between the outputs of the model (or the risk measure), the
organization of the risk management and the impact on the business.

Quantitative criteria The choice of the internal model is left to the bank, but it must
respect the following quantitative criteria:
• The value-at-risk (VaR) is computed on a daily basis with a 99% confidence level. The
minimum holding period of the VaR is 10 trading days. If the bank computes a VaR
with a shorter holding period, it can use the square-root-of-time rule.

• The risk measure can take into account diversification, that is the correlations between
the risk categories.

• The model must capture the relevant risk factors and the bank must pay attention to
the specification of the appropriate set of market risk factors.

• The sample period for calculating the value-at-risk is at least one year and the bank
must update the data set frequently (every month at least).

• In the case of options, the model must capture the non-linear effects with respect to
the risk factors and the vega risk.

• “Each bank must meet, on a daily basis, a capital requirement expressed as the higher
of (i) its previous day’s value-at-risk number [...] and (ii) an average of the daily
value-at-risk measures on each of the preceding sixty business days, multiplied by a
multiplication factor”.

• The value of the multiplication factor depends on the quality of the internal model
with a range between 3 and 4. The quality of the internal model is related to its
ex-post performance measured by the backtesting procedure.

The holding period to define the capital is 10 trading days. However, it is difficult
to compute the value-at-risk for such holding period. In practice, the bank computes the
one-day value-at-risk and converts this number into a ten-day value-at-risk using the square-
root-of-time rule:

VaRα (w; ten days) =
√

10×VaRα (w; one day)
This rule comes from the scaling property of the volatility associated to a geometric Brown-
ian motion. It has the advantage to be simple and objective, but it generally underestimates
the risk when the loss distribution exhibits fat tails15.

The required capital at time t is equal to:

Kt = max
(

VaRt−1, (3 + ξ) · 1
60

60∑
i=1

VaRt−i

)
(2.1)

where VaRt is the value-at-risk calculated at time t and ξ is the penalty coefficient (0 ≤
ξ ≤ 1). In normal periods where VaRt−1 ' VaRt−i, the required capital is the average of
the last 60 value-at-risk values times the multiplication factor16 mc = 3 + ξ. In this case,
we have:

Kt = Kt−1 + mc

60 · (VaRt−1−VaRt−61)

15See for instance Diebold et al. (1998), Daníelsson and Zigrand (2006) or Wang et al. (2011).
16The complementary factor is explained on page 88.
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FIGURE 2.1: Calculation of the required capital with the VaR

The impact of VaRt−1 is limited because the factor (3 + ξ) /60 is smaller than 6.7%. The
required capital can only be equal to the previous day’s value-at-risk if the bank faces a
stress VaRt−1 � VaRt−i. We also notice that a shock on the VaR vanishes after 60 trading
days. To understand the calculation of the capital, we report an illustration in Figure 2.1.
The solid line corresponds to the value-at-risk VaRt whereas the dashed line corresponds
to the capital Kt. We assume that ξ = 0 meaning that the multiplication factor is equal to
3. When t < 120, the value-at-risk varies around a constant. The capital is then relatively
smooth and is three times the average VaR. At time t = 120, we observe a shock on the
value-at-risk, which lasts 20 days. Immediately, the capital increases until t ≤ 140. Indeed,
at this time, the capital takes into account the full period of the shocked VaR (between
t = 120 and t = 139). The full effect of this stressed period continues until t ≤ 180, but this
effect becomes partial when t > 180. The impact of the shock vanishes when t = 200. We
then observe a period of 100 days where the capital is smooth because the daily value-at-
risk does not change a lot. A second shock on the value-at-risk occurs at time t = 300, but
the magnitude of the shock is larger than previously. During 10 days, the required capital
is exactly equal to the previous day’s value-at-risk. After 10 days, the bank succeeds to
reduce the risk of its portfolio. However, the daily value-at-risk increases from t = 310 to
t = 500. As previously, the impact of the second shock vanishes 60 days after the end of
shock. However, the capital increases strongly at the end of the period. This is due to the
effect of the multiplication factor mc on the value-at-risk.

Stress testing Stress testing is a simulation method to identify events that could have
a great impact on the soundness of the bank. The framework consists of applying stress
scenarios and low-probability events on the trading portfolio of the bank and to evaluate
the maximum loss. Contrary to the value-at-risk17, stress testing is not used to compute the

17The 99% VaR is considered as a risk measure in normal markets and therefore ignores stress events.
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required capital. The underlying idea is more to identify the adverse scenarios for the bank,
evaluate the corresponding losses, reduce eventually the too risky exposures and anticipate
the management of such stress periods.

Stress tests should incorporate both market and liquidity risks. The Basel Committee
considers two types of stress tests:

1. supervisory stress scenarios;

2. stress scenarios developed by the bank itself.

The supervisory stress scenarios are standardized and apply to the different banks. This
allows the supervisors to compare the vulnerability between the different banks. The bank
must complement them by its own scenarios in order to evaluate the vulnerability of its
portfolio according to the characteristics of the portfolio. In particular, the bank may be
exposed to some political risks, regional risks or market risks that are not taken into account
by standardized scenarios. The banks must report their test results to the supervisors in a
quarterly basis.

Stress scenarios may be historical or hypothetical. In the case of historical scenarios, the
bank computes the worst-case loss associated to different crisis: the Black Monday (1987),
the European monetary system crisis (1992), the bond market sell-off (1994), the internet
bubble (2000), the subprime mortgage crisis (2007), the liquidity crisis due to Lehman
Brothers collapse (2008), the Euro zone crisis (2011-2012), etc. Hypothetical scenarios are
more difficult to calibrate, because they must correspond to extreme but also plausible
events. Moreover, the multidimensional aspect of stress scenarios is an issue. Indeed, the
stress scenario is defined by the extreme event, but the corresponding loss is evaluated with
respect to the shocks on market risk factors. For instance, if we consider a severe Middle East
crisis, this event will have a direct impact on the oil price, but also indirect impacts on other
market risk factors (equity prices, US dollar, interest rates). Whereas historical scenarios
are objective, hypothetical scenarios are by construction subjective and their calibration
will differ from one financial institution to another. In the case of the Middle East crisis,
one bank may consider that the oil price could fall by 30% whereas another bank may use
a price reduction of 50%.

In 2009, the Basel Committee revised the market risk framework. In particular, it intro-
duces the stressed value-at-risk measure. The stressed VaR has the same characteristics than
the traditional VaR (99% confidence level and 10-day holing period), but the model inputs
are “calibrated to historical data from a continuous 12-month period of significant financial
stress relevant to the bank’s portfolio”. For instance, a typical period is the 2008 year which
both combines the subprime mortgage crisis and the Lehman Brothers bankruptcy. This
implies that the historical period to compute the SVaR is completely different than the
historical period to compute the VaR (see Figure 2.2). In Basel 2.5, the capital requirement
for stressed VaR is:

KSVaR
t = max

(
SVaRt−1,ms ·

1
60

60∑
i=1

SVaRt−i

)

where SVaRt is the stressed VaR measure computed at time t. Like the coefficient mc,
the multiplication factor ms for the stressed VaR is also calibrated with respect to the
backtesting outcomes, meaning that we have ms = mc in many cases.

Specific risk and other risk charges In the case where the internal model does not take
into account the specific risk, the bank must compute a specific risk charge (SRC) using
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FIGURE 2.2: Two different periods to compute the VaR and the SVaR

the standardized measurement method. To be validated as a value-at-risk measure with
specific risks, the model must satisfy at least the following criteria: it captures concentrations
(magnitude and changes in composition), it captures name-related basis and event risks and
it considers the assessment of the liquidity risk. For instance, an internal model built with a
general market risk factor18 does not capture specific risk. Indeed, the risk exposure of the
portfolio is entirely determined by the beta of the portfolio with respect to the market risk
factor. This implies that two portfolios with the same beta but with a different composition,
concentration or liquidity have the same value-at-risk.

Basel 2.5 established a new capital requirement “in response to the increasing amount
of exposure in banks’ trading books to credit-risk related and often illiquid products whose
risk is not reflected in value-at-risk” (BCBS, 2009b). The incremental risk charge (IRC)
measures the impact of rating migrations and defaults, corresponds to a 99.9% value-at-
risk for a one-year time horizon and concerns portfolios of credit vanilla trading (bonds
and CDS). The IRC may be incorporated into the internal model or it may be treated
as a surcharge from a separate calculation. Also under Basel 2.5, the Basel Committee
introduced the comprehensive risk measure (CRM), which corresponds to a supplementary
capital charge for credit exotic trading portfolios19. The CRM is also a 99.9% value-at-risk
for a one-year time horizon. For IRC and CRM, the capital charge is the maximum between
the most recent risk measure and the average of the risk measure over 12 weeks20. We
finally obtain the following formula to compute the capital charge for the market risk under
Basel 2.5:

Kt = KVaR
t + KSVaR

t + KSRC
t + KIRC

t + KCRM
t

where KVaR
t is given by Equation (2.1) and KSRC

t is the specific risk charge. In this formula,
KSRC
t and/or KIRC

t may be equal to zero if the modeling of these two risks is included in
the value-at-risk internal model.

Backtesting and the ex-post evaluation of the internal model The backtesting
procedure is described in the document Supervisory Framework for the Use of Backtesting
in Conjunction with the Internal Models Approach to Market Risk Capital Requirements
published by the Basel Committee in January 1996. It consists of verifying that the internal
model is consistent with a 99% confidence level. The idea is then to compare the outcomes
of the risk model with realized loss values. For instance, we expect that the realized loss
exceeds the VaR figure once every 100 observations on average.

The backtesting is based on the one-day holding period and compares the previous day’s
value-at-risk with the daily realized profit and loss. An exception occurs if the loss exceeds
the value-at-risk. For a given period, we compute the number of exceptions. Depending of the
frequency of exceptions, the supervisor determines the value of the penalty function between

18This is the case of the capital asset pricing model (CAPM) developed by Sharpe (1964).
19This concerns correlation trading activities on credit derivatives.
20Contrary to the VaR and SVaR measures, the risk measure is not scaled by a multiplication factor for

IRC and CRM.
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0 and 1. In the case of a sample based on 250 trading days, the Basel Committee defines three
zones and proposes the values given in Table 2.1. The green zone corresponds to a number
of exceptions less or equal to 4. In this case, the Basel Committee considers that there is no
problem and the penalty coefficient ξ is set to 0. If the number of exceptions belongs to the
yellow zone (between 5 and 9 exceptions), it may indicate that the confidence level of the
internal model could be lower than 99% and implies that ξ is greater than zero. For instance,
if the number of exceptions for the last 250 trading days is 6, the Basel Committee proposes
that the penalty coefficient ξ is set to 0.50, meaning that the multiplication coefficient mc

is equal to 3.50. The red zone is a concern. In this case, the supervisor must investigate the
reasons of such large number of exceptions. If the problem comes from the relevancy of the
model, the supervisor can invalidate the internal model-based approach.

TABLE 2.1: Value of the penalty coefficient ξ for a sample of 250 observations

Zone Number of
ξexceptions

Green 0 – 4 0.00

Yellow

5 0.40
6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00

The definition of the color zones comes from the statistical analysis of the exception
frequency. We note w the portfolio, Lt (w) the daily loss at time t and VaRα (w;h) the
value-at-risk calculated at time t − 1. By definition, Lt (w) is the opposite of the P&L
Πt (w):

Lt (w) = −Πt (w)
= MtMt−1−MtMt

where MtMt is the mark-to-market of the trading portfolio at time t. By definition, we have:

Pr {Lt (w) ≥ VaRα (w;h)} = 1− α

where α is the confidence level of the value-at-risk. Let et be the random variable which is
equal to 1 if there is an exception and 0 otherwise. et is a Bernoulli random variable with
parameter p:

p = Pr {et = 1}
= Pr {Lt (w) ≥ VaRα (w;h)}
= 1− α

In the case of the Basel framework, α is set to 99% meaning that we have a probability of
1% to observe an exception every trading day. For a given period [t1, t2] of n trading days,
the probability to observe exactly m exceptions is given by the binomial formula:

Pr {Ne (t1; t2) = m} =
(
n

m

)
(1− α)m αn−m

where Ne (t1; t2) =
∑t2
t=t1 et is the number of exceptions for the period [t1, t2]. We obtain

this result under the assumption that the exceptions are independent across time. Ne (t1; t2)
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is then the binomial random variable B (n; 1− α). We deduce that the probability to have
up to m exceptions is:

Pr {Ne (t1; t2) ≤ m} =
m∑
j=0

(
n

j

)
(1− α)i αn−j

The three previous zones are then defined with respect to the statistical confidence level
of the assumption H : α = 99%. The green zone corresponds to the 95% confidence level:
Pr {Ne (t1; t2) ≤ m} < 95%. In this case, the hypothesis H : α = 99% is not rejected at
the 95% confidence level. The yellow and red zones are respectively defined by 95% ≤
Pr {Ne (t1; t2) ≤ m} < 99.99% and Pr {Ne (t1; t2) ≤ m} ≥ 99.99%. This implies that the
hypothesisH : α = 99% is rejected at the 99.99% confidence level if the number of exceptions
belongs to the red zone.

TABLE 2.2: Probability distribution (in %) of the number of exceptions (n = 250 trading
days)

α = 99% α = 98%
m Pr {Ne = m} Pr {Ne ≤ m} Pr {Ne = m} Pr {Ne ≤ m}
0 8.106 8.106 0.640 0.640
1 20.469 28.575 3.268 3.908
2 25.742 54.317 8.303 12.211
3 21.495 75.812 14.008 26.219
4 13.407 89.219 17.653 43.872
5 6.663 95.882 17.725 61.597
6 2.748 98.630 14.771 76.367
7 0.968 99.597 10.507 86.875
8 0.297 99.894 6.514 93.388
9 0.081 99.975 3.574 96.963
10 0.020 99.995 1.758 98.720

If we apply the previous statistical analysis when n is equal to 250 trading days, we
obtain the results given in Table 2.2. For instance, the probability to have zero exception
is 8.106%, the probability to have one exception is 20.469%, etc. We retrieve the three
color zones determined by the Basel Committee. The green zone corresponds to the interval
[0, 4], the yellow zone is defined by the interval [5, 9] and the red zone involves the interval
[10, 250]. We notice that the color zones can vary significantly if the confidence level of
the value-at-risk is not equal to 99%. For instance, if it is equal to 98%, the green zone
corresponds to less than 9 exceptions. In Figure 2.3, we have reported the color zones with
respect to the size n of the sample.

Example 10 Calculate the color zones when n is equal to 1 000 trading days and α = 99%.

We have Pr {Ne ≤ 14} = 91.759% and Pr {Ne ≤ 15} = 95.213%. This implies that the
green zones ends at 14 exceptions whereas the yellow zone begins at 15 exceptions. Because
Pr {Ne ≤ 23} = 99.989% and Pr {Ne ≤ 24} = 99.996%, we also deduce that the red zone
begins at 24 exceptions.

Remark 2 The statistical approach of backtesting ignores the effects of intra-day trading.
Indeed, we make the assumption that the portfolio remains unchanged from t−1 to t, which
is not the case in practice. This is why the Basel Committee proposes to compute the loss
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FIGURE 2.3: Color zones of the backtesting procedure (α = 99%)

in two different ways. The first approach uses the official realized P&L, whereas the second
approach consists in separating the P&L of the previous’s day portfolio and the P&L due to
the intra-day trading activities.

2.1.2 The Basel III framework
The finalization of the reform for computing the market risk capital charge has taken

considerable time. After the 2008 crisis, the market risk is revised by the Basel Committee,
which adds new capital charges (Basel 2.5) in addition to those defined in the Basel I
framework. In the same time, the Basel Committee published a new framework called Basel
III, which focused on liquidity and leverage risks. In 2013, the Basel Committee launched a
vast project called the fundamental review of the trading book (FRTB). During long time,
the banking industry believed that these discussions were the basis of new reforms in order
to prepare a Basel IV Accord. However, the Basel Committee argued that these changes are
simply completing the Basel III reforms. As for the Basel I Accord, banks have the choice
between two approaches for computing the capital charge:

1. a standardized method (SA-TB21);

2. an internal model-based approach (IMA).

Contrary to the previous framework, the SA-TB method is very important even if banks
calculate the capital charge with the IMA method. Indeed, the bank must implement SA-TB
in order to meet the output floor requirement22, which is set at 72.5% in January 2027.

21TB means trading book.
22The mechanism of capital floor is explained on page 22.
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2.1.2.1 Standardized approach

The standardized capital charge is the sum of three components: sensitivity-based
method capital, the default risk capital (DRC) and the residual risk add-on (RRAO). The
first component must be viewed as the pure market risk and is the equivalent of the capital
charge for the general market risk in the Basel I Accord. The second component captures the
jump-to-default risk (JTD) and replaces the specific risk that we find in the Basel I frame-
work. The last component captures specific risks that are difficult to measure in practice.

Sensitivity-based capital requirement This method consists in calculating a capital
charge for delta, vega and curvature risks, and then aggregating the three capital require-
ments:

K = KDelta + KVega + KCurvature

Seven risk classes are defined by the Basel Committee: (1) general interest rate risk (GIRR),
(2) credit spread risk (CSR) on non-securitization products, (3) CSR on non-correlation
trading portfolio (non-CTP), (4) CSR on correlation trading portfolio (CTP), (5) equity
risk, (6) commodity risk and (7) foreign exchange risk. The sensitivities of the different
instruments of one risk class are risk-weighted and then aggregated. The first level of ag-
gregation concerns the risk buckets, defined as risk factors with common characteristics.
For example, the bucket #1 for credit spread risk corresponds to all instruments that are
exposed to the IG sovereign credit spread. The second level of aggregation is done by con-
sidering the different buckets that compose the risk class. For example, the credit spread
risk is composed of 18 risk buckets (8 investment grade buckets, 7 high yield buckets, 2
index buckets and one other sector bucket).

For delta and vega components, we first begin to calculate the weighted sensitivity of
each risk factor Fj :

WSj = Sj · RWj

where Sj and RWj are the net sensitivity of the portfolio with respect to the risk factor
and the risk weight of Fj . More precisely, we have Sj =

∑
i Si,j where Si,j is the sensitivity

of the instrument i with respect to Fj . Second, we calculate the capital requirement for the
risk bucket Bk:

KBk =

√√√√√max

∑
j

WS2
j +

∑
j′ 6=j

ρj,j′ WSj WSj′ , 0


where Fj ∈ Bk. We recognize the formula of a standard deviation23. Finally, we aggregate
the different buckets for a given risk class24:

KDelta/Vega =
√∑

k

K2
Bk +

∑
k′ 6=k

γk,k′ WSBk WSBk′

where WSBk =
∑
j∈Bk WSj is the weighted sensitivity of the bucket Bk. Again, we recognize

the formula of a standard deviation. Therefore, the capital requirement for delta and vega
risks can be viewed as a Gaussian risk measure with the following parameters:

1. the sensitivities Sj of the risk factors that are calculated by the bank;

2. the risk weights RWj of the risk factors;

23The variance is floored at zero, because the correlation matrix formed by the cross-correlations ρj,j′ is
not necessarily positive definite.

24If the term under the square root is negative, the Basel Committee proposes an alternative formula.
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3. the correlation ρj,j′ between risk factors within a bucket;

4. the correlation γk,k′ between the risk buckets.

For the curvature risk, the methodology is different because it is based on two adverse
scenarios. We note Pi (Fj) the price of the instrument i when the current level of the risk
factor is Fj . We calculate P+

i (Fj) = Pi
(
Fj + ∆F+

j

)
and P−i (Fj) = Pi

(
Fj −∆F−j

)
the

price of instrument i when the risk factor is shocked upward by ∆F+
j and downward by

∆F−j . The curvature risk capital requirement for the risk factor Fj is equal to:

CVR±j = −
∑
i

(
P±i (Fj)− Pi (Fj)− Si,j · RWCRV

j

)
where Si,j is the delta sensitivity25 of instrument i with respect to the risk factor Fj and
RWCRV

j is the curvature risk weight of Fj . CVR+
j and CVR−j play the role of WSj in the

delta/vega capital computation. The capital requirement for the bucket (or risk class) Bk
is:

K±Bk =

√√√√√max

∑
j

(
max

(
CVR±j , 0

))2 +
∑
j′ 6=j

ρj,j′ψ
(
CVR±j ,CVR±j′

)
, 0


where ψ (CVRj ,CVRj′) is equal to 0 if the two arguments are both negative or is equal
to CVRj ×CVRj′ otherwise. Then, the capital requirement for the risk bucket Bk is the
maximum of the two adverse scenarios:

KBk = max
(
K+
Bk ,K

−
Bk

)
At this stage, one scenario is selected: the upward scenario if K+

Bk > K−Bk or the downward
scenario if K+

Bk < K−Bk . And we define the curvature risk CVRBk for each bucket as follows:

CVRBk = 1
{
K+
Bk > K−Bk

}
·
∑
j∈Bk

CVR+
j +

1
{
K+
Bk < K−Bk

}
·
∑
j∈Bk

CVR−j

Finally, the capital requirement for the curvature risk is equal to:

KCurvature =

√√√√√max

∑
k

K2
Bk +

∑
k′ 6=k

γk,k′ψ
(
CVRBk ,CVRBk′

)
, 0


We conclude that we use the same methodology for delta, vega and curvature risks with
three main differences: the computation of the sensitivities, the scale of risk weights, and
the use of two scenarios for the curvature risk.

The first step consists in defining the risk factors. The Basel Committee gives a very
precise list of risk factors by asset classes (BCBS, 2019). For instance, the equity delta risk
factors are the equity spot prices and the equity repo rates, the equity vega risk factors

25For FX and equity risk classes, Si,j is the delta sensitivity of instrument i. For the other risk classes,
Si,j is the sum of delta sensitivities of instrument i with respect to the risk factor Fj .
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are the implied volatilities of options, and the equity curvature risk factors are the equity
spot prices. We retrieve the notions of delta, vega and gamma that we encounter in the
theory of options. In the case of the interest rate risk class (GIRR), the risk factors include
the yield curve26, a flat curve of market-implied inflation rates for each currency and some
cross-currency basis risks. For the other categories, the delta risk factors are credit spread
curves, commodity spot prices and exchange rates. As for equities, vega and curvature risk
factors correspond to implied volatilities of options and aggregated delta risk factors.

The second step consists in calculating the sensitivities. The equity delta sensitivity of
the instrument i with respect to the equity risk factor Fj is given by:

Si,j = ∆i (Fj) · Fj

where ∆i (Fj) measures the (discrete) delta27 of the instrument i by shocking the equity risk
factor Fj by 1%. If the instrument i corresponds to a stock, the sensitivity is exactly the price
of this stock when the risk factor is the stock price, and zero otherwise. If the instrument i
corresponds to an European option on this stock, the sensitivity is the traditional delta of
the option times the stock price. The previous formula is also valid for FX and commodity
risks. For interest rate and credit risks, the delta corresponds to the PV01, that is a change
of the interest rate and credit spread by 1 bp. For the vega sensitivity, we have:

Si,j = υi (Fj) · Fj

where Fj is the implied volatility.
The third step consists in calculating the risk-weighted sensitivities WSj . For that, we

use the tables given in BCBS (2019). For example, the risk weight for the 3M interest rate
is equal to 1.7% while the risk weight for the 30Y interest rate is equal to 1.1% (BCBS,
2019, Table 1, page 38). For equity spot prices, the risk weight goes from 15% for large
cap DM indices to 70% for small cap EM stocks (BCBS, 2019, Table 10, page 47). The
fourth step computes the capital charge for each bucket. In this case, we need the ‘factor ’
correlations ρj,j′ between the risk factors within the same bucket. For example, the yield
curve correlations between the 10 tenors of the same currency are given in Table 2 on page 38
in BCBS (2019). For the equity risk, ρj,j′ goes from 7.5% to 80%. Finally, we can compute the
capital by considering the ‘bucket’ correlations. For example, γk,k′ is set to 50% between the
different currencies in the case of the interest rate risk. We must note that the values given by
the Basel Committee correspond to a medium correlation scenario. The Basel Committee
observes that correlations may increase or decrease in period of a stressed market, and
impose that the bank must use the maximum of capital requirement under three correlation
scenarios: medium, high and low. Under the high correlation scenario, the correlations are
increased: ρHigh

j,j′ = min (1.25× ρj,j′ , 1) and γHigh
k,k′ = min (1.25× γk,k′ , 1). Under the low

correlation scenario, the correlations are decreased: ρLow
j,j′ = max (2× ρj,j′ − 1, 0.75× ρj,j′)

and γLow
k,k′ = max (2× γk,k′ − 1, 0.75× γk,k′). Figure 2.4 shows how the medium correlation

is scaled to high and low correlation scenarios.

26The risk factors correspond to the following tenors of the yield curve: 3M, 6M, 1Y, 2Y, 3Y, 5Y, 10Y,
15Y, 20Y and 30Y.

27It follows that:

Si,j =
Pi (1.01 · Fj)− Pi (Fj)

1.01 · Fj −Fj
· Fj

=
Pi (1.01 · Fj)− Pi (Fj)

0.01
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FIGURE 2.4: High, medium and low correlation scenarios

Default risk capital The gross jump-to-default (JTD) risk is computed by differentiating
long and short exposures28:

JTDLong = max (N · LGD +Π, 0)

and:
JTDShort = min (N · LGD +Π, 0)

where N is the notional, LGD is the loss given default29 and Π is the current P&L. Then,
we offset long and short exposures to the same obligor under some conditions of seniority
and maturity. At this stage, we obtain net JTD exposures, that can be positive (long) or
negative (short). Three buckets are defined: (1) corporates, (2) sovereigns and (3) local
governments and municipalities. For each bucket Bk, the capital charge is calculated as
follows:

KDRC
Bk = max

 ∑
i∈Long

RWi · JTDNet
i −HBR

∑
i∈Short

RWi ·
∣∣∣JTDNet

i

∣∣∣ , 0
 (2.2)

where the risk weight depends on the rating of the obligor:

Rating AAA AA A BBB BB B CCC NR
RW 0.5% 2% 3% 6% 15% 30% 50% 15%

28A long exposure implies that the default results in a loss, whereas a short exposure implies that the
default results in a gain.

29The default values are 100% for equity and non-senior debt instruments, 75% for senior debt instruments,
25% for covered bonds and 0% for FX instruments.
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and HBR is the hedge benefit ratio:

HBR =
∑
i∈Long JTDNet

i∑
i∈Long JTDNet

i +
∑
i∈Short

∣∣∣JTDNet
i

∣∣∣
At first sight, Equation (2.2) seems to be complicated. In order to better understand this
formula, we assume that there is no short credit exposure and the P&L of each instrument
is equal to zero. Therefore, the capital charge for the bucket Bk is equal to:

KDRC
Bk =

∑
i∈Bk

Ni · LGDi︸ ︷︷ ︸
EADi

· RWi

We recognize the formula for computing the credit risk capital when we replace the exposure
at default by the product of the notional and the loss given default. In the case of a portfolio
of loans, the exposures are always positive. In the case of a trading portfolio, we face
more complex situations because we can have both long and short credit exposures. The
introduction of the hedge benefit ratio allows to mitigate the risk of long credit exposures.

Remark 3 The previous framework is valid for non-securitization instruments. For secu-
ritization, a similar approach is followed, but the LGD factor disappears in order to avoid
double counting. Moreover, the treatment of offsetting differs for non-CTP and CTP prod-
ucts.

Residual risk add-on The idea of this capital charge is to capture market risks which are
not taken into account by the two previous methods. Residual risks concerns instruments
with an exotic underlying (weather, natural disasters, longevity, etc.), payoffs that are not
a linear combination of vanilla options (spread options, basket options, best-of, worst-of,
etc.), or products that present significant gap, correlation or behavioral risks (digital options,
barrier options, embedded options, etc.). We have:

KRRAO
i = Ni · RWi

where RWi is equal to 1% for instruments with an exotic underlying and 10 bps for the
other residual risks.

2.1.2.2 Internal model-based approach

As in the first Basel Accord, the Basel III framework includes general criteria, qualitative
standards, quantitative criteria, backtesting procedures and stress testing approaches. The
main difference concerning general criteria is the introduction of trading desks. According
to BCBS (2019), a trading desk is “an unambiguously defined group of traders or trading
accounts that implements a well-defined business strategy operating within a clear risk
management structure”. Internal models are implemented at the trading desk level. Within
a bank, some trading desks are then approved for the use of internal models, while other
trading desks must use the SA-TB approach. The Basel Committee reinforces the role of the
model validation unit, the process of the market risk measurement system (documentation,
annual independent review, etc.) and the use of stress scenarios.

Capital requirement for modellable risk factors Concerning capital requirements,
the value-at-risk at the 99% confidence level is replaced by the expected shortfall at the
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TABLE 2.3: Liquidity horizon (Basel III)

Liquidity class k Liquidity horizon hk
1 10
2 20
3 40
4 60
5 120

97.5% confidence level. Moreover, the 10-day holding period is not valid for all instruments.
Indeed, the expected shortfall must take into account the liquidity risk and we have:

ESα (w) =

√√√√ 5∑
k=1

(
ESα (w;hk)

√
hk − hk−1

h1

)2

where:

• ESα (w;h1) is the expected shortfall of the portfolio w at horizon 10 days by consid-
ering all risk factors;

• ESα (w;hk) is the expected shortfall of the portfolio w at horizon hk days by consid-
ering the risk factors Fj that belongs to the liquidity class k;

• hk is the horizon of the liquidity class k, which is given in Table 2.3 (h0 is set to zero).

This expected shortfall framework is valid for modellable risk factors. Within this frame-
work, all instruments are classified into 5 buckets (10, 20, 40, 60 and 120 days), which are
defined by BCBS (2019) as follows:

1. Interest rates (specified currencies30 and domestic currency of the bank), equity prices
(large caps), FX rates (specified currency pairs31).

2. Interest rates (unspecified currencies), equity prices (small caps) and volatilities (large
caps), FX rates (currency pairs), credit spreads (IG sovereigns), commodity prices
(energy, carbon emissions, precious metals, non-ferrous metals).

3. FX rates (other types), FX volatilities, credit spreads (IG corporates and HY
sovereigns).

4. Interest rates (other types), IR volatility, equity prices (other types) and volatilities
(small caps), credit spreads (HY corporates), commodity prices (other types) and
volatilities (energy, carbon emissions, precious metals, non-ferrous metals).

5. Credit spreads (other types) and credit spread volatilities, commodity volatilities and
prices (other types).

The expected shortfall must reflect the risk measure for a period of stress. For that, the
Basel Committee proposes an indirect approach:

ESα (w;h) = ES(reduced,stress)
α (w;h) ·min

(
ES(full,current)

α (w;h)
ES(reduced,current)

α (w;h)
, 1
)

30The specified currencies are composed of EUR, USD, GBP, AUD, JPY, SEK and CAD.
31They correspond to the 20 most liquid currencies: USD, EUR, JPY, GBP, AUD, CAD, CHF, MXN,

CNY, NZD, RUB, HKD, SGD, TRY, KRW, SEK, ZAR, INR, NOK and BRL.
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where ES(full,current)
α is the expected shortfall based on the current period with the full set

of risk factors, ES(reduced,current)
α is the expected shortfall based on the current period with

a restricted set of risk factors and ES(reduced,stress)
α is the expected shortfall based on the

stress period32 with the restricted set of risk factors. The Basel Committee recognizes that
it is difficult to calculate directly ES(full,stress)

α (w;h) on the stress period with the full set of
risk factors. Therefore, the previous formula assumes that there is a proportionality factor
between the full set and the restricted set of risk factors33:

ES(full,stress)
α (w;h)

ES(full,current)
α (w;h)

≈ ES(reduced,stress)
α (w;h)

ES(reduced,current)
α (w;h)

Example 11 In the table below, we have calculated the 10-day expected shortfall for a given
portfolio:

Set of Period Liquidity class
risk factors 1 2 3 4 5

Full Current 100 75 34 12 6
Reduced Current 88 63 30 7 5
Reduced Stress 112 83 47 9 7

As expected, the expected shortfall decreases with the liquidity horizon, because there are less
and less risk factors that belong to the liquidity class. We also verify that the ES for the
reduced set of risk factors is lower than the ES for the full set of risk factors.

TABLE 2.4: Scaled expected shortfall

k Sck
Full Reduced Reduced Full/Stress Full

Current Current Stress (not scaled) Stress
1 1 100.00 88.00 112.00 127.27 127.27
2 1 75.00 63.00 83.00 98.81 98.81
3
√

2 48.08 42.43 66.47 53.27 75.33
4
√

2 16.97 9.90 12.73 15.43 21.82
5
√

6 14.70 12.25 17.15 8.40 20.58
Total 135.80 117.31 155.91 180.38

Results are given in Table 2.4. For each liquidity class k, we have reported the scaling
factor Sck =

√
(hk − hk−1) /h1, the scaled expected shortfall ES?α (w;hk) = Sck·ESα (w;hk)

(columns 3, 4 and 5) and the total expected shortfall ESα (w) =
√∑5

k=1 (ES?α (w;hk))2. It
is respectively equal to 135.80, 117.31 and 155.91 for the full/current, reduced/current and
reduced/stress case. Since the proportionality factor is equal to 135.80/117.31 = 1.1576,
we deduce that the ES for the full set of risk factors and the stress period is equal to
1.1576 × 155.91 = 180.48. Another way to calculate the ES is first to compute the ES for
the full set of risk factors and the stress period for each liquidity class k and deduce the
scaled expected shortfall (columns 6 and 7). In this case, the ES for the full set of risk
factors and the stress period is equal to 180.38.

32The bank must consider the most severe 12-month period of stress available.
33However, the Basel Committee indicates that the reduced set of risk factors must explain al leat 75%

of the risk in periods of stress.
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The final step for computing the capital requirement (also known as the ‘internally
modelled capital charge’) is to apply this formula:

IMCC = % · IMCCglobal + (1− %) ·
5∑
k=1

IMCCk

where % is equal to 50%, IMCCglobal is the stressed ES calculated with the internal model
and cross-correlations between risk classes, IMCCk is the stressed ES calculated at the risk
class level (interest rate, equity, foreign exchange, commodity and credit spread). IMCC is
then an average of two capital charges: one that takes into account cross-correlations and
another one that ignores diversification effects.

Capital requirement for non-modellable risk factors Concerning non-modellable
risk factors, the capital requirement is based on stress scenarios, that are equivalent to a
stressed expected shortfall. The Basel Committee distinguish three types of non-modellable
risk factors:

1. Non-modellable idiosyncratic credit spread risk factors (i = 1, . . . ,mc);

2. Non-modellable idiosyncratic equity risk factors (j = 1, . . . ,me);

3. Remaining non-modellable risk factors (k = 1, . . . ,mo).
The capital requirement for non-modellable risk factors is then equal to:

SES = SESCredit + SESEquity + SESOther

where SESCredit =
√∑mc

i=1 SES2
i , SESEquity =

√∑me
j=1 SES2

j and:

SESOther =

√√√√%2 ·

(
mo∑
k=1

SESk

)2

+ (1− %2) ·
mo∑
k=1

SES2
k

For non-modellable credit or equity risks, we assume a zero correlation. For the remaining
non-modellable risks, the correlation % is set to 60%. An important issue for computing
SES is the liquidity horizon. The Basel Committee imposes to consider the same values
used for modellable risk factors, with a floor of 20 days. For idiosyncratic credit spreads,
the liquidity horizon is set to 120 days.

Capital requirement for default risk The default risk capital (DRC) is calculated
using a value-at-risk model with a 99.9% confidence level. The computation must be done
using the same default probabilities that are used for the IRB approach. This implies that
default risk is calculated under the historical probability measure, and not under the risk-
neutral probability measure. This is why market-implied default probabilities are prohibited.

Capital requirement for the market risk For eligible trading desks that are approved
to use the IMA approach, the capital requirement for market risk is equal to:

KIMA
t = max

(
IMCCt−1 + SESt−1,

mc

∑60
i=1 IMCCt−i +

∑60
i=1 SESt−i

60

)
+

DRC (2.3)

where mc = 1.5 + ξ and 0 ≤ ξ ≤ 0.5. This formula is similar to the one defined in the Basel
I Accord. We notice that the magnitude of the multiplication factor mc has changed since
we have 1.5 ≤ mc ≤ 2.
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TABLE 2.5: Value of the penalty coefficient ξ in Basel III

Zone Number of
ξexceptions

Green 0 – 4 0.00

Amber

5 0.20
6 0.26
7 0.33
8 0.38
9 0.42

Red 10+ 0.50

Backtesting The backtesting procedure continues to be based on the daily VaR with
a 99% confidence level and a sample of the last 250 observations. Table 2.5 presents the
definition of the color zones. We notice that the amber zone replaces the yellow zone,
and the values of the penalty coefficient ξ have changed. The value of the multiplier mc =
1.5+ξ depends then on the one-year backtesting procedure at the bank-wide level. However,
the bank must also conduct backtesting exercises for each eligible trading desk because of
two reasons. First, the P&L attribution (PLA) is one of the pillars for the approval of
trading desks by supervisory authorities. It is highly reinforced with several PLA tests,
that distinguish actual P&L (including intra-day trading activities) and hypothetical P&L
(static portfolio). Second, if one eligible trading desk is located in the amber zone, the
formula (2.3) is modified in order to take into account a capital surcharge. Moreover, if one
eligible trading desk has more than 12 exceptions34, the bank must use the SA-TB approach
for calculating the capital charge of this trading desk.

2.2 Statistical estimation methods of risk measures
We have seen that Basel I is based on the value-at-risk while Basel III uses the expected

shortfall for computing the capital requirement for market risk. In this section, we define
precisely what a risk measure is and we analyze the value-at-risk and the expected shortfall,
which are the two regulatory risk measures. In particular, we present the three statistical
approaches (historical, analytical and Monte Carlo) that are available. The last part of this
section is dedicated to options and exotic products.

2.2.1 Definition
2.2.1.1 Coherent risk measures

Let R (w) be the risk measure of portfolio w. In this section, we define the different
properties that should satisfy the risk measure R (w) in order to be acceptable in terms of
capital allocation. Following Artzner et al. (1999), R is said to be ‘coherent’ if it satisfies
the following properties:

34The Basel Committee adds a second inclusive condition: the trading desk must have less than 30
exceptions at the 97.5% confidence level. This remark shows that the bank must in fact conduct two
backtesting procedures at the trading desk level: one based at the 99% confidence level and another one
based at the 97.5% confidence level.
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1. Subadditivity
R (w1 + w2) ≤ R (w1) +R (w2)

The risk of two portfolios should be less than adding the risk of the two separate
portfolios.

2. Homogeneity
R (λw) = λR (w) if λ ≥ 0

Leveraging or deleveraging of the portfolio increases or decreases the risk measure in
the same magnitude.

3. Monotonicity
if w1 ≺ w2, then R (w1) ≥ R (w2)

If portfolio w2 has a better return than portfolio w1 under all scenarios, risk measure
R (w1) should be higher than risk measure R (w2).

4. Translation invariance

if m ∈ R, then R (w +m) = R (w)−m

Adding a cash position of amount m to the portfolio reduces the risk by m. This
implies that we can hedge the risk of the portfolio by considering a capital that is
equal to the risk measure:

R (w +R (w)) = R (w)−R (w) = 0

The definition of coherent risk measures led to a considerable interest in the quantitative
risk management. Thus, Föllmer and Schied (2002) propose to replace the homogeneity and
subadditivity conditions by a weaker condition called the convexity property:

R (λw1 + (1− λ)w2) ≤ λR (w1) + (1− λ)R (w2)

This condition means that diversification should not increase the risk.
We can write the loss of a portfolio as L (w) = −Pt (w)Rt+h (w) where Pt (w) and

Rt+h (w) are the current value and the future return of the portfolio. Without loss of
generality35, we assume that Pt (w) is equal to 1. In this case, the expected loss E [L (w)]
is the opposite of the expected return µ (w) of the portfolio and the standard deviation
σ (L (w)) is equal to the portfolio volatility σ (w). We consider then different risk measures:

• Volatility of the loss
R (w) = σ (L (w)) = σ (w)

The volatility of the loss is the standard deviation of the portfolio loss.

• Standard deviation-based risk measure

R (w) = SDc (w) = E [L (w)] + c · σ (L (w)) = −µ (w) + c · σ (w)

To obtain this measure, we scale the volatility by factor c > 0 and subtract the
expected return of the portfolio.

35The homogeneity property implies that:

R
(

w

Pt (w)

)
=
R (w)
Pt (w)

We can therefore calculate the risk measure using the absolute loss (expressed in $) or the relative loss
(expressed in %). The two approaches are perfectly equivalent.



Market Risk 63

• Value-at-risk
R (w) = VaRα (w) = inf {` : Pr {L (w) ≤ `} ≥ α}

The value-at-risk is the α-quantile of the loss distribution F and we note it F−1 (α).

• Expected shortfall

R (w) = ESα (w) = 1
1− α

∫ 1

α

VaRu (w) du

The expected shortfall is the average of the VaRs at level α and higher (Acerbi and
Tasche, 2002). We note that it is also equal to the expected loss given that the loss is
beyond the value-at-risk:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

By definition, the expected shortfall is greater or equal than the value-at-risk for a
given confidence level.

We can show that the standard deviation-based risk measure and the expected shortfall
satisfy the previous coherency and convexity conditions. For the value-at-risk, the subaddi-
tivity property does not hold in general. This is a problem because the portfolio risk may
have be meaningful in this case. More curiously, the volatility is not a coherent risk measure
because it does not verify the translation invariance axiom.

Example 12 We consider a $100 defaultable zero-coupon bond, whose default probability
is equal to 200 bps. We assume that the recovery rate R is a binary random variable with
Pr {R = 0.25} = Pr {R = 0.75} = 50%.

Below, we have represented the probability tree diagram of the loss L of the zero-
coupon bond. We deduce that F (0) = Pr {L ≤ 0} = 98%, F (25) = Pr {Li ≤ 25} = 99%
and F (75) = Pr {Li ≤ 75} = 100%.

100

D = 1

R = 75%Pr = 50%

R = 25%Pr = 50%Pr = 2%

D = 0

Pr = 98%

L = 0

L = 25

L = 75

It follows that the 99% value-at-risk is equal to $25, and we have:

ES99% (L) = E [L | L ≥ 25]

= 25 + 75
2

= $50
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We assume now that the portfolio contains two zero-coupon bonds, whose default times are
independent. The probability density function of (L1, L2) is given below:

L1 = 0 L1 = 25 L1 = 75
L2 = 0 96.04% 0.98% 0.98% 98.00%
L2 = 25 0.98% 0.01% 0.01% 1.00%
L2 = 75 0.98% 0.01% 0.01% 1.00%

98.00% 1.00% 1.00%

We deduce that the probability distribution function of L = L1 + L2 is:

` 0 25 50 75 100 150
Pr {L = `} 96.04% 1.96% 0.01% 1.96% 0.02% 0.01%
Pr {L ≤ `} 96.04% 98% 98.01% 99.97% 99.99% 100%

It follows that VaR99% (L) = 75 and:

ES99% (L) = 75× 1.96% + 100× 0.02% + 150 ∗ 0.01%
1.96% + 0.02% + 0.01%

= $75.63

For this example, the value-at-risk does not satisfy the subadditivity property, which is not
the case of the expected shortfall36.

For this reason, the value-at-risk has been frequently criticized by academics. They
also pointed out that it does not capture the tail risk of the portfolio. This led the Basel
Committee to replace the 99% value-at-risk by the 97.5% expected shortfall for the internal
model-based approach in Basel III (BCBS, 2019).

2.2.1.2 Value-at-risk

The value-at-risk VaRα (w;h) is defined as the potential loss which the portfolio w can
suffer for a given confidence level α and a fixed holding period h. Three parameters are
necessary to compute this risk measure:

• the holding period h, which indicates the time period to calculate the loss;

• the confidence level α, which gives the probability that the loss is lower than the
value-at-risk;

• the portfolio w, which gives the allocation in terms of risky assets and is related to
the risk factors.

Without the first two parameters, it is not possible to interpret the amount of the value-
at-risk, which is expressed in monetary units. For instance, a portfolio with a VaR of $100
mn may be regarded as highly risky if the VaR corresponds to a 90% confidence level and a
one-day holding period, but it may be a low risk investment if the confidence level is 99.9%
and the holding period is one year.

We note Pt (w) the mark-to-market value of the portfolio w at time t. The profit and
loss between t and t+ h is equal to:

Π (w) = Pt+h (w)− Pt (w)

36We have VaR99% (L1) + VaR99% (L2) = 50, VaR99% (L1 + L2) > VaR99% (L1) + VaR99% (L2),
ES99% (L1) + ES99% (L2) = 100 and ES99% (L1 + L2) < ES99% (L1) + ES99% (L2).
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We define the loss of the portfolio as the opposite of the P&L: L (w) = −Π (w). At time
t, the loss is not known and is therefore random. From a statistical point of view, the
value-at-risk VaRα (w;h) is the quantile37 of the loss for the probability α:

Pr {L (w) ≤ VaRα (w;h)} = α

This means that the probability that the random loss is lower than the VaR is exactly equal
to the confidence level. We finally obtain:

VaRα (w;h) = F−1
L (α)

where FL is the distribution function of the loss38.
We notice that the previous analysis assumes that the portfolio remains unchanged be-

tween t and t+h. In practice, it is not the case because of trading and rebalancing activities.
The holding period h depends then on the nature of the portfolio. The Basel Committee
has set h to one trading day for performing the backtesting procedure in order to minimize
rebalancing impacts. However, h is equal to 10 trading days for capital requirements in Basel
I. It is the period which is considered necessary to ensure the rebalancing of the portfolio if
it is too risky or if it costs too much regulatory capital. The confidence level α is equal to
99% meaning that there is an exception every 100 trading days. It is obvious that it does
not correspond to an extreme risk measure. From the point of view of regulators, the 99%
value-at-risk gives then a measure of the market risk in the case of normal conditions.

2.2.1.3 Expected shortfall

The expected shortfall ESα (w;h) is defined as the expected loss beyond the value-at-risk
of the portfolio:

ESα (w;h) = E [L (w) | L (w) ≥ VaRα (w;h)]

Therefore, it depends on the three parameters (h, α and w) of the VaR. Since we have
ESα (w;h) ≥ VaRα (w;h), the expected shortfall is considered as a risk measure under
more extreme conditions than the value-at-risk. By construction, we also have:

α1 > α2 ⇒ ESα1 (w;h) ≥ VaRα2 (w;h)

However, it is impossible de compare the expected shortfall and the value-at-risk when the
ES confidence level is lower than the VaR confidence level (α1 < α2). This is why it is
difficult to compare the ES in Basel III (α = 97.5%) and the VaR in Basel I (α = 99%).

2.2.1.4 Estimator or estimate?

To calculate the value-at-risk or the expected shortfall, we first have to identify the risk
factors that affect the future value of the portfolio. Their number can be large or small
depending on the market, but also on the portfolio. For instance, in the case of an equity
portfolio, we can use the one-factor model (CAPM), a multi-factor model (industry risk
factors, Fama-French risk factors, etc. ) or we can have a risk factor for each individual
stock. For interest rate products, the Basel Committee imposes that the bank uses at least

37If the distribution of the loss is not continuous, the statistical definition of the quantile function is:

VaRα (w;h) = inf {x : Pr {L (w) ≤ x} ≥ α}

38In a similar way, we have Pr {Π (w) ≥ −VaRα (w;h)} = α and VaRα (w;h) = −F−1
Π (1− α) where FΠ

is the distribution function of the P&L.
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six factors to model the yield curve risk in Basel I and ten factors in Basel III. This contrasts
with currency and commodity portfolios where we must take into account one risk factor by
exchange rate and by currency. Let (F1, . . . ,Fm) be the vector of risk factors. We assume
that there is a pricing function g such that:

Pt (w) = g (F1,t, . . . ,Fm,t;w)

We deduce that the expression of the random loss is the difference between the current
value and the future value of the portfolio:

L (w) = Pt (w)− g (F1,t+h, . . . ,Fm,t+h;w)
= ` (F1,t+h, . . . ,Fm,t+h;w)

where ` is the loss function. The big issue is then to model the future values of risk factors.
In practice, the distribution FL is not known because the multidimensional distribution
of the risk factors is not known. This is why we have to estimate FL meaning that the
calculated VaR and ES are also two estimated values:

V̂aRα (w;h) = F̂−1
L (α) = −F̂−1

Π (1− α)

and:
ÊSα (w;h) = 1

1− α

∫ 1

α

F̂−1
L (u) du

Therefore, we have to make the difference between the estimator and the estimate. Indeed,
the calculated value-at-risk or expected shortfall is an estimate, meaning that it is a real-
ization of the corresponding estimator. In practice, there are three approaches to calculate
the risk measure depending on the method used to estimate F̂L:

1. the historical value-at-risk/expected shortfall, which is also called the empirical or
non-parametric VaR/ES;

2. the analytical (or parametric) value-at-risk/expected shortfall;

3. the Monte Carlo (or simulated) value-at-risk/expected shortfall.

The historical approach is the most widely used method by banks for computing the capital
charge. This is an unbiased estimator, but with a large variance. On the contrary, the
analytical estimator is biased, because it assumes a parametric function for the risk factors,
but it has a lower variance than the historical estimator. Finally, the Monte Carlo estimator
can produce an unbiased estimator with a small variance. However, it could be difficult to
put in place because it requires large computational times.

Remark 4 In this book, we use the statistical expressions VaRα (w;h) and ESα (w;h) in
place of V̂aRα (w;h) and ÊSα (w;h) in order to reduce the amount of notation.

2.2.2 Historical methods
The historical VaR corresponds to a non-parametric estimate of the value-at-risk. For

that, we consider the empirical distribution of the risk factors observed in the past. Let
(F1,s, . . . ,Fm,s) be the vector of risk factors observed at time s < t. If we calculate the
future P&L with this historical scenario, we obtain:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (w)
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If we consider nS historical scenarios (s = 1, . . . , nS), the empirical distribution F̂Π is
described by the following probability distribution:

Π (w) Π1 (w) Π2 (w) · · · ΠnS (w)
ps 1/nS 1/nS 1/nS

because each probability of occurrence is the same for all the historical scenarios. To calcu-
late the empirical quantile F̂−1

L (α), we can use two approaches: the order statistic approach
and the kernel density approach.

2.2.2.1 The order statistic approach

Let X1, . . . , Xn be a sample from a continuous distribution F. Suppose that for a given
scalar α ∈ ]0, 1[, there exists a sequence {an} such that

√
n (an − nα)→ 0. Lehmann (1999)

shows that:
√
n
(
X(an:n) − F−1 (α)

)
→ N

(
0, α (1− α)
f2 (F−1 (α))

)
(2.4)

This result implies that we can estimate the quantile F−1 (α) by the mean of the nαth

order statistic. Let us apply the previous result to our problem. We calculate the order
statistics associated to the P&L sample {Π1 (w) , . . . ,ΠnS (w)}:

min
s

Πs (w) = Π(1:nS) ≤ Π(2:nS) ≤ · · · ≤ Π(nS−1:nS) ≤ Π(nS :nS) = max
s

Πs (w)

The value-at-risk with a confidence level α is then equal to the opposite of the nS (1− α)th

order statistic of the P&L:

VaRα (w;h) = −Π(nS(1−α):nS) (2.5)

If nS (1− α) is not an integer, we consider the interpolation scheme:

VaRα (w;h) = −
(
Π(q:nS) + (nS (1− α)− q)

(
Π(q+1:nS) −Π(q:nS)

))
where q = qα (nS) = bnS (1− α)c is the integer part of nS (1− α). For instance, if nS = 100,
the 99% value-at-risk corresponds to the largest loss. In the case where we use 250 historical
scenarios, the 99% value-at-risk is the mean between the second and third largest losses:

VaRα (w;h) = −
(
Π(2:250) + (2.5− 2)

(
Π(3:250) −Π(2:250)

))
= −1

2
(
Π(2:250) + Π(3:250)

)
= 1

2
(
L(249:250) + L(248:250)

)
Remark 5 We reiterate that VaRα (w;h) defined by Equation (2.5) is an estimator with
an asymptotic variance given by Equation (2.4). Suppose that the loss of the portfolio is
Gaussian and L (w) ∼ N (0, 1). The exact value-at-risk is Φ−1 (α) and takes the values 1.28
or 2.33 if α is equal to 90% or 99%. The standard deviation of the estimator depends on
the number nS of historical scenarios:

σ (VaRα (w;h)) ≈
√
α (1− α)

√
nSφ (Φ−1 (α))

In Figure 2.5, we have reported the density function of the VaR estimator. We notice that
the estimation error decreases with nS. Moreover, it is lower for α = 90% than for α = 99%,
because the density of the Gaussian distribution at the point x = 1.28 is larger than at the
point x = 2.33.
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FIGURE 2.5: Density of the VaR estimator (Gaussian case)

Example 13 We consider a portfolio composed of 10 stocks Apple and 20 stocks Coca-Cola.
The current date is 2 January 2015.

The mark-to-market of the portfolio is:

Pt (w) = 10× P1,t + 20× P2,t

where P1,t and P2,t are the stock prices of Apple and Coca-Cola. We assume that the market
risk factors corresponds to the daily stock returns R1,t and R2,t. We deduce that the P&L
for the scenario s is equal to:

Πs (w) = 10× P1,s + 20× P2,s︸ ︷︷ ︸
g(R1,s,R2,s;w)

− Pt (w)

where Pi,s = Pi,t × (1 +Ri,s) is the simulated price of stock i for the scenario s. In Table
2.6, we have reported the values of the first ten historical scenarios39. Using these scenarios,
we can calculate the simulated price Pi,s using the current price of the stocks ($109.33
for Apple and $42.14 for Coca-Cola). For instance, in the case of the 9th scenario, we
obtain:

P1,s = 109.33× (1− 0.77%) = $108.49
P2,s = 42.14× (1− 1.04%) = $41.70

39For instance, the market risk factor for the first historical scenario and for Apple is calculated as follows:

R1,1 =
109.33
110.38

− 1 = −0.95%
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We then deduce the simulated mark-to-market MtMs (w) = g (R1,s, R2,s;w), the current
value of the portfolio40 and the P&L Πs (w). These data are given in Table 2.7. In addition
to the first ten historical scenarios, we also report the results for the six worst cases and the
last scenario41. We notice that the largest loss is reached for the 236th historical scenario at
the date of 28 January 2014. If we rank the scenarios, the worst P&Ls are −84.34, −51.46,
−43.31, −40.75, −35.91 and −35.42. We deduce that the daily historical VaR is equal to:

VaR99% (w; one day) = 1
2 (51.46 + 43.31) = $47.39

If we assume that mc = 3, the corresponding capital charge represents 23.22% of the
portfolio value:

KVaR
t = 3×

√
10× 47.39 = $449.54

TABLE 2.6: Computation of the market risk factors R1,s and R2,s

s Date Apple Coca-Cola
Price R1,s Price R2,s

1 2015-01-02 109.33 −0.95% 42.14 −0.19%
2 2014-12-31 110.38 −1.90% 42.22 −1.26%
3 2014-12-30 112.52 −1.22% 42.76 −0.23%
4 2014-12-29 113.91 −0.07% 42.86 −0.23%
5 2014-12-26 113.99 1.77% 42.96 0.05%
6 2014-12-24 112.01 −0.47% 42.94 −0.07%
7 2014-12-23 112.54 −0.35% 42.97 1.46%
8 2014-12-22 112.94 1.04% 42.35 0.95%
9 2014-12-19 111.78 −0.77% 41.95 −1.04%
10 2014-12-18 112.65 2.96% 42.39 2.02%

Under Basel 2.5, we have to compute a second capital charge for the stressed VaR. If
we assume that the stressed period is from 9 October 2007 to 9 March 2009, we obtain
356 stressed scenarios. By applying the previous method, the six largest simulated losses
are42 219.20 (29/09/2008), 127.84 (17/09/2008), 126.86 (07/10/2008), 124.23 (14/10/2008),
115.24 (23/01/2008) and 99.55 (29/09/2008). The 99% SVaR corresponds to the 3.56th order
statistic. We deduce that:

SVaR99% (w; one day) = 126.86 + (3.56− 3)× (124.23− 126.86)
= $125.38

It follows that:
KSVaR
t = 3×

√
10× 125.38 = $1 189.49

The total capital requirement under Basel 2.5 is then:

Kt = KVaR
t + KSVaR

t = $1 639.03

It represents 84.6% of the current mark-to-market!

40We have:
Pt (w) = 10× 109.33 + 20× 42.14 = $1 936.10

41We assume that the value-at-risk is calculated using 250 historical scenarios (from 2015-01-02 to 2014-
01-07).

42We indicate in brackets the scenario day of the loss.
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TABLE 2.7: Computation of the simulated P&L Πs (w)

s Date Apple Coca-Cola MtMs (w) Πs (w)
R1,s P1,s R2,s P2,s

1 2015-01-02 −0.95% 108.29 −0.19% 42.06 1 924.10 −12.00
2 2014-12-31 −1.90% 107.25 −1.26% 41.61 1 904.66 −31.44
3 2014-12-30 −1.22% 108.00 −0.23% 42.04 1 920.79 −15.31
4 2014-12-29 −0.07% 109.25 −0.23% 42.04 1 933.37 −2.73
5 2014-12-26 1.77% 111.26 0.05% 42.16 1 955.82 19.72
6 2014-12-24 −0.47% 108.82 −0.07% 42.11 1 930.36 −5.74
7 2014-12-23 −0.35% 108.94 1.46% 42.76 1 944.57 8.47
8 2014-12-22 1.04% 110.46 0.95% 42.54 1 955.48 19.38
9 2014-12-19 −0.77% 108.49 −1.04% 41.70 1 918.91 −17.19
10 2014-12-18 2.96% 112.57 2.02% 42.99 1 985.51 49.41
23 2014-12-01 −3.25% 105.78 −0.62% 41.88 1 895.35 −40.75
69 2014-09-25 −3.81% 105.16 −1.16% 41.65 1 884.64 −51.46
85 2014-09-03 −4.22% 104.72 0.34% 42.28 1 892.79 −43.31
108 2014-07-31 −2.60% 106.49 −0.83% 41.79 1 900.68 −35.42
236 2014-01-28 −7.99% 100.59 0.36% 42.29 1 851.76 −84.34
242 2014-01-17 −2.45% 106.65 −1.08% 41.68 1 900.19 −35.91
250 2014-01-07 −0.72% 108.55 0.30% 42.27 1 930.79 −5.31

Remark 6 As the previous example has shown, directional exposures are highly penalized
under Basel 2.5. More generally, it is not always evident that capital requirements are lower
with IMA than with SMM (Crouhy et al., 2013).

Since the expected shortfall is the expected loss beyond the value-at-risk, it follows that
the historical expected shortfall is given by:

ESα (w;h) = 1
qα (nS)

nS∑
s=1

1 {Ls ≥ VaRα (w;h)} · Ls

or:

ESα (w;h) = − 1
qα (nS)

nS∑
s=1

1 {Πs ≤ −VaRα (w;h)} ·Πs

where qα (nS) = bns (1− α)c is the integer part of ns (1− α). We deduce that:

ESα (w;h) = − 1
qα (nS)

qα(nS)∑
i=1

Π(i:nS)

Computing the historical expected shortfall consists then in averaging the first qα (nS)
order statistics of the P&L. For example, if nS is equal to 250 scenarios and α = 97.5%, we
obtain ns (1− α) = 6.25 and qα (nS) = 6. In Basel III, computing the historical ES is then
equivalent to average the 6 largest losses of the 250 historical scenarios. In the table below,
we indicate the value of qα (nS) for different values of nS and α:

α / nS 100 150 200 250 300 350 400 450 500 1000
90.0% 9 14 19 24 29 34 39 44 49 99
95.0% 5 7 10 12 15 17 20 22 25 50
97.5% 2 3 5 6 7 8 10 11 12 25
99.0% 1 1 2 2 3 3 4 4 5 10
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Let us consider Example 13 on page 68. We have found that the historical value-at-
risk VaR99% (w; one day) of the Apple/Coca-Cola portfolio was equal to $47.39. The 99%
expected shortfall is the average of the two largest losses:

ES99% (w; one day) = 84.34 + 51.46
2 = $67.90

However, the confidence level is set to 97.5% in Basel III, meaning that the expected shortfall
is the average of the six largest losses:

ES97.5% (w; one day) = 84.34 + 51.46 + 43.31 + 40.75 + 35.91 + 35.42
6

= $48.53

2.2.2.2 The kernel approach

Let {x1, . . . , xn} be a sample of the random variable X. In Section 10.1.4.1 on page 637,
we show that we can estimate the empirical distribution F̂ (x) = n−1∑n

i=1 1 {xi ≤ x} by
the kernel estimator:

F̂ (x) = 1
n

n∑
i=1
I
(
x− xi
hhh

)
where I is the integrated kernel function and hhh is the bandwidth.

To estimate the value-at-risk with a confidence level α, Gouriéroux et al. (2000) solves
the equation F̂L (VaRα (w;h)) = α or:

1
nS

nS∑
s=1
I
(
−VaRα (w;h)−Πs (w)

hhh

)
= 1− α

If we consider Example 13 on page 68 with the last 250 historical scenarios, we obtain
the results given in Figure 2.6. We have reported the estimated distribution F̂Π of Π (w)
based on order statistic and Gaussian kernel methods43. We verify that the kernel approach
produces a smoother distribution. If we zoom on the 1% quantile, we notice that the two
methods give similar results. The daily VaR with the kernel approach is equal to $47.44
whereas it was equal to $47.39 with the order statistic approach.

For computing the non-parametric expected shortfall, we use the following result44:

E [X · 1 {X ≤ x}] ≈ 1
n

n∑
i=1

xiI
(
x− xi
hhh

)
Therefore, Scaillet (2004) shows that the kernel estimator of the expected shortfall is equal
to:

ESα (w;h) = − 1
(1− α)nS

nS∑
s=1

ΠsI
(
−VaRα (w;h)−Πs

hhh

)
In the case of the Apple/Coca-Cola example, we obtain ES99% (w;h) = $60.53 and
ES97.5% (w;h) = $45.28. With the kernel approach, we can estimate the value-at-risk and
the expected shortfall with a high confidence level α. For instance, if α = 99.25%, we have
(1− α)ns = 0.625 < 1. Therefore, it is impossible to estimate the VaR or the ES with 250
observations, which is not the case with the kernel estimator. In our example, we obtain
VaR99.75% (w;h) = $58.27 and ES 99.75% (w;h) = $77.32.

43We consider the Gaussian kernel defined by K (u) = φ (u) and I (u) = Φ (u). The estimated standard
deviation σ̂ (Π) is equal to 17.7147, while the bandwidth is hhh = 1.364× n−1/5 × σ̂ (Π) = 8.0027.

44See Exercise 2.4.12 on page 124.
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FIGURE 2.6: Kernel estimation of the historical VaR

Remark 7 Monte Carlo simulations reveal that the kernel method reduces the variance of
the VaR estimation, but not the variance of the ES estimation (Chen, 2007). In practice,
the kernel approach gives similar figures than the order statistic approach, especially when
the number of scenarios is large. However, the two estimators may differ in the presence of
fat tails. For large confidence levels, the method based on order statistics seems to be more
conservative.

2.2.3 Analytical methods
2.2.3.1 Derivation of the closed-form formula

Gaussian value-at-risk We speak about analytical value-at-risk when we are able to
find a closed-form formula of F−1

L (α). Suppose that L (w) ∼ N
(
µ (L) , σ2 (L)

)
. In this case,

we have Pr
{
L (w) ≤ F−1

L (α)
}

= α or:

Pr
{
L (w)− µ (L)

σ (L) ≤
F−1
L (α)− µ (L)

σ (L)

}
= α⇔ Φ

(
F−1
L (α)− µ (L)

σ (L)

)
= α

We deduce that:

F−1
L (α)− µ (L)

σ (L) = Φ−1 (α)⇔ F−1
L (α) = µ (L) + Φ−1 (α)σ (L)

The expression of the value-at-risk is then45:

VaRα (w;h) = µ (L) + Φ−1 (α)σ (L) (2.6)

45We also have VaRα (w;h) = −µ (Π) + Φ−1 (α)σ (Π) because the P&L Π (x) is the opposite of the
portfolio loss L (x) meaning that µ (Π) = −µ (L) and σ (Π) = σ (L).
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This formula is known as the Gaussian value-at-risk. For instance, if α = 99% (resp. 95%),
Φ−1 (α) is equal to 2.33 (resp. 1.65) and we have:

VaRα (w;h) = µ (L) + 2.33× σ (L)

Remark 8 We notice that the value-at-risk depends on the parameters µ (L) and σ (L).
This is why the analytical value-at-risk is also called the parametric value-at-risk. In prac-
tice, we don’t know these parameters and we have to estimate them. This implies that the
analytical value-at-risk is also an estimator. For the Gaussian distribution, we obtain:

V̂aRα (w;h) = µ̂ (L) + Φ−1 (α) σ̂ (L)

In practice, it is extremely difficult to estimate the mean and we set µ̂ (L) = 0.

Example 14 We consider a short position of $1 mn on the S&P 500 futures contract. We
estimate that the annualized volatility σ̂SPX is equal to 35%. Calculate the daily value-at-risk
with a 99% confidence level.

The portfolio loss is equal to L (w) = N × RSPX where N is the exposure amount
(−$1 mn) and RSPX is the (Gaussian) return of the S&P 500 index. We deduce that the
annualized loss volatility is σ̂ (L) = |N | × σ̂SPX. The value-at-risk for a one-year holding
period is:

VaR99% (w; one year) = 2.33× 106 × 0.35 = $815 500
By using the square-root-of-time rule, we deduce that:

VaR99% (w; one day) = 815 500√
260

= $50 575

This means that we have a 1% probability to lose more than $50 575 per day.
In finance, the standard model is the Black-Scholes model where the price St of the asset

is a geometric Brownian motion:

dSt = µSSt dt+ σSSt dWt

and Wt is a Wiener process. We can show that:

lnSt2 − lnSt1 =
(
µS −

1
2σ

2
S

)
(t2 − t1) + σS (Wt2 −Wt1)

for t2 ≥ t1. We have Wt2 −Wt1 =
√
t2 − t1ε where ε ∼ N (0, 1). We finally deduce that

var (lnSt2 − lnSt1) = σ2
S (t2 − t1). Let RS (∆t) be a sample of log-returns measured at a

regular time interval ∆t. It follows that:

σ̂S = 1√
∆t
· σ (RS (∆t))

If we consider two sample periods ∆t and ∆t′, we obtain the following relationship:

σ (RS (∆t′)) =
√

∆t′
∆t · σ (RS (∆t))

For the mean, we have µ̂S = ∆t−1 · E [RS (∆t)] and E (RS (∆t′)) = (∆t′/∆t) · E (RS (∆t)).
We notice that the square-root-of-time rule is only valid for the volatility and therefore for
risk measures that are linear with respect to the volatility. In practice, there is no other
solution and this explains why this rule continues to be used even if we know that the
approximation is poor when the portfolio loss is not Gaussian.
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Gaussian expected shortfall By definition, we have:

ESα (w) = E [L (w) | L (w) ≥ VaRα (w)]

= 1
1− α

∫ ∞
F−1
L

(α)
xfL (x) dx

where fL and FL are the density and distribution functions of the loss L (w). In the Gaussian
case L (w) ∼ N

(
µ (L) , σ2 (L)

)
, we have VaRα (w) = F−1

L (α) = µ (L) + Φ−1 (α)σ (L) and:

ESα (w) = 1
1− α

∫ ∞
µ(L)+Φ−1(α)σ(L)

x

σ (L)
√

2π
exp

(
−1

2

(
x− µ (L)
σ (L)

)2
)

dx

With the variable change t = σ (L)−1 (x− µ (L)), we obtain:

ESα (w) = 1
1− α

∫ ∞
Φ−1(α)

(µ (L) + σ (L) t) 1√
2π

exp
(
−1

2 t
2
)

dt

= µ (L)
1− α [Φ (t)]∞Φ−1(α) + σ (L)

(1− α)
√

2π

∫ ∞
Φ−1(α)

t exp
(
−1

2 t
2
)

dt

= µ (L) + σ (L)
(1− α)

√
2π

[
− exp

(
−1

2 t
2
)]∞

Φ−1(α)

= µ (L) + σ (L)
(1− α)

√
2π

exp
(
−1

2
[
Φ−1 (α)

]2)
The expected shortfall of the portfolio w is then:

ESα (w) = µ (L) +
φ
(
Φ−1 (α)

)
(1− α) σ (L)

When the portfolio loss is Gaussian, the value-at-risk and the expected shortfall are both a
standard deviation-based risk measure. They coincide when the scaling parameters cVaR =
Φ−1 (αVaR) and cES = φ

(
Φ−1 (αES)

)
/ (1− αES) are equal46. In Table 2.8, we report the

values taken by cVaR and cES. We notice that the 97.5% Gaussian expected shortfall is very
close to the 99% Gaussian value-at-risk.

TABLE 2.8: Scaling factors cVaR and cES

α (in %) 95.0 96.0 97.0 97.5 98.0 98.5 99.0 99.5
cVaR 1.64 1.75 1.88 1.96 2.05 2.17 2.33 2.58
cES 2.06 2.15 2.27 2.34 2.42 2.52 2.67 2.89

Remark 9 In the Gaussian case, the Basel III framework consists in replacing the scaling
factor 2.33 by 2.34. In what follows, we focus on the VaR, because the ES figures can be
directly deduced.

46The equality is achieved when (αVaR, αES) is equal to (90%, 75.44%), (95%, 87.45%), (99%, 97.42%),
(99.9%, 99.74%), etc.
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2.2.3.2 Linear factor models

We consider a portfolio of n assets and a pricing function g which is linear with respect
to the asset prices. We have:

g (Ft;w) =
n∑
i=1

wiPi,t

We deduce that the random P&L is:

Π (w) = Pt+h (w)− Pt (w)

=
n∑
i=1

wiPi,t+h −
n∑
i=1

wiPi,t

=
n∑
i=1

wi (Pi,t+h − Pi,t)

Here, Pi,t is known whereas Pi,t+h is stochastic. The first idea is to choose the factors as
the future prices. The problem is that prices are far to be stationary meaning that we will
face some issues to model the distribution FΠ. Another idea is to write the future price as
follows:

Pi,t+h = Pi,t (1 +Ri,t+h)

where Ri,t+h is the asset return between t and t+ h. In this case, we obtain:

Π (w) =
n∑
i=1

wiPi,tRi,t+h

In this approach, the asset returns are the market risk factors and each asset has its own
risk factor.

The covariance model Let Rt be the vector of asset returns. We note Wi,t = wiPi,t the
wealth invested (or the nominal exposure) in asset i and Wt = (W1,t, . . . ,Wn,t). It follows
that:

Π (w) =
n∑
i=1

Wi,tRi,t+h = W>t Rt+h

If we assume that Rt+h ∼ N (µ,Σ), we deduce that µ (Π) = W>t µ and σ2 (Π) = W>t ΣWt.
Using Equation (2.6), the expression of the value-at-risk is47:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

In this approach, we only need to estimate the covariance matrix of asset returns to compute
the value-at-risk. This explains the popularity of this model, especially when the P&L of
the portfolio is a linear function of the asset returns48.

Let us consider our previous Apple/Coca-Cola example. The nominal exposures49 are
$1 093.3 (Apple) and $842.8 (Coca-Cola). If we consider the historical prices from 2014-01-
07 to 2015-01-02, the estimated standard deviation of daily returns is equal to 1.3611% for

47For the expected shortfall formula, we replace Φ−1 (α) by φ
(
Φ−1 (α)

)
/ (1− α).

48For instance, this approach is frequently used by asset managers to measure the risk of equity portfolios.
49These figures are equal to 10× 109.33 and 20× 42.14.
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Apple and 0.9468% for Coca-Cola, whereas the cross-correlation is equal to 12.0787%. It
follows that:

σ2 (Π) = W>t ΣWt

= 1 093.32 ×
(

1.3611
100

)2
+ 842.82 ×

(
0.9468

100

)2
+

2× 12.0787
100 × 1 093.3× 842.8× 1.3611

100 × 0.9468
100

= 313.80

If we omit the term of expected return −W>t µ, we deduce that the 99% daily value-at-risk50
is equal to $41.21. We obtain a lower figure than with the historical value-at-risk, which was
equal to $47.39. We explain this result, because the Gaussian distribution underestimates
the probability of extreme events and is not adapted to take into account tail risk.

The factor model We consider the standard linear factor model where asset returns Rt
are related to a set of risk factors Ft = (F1,t, . . . ,Fm,t) in the following way:

Rt = BFt + εt

where E (Ft) = µ (F), cov (Ft) = Ω, E (εt) = 0 and cov (εt) = D. Ft represents the common
risks whereas εt is the vector of specific or idiosyncratic risks. This implies that Ft and εt
are independent and D is a diagonal matrix51. B is a (n×m) matrix that measures the
sensitivity of asset returns with respect to the risk factors. The first two moments of Rt are
given by:

µ = E [Rt] = Bµ (F)

and52:
Σ = cov (Rt) = BΩB> +D

If we assume that asset returns are Gaussian, we deduce that53:

VaRα (w;h) = −W>t Bµ (F) + Φ−1 (α)
√
W>t (BΩB> +D)Wt

The linear factor model plays a major role in financial modeling. The capital asset pricing
model (CAPM) developed by Sharpe (1964) is a particular case of this model when there is
a single factor, which corresponds to the market portfolio. In the arbitrage pricing theory
(APT) of Ross (1976), Ft corresponds to a set of (unknown) arbitrage factors. They may
be macro-economic, statistical or characteristic-based factors. The three-factor model of

50We have:
VaR99% (w; one day) = Φ−1 (0.99)

√
313.80 = $41.21

51In the following, we note D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
where σ̃i is the idiosyncratic volatility of asset i.

52We have:

Σ = E
[
(Rt − µ) (Rt − µ)>

]
= E

[
(B (Ft − µ (F) + εt)) (B (Ft − µ (F) + εt))>

]
= BE

[
(Ft − µ (F)) (Ft − µ (F))>

]
B>t + E

[
εtε
>
t

]
= BΩB> +D

53For the expected shortfall formula, we replace Φ−1 (α) by φ
(
Φ−1 (α)

)
/ (1− α).
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Fama and French (1993) is certainly the most famous application of APT. In this case, the
factors are the market factor, the size factor corresponding to a long/short portfolio between
small stocks and large stocks and the value factor, which is the return of stocks with high
book-to-market values minus the return of stocks with low book-to-market values. Since
its publication, the original Fama-French factor has been extended to many other factors
including momentum, quality or liquidity factors54.

BCBS (1996a) makes direct reference to CAPM. In this case, we obtain a single-factor
model:

Rt = α+ βRm,t + εt

where Rm,t is the return of the market and β = (β1, . . . , βn) is the vector of beta coefficients.
Let σm be the volatility of the market risk factor. We have var (Ri,t) = β2

i σ
2
m + σ̃2

i and
cov (Ri,t, Rj,t) = βiβjσ

2
m. By omitting the mean, we obtain:

VaRα (w;h) = Φ−1 (α)

√√√√√σ2
m

 n∑
i=1

β̃2
i + 2

∑
j>i

β̃iβ̃j

+
n∑
i=1

W 2
i,tσ̃

2
i

where β̃i = Wi,tβi is the beta exposure of asset i expressed in $. With the previous formula,
we can calculate the VaR due to the market risk factor by omitting the specific risk55.

If we consider our previous example, we can choose the S&P 500 index as the market
risk factor. For the period 2014-01-07 to 2015-01-02, the beta coefficient is equal to 0.8307
for Apple and 0.4556 for Coca-Cola, whereas the corresponding idiosyncratic volatilities
are 1.2241% (Apple) and 0.8887% (Coca-Cola). As the market volatility is estimated at
0.7165%, the daily value-at-risk is equal to $41.68 if we include specific risks. Otherwise, it
is equal to $21.54 if we only consider the effect of the market risk factor.

0 t
• • • • • • • • •

t1 t2 t3 t4 t5 t6 t7 t8

t9

t10

FIGURE 2.7: Cash flows of two bonds and two short exposures

Application to a bond portfolio We consider a portfolio of bonds from the same issuer.
In this instance, we can model the bond portfolio by a stream of nC coupons C (tm) with
fixed dates tm ≥ t. Figure 2.7 presents an example of aggregating cash flows with two
bonds with a fixed coupon rate and two short exposures. We note Bt (T ) the price of a zero-
coupon bond at time t for the maturity T . We have Bt (T ) = e−(T−t)Rt(T ) where Rt (T ) is
the zero-coupon rate. The sensitivity of the zero-coupon bond is:

∂ Bt (T )
∂ Rt (T ) = − (T − t)Bt (T )

54See Cazalet and Roncalli (2014) for a survey.
55We set σ̃i to 0.
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For a small change in yield, we obtain:

∆hBt+h (T ) ≈ − (T − t)Bt (T ) ∆hRt+h (T )

The value of the portfolio is:

Pt (w) =
nC∑
m=1

C (tm)Bt (tm)

We deduce that:

Π (w) = Pt+h (w)− Pt (w)

=
nC∑
m=1

C (tm) (Bt+h (tm)−Bt (tm))

Let us consider the following approximation:

Π (w) ≈ −
nC∑
m=1

C (tm) (tm − t)Bt (tm) ∆hRt+h (tm)

=
nC∑
m=1

Wi,tm∆hRt+h (tm)

where Wi,tm = −C (tm) (tm − t)Bt (tm). This expression of the P&L is similar to this
obtained with a portfolio of stocks. If we assume that the yield variations are Gaussian, the
value-at-risk is equal to:

VaRα (w;h) = −W>t µ+ Φ−1 (α)
√
W>t ΣWt

where µ and Σ are the mean and the covariance matrix of the vector of yield changes
(∆hRt+h (t1) , . . . ,∆hRt+h (tnc)).

Example 15 We consider an exposure on a US bond at 31 December 2014. The notional
of the bond is 100 whereas the annual coupons are equal to 5. The remaining maturity is
five years and the fixing dates are at the end of December. The number of bonds held in the
portfolio is 10 000.

Using the US zero-coupon rates56, we obtain the following figures for one bond at 31
December 2014:

tm − t C (tm) Rt (tm) Bt (tm) Wtm

1 5 0.431% 0.996 −4.978
2 5 0.879% 0.983 −9.826
3 5 1.276% 0.962 −14.437
4 5 1.569% 0.939 −18.783
5 105 1.777% 0.915 −480.356

At the end of December 2014, the one-year zero-coupon rate is 0.431%, the two-year zero-
coupon rate is 0.879%, etc. We deduce that the bond price is $115.47 and the total exposure
is $1 154 706. Using the historical period of year 2014, we estimate the covariance matrix

56The data comes from the Datastream database. The zero-coupon interest rate of maturity yy years and
mm months corresponds to the code USyyYmm.
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between daily changes of the five zero-coupon rates57. We deduce that the Gaussian VaR
of the bond portfolio is equal to $4 971. If the multiplicative factor mc is set to 3, the
required capital KVaR

t is equal to $47 158 or 4.08% of the mark-to-market. We can compare
these figures with those obtained with the historical value-at-risk. In this instance, the daily
value-at-risk is higher and equal to $5 302.

Remark 10 The previous analysis assumes that the risk factors correspond to the yield
changes, meaning that the calculated value-at-risk only concerns interest rate risk. Therefore,
it cannot capture all the risks if the bond portfolio is subject to credit risk.

Defining risk factors with the principal component analysis In the previous para-
graph, the bond portfolio was very simple with only one bond and one yield curve. In
practice, the bond portfolio contains streams of coupons for many maturities and yield
curves. It is therefore necessary to reduce the dimension of the VaR calculation. The un-
derlying idea is that we don’t need to use the comprehensive set of zero-coupon rates to
represent the set of risk factors that affects the yield curve. For instance, Nelson and Siegel
(1987) propose a three-factor parametric model to define the yield curve. Another represen-
tation of the yield curve has been formulated by Litterman and Scheinkman (1991), who
have proposed to characterize the factors using the principal component analysis (PCA).

Let Σ be the covariance matrix associated to the random vector Xt of dimension n. We
consider the eigendecomposition Σ = V ΛV > where Λ = diag (λ1, . . . , λn) is the diagonal
matrix of eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ λn and V is an orthornormal matrix. In the
principal component analysis, the (endogenous) risk factors are Ft = V >Xt. The reduction
method by PCA consists in selecting the first m risk factors with m ≤ n. When applied to
the value-at-risk calculation, it can be achieved in two different ways:

1. In the parametric approach, the covariance matrix Σ is replaced by Σ? = V Λ?V >
where Λ? = diag (λ1, . . . , λm, 0, . . . , 0).

2. In the historical method, we only consider the first m PCA factors F?t =
(F1,t, . . . ,Fm,t) or equivalently the modified random vector58 X?

t = V F•t where
F•t = (F?t ,0n−m).

If we apply this extracting method of risk factors to Example 15, the eigenvalues are
equal to 47.299× 108, 0.875× 108, 0.166× 108, 0.046× 108, 0.012× 108 whereas the matrix
V of eigenvectors is:

V =


0.084 −0.375 −0.711 0.589 0.002
0.303 −0.610 −0.215 −0.690 −0.114
0.470 −0.389 0.515 0.305 0.519
0.567 0.103 0.195 0.223 −0.762
0.599 0.570 −0.381 −0.183 0.371


57The standard deviation is respectively equal to 0.746 bps for ∆hRt (t+ 1), 2.170 bps for ∆hRt (t+ 2),

3.264 bps for ∆hRt (t+ 3), 3.901 bps for ∆hRt (t+ 4) and 4.155 bps for ∆hRt (t+ 5) where h corresponds
to one trading day. For the correlation matrix, we get:

ρ =


100.000
87.205 100.000
79.809 97.845 100.000
75.584 95.270 98.895 100.000
71.944 92.110 96.556 99.219 100.000


58Because we have V −1 = V >.
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We deduce that:

F1,t = 0.084×Rt (t+ 1) + 0.303×Rt (t+ 2) + · · ·+ 0.599×Rt (t+ 5)
...

F5,t = 0.002×Rt (t+ 1)− 0.114×Rt (t+ 2) + · · ·+ 0.371×Rt (t+ 5)

We retrieve the three factors of Litterman and Scheinkman, which are a level factor F1,t,
a slope factor F2,t and a convexity or curvature factor F3,t. In the following table, we
report the incremental VaR of each risk factor, which is defined as difference between the
value-at-risk including the risk factor and the value-at-risk excluding the risk factor:

VaR F1,t F2,t F3,t F4,t F5,t Sum
Gaussian 4934.71 32.94 2.86 0.17 0.19 4970.87
Historical 5857.39 −765.44 216.58 −7.98 1.41 5301.95

We notice that the value-at-risk is principally explained by the first risk factor, that is the
general level of interest rates, whereas the contribution of the slope and convexity factors
is small and the contribution of the remaining risk factors is marginal. This result can be
explained by the long-only characteristics of the portfolio. Nevertheless, even if we consider
a more complex bond portfolio, we generally observe that a number of factors is sufficient to
model all the risk dimensions of the yield curve. An example is provided in Figure 2.8 with
a stream of long and short exposures59. Using the period January 2014 – December 2014,
the convergence of the value-at-risk is achieved with six factors. This result is connected to
the requirement of the Basel Committee that “banks must model the yield curve using a
minimum of six risk factors”.

2.2.3.3 Volatility forecasting

The challenge of the Gaussian value-at-risk is the estimation of the loss volatility or the
covariance matrix of asset returns/risk factors. The issue is not to consider the best estimate
for describing the past, but to use the best estimate for forecasting the loss distribution. In
the previous illustrations, we use the empirical covariance matrix or the empirical standard
deviation. However, other estimators have been proposed by academics and professionals.

The original approach implemented in RiskMetrics used an exponentially weighted mov-
ing average (EWMA) for modeling the covariance between asset returns60:

Σ̂t = λΣ̂t−1 + (1− λ)Rt−1R
>
t−1

where the parameter λ ∈ [0, 1] is the decay factor, which represents the degree of weighting
decrease. Using a finite sample, the previous estimate is equivalent to a weighted estimator:

Σ̂t =
nS∑
s=1

ωsRt−sR
>
t−s

where:
ωs = (1− λ)

(1− λnS )λ
s−1

In Figure 2.9, we represent the weights ωs for different values of λ when the number nS of
historical scenarios is equal to 250. We verify that this estimator gives more importance to

59We have Ct (t+ 1/2) = 400, Ct (t+ 1) = 300, Ct (t+ 3/2) = 200, Ct (t+ 2) = −200, Ct (t+ 3) = −300,
Ct (t+ 4) = −500, Ct (t+ 5) = 500, Ct (t+ 6) = 400, Ct (t+ 7) = −300, Ct (t+ 10) = −700, Ct (t+ 10) =
300 and Ct (t+ 30) = 700.

60We assume that the mean of expected returns is equal to 0.
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FIGURE 2.8: Convergence of the VaR with PCA risk factors

the current values than to the past values. For instance, if λ is equal to 0.9461, 50% of the
weights corresponds to the twelve first observations and the half-life is 16.7 days. We also
observe that the case λ = 1 corresponds to the standard covariance estimator with uniform
weights.

Another approach to model volatility in risk management is to consider that the volatility
is time-varying. In 1982, Engle introduced a class of stochastic processes in order to take
into account the heteroscedasticity of asset returns62:

Ri,t = µi + εt where εt = σtet and et ∼ N (0, 1)

The time-varying variance ht = σ2
t satisfies the following equation:

ht = α0 + α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

where αj ≥ 0 for all j ≥ 0. We note that the conditional variance of εt is not constant
and depends on the past values of εt. A substantial impact on the asset return Ri,t implies
an increase of the conditional variance of εt+1 at time t + 1 and therefore an increase of
the probability to observe another substantial impact on Ri,t+1. Therefore, this means that
the volatility is persistent, which is a well-known stylized fact in finance (Chou, 1988).
This type of stochastic processes, known as ARCH models (Autoregressive Conditional
Heteroscedasticity), has been extended by Bollerslev (1986) in the following way:

ht = α0 + γ1ht−1 + γ2ht−2 + · · ·+ γpht−p + α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

In this case, the conditional variance depends also on its past values and we obtain a
GARCH(p,q) model. If

∑p
i=1 γi +

∑q
i=1 αi = 1, we may show that the process ε2

t has a unit

61It was the original value of the RiskMetrics system (J.P. Morgan, 1996).
62See Section 10.2.4.1 on page 664 for a comprehensive presentation of ARCH and GARCH models.
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FIGURE 2.9: Weights of the EWMA estimator

root and the model is called an integrated GARCH (or IGARCH) process. If we neglect the
constant term, the expression of the IGARCH(1,1) process is ht = (1− α)ht−1 + αR2

i,t−1
or equivalently:

σ2
t = (1− α)σ2

t−1 + αR2
i,t−1

This estimator is then an exponentially weighted moving average with a factor λ equal to
1− α.

In Figure 2.10, we have reported the annualized volatility of the S&P 500 index estimated
using the GARCH model (first panel). The ML estimates of the parameters are γ̂1 = 0.8954
and α̂1 = 0.0929. We verify that this estimated model is close to an IGARCH process. In
the other panels, we compare the GARCH volatility with the empirical one-year historical
volatility, the EWMA volatility (with λ = 0.94) and a short volatility based on 20 trading
days. We observe large differences between the GARCH volatility and the one-year historical
volatility, but the two others estimators (EWMA and short volatility) give similar results to
the GARCH estimator. To compare the out-of-sample forecasting accuracy of these different
models, we consider respectively a long and a short exposure on the S&P 500 index. At time
t, we compute the value-at-risk for the next day and we compare this figure with the realized
mark-to-market. Table 2.9 show the number of exceptions per year for the different models:
(1) GARCH(1,1) model, (2) Gaussian value-at-risk with a one-year historical volatility, (3)
EWMA model with λ = 0.94, (4) Gaussian value-at-risk with a twenty-day short volatility
and (5) historical value-at-risk based on the last 260 trading days. We observe that the
GARCH model produces the smallest number of exceptions, whereas the largest number
of exceptions occurs in the case of the Gaussian value-at-risk with the one-year historical
volatility. We also notice that the number of exceptions is smaller for the short exposure
than for the long exposure. This is due to the asymmetry of returns, because extreme
negative returns are larger than extreme positive returns on average.
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FIGURE 2.10: Comparison of GARCH and EWMA volatilities

TABLE 2.9: Number of exceptions per year for long and short exposures on the S&P 500
index

Year Long exposure Short exposure
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

2000 5 5 2 4 4 5 8 4 6 4
2001 4 3 2 3 2 2 4 2 5 2
2002 2 5 2 4 3 5 9 4 6 5
2003 1 0 0 2 0 1 0 1 4 0
2004 2 0 2 6 0 0 0 0 2 1
2005 1 1 2 4 3 1 4 1 6 3
2006 2 4 3 4 4 2 5 3 5 3
2007 6 15 6 10 7 1 9 0 3 7
2008 7 23 5 7 10 4 12 4 3 8
2009 5 0 1 6 0 2 2 2 3 0
2010 7 6 5 8 3 3 5 2 7 3
2011 6 8 6 7 4 2 8 1 6 3
2012 5 1 4 5 0 3 1 2 7 1
2013 4 2 3 9 2 2 2 2 4 1
2014 6 9 7 11 2 2 4 2 2 4
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2.2.3.4 Extension to other probability distributions

The Gaussian value-at-risk has been strongly criticized because it depends only on the
first two moments of the loss distribution. Indeed, there is a lot of evidence that asset returns
and risk factors are not Gaussian (Cont, 2001). They generally present fat tails and skew
effects. It is therefore interesting to consider alternative probability distributions, which are
more appropriate to take into account these stylized facts.

Let µr = E [(X − E [X])r] be the r-order centered moment of the random variable X.
The skewness γ1 = µ3/µ

3/2
2 is the measure of the asymmetry of the loss distribution. If

γ1 < 0 (resp. γ1 > 0), the distribution is left-skewed (resp. right-skewed) because the left
(resp. right) tail is longer. For the Gaussian distribution, γ1 is equal to zero. To characterize
whether the distribution is peaked or flat relative to the normal distribution, we consider the
excess kurtosis γ2 = µ4/µ

2
2−3. If γ2 > 0, the distribution presents heavy tails. In the case of

the Gaussian distribution, γ2 is exactly equal to zero. We have illustrated the skewness and
kurtosis statistics in Figure 2.11. Whereas we generally encounter skewness risk in credit and
hedge fund portfolios, kurtosis risk has a stronger impact in equity portfolios. For example,
if we consider the daily returns of the S&P 500 index, we obtain an empirical distribution63
which has a higher kurtosis than the fitted Gaussian distribution (Figure 2.12).

FIGURE 2.11: Examples of skewed and fat tailed distributions

An example of fat-tail distributions is the Student’s t probability distribution. If X ∼ tν ,
we have E [X] = 0 and var (X) = ν/ (ν − 2) for ν > 2. Because X has a fixed mean and
variance for a given degrees of freedom, we need to introduce location and scale parameters
to model the future loss L (w) = ξ + ωX. To calculate the value-at-risk, we proceed as in
the Gaussian case. We have:

Pr
{
L (w) ≤ F−1

L (α)
}

= α⇔ Pr
{
X ≤

F−1
L (α)− ξ

ω

}
= α

63It is estimated using the kernel approach.
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FIGURE 2.12: Estimated distribution of S&P 500 daily returns (2007-2014)

We deduce that:

T
(

F−1
L (α)− ξ

ω
; ν
)

= α⇔ F−1
L (α) = ξ + T−1 (α; ν)ω

In practice, the parameters ξ and ω are estimated by the method of moments64. We finally
deduce that:

VaRα (w;h) = µ (L) + T−1 (α; ν)σ (L)
√
ν − 2
ν

Let us illustrate the impact of the probability distribution with Example 13. By using
different values of ν, we obtain the following daily VaRs:

ν 3.00 3.50 4.00 5.00 6.00 10.00 1000 ∞
ω 10.23 11.60 12.53 13.72 14.46 15.84 17.70 17.71

VaRα (w;h) 46.44 47.09 46.93 46.17 45.46 43.79 41.24 41.21

If ν → ∞, we verify that the Student’s t value-at-risk converges to the Gaussian value-at-
risk ($41.21). If the degrees of freedom is equal to 4, it is closer to the historical value-at-risk
($47.39).

We can derive closed-form formulas for several probability distributions. However, most
of them are not used in practice, because these methods are not appealing from a professional
point of view. Nevertheless, one approach is very popular among professionals. Using the
Cornish-Fisher expansion of the normal distribution, Zangari (1996) proposes to estimate
the value-at-risk in the following way:

VaRα (w;h) = µ (L) + z (α; γ1 (L) , γ2 (L))× σ (L) (2.7)

64We have E [ξ + ωX] = ξ and var (ξ + ωX) =
(
ω2ν
)
/ (ν − 2).
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where:

z (α; γ1, γ2) = zα + 1
6
(
z2
α − 1

)
γ1 + 1

24
(
z3
α − 3zα

)
γ2 −

1
36
(
2z3
α − 5zα

)
γ2

1 (2.8)

and zα = Φ−1 (α). This is the same formula as the one used for the Gaussian value-at-risk
but with another scaling parameter65. In Equation (2.7), the skewness and excess kurtosis
coefficients are those of the loss distribution66.

TABLE 2.10: Value of the Cornish-Fisher quantile z (99%; γ1, γ2)

γ1
γ2

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
−2.00 0.99
−1.00 1.68 1.92 2.15 2.38 2.62 2.85
−0.50 2.10 2.33 2.57 2.80 3.03 3.27 3.50

0.00 2.33 2.56 2.79 3.03 3.26 3.50 3.73 3.96
0.50 2.83 3.07 3.30 3.54 3.77 4.00 4.24
1.00 3.15 3.39 3.62 3.85 4.09 4.32
2.00 3.93

Table 2.10 shows the value of the Cornish-Fisher quantile z (99%; γ1, γ2) for different
values of skewness and excess kurtosis. We cannot always calculate the quantile because
Equation (2.8) does not define necessarily a probability distribution if the parameters γ1
and γ2 does not satisfy the following condition (Maillard, 2018):

∂ z (α; γ1, γ2)
∂ zα

≥ 0⇔ γ2
1
9 − 4

(
γ2

8 −
γ2

1
6

)(
1− γ2

8 + 5γ2
1

36

)
≤ 0

We have reported the domain of definition in the third panel in Figure 2.13. For instance,
Equation (2.8) is not valid if the skewness is equal to 2 and the excess kurtosis is equal to 3.
If we analyze results in Table 2.10, we do not observe that there is a monotone relationship
between the skewness and the quantile. To understand this curious behavior, we report the
partial derivatives of z (α; γ1, γ2) with respect to γ1 and γ2 in Figure 2.13. We notice that
their signs depend on the confidence level α, but also on the skewness for ∂γ1 z (α; γ1, γ2).
Another drawback of the Cornish-Fisher approach concerns the statistical moments, which
are not necessarily equal to the input parameters if the skewness and the kurtosis are
not close to zero67. Contrary to what professionals commonly think, the Cornish-Fisher
expansion is therefore difficult to implement.

When we consider other probability distribution than the normal distribution, the dif-
ficulty concerns the multivariate case. In the previous examples, we directly model the loss

65If γ1 = γ2 = 0, we retrieve the Gaussian value-at-risk because z (α; 0, 0) = Φ−1 (α).
66If we prefer to use the moments of the P&L, we have to consider the relationships γ1 (Ł) = −γ1 (Π)

and γ2 (L) = γ2 (Π).
67Let Z be a Cornish-Fisher random variable satisfying F−1 (α) = z (α; γ1, γ2). A direct application of

the result in Appendix A.2.2.3 gives:

E [Zr] =
∫ 1

0
zr (α; γ1, γ2) dα

Using numerical integration, we can show that γ1 (Z) 6= γ1 and γ2 (Z) 6= γ2 if γ1 and γ2 are large enough
(Maillard, 2018).
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FIGURE 2.13: Derivatives and definition domain of the Cornish-Fisher expansion

distribution, that is the reduced form of the pricing system. To model the joint distribu-
tion of risk factors, two main approaches are available. The first approach considers copula
functions and the value-at-risk is calculated using the Monte Carlo simulation method (see
Chapters 11 and 13). The second approach consists in selecting a multivariate probability
distribution, which has some appealing properties. For instance, it should be flexible enough
to calibrate the first two moments of the risk factors and should also include asymmetry
(positive and negative skewness) and fat tails (positive excess kurtosis) in a natural way. In
order to obtain an analytical formula for the value-at-risk, it must be tractable and verify
the closure property under affine transformation. This implies that if the random vector X
follows a certain class of distribution, then the random vector Y = A+BX belongs also to
the same class. These properties reduce dramatically the set of eligible multivariate prob-
ability distributions, because the potential candidates are mostly elliptical distributions.
Such examples are the skew normal and t distributions presented in Appendix A.2.1 on
page 1057.

Example 16 We consider a portfolio of three assets and assume that their annualized re-
turns follows a multivariate skew normal distribution. The location parameters are equal
to 1%, −2% and 15% whereas the scale parameters are equal to 5%, 10% and 20%. The
correlation parameters to describe the dependence between the skew normal variables are
given by the following matrix:

C =

 1.00
0.35 1.00
0.20 −0.50 1.00


The three assets have different skewness profiles, and the shape parameters are equal to 0,
10 and −15.50.
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FIGURE 2.14: Skew normal and t distributions of asset returns

In Figure 2.14, we have reported the density function of the three asset returns68. The
return of the first asset is close to be Gaussian whereas the two other assets exhibit respec-
tively negative and positive skews. Moments are given in the table below:

Asset i µi (in %) σi (in %) γ1,i γ2,i
1 1.07 5.00 0.00 0.00
2 4.36 7.72 0.24 0.13
3 0.32 13.58 −0.54 0.39

Let us consider the nominal portfolio w = ($500, $200, $300). The annualized P&L Π (w) is
equal to w>R where R ∼ SN (ξ,Ω, η). We deduce that Π (w) ∼ SN (ξw, ωw, ηw) with ξw =
46.00, ωw = 66.14 and ηw = −0.73. We finally deduce that the one-year 99% value-at-risk is
equal to $123.91. If we use the multivariate skew t distribution in place of the multivariate
skew normal distributions to model asset returns and if we use the same parameter values,
the one-year 99% value-at-risk becomes $558.35 for ν = 2, $215.21 for ν = 5 and $130.47 for
ν = 50. We verify that the skew t value-at-risk converges to the skew normal value-at-risk
when the number of degrees of freedom ν tends to +∞.

The choice of the probability distribution is an important issue and raises the question
of model risk. In this instance, the Basel Committee justifies the introduction of the penalty
coefficient in order to reduce the risk of a wrong specification (Stahl, 1997). For example,
imagine that we calculate the value-at-risk with a probability distribution F while the true
probability distribution of the portfolio loss is H. The multiplication factor mc defines then
a capital buffer such that we are certain that the confidence level of the value-at-risk will
be at least equal to α:

Pr{L (w) ≤ mc ·VaR(F)
α (w)︸ ︷︷ ︸

Capital

} ≥ α (2.9)

68We also show the density function in the case of the skew t distribution with ν = 1 and ν = 4.
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This implies that H
(
mc ·VaR(F)

α (w)
)
≥ α and mc · VaR(F)

α (w) ≥ H−1 (α). We finally
deduce that:

mc ≥
VaR(H)

α (w)
VaR(F)

α (w)

In the case where F and H are the normal and Student’s t distributions, we obtain69:

mc ≥
√
ν − 2
ν

T−1
ν (α)

Φ−1 (α)

Below is the lower bound of mc for different values of α and ν.

α/ν 3 4 5 6 10 50 100
90% 0.74 0.85 0.89 0.92 0.96 0.99 1.00
95% 1.13 1.14 1.12 1.10 1.06 1.01 1.01
99% 1.31 1.26 1.21 1.18 1.10 1.02 1.01
99.9% 1.91 1.64 1.48 1.38 1.20 1.03 1.02
99.99% 3.45 2.48 2.02 1.76 1.37 1.06 1.03

For instance, we have mc ≥ 1.31 when α = 99% and ν = 3.
Stahl (1997) considers the general case when F is the normal distribution and H is

an unknown probability distribution. Let X be a given random variable. The Chebyshev’s
inequality states that:

Pr {(|X − µ (X)| > k · σ (X))} ≤ k−2

for any real number k > 0. If we apply this theorem to the value-at-risk, we obtain70:

Pr
{
L (w) ≤

√
1

1− ασ (L)
}
≥ α

Using Equation (2.9), we deduce that:

mc =
√

1
1− α

σ (L)
VaR(F)

α (w)

In the case of the normal distribution, we finally obtain that the multiplicative factor is:

mc = 1
Φ−1 (α)

√
1

1− α

This ratio is the multiplication factor to apply in order to be sure that the confidence
level of the value-at-risk is at least equal to α if we use the normal distribution to model
the portfolio loss. In the case where the probability distribution is symmetric, this ratio
becomes:

mc = 1
Φ−1 (α)

√
1

2− 2α
In Table 2.11, we report the values of mc for different confidence levels. If α is equal to 99%,
the multiplication factor is equal to 3.04 if the distribution is symmetric and 4.30 otherwise.

69We recall that the Gaussian value-at-risk is equal to Φ−1 (α)σ (L) whereas the Student’s t value-at-risk
is equal to

√
(ν − 2) /ν ·T−1

ν (α)σ (L).
70We set α = 1− k−2.
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TABLE 2.11: Value of the multiplication factor mc deduced from the Chebyshev’s in-
equality

α (in %) 90.00 95.00 99.00 99.25 99.50 99.75 99.99
Symmetric 1.74 1.92 3.04 3.36 3.88 5.04 19.01
Asymmetric 2.47 2.72 4.30 4.75 5.49 7.12 26.89

Remark 11 Even if the previous analysis justifies the multiplication factor from a statis-
tical point of view, we face two main issues. First, the multiplication factor assumes that
the bank uses a Gaussian value-at-risk. It was the case for many banks in the early 1990s,
but they use today historical value-at-risk measures. Some have suggested that the multipli-
cation factor has been introduced in order to reduce the difference in terms of regulatory
capital between SMM and IMA and it is certainly the case. The second issue concerns the
specificity of the loss distribution. For many positions like long-only unlevered portfolios,
the loss is bounded. If we use a Gaussian value-at-risk, the regulatory capital satisfies71
K = KVaR + KSVaR > 13.98 · σ (L) where σ (L) is the non-stressed loss volatility. This
implies that the value-at-risk is larger than the portfolio value if σ (L) > 7.2%! There is a
direct contradiction here.

2.2.4 Monte Carlo methods
In this approach, we postulate a given probability distribution H for the risk factors:

(F1,t+h, . . . ,Fm,t+h) ∼ H

Then, we simulate nS scenarios of risk factors and calculate the simulated P&L Πs (w)
for each scenario s. Finally, we estimate the risk measure (VaR/ES) by the method of or-
der statistics. The Monte Carlo method to calculate the VaR/ES is therefore close to the
historical method. The only difference is that it uses simulated scenarios instead of histor-
ical scenarios. This implies that the Monte Carlo approach is not limited by the number
of scenarios. By construction, the Monte Carlo VaR/ES is also similar to the analytical
VaR/ES, because they both specify the parametric probability distribution of risk factors.
In summary, we can say that:

• the Monte Carlo VaR/ES is a historical VaR/ES with simulated scenarios;

• the Monte Carlo VaR/ES is a parametric VaR/ES for which it is difficult to find an
analytical formula.

Let us consider Example 16 on page 87. The expression of the P&L is:

Π (w) = 500×R1 + 200×R2 + 300×R3

Because we know that the combination of the components of a skew normal random vector
is a skew normal random variable, we were able to compute the analytical quantile of Π (w)
at the 1% confidence level. Suppose now that we don’t know the analytical distribution of
Π (w). We can repeat the exercise by using the Monte Carlo method. At each simulation s,
we generate the random variates (R1,s, R2,s, R3,s) such that:

(R1,s, R2,s, R3,s) ∼ SN (ξ,Ω, η)

71Because we have 2×mc × 2.33 > 13.98.
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and the corresponding P&L Πs (w) = 500×R1,s+200×R2,s+300×R3,s. The Monte Carlo
value-at-risk is the ns (1− α)th order statistic:

V̂aRα (nS) = −Π(ns(1−α):ns) (w)

Using the law of large numbers, we can show that the MC estimator converges to the exact
VaR:

lim
nS→∞

V̂aRα (nS) = VaRα

In Figure 2.15, we report four Monte Carlo runs with 10 000 simulated scenarios. We notice
that the convergence of the Monte Carlo VaR to the analytical VaR is slow72, because asset
returns present high skewness. The convergence will be faster if the probability distribution
of risk factors is close to be normal and has no fat tails.

FIGURE 2.15: Convergence of the Monte Carlo VaR when asset returns are skew normal

Remark 12 The Monte Carlo value-at-risk has been extensively studied with heavy-tailed
risk factors (Dupire, 1998; Eberlein et al., 1998; Glasserman et al., 2002). In those cases,
one needs to use advanced and specific methods to reduce the variance of the estimator73.

Example 17 We use a variant of Example 15 on page 78. We consider that the bond is
exposed to credit risk. In particular, we assume that the current default intensity of the bond
issuer is equal to 200 bps whereas the recovery rate is equal to 50%.

In the case of a defaultable bond, the coupons and the notional are paid until the issuer
does not default whereas a recovery rate is applied if the issuer defaults before the maturity

72We have previously found that the exact VaR is equal to $123.91.
73These techniques are presented in Chapter 13.
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of the bond. If we assume that the recovery is paid at maturity, we can show that the bond
price under default risk is:

Pt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) (St (T ) + Rt (1− St (T )))

where St (tm) is the survival function at time tm and Rt is the current recovery rate.
We retrieve the formula of the bond price without default risk if St (tm) = 1. Using the
numerical values of the parameters, the bond price is equal to $109.75 and is lower than
the non-defaultable bond price74. If we assume that the default time is exponential with
St (tm) = e−λt(tm−t), we have:

Pt+h =
∑
tm≥t

C (tm) e(tm−t−h)Rt+h(tm)e−λt+h(tm−t−h) +

Ne(T−t−h)Rt+h(T )
(
Rt+h + (1−Rt+h) e−λt+h(T−t−h)

)
We define the risk factors as the zero-coupon rates, the default intensity and the recovery
rate:

Rt+h (tm) ' Rt (tm) + ∆hRt+h (tm)
λt+h = λt + ∆hλt+h

Rt+h = Rt + ∆hRt+h

We assume that the three risk factors are independent and follow the following probability
distributions:

(∆hRt+h (t1) , . . . ,∆hRt+h (tn)) ∼ N (0,Σ)
∆hλt+h ∼ N

(
0, σ2

λ

)
∆hRt+h ∼ U[a,b]

We can then simulate the daily P&L Π (w) = w (Pt+h − Pt) using the above specifications.
For the numerical application, we use the covariance matrix given in Footnote 57 whereas
the values of σλ, a and b are equal to 20 bps, −10% and 10%. In Figure 2.16, we have
estimated the density of the daily P&L using 100 000 simulations. IR corresponds to the
case when risk factors are only the interest rates75. The case IR/S considers that both
Rt (tm) and λt are risk factors whereas Rt is assumed to be constant. Finally, we include
the recovery risk in the case IR/S/RR. Using 10 million simulations, we find that the daily
value-at-risk is equal to $4 730 (IR), $13 460 (IR/S) and $18 360 (IR/S/RR). We see the
impact of taking into account default risk in the calculation of the value-at-risk.

2.2.5 The case of options and derivatives
Special attention should be paid to portfolios of derivatives, because their risk man-

agement is much more complicated than a long-only portfolio of traditional assets (Duffie
and Pan, 1997). They involve non-linear exposures to risk factors that are difficult to mea-
sure, they are sensitive to parameters that are not always observable and they are generally
traded on OTC markets. In this section, we provide an overview of the challenges that arise
when measuring and managing the risk of these assets. Chapter 9 complements it with a
more exhaustive treatment of hedging and pricing issues as well as model risk.

74We recall that it was equal to $115.47.
75This implies that we set ∆hλt+h and ∆hRt+h to zero in the Monte Carlo procedure.
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FIGURE 2.16: Probability density function of the daily P&L with credit risk

2.2.5.1 Identification of risk factors

Let us consider an example of a portfolio containing wS stocks and wC call options on
this stock. We note St and Ct the stock and option prices at time t. The P&L for the holding
period h is equal to:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)

If we use asset returns as risk factors, we get:

Π (w) = wSStRS,t+h + wCCtRC,t+h

where RS,t+h and RC,t+h are the returns of the stock and the option for the period [t, t+ h].
In this approach, we identify two risk factors. The problem is that the option price Ct is a
non-linear function of the underlying price St:

Ct = fC (St)

This implies that:

Π (w) = wSStRS,t+h + wC (fC (St+h)− Ct)
= wSStRS,t+h + wC (fC (St (1 +RS,t+h))− Ct)

The P&L depends then on a single risk factor RS . We notice that we can write the return
of the option price as a non-linear function of the stock return:

RC,t+h = fC (St (1 +RS,t+h))− Ct
Ct

The problem is that the probability distribution of RC is non-stationary and depends on
the value of St. Therefore, the risk factors cannot be the random vector (RS , RC) because
they require too complex modeling.
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Risk factors are often explicit in primary financial assets (equities, bonds, currencies),
which is not the case with derivatives. Previously, we have identified the return of the
underlying asset as a risk factor for the call option. In the Black-Scholes model, the price
of the call option is given by:

CBS (St,K,Σt, T, bt, rt) = Ste
(bt−rt)τΦ (d1)−Ke−rtτΦ (d2) (2.10)

where St is the current price of the underlying asset, K is the option strike, Σt is the
volatility parameter, T is the maturity date, bt is the cost-of-carry76 and rt is the interest
rate. The parameter τ = T − t is the time to maturity whereas the coefficients d1 and d2
are defined as follows:

d1 = 1
Σt
√
τ

(
ln St
K

+ btτ

)
+ 1

2Σt
√
τ

d2 = d1 − Σt
√
τ

We can then write the option price as follows:

Ct = fBS (θcontract; θ)

where θcontract are the parameters of the contract (strike K and maturity T ) and θ are
the other parameters than can be objective as the underlying price St or subjective as the
volatility Σt. Any one of these parameters θ may serve as risk factors:

• St is obviously a risk factor;

• if Σt is not constant, the option price may be sensitive to the volatility risk;

• the option may be impacted by changes in the interest rate or the cost-of-carry.

The risk manager faces here a big issue, because the risk measure will depend on the
choice of the risk factors77. A typical example is the volatility parameter. We observe a
difference between the historical volatility σ̂t and the Black-Scholes volatility Σt. Because
this implied volatility is not a market price, its value will depend on the option model and
the assumptions which are required to calibrate it. For instance, it will be different if we
use a stochastic volatility model or a local volatility model. Even if two banks use the same
model, they will certainly obtain two different values of the implied volatility, because there
is little possibility that they exactly follow the same calibration procedure.

With the underlying asset St, the implied volatility Σt is the most important risk factor,
but other risk factors may be determinant. They concern the dividend risk for equity options,
the yield curve risk for interest rate options, the term structure for commodity options or
the correlation risk for basket options. In fact, the choice of risk factors is not always obvious
because it is driven by the pricing model and the characteristics of the option. We will take
a closer look at this point in Chapter 9.

2.2.5.2 Methods to calculate VaR and ES risk measures

The method of full pricing To calculate the value-at-risk or the expected shortfall of
option portfolios, we use the same approaches as previously. The difference with primary

76The cost-of-carry depends on the underlying asset. We have bt = rt for non-dividend stocks and total
return indices, bt = rt − dt for stocks paying a continuous dividend yield dt, bt = 0 for forward and futures
contracts and bt = rt − r?t for foreign exchange options where r?t is the foreign interest rate.

77We encounter the same difficulties for pricing and hedging purposes.
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financial assets comes from the pricing function which is non-linear and more complex.
In the case of historical and Monte Carlo methods, the P&L of the sth scenario has the
following expression:

Πs (w) = g (F1,s, . . . ,Fm,s;w)− Pt (w)

In the case of the introducing example, the P&L becomes then:

Πs (w) =
{
wSStRs + wC (fC (St (1 +Rs) ; Σt)− Ct) with one risk factor
wSStRs + wC (fC (St (1 +Rs) ,Σs)− Ct) with two risk factors

where Rs and Σs are the asset return and the implied volatility generated by the sth scenario.
If we assume that the interest rate and the cost-of-carry are constant, the pricing function
is:

fC (S; Σ) = CBS (S,K,Σ, T − h, bt, rt)

and we notice that the remaining maturity of the option decreases by h days. In the model
with two risk factors, we have to simulate the underlying price and the implied volatility.
For the single factor model, we use the current implied volatility Σt instead of the simulated
value Σs.

Example 18 We consider a long position on 100 call options with strike K = 100. The
value of the call option is $4.14, the residual maturity78 is 52 days and the current price of
the underlying asset is $100. We assume that Σt = 20% and bt = rt = 5%. The objective is to
calculate the daily value-at-risk with a 99% confidence level and the daily expected shortfall
with a 97.5% confidence level. For that, we consider 250 historical scenarios, whose first
nine values are the following:

s 1 2 3 4 5 6 7 8 9
Rs −1.93 −0.69 −0.71 −0.73 1.22 1.01 1.04 1.08 −1.61

∆Σs −4.42 −1.32 −3.04 2.88 −0.13 −0.08 1.29 2.93 0.85

TABLE 2.12: Daily P&L of the long position on the call option when the risk factor is
the underlying price

s Rs (in %) St+h Ct+h Πs

1 −1.93 98.07 3.09 −104.69
2 −0.69 99.31 3.72 −42.16
3 −0.71 99.29 3.71 −43.22
4 −0.73 99.27 3.70 −44.28
5 1.22 101.22 4.81 67.46
6 1.01 101.01 4.68 54.64
7 1.04 101.04 4.70 56.46
8 1.08 101.08 4.73 58.89
9 −1.61 98.39 3.25 −89.22

Using the price and the characteristics of the call option, we can show that the implied
volatility Σt is equal to 19.99% (rounded to 20%). We first consider the case of the single
risk factor. In Table 2.12, we show the values of the P&L for the first nine scenarios. As an
illustration, we provide the detailed calculation for the first scenario. The asset return Rs

78We assume that there are 252 trading days per year.
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is equal to −1.93%, thus implying that the asset price St+h is equal to 100× (1− 1.93%) =
98.07. The residual maturity τ is equal to 51/252 years. It follows that:

d1 = 1
20%×

√
51/252

(
ln 98.07

100 + 5%× 51
252

)
+ 1

2 × 20%×
√

51
252

= −0.0592

and:

d2 = −0.0592− 20%×
√

51
252 = −0.1491

We deduce that:

Ct+h = 98.07× e(5%−5%) 51
252 × Φ (−0.0592)− 100× e5%× 51

252 × Φ (−0.1491)
= 98.07× 1.00× 0.4764− 100× 1.01× 0.4407
= 3.093

The simulated P&L for the first historical scenario is then equal to:

Πs = 100× (3.093− 4.14) = −104.69

Based on the 250 historical scenarios, the 99% value-at-risk is equal to $154.79, whereas the
97.5% expected shortfall is equal to $150.04.

Remark 13 In Figure 2.17, we illustrate that the option return RC is not a new risk factor.
We plot RS against RC for the 250 historical scenarios. The points are on the curve of the
Black-Scholes formula. The correlation between the two returns is equal to 99.78%, which
indicates that RS and RC are highly dependent. However, this dependence is non-linear
for large positive or negative asset returns. The figure shows also the leverage effect of the
call option, because RC is not of the same order of magnitude as RS. This illustrates the
non-linear characteristic of options. A linear position with a volatility equal to 20% implies
a daily VaR around 3%. In our example, the VaR is equal to 37.4% of the portfolio value,
which corresponds to a linear exposure in a stock with a volatility of 259%!

Let us consider the case with two risk factors when the implied volatility changes from
t to t + h. We assume that the absolute variation of the implied volatility is the right risk
factor to model the future implied volatility. It follows that:

Σt+h = Σt + ∆Σs

In Table 2.13, we indicate the value taken by Σt+h for the first nine scenarios. This allows
us to price the call option and deduce the P&L. For instance, the call option becomes79
$2.32 instead of $3.09 for s = 1 because the implied volatility has decreased. Finally, the
99% value-at-risk is equal to $181.70 and is larger than the previous one due to the second
risk factor80.

The method of sensitivities The previous approach is called full pricing, because it
consists in re-pricing the option. In the method based on the Greek coefficients, the idea is
to approximate the change in the option price by the Taylor expansion. For instance, we
define the delta approach as follows81:

Ct+h − Ct '∆t (St+h − St)

79We have d1 = −0.0986, d2 = −0.1687, Φ (d1) = 0.4607, Φ (d2) = 0.4330 and Ct+h = 2.318.
80For the expected shortfall, we have ES97.5% (w; one day) = $172.09.
81We write the call price as the function CBS (St,Σt, T ).
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FIGURE 2.17: Relationship between the asset return RS and the option return RC

where ∆t is the option delta:

∆t = ∂ CBS (St,Σt, T )
∂ St

This approximation consists in replacing the non-linear exposure by a linear exposure with
respect to the underlying price. As noted by Duffie and Pan (1997), this approach is not
satisfactory because it is not accurate for large changes in the underlying price that are
the most useful scenarios for calculating the risk measure. The delta approach may be
implemented for the three VaR/ES methods. For instance, the Gaussian VaR of the call
option is:

VaRα (w;h) = Φ−1 (α)× |∆t| × St × σ (RS,t+h)

TABLE 2.13: Daily P&L of the long position on the call option when the risk factors are
the underlying price and the implied volatility

s Rs (in %) St+h ∆Σs (in %) Σt+h Ct+h Πs

1 −1.93 98.07 −4.42 15.58 2.32 −182.25
2 −0.69 99.31 −1.32 18.68 3.48 −65.61
3 −0.71 99.29 −3.04 16.96 3.17 −97.23
4 −0.73 99.27 2.88 22.88 4.21 6.87
5 1.22 101.22 −0.13 19.87 4.79 65.20
6 1.01 101.01 −0.08 19.92 4.67 53.24
7 1.04 101.04 1.29 21.29 4.93 79.03
8 1.08 101.08 2.93 22.93 5.24 110.21
9 −1.61 98.39 0.85 20.85 3.40 −74.21
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whereas the Gaussian ES of the call option is:

ESα (w;h) =
φ
(
Φ−1 (α)

)
1− α × |∆t| × St × σ (RS,t+h)

If we consider the introductory example, we have:

Π (w) = wS (St+h − St) + wC (Ct+h − Ct)
' (wS + wC∆t) (St+h − St)
= (wS + wC∆t)StRS,t+h

With the delta approach, we aggregate the risk by netting the different delta exposures82.
In particular, the portfolio is delta neutral if the net exposure is zero:

wS + wC∆t = 0⇔ wS = −wC∆t

With the delta approach, the VaR/ES of delta neutral portfolios is then equal to zero.

FIGURE 2.18: Approximation of the option price with the Greek coefficients

To overcome this drawback, we can use the second-order approximation or the delta-
gamma approach:

Ct+h − Ct '∆t (St+h − St) + 1
2Γt (St+h − St)2

where Γt is the option gamma:

Γt = ∂2 CBS (St,Σt, T )
∂ S2

t

82A long (or short) position on the underlying asset is equivalent to ∆t = 1 (or ∆t = −1).
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In Figure 2.18, we compare the two Taylor expansions with the re-pricing method when h is
equal to one trading day. We observe that the delta approach provides a bad approximation
if the future price St+h is far from the current price St. The inclusion of the gamma helps
to correct the pricing error. However, if the time period h is high, the two approximations
may be inaccurate even in the neighborhood de St (see the case h = 30 days in Figure 2.18).
It is therefore important to take into account the time or maturity effect:

Ct+h − Ct '∆t (St+h − St) + 1
2Γt (St+h − St)2 + Θth

where Θt = ∂t CBS (St,Σt, T ) is the option theta83.
The Taylor expansion can be generalized to a set of risk factors Ft = (F1,t, . . . ,Fm,t):

Ct+h − Ct '
m∑
j=1

∂ Ct
∂ Fj,t

(Fj,t+h −Fj,t) +

1
2

m∑
j=1

m∑
k=1

∂2 Ct
∂ Fj,t ∂ Fk,t

(Fj,t+h −Fj,t) (Fk,t+h −Fk,t)

The delta-gamma-theta approach consists in considering the underlying price and the ma-
turity as risk factors. If we add the implied volatility as a new risk factor, we obtain:

Ct+h − Ct ' ∆t (St+h − St) + 1
2Γt (St+h − St)2 + Θth+

υt (Σt+h − Σt)

where υt = ∂Σt CBS (St,Σt, T ) is the option vega. Here, we have considered that only the
second derivative of Ct with respect to St is significant, but we could also include the vanna
or volga effect84.

In the case of the call option, the Black-Scholes sensitivities are equal to:

∆t = e(bt−rt)τΦ (d1)

Γt = e(bt−rt)τφ (d1)
StΣt

√
τ

Θt = −rtKe−rtτΦ (d2)− 1
2
√
τ
StΣte(bt−rt)τφ (d1)−

(bt − rt)Ste(bt−rt)τΦ (d1)
υt = e(bt−rt)τSt

√
τφ (d1)

If we consider again Example 18 on page 95, we obtain85 ∆t = 0.5632, Γt = 0.0434,
Θt = −11.2808 and υt = 17.8946. In Table 2.14, we have reported the approximated P&Ls
for the first nine scenarios and the one-factor model. The fourth column indicates the P&L
obtained by the full pricing method, which were already reported in Table 2.12. Π∆

s (w),
Π∆+Γ
s (w) and Π∆+Γ+Θ

s (w) correspond respectively to delta, delta-gamma, delta-gamma-
theta approaches. For example, we have Π∆

1 (w) = 100× 0.5632× (98.07− 100) = −108.69,
Π∆+Γ

1 (w) = −108.69 + 100 × 1
2 × 0.0434 × (98.07− 100)2 = −100.61 and Π∆+Γ+Θ

1 (w) =

83An equivalent formula is Θt = −∂T CBS (St,Σt, T ) = −∂τ CBS (St,Σt, T ) because the maturity T (or
the time to maturity τ) is moving in the opposite way with respect to the time t.

84The vanna coefficient corresponds to the cross-derivative of Ct with respect to St and Σt whereas the
volga effect is the second derivative of Ct with respect to Σt.

85We have d1 = 0.1590, Φ (d1) = 0.5632, φ (d1) = 0.3939, d2 = 0.0681 and Φ (d2) = 0.5272.
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−100.61 − 11.2808 × 1/252 = −105.09. We notice that we obtain a good approximation
with the delta, but it is more accurate to combine delta, gamma and theta sensibilities.
Finally, the 99% VaRs for a one-day holding period are $171.20 and $151.16 and $155.64.
This is the delta-gamma-theta approach which gives the closest result86. If the set of risk
factors includes the implied volatility, we obtain the results in Table 2.15. We notice that
the vega effect is very significant (fifth column). As an illustration, we have Πυ1 (w) =
100× 17.8946× (15.58%− 20%) = −79.09, implying that the volatility risk explains 43.4%
of the loss of $182.25 for the first scenario. Finally, the VaR is equal to $183.76 with the
delta-gamma-theta-vega approach whereas we found previously that it was equal to $181.70
with the full pricing method.

TABLE 2.14: Calculation of the P&L based on the Greek sensitivities
s Rs (in %) St+h Πs Π∆

s Π∆+Γ
s Π∆+Γ+Θ

s

1 −1.93 98.07 −104.69 −108.69 −100.61 −105.09
2 −0.69 99.31 −42.16 −38.86 −37.83 42.30
3 −0.71 99.29 −43.22 −39.98 −38.89 −43.37
4 −0.73 99.27 −44.28 −41.11 −39.96 −44.43
5 1.22 101.22 67.46 68.71 71.93 67.46
6 1.01 101.01 54.64 56.88 59.09 54.61
7 1.04 101.04 56.46 58.57 60.91 56.44
8 1.08 101.08 58.89 60.82 63.35 58.87
9 −1.61 98.39 −89.22 −90.67 −85.05 −89.53
VaR99% (w; one day) 154.79 171.20 151.16 155.64
ES97.5% (w; one day) 150.04 165.10 146.37 150.84

TABLE 2.15: Calculation of the P&L using the vega coefficient

s St+h Σt+h Πs Πυs Π∆+υ
s Π∆+Γ+υ

s Π∆+Γ+Θ+υ
s

1 98.07 15.58 −182.25 −79.09 −187.78 −179.71 −184.19
2 99.31 18.68 −65.61 −23.62 −62.48 −61.45 −65.92
3 99.29 16.96 −97.23 −54.40 −94.38 −93.29 −97.77
4 99.27 22.88 6.87 51.54 10.43 11.58 7.10
5 101.22 19.87 65.20 −2.33 66.38 69.61 65.13
6 101.01 19.92 53.24 −1.43 55.45 57.66 53.18
7 101.04 21.29 79.03 23.08 81.65 84.00 79.52
8 101.08 22.93 110.21 52.43 113.25 115.78 111.30
9 98.39 20.85 −74.21 15.21 −75.46 −69.84 −74.32
VaR99% (w; one day) 181.70 77.57 190.77 179.29 183.76
ES97.5% (w; one day) 172.09 73.90 184.90 169.34 173.81

Remark 14 We do not present here the non-linear quadratic VaR, which consists in com-
puting the VaR of option portfolios with the Cornish-Fisher expansion (Zangari, 1996;
Britten-Jones and Schaefer, 1999). It is called ‘quadratic’ because it uses the delta-gamma
approximation and requires calculating the moments of the quadratic form (St+h − St)2.
The treatment of this approach is left as Exercise 2.4.8 on page 123.

86We found previously that the VaR was equal to $154.79 with the full pricing method.



Market Risk 101

The hybrid method On the one hand, the full pricing method has the advantage to
be accurate, but also the drawback to be time-consuming because it performs a complete
revaluation of the portfolio for each scenario. On the other hand, the method based on the
sensitivities is less accurate, but also faster than the re-pricing approach. Indeed, the Greek
coefficients are calculated once and for all, and their values do not depend on the scenario.
The hybrid method consists of combining the two approaches:

1. we first calculate the P&L for each (historical or simulated) scenario with the method
based on the sensitivities;

2. we then identify the worst scenarios;

3. we finally revalue these worst scenarios by using the full pricing method.

The underlying idea is to consider the faster approach to locate the value-at-risk, and then
to use the most accurate approach to calculate the right value.

TABLE 2.16: The 10 worst scenarios identified by the hybrid method

i
Full pricing Greeks

∆− Γ−Θ− υ ∆−Θ ∆−Θ− υ
s Πs s Πs s Πs s Πs

1 100 −183.86 100 −186.15 182 −187.50 134 −202.08
2 1 −182.25 1 −184.19 169 −176.80 100 −198.22
3 134 −181.15 134 −183.34 27 −174.55 1 −192.26
4 27 −163.01 27 −164.26 134 −170.05 169 −184.32
5 169 −162.82 169 −164.02 69 −157.66 27 −184.04
6 194 −159.46 194 −160.93 108 −150.90 194 −175.36
7 49 −150.25 49 −151.43 194 −149.77 49 −165.41
8 245 −145.43 245 −146.57 49 −147.52 182 −164.96
9 182 −142.21 182 −142.06 186 −145.27 245 −153.37
10 79 −135.55 79 −136.52 100 −137.38 69 −150.68

In Table 2.16, we consider the previous example with the implied volatility as a risk
factor. We have reported the worst scenarios corresponding to the order statistic i : nS
with i ≤ 10. In the case of the full pricing method, the five worst scenarios are the 100th,
1st, 134th, 27th and 169th. This implies that the hybrid method will give the right result
if it is able to select the 100th, 1st and 134th scenarios to compute the value-at-risk which
corresponds to the average of the second and third order statistics. If we consider the
∆ − Γ − Θ − υ approximation, we identify the same ten worst scenarios. It is perfectly
normal, as it is easy to price an European call option. It will not be the case with exotic
options, because the approximation may not be accurate. For instance, if we consider our
example with the ∆−Θ approximation, the five worst scenarios becomes the 182th, 169st,
27th, 134th and 69th. If we revaluate these 5 worst scenarios, the 99% value-at-risk is equal
to:

VaR99% (w; one day) = 1
2 (163.01 + 162.82) = $162.92

which is a result far from the value of $180.70 found with the full pricing method. With the
10 worst scenarios, we obtain:

VaR99% (w; one day) = 1
2 (181.15 + 163.01) = $172.08
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Once again, we do not find the exact value, because the ∆−Θ approximation fails to detect
the first scenario among the 10 worst scenarios. This problem vanishes with the ∆−Θ−υ
approximation, even if it gives a ranking different than this obtained with the full pricing
method. In practice, the hybrid approach is widespread and professionals generally use the
identification method with 10 worst scenarios87.

2.2.5.3 Backtesting

When we consider a model to price a product, the valuation is known as ‘mark-to-
model’ and requires more attention than the mark-to-market approach. In this last case,
the simulated P&L is the difference between the mark-to-model value at time t+ 1 and the
current mark-to-market value:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-market

At time t+ 1, the realized P&L is the difference between two mark-to-market values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-market

− Pt (w)︸ ︷︷ ︸
mark-to-market

For exotic options and OTC derivatives, we don’t have market prices and the portfolio is
valuated using the mark-to-model approach. This means that the simulated P&L is the
difference between two mark-to-model values:

Πs (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

and the realized P&L is also the difference between two mark-to-model values:

Π (w) = Pt+1 (w)︸ ︷︷ ︸
mark-to-model

− Pt (w)︸ ︷︷ ︸
mark-to-model

In the case of the mark-to-model valuation, we see the relevance of the pricing model in
terms of risk management. Indeed, if the pricing model is wrong, the value-at-risk is wrong
too and this cannot be detected by the backtesting procedure, which has little signification.
This is why the supervisory authority places great importance on model risk.

2.2.5.4 Model risk

Model risk cannot be summarized in a unique definition due to its complexity. For
instance, Derman (1996, 2001) considers six types of model risk (inapplicability of modeling,
incorrect model, incorrect solutions, badly approximated solution, bugs and unstable data).
Rebonato (2001) defines model risk as “the risk of a significant difference between the mark-
to-model value of an instrument, and the price at which the same instrument is revealed to
have traded in the market”. According to Morini (2001), these two approaches are different.
For Riccardo Rebonato, there is not a true value of an instrument before it will be traded on
the market. Model risk can therefore be measured by selling the instrument in the market.
For Emanuel Derman, an instrument has an intrinsic true value, but it is unknown. The
proposition of Rebonato is certainly the right way to define model risk, but it does not
help to measure model risk from an ex-ante point of view. Moreover, this approach does

87Its application is less frequent than in the past because computational times have dramatically decreased
with the evolution of technology, in particular the development of parallel computing.
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not distinguish between model risk and liquidity risk. The conception of Derman is more
adapted to manage model risk and calibrate the associated provisions. This is the approach
that has been adopted by banks and regulators. Nevertheless, the multifaceted nature of
this approach induces very different implementations across banks, because it appears as a
catalogue with an infinite number of rules.

We consider a classification with four main types of model risk:

1. the operational risk;

2. the parameter risk;

3. the risk of mis-specification;

4. the hedging risk.

The operational risk is the risk associated to the implementation of the pricer. It concerns
programming mistakes or bugs, but also mathematical errors in closed-form formulas, ap-
proximations or numerical methods. A typical example is the use of a numerical scheme
for solving a partial differential equation. The accuracy of the option price and the Greek
coefficients will depend on the specification of the numerical algorithm (explicit, implicit or
mixed scheme) and the discretization parameters (time and space steps). Another example
is the choice of the Monte Carlo method and the number of simulations.

The parameter risk is the risk associated to the input parameters, in particular those
which are difficult to estimate. A wrong value of one parameter can lead to a mis-pricing,
even though the model is right and well implemented. In this context, the question of
available and reliable data is a key issue. It is particularly true when the parameters are
unobservable and are based on an expert’s opinion. A typical example concerns the value of
correlations in multi-asset options. Even if there is no problem with data, some parameters
are indirectly related to market data via a calibration set. In this case, they may change
with the specification of the calibration set. For instance, the pricing of exotic interest rate
options is generally based on parameters calibrated from prices of plain vanilla instruments
(caplets and swaptions). The analysis of parameter risk consists then of measuring the
impact of parameter changes on the price and the hedging portfolio of the exotic option.

The risk of mis-specification is the risk associated to the mathematical model, because
it may not include all risk factors, the dynamics of the risk factors is not adequate or the
dependence between them is not well defined. It is generally easy to highlight this risk,
because various models calibrated with the same set of instruments can produce different
prices for the same exotic option. The big issue is to define what is the least bad model. For
example, in the case of equity options, we have the choice between many models: Black-
Scholes, local volatility, Heston model, other stochastic volatility models, jump-diffusion,
etc. In practice, the frontier between the risk of parameters and the risk of mis-specification
may be unclear as shown by the seminal work of uncertainty on pricing and hedging by
Avellaneda et al. (1995). Moreover, a model which appears to be good for pricing may not
be well adapted for risk management. This explains that the trader and the risk manager
can use sometimes two different models for the same option payoff.

The hedging risk is the risk associated to the trading management of the option portfolio.
The sales margin corresponds to the difference between the transaction price and the mark-
to-model price. The sales margin is calculated at the inception date of the transaction. To
freeze the margin, we have to hedge the option. The mark-to-model value is then transferred
to the option trader and represents the hedging cost. We face here the risk that the realized
hedging cost will be larger than the mark-to-model price. A typical example is a put option,
which has a negative delta. The hedging portfolio corresponds then to a short selling on
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the underlying asset. Sometimes, this short position may be difficult to implement (e.g.
a ban on short selling) or may be very costly (e.g. due to a change in the bank funding
condition). Some events may also generate a rebalancing risk. The most famous example is
certainly the hedge fund crisis in October 2008, which has imposed redemption restrictions
or gates. This caused difficulties to traders, who managed call options on hedge funds and
were unable to reduce their deltas at this time. The hedging risk does not only concern
the feasibility of the hedging implementation, but also its adequacy with the model. As an
illustration, we suppose that we use a stochastic volatility model for an option, which is
sensitive to the vanna coefficient. The risk manager can then decide to use this model for
measuring the value-at-risk, but the trader can also prefer to implement a Black-Scholes
hedging portfolio88. This is not a problem that the risk manager uses a different model than
the trader if the model risk only includes the first three categories. However, it will be a
problem if it also concerns hedging risk.

In the Basel III framework, the Basel Committee highlights the role of the model vali-
dation team:

“A distinct unit of the bank that is separate from the unit that designs and
implements the internal models must conduct the initial and ongoing validation
of all internal models used to determine market risk capital requirements. The
model validation unit must validate all internal models used for purposes of the
IMA on at least an annual basis. [...] Banks must maintain a process to ensure
that their internal models have been adequately validated by suitably qualified
parties independent of the model development process to ensure that each model
is conceptually sound and adequately reflects all material risks. Model validation
must be conducted both when the model is initially developed and when any
significant changes are made to the model” (BCBS, 2019, pages 68-69).

Therefore, model risk justifies that model validation is an integral part of the risk man-
agement process for exotic options. The tasks of a model validation team are multiple and
concern reviewing the programming code, checking mathematical formulas and numerical
approximations, validating market data, testing the calibration stability, challenging the
pricer with alternative models, proposing provision buffers, etc. This team generally oper-
ates at the earliest stages of the pricer development (or when the pricer changes), whereas
the risk manager is involved to follow the product on a daily basis. In Chapter 9, we present
the different tools available for the model validation unit in order to assess the robustness
of risk measures that are based on mark-to-model prices.

Remark 15 It is a mistake to think that model risk is an operational risk. Model risk is
intrinsically a market risk. Indeed, it exists because exotic options are difficult to price and
hedge, implying that commercial risk is high. This explains that sales margins are larger
than for vanilla options and implicitly include model risk, which is therefore inherent to the
business of exotic derivatives.

2.3 Risk allocation
Measuring the risk of a portfolio is a first step to manage it. In particular, a risk measure

is a single number that is not very helpful for understanding the sources of the portfolio risk.
88There may be many reasons for implementing more simple hedging portfolios: the trader may be more

confident in the robustness, there is no market instrument to replicate the vanna position, etc.
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To go further, we must define precisely the notion of risk contribution in order to propose
risk allocation principles.

Let us consider two trading desks A and B, whose risk measure is respectively R (wA)
and R (wB). At the global level, the risk measure is equal to R (wA+B). The question is
then how to allocate R (wA+B) to the trading desks A and B:

R (wA+B) = RCA (wA+B) +RCB (wA+B)

There is no reason that RCA (wA+B) = R (wA) and RCB (wA+B) = R (wB) except if there
is no diversification. This question is an important issue for the bank because risk allocation
means capital allocation:

K (wA+B) = KA (wA+B) + KB (wA+B)

Capital allocation is not neutral, because it will impact the profitability of business units
that compose the bank.

Remark 16 This section is based on Chapter 2 of the book of Roncalli (2013).

2.3.1 Euler allocation principle
According to Litterman (1996), risk allocation consists in decomposing the risk portfolio

into a sum of risk contributions by sub-portfolios (assets, trading desks, etc.). The concept
of risk contribution is key in identifying concentrations and understanding the risk profile of
the portfolio, and there are different methods for defining them. As illustrated by Denault
(2001), some methods are more pertinent than others and the Euler principle is certainly
the most used and accepted one.

We decompose the P&L as follows:

Π =
n∑
i=1

Πi

where Πi is the P&L of the ith sub-portfolio. We note R (Π) the risk measure associated
with the P&L89. Let us consider the risk-adjusted performance measure (RAPM) defined
by90:

RAPM (Π) = E [Π]
R (Π)

Tasche (2008) considers the portfolio-related RAPM of the ith sub-portfolio defined by:

RAPM (Πi | Π) = E [Πi]
R (Πi | Π)

Based on the notion of RAPM, Tasche (2008) states two properties of risk contributions
that are desirable from an economic point of view:

1. Risk contributions R (Πi | Π) to portfolio-wide risk R (Π) satisfy the full allocation
property if:

n∑
i=1
R (Πi | Π) = R (Π) (2.11)

89We recall that R (Π) = R (−L).
90This concept is close to the RAROC measure introduced by Banker Trust (see page 2).
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2. Risk contributions R (Πi | Π) are RAPM compatible if there are some εi > 0 such
that91:

RAPM (Πi | Π) > RAPM (Π)⇒ RAPM (Π + hΠi) > RAPM (Π) (2.12)

for all 0 < h < εi.

Tasche (2008) shows therefore that if there are risk contributions that are RAPM compatible
in the sense of the two previous properties (2.11) and (2.12), then R (Πi | Π) is uniquely
determined as:

R (Πi | Π) = d
dhR (Π + hΠi)

∣∣∣∣
h=0

(2.13)

and the risk measure is homogeneous of degree 1. In the case of a subadditive risk measure,
one can also show that:

R (Πi | Π) ≤ R (Πi) (2.14)
This means that the risk contribution of the sub-portfolio i is always smaller than its stand-
alone risk measure. The difference is related to the risk diversification.

Let us return to risk measure R (w) defined in terms of weights. The previous framework
implies that the risk contribution of sub-portfolio i is uniquely defined as:

RCi = wi
∂R (w)
∂ wi

(2.15)

and the risk measure satisfies the Euler decomposition:

R (w) =
n∑
i=1

wi
∂R (w)
∂ wi

=
n∑
i=1
RCi (2.16)

This relationship is also called the Euler allocation principle.

Remark 17 We can always define the risk contributions of a risk measure by using Equa-
tion (2.15). However, this does not mean that the risk measure satisfies the Euler decompo-
sition (2.16).

Remark 18 Kalkbrener (2005) develops an axiomatic approach to risk contribution. In
particular, he shows that the Euler allocation principle is the only risk allocation method
compatible with diversification principle (2.14) if the risk measure is subadditive.

If we assume that the portfolio return R (w) is a linear function of the weights w, the
expression of the standard deviation-based risk measure becomes:

R (w) = −µ (w) + c · σ (w)
= −w>µ+ c ·

√
w>Σw

where µ and Σ are the mean vector and the covariance matrix of sub-portfolios. It follows
that the vector of marginal risks is:

∂R (w)
∂ w

= −µ+ c · 1
2
(
w>Σw

)−1 (2Σw)

= −µ+ c · Σw√
w>Σw

91This property means that assets with a better risk-adjusted performance than the portfolio continue to
have a better RAPM if their allocation increases in a small proportion.



Market Risk 107

The risk contribution of the ith sub-portfolio is then:

RCi = wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
We verify that the standard deviation-based risk measure satisfies the full allocation prop-
erty:

n∑
i=1
RCi =

n∑
i=1

wi ·
(
−µi + c ·

(Σw)i√
w>Σw

)
= w>

(
−µ+ c · Σw√

w>Σw

)
= −w>µ+ c ·

√
w>Σw

= R (w)

Because Gaussian value-at-risk and expected shortfall are two special cases of the stan-
dard deviation-based risk measure, we conclude that they also satisfy the Euler allocation
principle. In the case of the value-at-risk, the risk contribution becomes:

RCi = wi ·
(
−µi + Φ−1 (α) ·

(Σw)i√
w>Σw

)
(2.17)

whereas in the case of the expected shortfall, it is equal to:

RCi = wi ·

(
−µi +

φ
(
Φ−1 (α)

)
(1− α) ·

(Σw)i√
w>Σw

)
(2.18)

Remark 19 Even if the risk measure is convex, it does not necessarily satisfy the Eu-
ler allocation principle. The most famous example is the variance of the portfolio return.
We have var (w) = w>Σw and ∂w var (w) = 2Σw. It follows that

∑n
i=1 wi · ∂wi var (w) =∑n

i=1 wi · (2Σw)i = 2w>Σw = 2 var (w) > var (w). In the case of the variance, the sum of
the risk contributions is then always larger than the risk measure itself, because the variance
does not satisfy the homogeneity property.

Example 19 We consider the Apple/Coca-Cola portfolio that has been used for calculating
the Gaussian VaR on page 68. We recall that the nominal exposures were $1 093.3 (Apple)
and $842.8 (Coca-Cola), the estimated standard deviation of daily returns was equal to
1.3611% for Apple and 0.9468% for Coca-Cola and the cross-correlation of stock returns
was equal to 12.0787%.

In the two-asset case, the expression of the value-at-risk or the expected shortfall is:

R (w) = −w1µ1 − w2µ2 + c
√
w2

1σ
2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

It follows that the marginal risk of the first asset is:

MR1 = −µ1 + c
w1σ

2
1 + w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

We then deduce that the risk contribution of the first asset is:

RC1 = −w1µ1 + c
w2

1σ
2
1 + w1w2ρσ1σ2√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2
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By using the numerical values92 of Example 19, we obtain the results given in Tables 2.17
and 2.18. We verify that the sum of risk contributions is equal to the risk measure. We
notice that the stock Apple explains 75.14% of the risk whereas it represents 56.47% of the
allocation.

TABLE 2.17: Risk decomposition of the 99% Gaussian value-at-risk
Asset wi MRi RCi RC?i
Apple 1093.3 2.83% 30.96 75.14%

Coca-Cola 842.8 1.22% 10.25 24.86%
R (w) 41.21

TABLE 2.18: Risk decomposition of the 99% Gaussian expected shortfall
Asset wi MRi RCi RC?i
Apple 1093.3 3.24% 35.47 75.14%

Coca-Cola 842.8 1.39% 11.74 24.86%
R (w) 47.21

2.3.2 Application to non-normal risk measures
2.3.2.1 Main results

In the previous section, we provided formulas for when asset returns are normally dis-
tributed. However, the previous expressions can be extended in the general case. For the
value-at-risk, Gouriéroux et al. (2000) show that the risk contribution is equal to93:

RCi = R (Πi | Π)
= −E [Πi | Π = −VaRα (Π)]
= E [Li | L (w) = VaRα (L)] (2.19)

Formula (2.19) is more general than Equation (2.17) obtained in the Gaussian case. Indeed,
we can retrieve the latter if we assume that the returns are Gaussian. We recall that the
portfolio return is R (w) =

∑n
i=1 wiRi = w>R. The portfolio loss is defined by L (w) =

−R (w). We deduce that:

RCi = E [−wiRi | −R (w) = VaRα (w;h)]
= −wiE [Ri | R (w) = −VaRα;h (w)]

Because R (w) is a linear combination of R, the random vector (R,R (w)) is Gaussian and
we have: (

R
R (w)

)
∼ N

((
µ

w>µ

)
,

(
Σ Σw
w>Σ w>Σw

))
92We set µ1 = µ2 = 0.
93See also Hallerbach (2003).
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We know that VaRα (w;h) = −w>µ+ Φ−1 (α)
√
w>Σw. It follows that94:

E [R|R (w) = −VaRα (w;h)] = E
[
R | R (w) = w>µ− Φ−1 (α)

√
w>Σw

]
= µ+ Σw

(
w>Σw

)−1 ·(
w>µ− Φ−1 (α)

√
w>Σw − w>µ

)
and:

E [R|R (w) = −VaRα (w;h)] = µ− Φ−1 (α) Σw
√
w>Σw

(w>Σw)−1

= µ− Φ−1 (α) Σw√
w>Σw

We finally obtain the same expression as Equation (2.17):

RCi = −wi
(
µ− Φ−1 (α) Σw√

w>Σw

)
i

= −wiµi + Φ−1 (α)
wi · (Σw)i√
w>Σw

In the same way, Tasche (2002) shows that the general expression of the risk contribu-
tions for the expected shortfall is:

RCi = R (Πi | Π)
= −E [Πi | Π ≤ −VaRα (Π)]
= E [Li | L (w) ≥ VaRα (L)] (2.20)

Using Bayes’ theorem, it follows that:

RCi = E [Li · 1 {L (w) ≥ VaRα (L)}]
1− α

If we apply the previous formula to the Gaussian case, we obtain:

RCi = − wi
1− αE [Ri · 1 {R (w) ≤ −VaRα (L)}]

After some tedious computations, we retrieve the same expression as found previously95.

2.3.2.2 Calculating risk contributions with historical and simulated scenarios

The case of value-at-risk When using historical or simulated scenarios, the VaR is
calculated as follows:

VaRα (w;h) = −Π((1−α)nS :nS) = L(αnS :nS)

Let RΠ (s) be the rank of the P&L associated to the sth observation meaning that:

RΠ (s) =
nS∑
j=1

1 {Πj ≤ Πs}

94We use the formula of the conditional expectation presented in Appendix A.2.2.4 on page 1062.
95The derivation of the formula is left as an exercise (Section 2.4.9 on page 123).
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We deduce that:
Πs = Π(RΠ(s):nS)

Formula (2.19) is then equivalent to decompose Π((1−α)nS :nS) into individual P&Ls. We
have Πs =

∑n
i=1 Πi,s where Πi,s is the P&L of the ith sub-portfolio for the sth scenario. It

follows that:

VaRα (w;h) = −Π((1−α)nS :nS)

= −ΠR−1
Π ((1−α)nS)

= −
n∑
i=1

Πi,R−1
Π ((1−α)nS)

where R−1
Π is the inverse function of the rank. We finally deduce that:

RCi = −Πi,R−1
Π ((1−α)nS)

= Li,R−1
Π ((1−α)nS)

The risk contribution of the ith sub-portfolio is the loss of the ith sub-portfolio corresponding
to the scenario R−1

Π ((1− α)nS). If (1− α)nS is not an integer, we have:

RCi = −
(

Πi,R−1
Π (q) + ((1− α)nS − q)

(
Πi,R−1

Π (q+1) −Πi,R−1
Π (q)

))
where q = qα (nS) is the integer part of (1− α)nS .

Let us consider Example 13 on page 68. We have found that the historical value-at-risk
is $47.39. It corresponds to the linear interpolation between the second and third largest
loss. Using results in Table 2.7 on page 70, we notice that R−1

Π (1) = 236, R−1
Π (2) = 69,

R−1
Π (3) = 85, R−1

Π (4) = 23 and R−1
Π (5) = 242. We deduce that the second and third order

statistics correspond to the 69th and 85th historical scenarios. The risk decomposition is
reported in Table 2.19. Therefore, we calculate the risk contribution of the Apple stock as
follows:

RC1 = −1
2 (Π1,69 + Π1,85)

= −1
2 (10× (105.16− 109.33) + 10× (104.72− 109.33))

= $43.9

For the Coca-Cola stock, we obtain:

RC2 = −1
2 (Π2,69 + Π2,85)

= −1
2 (20× (41.65− 42.14) + 20× (42.28− 42.14))

= $3.5

If we compare these results with those obtained with the Gaussian VaR, we observe that
the risk decomposition is more concentrated for the historical VaR. Indeed, the exposure on
Apple represents 96.68% whereas it was previously equal to 75.14%. The problem is that
the estimator of the risk contribution only uses two observations, implying that its variance
is very high.
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TABLE 2.19: Risk decomposition of the 99% historical value-at-risk
Asset wi MRi RCi RC?i
Apple 56.47% 77.77 43.92 92.68%

Coca-Cola 43.53% 7.97 3.47 7.32%
R (w) 47.39

We can consider three techniques to improve the efficiency of the estimator RCi =
Li,R−1

Π (nS(1−a)). The first approach is to use a regularization method (Scaillet, 2004). The
idea is to estimate the value-at-risk by weighting the order statistics:

VaRα (w;h) = −
nS∑
s=1

$α (s;nS) Π(s:nS)

= −
nS∑
s=1

$α (s;nS) ΠR−1
Π (s)

where $α (s;nS) is a weight function dependent on the confidence level α. The expression
of the risk contribution then becomes:

RCi = −
nS∑
s=1

$α (s;nS) Πi,R−1
Π (s)

Of course, this naive method can be improved by using more sophisticated approaches such
as importance sampling (Glasserman, 2005).

In the second approach, asset returns are assumed to be elliptically distributed. In this
case, Carroll et al. (2001) show that96:

RCi = E [Li] + cov (L,Li)
σ2 (L) (VaRα (L)− E [L]) (2.21)

Estimating the risk contributions with historical scenarios is then straightforward. It suffices
to apply Formula (2.21) by replacing the statistical moments by their sample statistics:

RCi = L̄i +
∑nS
s=1

(
Ls − L̄

) (
Li,s − L̄i

)∑nS
s=1

(
Ls − L̄

)2 (
VaRα (L)− L̄

)
where L̄i = n−1

S

∑nS
s=1 Li,s and L̄ = n−1

S

∑nS
s=1 Ls. Equation (2.21) can be viewed as the

estimation of the conditional expectation E [Li|L = VaRα (L)] in a linear regression frame-
work:

Li = βL+ εi

96We verify that the sum of the risk contributions is equal to the value-at-risk:
n∑
i=1

RCi =
n∑
i=1

E [Li] + (VaRα (L)− E [L])
n∑
i=1

cov (L,Li)
σ2 (L)

= E [L] + (VaRα (L)− E [L])
= VaRα (L)



112 Handbook of Financial Risk Management

Because the least squares estimator is β̂ = cov (L,Li) /σ2 (L), we deduce that:

E [Li|L = VaRα (L)] = β̂VaRα (L) + E [εi]

= β̂VaRα (L) +
(
E [Li]− β̂E [L]

)
= E [Li] + β̂ (VaRα (L)− E [L])

Epperlein and Smillie (2006) extend Formula (2.21) in the case of non-elliptical distri-
butions. If we consider the generalized conditional expectation E [Li|L = x] = f (x) where
the function f is unknown, the estimator is given by the kernel regression97:

f̂ (x) =
∑nS
s=1K (Ls − x)Li,s∑nS
s=1K (Ls − x)

where K (u) is the kernel function. We deduce that:

RCi = f̂ (VaRα (L))

Epperlein and Smillie (2006) note however that this risk decomposition does not satisfy the
Euler allocation principle. This is why they propose the following correction:

RCi = VaRα (L)∑n
i=1RCi

f̂ (VaRα (L))

= VaRα (L)
∑nS
s=1K (Ls −VaRα (L))Li,s∑n

i=1
∑nS
s=1K (Ls −VaRα (L))Li,s

= VaRα (L)
∑nS
s=1K (Ls −VaRα (L))Li,s∑nS
s=1K (Ls −VaRα (L))Ls

In Table 2.20, we have reported the risk contributions of the 99% value-at-risk for Apple
and Coca-Cola stocks. The case G corresponds to the Gaussian value-at-risk whereas all the
other cases correspond to the historical value-at-risk. For the case R1, the regularization
weights are $99% (2; 250) = $99% (3; 250) = 1

2 and $99% (s; 250) = 0 when s 6= 2 or s 6= 3.
It corresponds to the classical interpolation method between the second and third order
statistics. For the case R2, we have $99% (s; 250) = 1

4 when s ≤ 4 and $99% (s; 250) = 0
when s > 4. The value-at-risk is therefore estimated by averaging the first four order
statistics. The cases E and K correspond to the methods based on the elliptical and kernel
approaches. For these two cases, we obtain a risk decomposition, which is closer to this
obtained with the Gaussian method. This is quite logical as the Gaussian distribution is a
special case of elliptical distributions and the kernel function is also Gaussian.

TABLE 2.20: Risk contributions calculated with regularization techniques
Asset G R1 R2 E K
Apple 30.97 43.92 52.68 35.35 39.21

Coca-Cola 10.25 3.47 2.29 12.03 8.17
R (w) 41.21 47.39 54.96 47.39 47.39

97f̂ (x) is called the Nadaraya-Watson estimator (see Section 10.1.4.2 on page 641).
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Example 20 Let L = L1 +L2 be the portfolio loss where Li (i = 1, 2) is defined as follows:

Li = wi (µi + σiTi)

and Ti has a Student’s t distribution with the number of degrees of freedom νi. The depen-
dence function between the losses (L1, L2) is given by the Clayton copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ

For the numerical illustration, we consider the following values: w1 = 100, µ1 = 10%,
σ1 = 20%, ν1 = 6, w2 = 200, µ2 = 10%, σ2 = 25%, ν2 = 4 and θ = 2. The confidence level
α of the value-at-risk is set to 90%.

FIGURE 2.19: Density function of the different risk contribution estimators

In Figure 2.19, we compare the different statistical estimators of the risk contribution
RC1 when we use nS = 5 000 simulations. Concerning the regularization method, we con-
sider the following weight function applied to the order statistics of losses98:

$L
α (s;nS) = 1

2hnS + 1 · 1
{
|s− qα (nS)|

nS
≤ h

}
It corresponds to a uniform kernel on the range [qα (nS)− hnS , qα (nS) + hnS ]. In the first
panel, we report the probability density function of RC1 when h is equal to 0% and 2.5%.
The case h = 0% is the estimator based on only one observation. We verify that the variance

98This is equivalent to use this weight function applied to the order statistics of P&Ls:

$α (s;nS) =
1

2hnS + 1
· 1
{ |s− qᾱ (nS)|

nS
≤ h
}
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of this estimator is larger for h = 0% than for h = 2.5%. However, we notice that this last
estimator is a little biased, because we estimate the quantile 90% by averaging the order
statistics corresponding to the range [87.5%, 92.5%]. In the second panel, we compare the
weighting method with the elliptical and kernel approaches. These two estimators have a
smaller variance, but a larger bias because they assume that the loss distribution is elliptical
or may be estimated using a Gaussian kernel. Finally, the third panel shows the probability
density function of RC1 estimated with the Gaussian value-at-risk.

The case of expected shortfall On page 70, we have shown that the expected shortfall
is estimated as follows:

ESα (L) = 1
qα (nS)

nS∑
s=1

1 {Ls ≥ VaRα (L)} · Ls

or:

ESα (L) = − 1
qα (nS)

nS∑
s=1

1 {Πs ≤ −VaRα (L)} ·Πs

It corresponds to the average of the losses larger or equal than the value-at-risk. It follows
that:

ESα (L) = − 1
qα (nS)

qα(nS)∑
s=1

Π(s:nS)

= − 1
qα (nS)

qα(nS)∑
s=1

ΠR−1
Π (s)

= − 1
qα (nS)

qα(nS)∑
s=1

n∑
i=1

Πi,R−1
Π (s)

We deduce that:

RCi = − 1
qα (nS)

qα(nS)∑
s=1

Πi,R−1
Π (s)

= 1
qα (nS)

qα(nS)∑
s=1

Li,R−1
Π (s)

In the Apple/Coca-Cola example, we recall that the 99% daily value-at-risk is equal to
$47.39. The corresponding expected shortfall is then the average of the two largest losses:

ESα (w; one day) = 84.34 + 51.46
2 = $67.90

For the risk contribution, we obtain99:

RC1 = 87.39 + 41.69
2 = $64.54

99Because we have:
Π(1:250) = −87.39 + 3.05 = −84.34

and:
Π(2:250) = −41.69− 9.77 = −51.46
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and:
RC2 = −3.05 + 9.77

2 = $3.36

The corresponding risk decomposition is given in Tables 2.21 and 2.22 for α = 99% and
α = 97.5%. With the new rules of Basel III, the capital is higher for this example.

TABLE 2.21: Risk decomposition of the 99% historical expected shortfall
Asset wi MRi RCi RC?i
Apple 56.47% 114.29 64.54 95.05%

Coca-Cola 43.53% 7.72 3.36 4.95%
R (w) 67.90

TABLE 2.22: Risk decomposition of the 97.5% historical expected shortfall
Asset wi MRi RCi RC?i
Apple 56.47% 78.48 44.32 91.31%

Coca-Cola 43.53% 9.69 4.22 8.69%
R (w) 48.53

FIGURE 2.20: Probability density function of the RC1 estimator for the 99% VaR and
97.5% ES

In Figure 2.20, we report the probability density function of the RC1 estimator in the
case of Example 20. We consider the 99% value-at-risk and the 97.5% expected shortfall with
nS = 5 000 simulated scenarios. For the VaR risk measure, the risk contribution is estimated
using respectively only one single observation and a weighting function corresponding to a
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uniform window100. We notice that the estimator has a smaller variance with the expected
shortfall risk measure. Of course, we can always reduce the variance of ES risk contributions
by using the previous smoothing techniques (Scaillet, 2004), but this is less of an issue than
for the value-at-risk measure.

2.4 Exercises
2.4.1 Calculating regulatory capital with the Basel I standardized mea-

surement method
1. We consider an interest rate portfolio with the following exposures: a long position

of $100 mn on four-month instruments, a short position of $50 mn on five-month
instruments, a long position of $10 mn on fifteen-year instruments and a short position
of $50 mn on twelve-year instruments.

(a) Using BCBS (1996a), explain the maturity approach for computing the capital
requirement due to the interest rate risk.

(b) By assuming that the instruments correspond to bonds with coupons larger than
3%, calculate the capital requirement of the trading portfolio.

2. We consider the following portfolio of stocks:

Stock 3M Exxon IBM Pfizer AT&T Cisco Oracle
Li 100 100 10 50 60 90
Si 50 80

where Li and Si indicate the long and short exposures on stock i expressed in $ mn.

(a) Calculate the capital charge for the specific risk.
(b) Calculate the capital charge for the general market risk.
(c) How can the investor hedge the market risk of his portfolio by using S&P 500

futures contracts? What is the corresponding capital charge? Verify that the
investor minimizes the total capital charge in this case.

3. We consider a net exposure Nw on an equity portfolio w. We note σ (w) the annualized
volatility of the portfolio return.

(a) Calculate the required capital under the standardized measurement method.
(b) Calculate the required capital under the internal model method if we assume

that the bank uses a Gaussian value-at-risk101.
(c) Deduce an upper bound σ (w) ≤ σ+ under which the required capital under

SMM is higher than the required capital under IMA.
(d) Comment on these results.

100We set h = 0.5% meaning that the risk contribution is estimated with 51 observations for the 99%
value-at-risk.

101We consider the Basel II capital requirement rules.
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4. We consider the portfolio with the following long and short positions expressed in $
mn:

Asset EUR JPY CAD Gold Sugar Corn Cocoa
Li 100 50 50 50 60 90
Si 100 100 50 80 110

(a) How do you explain that some assets present both long and short positions?
(b) Calculate the required capital under the simplified approach.

5. We consider the following positions (in $) of the commodity i:

Time band 0−1M 1M−3M 6M−1Y 1Y−2Y 2Y−3Y 3Y+
Li (t) 500 0 1 800 300 0 0
Si (t) 300 900 100 600 100 200

(a) Using BCBS (1996a), explain the maturity ladder approach for commodities.
(b) Compute the capital requirement.

2.4.2 Covariance matrix
We consider a universe of there stocks A, B and C.

1. The covariance matrix of stock returns is:

Σ =

 4%
3% 5%
2% −1% 6%


(a) Calculate the volatility of stock returns.
(b) Deduce the correlation matrix.

2. We assume that the volatilities are 10%, 20% and 30%. whereas the correlation matrix
is equal to:

ρ =

 100%
50% 100%
25% 0% 100%


(a) Write the covariance matrix.
(b) Calculate the volatility of the portfolio (50%, 50%, 0).
(c) Calculate the volatility of the portfolio (60%,−40%, 0). Comment on this result.
(d) We assume that the portfolio is long $150 on stock A, long $500 on stock B and

short $200 on stock C. Find the volatility of this long/short portfolio.

3. We consider that the vector of stock returns follows a one-factor model:

R = βF + ε

We assume that F and ε are independent. We note σ2
F the variance of F and D =

diag
(
σ̃2

1 , σ̃
2
2 , σ̃

2
3
)
the covariance matrix of idiosyncratic risks εt. We use the following

numerical values: σF = 50%, β1 = 0.9, β2 = 1.3, β3 = 0.1, σ̃1 = 5%, σ̃2 = 5% and
σ̃3 = 15%.
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(a) Calculate the volatility of stock returns.
(b) Calculate the correlation between stock returns.

4. Let X and Y be two independent random vectors. We note µ (X) and µ (Y ) the vector
of means and Σ (X) and Σ (Y ) the covariance matrices. We define the random vector
Z = (Z1, Z2, Z3) where Zi is equal to the product XiYi.

(a) Calculate µ (Z) and cov (Z).
(b) We consider that µ (X) is equal to zero and Σ (X) corresponds to the covariance

matrix of Question 2. We assume that Y1, Y2 and Y3 are three independent
uniform random variables U[0,1]. Calculate the 99% Gaussian value-at-risk of the
portfolio corresponding to Question 2(d) when Z is the random vector of asset
returns. Compare this value with the Monte Carlo VaR.

2.4.3 Risk measure
1. We denote F the cumulative distribution function of the loss L.

(a) Give the mathematical definition of the value-at-risk and expected shortfall risk
measures.

(b) Show that:

ESα (L) = 1
1− α

∫ 1

α

F−1 (t) dt

(c) We assume that L follows a Pareto distribution P (θ, x−) defined by:

Pr {L ≤ x} = 1−
(
x

x−

)−θ
where x ≥ x− and θ > 1. Calculate the moments of order one and two. Interpret
the parameters x− and θ. Calculate ESα (L) and show that:

ESα (L) > VaRα (L)

(d) Calculate the expected shortfall when L is a Gaussian random variableN
(
µ, σ2).

Show that:
Φ (x) = −φ (x)

x1 + φ (x)
x3 + . . .

Deduce that:
ESα (L)→ VaRα (L) when α→ 1

(e) Comment on these results in a risk management perspective.

2. Let R (L) be a risk measure of the loss L.

(a) Is R (L) = E [L] a coherent risk measure?
(b) Same question if R (L) = E [L] + σ (L).

3. We assume that the probability distribution F of the loss L is defined by:

Pr {L = `i} =
{

20% if `i = 0
10% if `i ∈ {1, 2, 3, 4, 5, 6, 7, 8}

(a) Calculate ESα for α = 50%, α = 75% and α = 90%.
(b) Let us consider two losses L1 and L2 with the same distribution F. Build a joint

distribution of (L1, L2) which does not satisfy the subadditivity property when
the risk measure is the value-at-risk.
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2.4.4 Value-at-risk of a long/short portfolio
We consider a long/short portfolio composed of a long position on asset A and a short

position on asset B. The long exposure is equal to $2 mn whereas the short exposure is
equal to $1 mn. Using the historical prices of the last 250 trading days of assets A and B,
we estimate that the asset volatilities σA and σB are both equal to 20% per year and that
the correlation ρA,B between asset returns is equal to 50%. In what follows, we ignore the
mean effect.

1. Calculate the Gaussian VaR of the long/short portfolio for a one-day holding period
and a 99% confidence level.

2. How do you calculate the historical VaR? Using the historical returns of the last 250
trading days, the five worst scenarios of the 250 simulated daily P&L of the portfolio
are −58 700, −56 850, −54 270, −52 170 and −49 231. Calculate the historical VaR for
a one-day holding period and a 99% confidence level.

3. We assume that the multiplication factor mc is 3. Deduce the required capital if the
bank uses an internal model based on the Gaussian value-at-risk. Same question when
the bank uses the historical VaR. Compare these figures with those calculated with
the standardized measurement method.

4. Show that the Gaussian VaR is multiplied by a factor equal to
√

7/3 if the correlation
ρA,B is equal to −50%. How do you explain this result?

5. The portfolio manager sells a call option on the stock A. The delta of the option is
equal to 50%. What does the Gaussian value-at-risk of the long/short portfolio become
if the nominal of the option is equal to $2 mn? Same question when the nominal of
the option is equal to $4 mn. How do you explain this result?

6. The portfolio manager replaces the short position on the stock B by selling a call
option on the stock B. The delta of the option is equal to 50%. Show that the Gaussian
value-at-risk is minimum when the nominal is equal to four times the correlation ρA,B .
Deduce then an expression of the lowest Gaussian VaR. Comment on these results.

2.4.5 Value-at-risk of an equity portfolio hedged with put options
We consider two stocks A and B and an equity index I. We assume that the risk model

corresponds to the CAPM and we have:

Rj = βjRI + εj

where Rj and RI are the returns of stock j and the index. We assume that RI and εj are
independent. The covariance matrix of idiosyncratic risks is diagonal and we note σ̃j the
volatility of εj .

1. The parameters are the following: σ2 (RI) = 4%, βA = 0.5, βB = 1.5, σ̃2
A = 3% and

σ̃2
B = 7%.

(a) Calculate the volatility of stocks A and B and the cross-correlation.
(b) Find the correlation between the stocks and the index.
(c) Deduce the covariance matrix.
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2. The current price of stocks A and B is equal to $100 and $50 whereas the value of
the index is equal to $50. The composition of the portfolio is 4 shares of A, 10 shares
of B and 5 shares of I.

(a) Determine the Gaussian value-at-risk for a confidence level of 99% and a 10-day
holding period.

(b) Using the historical returns of the last 260 trading days, the five lowest simulated
daily P&Ls of the portfolio are −62.39, −55.23, −52.06, −51.52 and −42.83.
Calculate the historical VaR for a confidence level of 99% and a 10-day holding
period.

(c) What is the regulatory capital102 if the bank uses an internal model based on
the Gaussian value-at-risk? Same question when the bank uses the historical
value-at-risk. Compare these figures with those calculated with the standardized
measurement method.

3. The portfolio manager would like to hedge the directional risk of the portfolio. For
that, he purchases put options on the index I at a strike of $45 with a delta equal to
−25%. Write the expression of the P&L using the delta approach.

(a) How many options should the portfolio manager purchase for hedging 50% of the
index exposure? Deduce the Gaussian value-at-risk of the corresponding portfo-
lio?

(b) The portfolio manager believes that the purchase of 96 put options minimizes
the value-at-risk. What is the basis for his reasoning? Do you think that it is
justified? Calculate then the Gaussian VaR of this new portfolio.

2.4.6 Risk management of exotic options
Let us consider a short position on an exotic option, whose its current value Ct is equal to

$6.78. We assume that the price St of the underlying asset is $100 and the implied volatility
Σt is equal to 20%.

1. At time t+1, the value of the underlying asset is $97 and the implied volatility remains
constant. We find that the P&L of the trader between t and t + 1 is equal to $1.37.
Can we explain the P&L by the sensitivities knowing that the estimates of delta ∆t,
gamma Γt and vega103 υt are respectively equal to 49%, 2% and 40%?

2. At time t + 2, the price of the underlying asset is $97 while the implied volatility
increases from 20% to 22%. The value of the option Ct+2 is now equal to $6.17. Can
we explain the P&L by the sensitivities knowing that the estimates of delta ∆t+1,
gamma Γt+1 and vega υt+1 are respectively equal to 43%, 2% and 38%?

3. At time t + 3, the price of the underlying asset is $95 and the value of the implied
volatility is 19%. We find that the P&L of the trader between t+ 2 and t+ 3 is equal
to $0.58. Can we explain the P&L by the sensitivities knowing that the estimates of
delta ∆t+2, gamma Γt+2 and vega υt+2 are respectively equal to 44%, 1.8% and 38%.

4. What can we conclude in terms of model risk?
102We assume that the multiplication factor mc is equal to 3.
103Measured in volatility points.
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2.4.7 P&L approximation with Greek sensitivities
1. Let Ct be the value of an option at time t. Define the delta, gamma, theta and vega

coefficients of the option.

2. We consider an European call option with strike K. Give the value of option in the
case of the Black-Scholes model. Deduce then the Greek coefficients.

3. We assume that the underlying asset is a non-dividend stock, the residual maturity of
the call option is equal to one year, the current price of the stock is equal to $100 and
the interest rate is equal to 5%. We also assume that the implied volatility is constant
and equal to 20%. In the table below, we give the value of the call option C0 and the
Greek coefficients ∆0, Γ0 and Θ0 for different values of K:

K 80 95 100 105 120
C0 24.589 13.346 10.451 8.021 3.247
∆0 0.929 0.728 0.637 0.542 0.287
Γ0 0.007 0.017 0.019 0.020 0.017
Θ0 −4.776 −6.291 −6.414 −6.277 −4.681

(a) Explain how these values have been calculated. Comment on these numerical
results.

(b) One day later, the value of the underlying asset is $102. Using the Black-Scholes
formula, we obtain:

K 80 95 100 105 120
C1 26.441 14.810 11.736 9.120 3.837

Explain how the option premium C1 is calculated. Deduce then the P&L of a
long position on this option for each strike K.

(c) For each strike price, calculate an approximation of the P&L by considering the
sensitivities ∆, ∆− Γ, ∆−Θ and ∆− Γ−Θ. Comment on these results.

(d) Six months later, the value of the underlying asset is $148. Repeat Questions
3(b) and 3(c) with these new parameters. Comment on these results.

2.4.8 Calculating the non-linear quadratic value-at-risk
1. Let X ∼ N (0, 1). Show that the even moments of X are given by the following

relationship:
E
[
X2n] = (2n− 1)E

[
X2n−2]

with n ∈ N. Calculate the odd moments of X.

2. We consider a long position on a call option. The current price St of the underlying
asset is equal to $100, whereas the delta and the gamma of the option are respectively
equal to 50% and 2%. We assume that the annual return of the asset follows a Gaussian
distribution with an annual volatility equal to 32.25%.

(a) Calculate the daily Gaussian value-at-risk using the delta approximation with a
99% confidence level.

(b) Calculate the daily Gaussian value-at-risk by considering the delta-gamma ap-
proximation.

(c) Deduce the daily Cornish-Fisher value-at-risk.
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3. Let X ∼ N (µ, I) and Y = X>AX with A a symmetric square matrix.

(a) We recall that:

E [Y ] = µ>Aµ+ tr (A)
E
[
Y 2] = E2 [Y ] + 4µ>A2µ+ 2 tr

(
A2)

Deduce the moments of Y = X>AX when X ∼ N (µ,Σ).
(b) We suppose that µ = 0. We recall that:

E
[
Y 3] = (tr (A))3 + 6 tr (A) tr

(
A2)+ 8 tr

(
A3)

E
[
Y 4] = (tr (A))4 + 32 tr (A) tr

(
A3)+ 12

(
tr
(
A2))2 +

12 (tr (A))2 tr
(
A2)+ 48 tr

(
A4)

Compute the moments, the skewness and the excess kurtosis of Y = X>AX
when X ∼ N (0,Σ).

4. We consider a portfolio w = (w1, . . . , wn) of options. We assume that the vector of
daily asset returns is distributed according to the Gaussian distribution N (0,Σ). We
note ∆ and Γ the vector of deltas and the matrix of gammas.

(a) Calculate the daily Gaussian value-at-risk using the delta approximation. Define
the analytical expression of the risk contributions.

(b) Calculate the daily Gaussian value-at-risk by considering the delta-gamma ap-
proximation.

(c) Calculate the daily Cornish-Fisher value-at-risk when assuming that the portfolio
is delta neutral.

(d) Calculate the daily Cornish-Fisher value-at-risk in the general case by only con-
sidering the skewness.

5. We consider a portfolio composed of 50 options in a first asset, 20 options in a second
asset and 20 options in a third asset. We assume that the gamma matrix is:

Γ =

 4.0%
1.0% 1.0%
0.0% −0.5% 1.0%


The actual price of the assets is normalized and is equal to 100. The daily volatility
levels of the assets are respectively equal to 1%, 1.5% and 2% whereas the correlation
matrix of asset returns is:

ρ =

 100%
50% 100%
25% 15% 100%


(a) Compare the different methods to compute the daily value-at-risk with a 99%

confidence level if the portfolio is delta neutral.
(b) Same question if we now consider that the deltas are equal to 50%, 40% and

60%. Compute the risk decomposition in the case of the delta and delta-gamma
approximations. What do you notice?
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2.4.9 Risk decomposition of the expected shortfall
We consider a portfolio composed of n assets. We assume that asset returns R =

(R1, . . . , Rn) are normally distributed: R ∼ N (µ,Σ). We note L (w) the loss of the portfolio.
1. Find the distribution of L (w).

2. Define the expected shortfall ESα (w). Calculate its expression in the present case.

3. Calculate the risk contribution RCi of asset i. Deduce that the expected shortfall
verifies the Euler allocation principle.

4. Give the expression of RCi in terms of conditional loss. Retrieve the formula of RCi
found in Question 3. What is the interest of the conditional representation?

2.4.10 Expected shortfall of an equity portfolio
We consider an investment universe, which is composed of two stocks A and B. The

current price of the two stocks is respectively equal to $100 and $200, their volatilities are
equal to 25% and 20% whereas the cross-correlation is equal to −20%. The portfolio is long
on 4 stocks A and 3 stocks B.

1. Calculate the Gaussian expected shortfall at the 97.5% confidence level for a ten-day
time horizon.

2. The eight worst scenarios of daily stock returns among the last 250 historical scenarios
are the following:

s 1 2 3 4 5 6 7 8
RA −3% −4% −3% −5% −6% +3% +1% −1%
RB −4% +1% −2% −1% +2% −7% −3% −2%

Calculate then the historical expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

2.4.11 Risk measure of a long/short portfolio
We consider an investment universe, which is composed of two stocks A and B. The

current prices of the two stocks are respectively equal to $50 and $20. Their volatilities are
equal to 25% and 20% whereas the cross-correlation is equal to +12.5%. The portfolio is
long on 2 stocks A and short on 5 stocks B.

1. Gaussian risk measure

(a) Calculate the Gaussian value-at-risk at the 99% confidence level for a ten-day
time horizon.

(b) Calculate the Gaussian expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

2. Historical risk measure
The ten worst scenarios of daily stock returns (expressed in %) among the last 250
historical scenarios are the following:

s 1 2 3 4 5 6 7 8 9 10
RA −0.6 −3.7 −5.8 −4.2 −3.7 0.0 −5.7 −4.3 −1.7 −4.1
RB 5.7 2.3 −0.7 0.6 0.9 4.5 −1.4 0.0 2.3 −0.2
D −6.3 −6.0 −5.1 −4.8 −4.6 −4.5 −4.3 −4.3 −4.0 −3.9

where D = RA −RB is the difference of the returns.
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(a) Calculate the historical value-at-risk at the 99% confidence level for a ten-day
time horizon.

(b) Calculate the historical expected shortfall at the 97.5% confidence level for a
ten-day time horizon.

(c) Give an approximation of the capital charge under Basel II, Basel 2.5 and Basel
III standards by considering the historical risk measure104.

2.4.12 Kernel estimation of the expected shortfall
1. We consider a random variable X. We note K (u) the kernel function associated to

the sample {x1, . . . , xn}. Show that:

E [X · 1 {X ≤ x}] = 1
n

n∑
i=1

∫ x−xi
hhh

−∞
xiK (u) du+

1
n

n∑
i=1

∫ x−xi
hhh

−∞
hhhuK (u) du

2. Find the expression of the first term by considering the integrated kernel function
I (u).

3. Show that the second term tends to zero when hhh→ 0.

4. Deduce an approximation of the expected shortfall ESα (w;h).

104We assume that the multiplicative factor is equal to 3 (Basel II), and the ‘stressed’ risk measure is 2
times the ‘normal’ risk measure (Basel 2.5).



Chapter 3
Credit Risk

In this chapter, we give an overview of the credit market. It concerns loans and bonds,
but also credit derivatives whose development was impressive during the 2000s. A thor-
ough knowledge of the products is necessary to understand the regulatory framework for
computing the capital requirements for credit risk. In this second section, we will there-
fore compare Basel I, Basel II and Basel III approaches. The case of counterparty credit
risk will be treated in the next chapter, which focuses on collateral risk. Finally, the last
section is dedicated to the modeling of credit risk. We will develop the statistical methods
for modeling and estimating the main parameters (probability of default, loss given default
and default correlations) and we will show the tools of credit risk management. Concerning
credit scoring models, we refer to Chapter 15, which is fully dedicated on this topic.

3.1 The market of credit risk
3.1.1 The loan market

In this section, we present the traditional debt market of loans based on banking inter-
mediation, as opposed to the financial market of debt securities (money market instruments,
bonds and notes). We generally distinguish this credit market along two main lines: coun-
terparties and products.

Counterparties are divided into 4 main categories: sovereign, financial, corporate and
retail. Banking groups have adopted this customer-oriented approach by differentiating
retail banking and corporate and investment banking (CIB) businesses. Retail banking
refers to individuals. It may also include micro-sized firms and small and medium-sized
enterprises (SME). CIBs concern middle market firms, corporates, financial institutions
and public entities. In retail banking, the bank pursues a client segmentation, meaning
that all the clients that belongs to the same segment have the same conditions in terms
of financing and financial investments. This also implies that the pricing of the loan is the
same for two individuals of the same segment. The issue for the bank is then to propose or
not a loan offer to his client. For that, the bank uses statistical decision-making methods,
which are called credit scoring models. Contrary to this binary approach (yes or no), CIBs
have a personalized approach to their clients. They estimate their probability of default and
changes the pricing condition of the loan on the basis of the results. A client with a low
default probability will have a lower rate or credit spread than a client with a higher default
probability for the same loan.

The household credit market is organized as follows: mortgage and housing debt, con-
sumer credit and student loans. A mortgage is a debt instrument secured by the collateral
of a real estate property. In the case where the borrower defaults on the loan, the lender
can take possession and sell the secured property. For instance, the home buyer pledges
his house to the bank in a residential mortgage. This type of credit is very frequent in

125
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English-speaking countries, notably England and the United States. In continental Europe,
home loans are generally not collateralized for a primary home. This is not always the case
for buy-to-let investments and second-home loans. Consumer credit is used for equipment
financing or leasing. We usually make the distinction between auto loans, credit cards, re-
volving credit and other loans (personal loans and sales financing). Auto loans are personal
loans to purchase a car. Credit cards and revolving credit are two forms of personal lines
of credit. Revolving credit facilities for individuals are very popular in the US. It can be
secured, as in the case of a home equity line of credit (HELOC). Student loans are used
to finance educational expenses, for instance post-graduate studies at the university. The
corporate credit market is organized differently, because large corporates have access to the
financial market for long-term financing. This explains that revolving credit facilities are
essential to provide liquidity for the firm’s day-to-day operations. The average maturity is
then lower for corporates than for individuals.

Credit statistics for the private non-financial sector (households and non-financial cor-
porations) are reported in Figures 3.1 and 3.2. These statistics include loan instruments,
but also debt securities. In the case of the United States1, we notice that the credit amount
for households2 is close to the figure for non-financial business. We also observe the signifi-
cant share of consumer credit and the strong growth of student loans. Figure 3.2 illustrates
the evolution of debt outstanding3 for different countries: China, United Kingdom, Japan,
United States and the Euro area. In China, the annual growth rate is larger than 20% these
last five years. Even if credit for households develops much faster than credit for corpora-
tions, it only represents 24% of the total credit market of the private non-financial sector.
The Chinese market contrasts with developed markets where the share of household credit
is larger4 and growth rates are almost flat since the 2008 financial crisis. The Japanese
case is also very specific, because this country experienced a strong financial crisis after
the bursting of a bubble in the 1990s. At that time, the Japanese market was the world’s
leading market followed by the United States.

3.1.2 The bond market
Contrary to loan instruments, bonds are debt securities that are traded in a financial

market. The primary market concerns the issuance of bonds whereas bond trading is or-
ganized through the secondary market. The bond issuance market is dominated by two
sectors: central and local governments (including public entities) and corporates. This is
the principal financing source for government projects and public budget deficits. Large
corporates also use extensively the bond market for investments, business expansions and
external growth. The distinction government bonds/corporate bonds was crucial before the
2008 Global Financial Crisis. Indeed, it was traditionally believed that government bonds
(in developed countries) were not risky because the probability of default was very low. In
this case, the main risk was the interest rate risk, which is a market risk. Conversely, corpo-
rate bonds were supposed to be risky because the probability of default was higher. Besides
the interest rate risk, it was important to take into account the credit risk. Bonds issued
from the financial and banking sector were considered as low risk investments. Since 2008,

1Data are from the statistical release Z.1 “Financial Accounts of the United States”. They are available
from the website of the Federal Reserve System: https://www.federalreserve.gov/releases/z1 or more
easily with the database of the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org.

2Data for households include non-profit institutions serving households (NPISH).
3Data are collected by the Bank for International Settlements and are available in the website of the

BIS: https://www.bis.org/statistics. The series are adjusted for breaks (Dembiermont et al., 2013) and
we use the average exchange rate from 2000 to 2014 in order to obtain credit amounts in USD.

4This is especially true in the UK and the US.

https://www.federalreserve.gov/
https://fred.stlouisfed.org
https://www.bis.org/
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FIGURE 3.1: Credit debt outstanding in the United States (in $ tn)

Source: Board of Governors of the Federal Reserve System (2019).

FIGURE 3.2: Credit to the private non-financial sector (in $ tn)

Source: Bank for International Settlements (2019) and author’s calculations.
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TABLE 3.1: Debt securities by residence of issuer (in $ bn)

Dec. 2004 Dec. 2007 Dec. 2010 Dec. 2017

Canada

Gov. 682 841 1 149 1 264
Fin. 283 450 384 655
Corp. 212 248 326 477
Total 1 180 1 544 1 863 2 400

France

Gov. 1 236 1 514 1 838 2 258
Fin. 968 1 619 1 817 1 618
Corp. 373 382 483 722
Total 2 576 3 515 4 138 4 597

Germany

Gov. 1 380 1 717 2 040 1 939
Fin. 2 296 2 766 2 283 1 550
Corp. 133 174 168 222
Total 3 809 4 657 4 491 3 712

Italy

Gov. 1 637 1 928 2 069 2 292
Fin. 772 1 156 1 403 834
Corp. 68 95 121 174
Total 2 477 3 178 3 593 3 299

Japan

Gov. 6 336 6 315 10 173 9 477
Fin. 2 548 2 775 3 451 2 475
Corp. 1 012 762 980 742
Total 9 896 9 852 14 604 12 694

Spain

Gov. 462 498 796 1 186
Fin. 434 1 385 1 442 785
Corp. 15 19 19 44
Total 910 1 901 2 256 2 015

UK

Gov. 798 1 070 1 674 2 785
Fin. 1 775 3 127 3 061 2 689
Corp. 452 506 473 533
Total 3 027 4 706 5 210 6 011

US

Gov. 6 459 7 487 12 072 17 592
Fin. 12 706 17 604 15 666 15 557
Corp. 3 004 3 348 3 951 6 137
Total 22 371 28 695 31 960 39 504

Source: Bank for International Settlements (2019).

this difference between non-risky and risky bonds has disappeared, meaning that all issuers
are risky. The 2008 GFC had also another important consequence on the bond market. It is
today less liquid even for sovereign bonds. Liquidity risk is then a concern when measuring
and managing the risk of a bond portfolio. This point is developed in Chapter 6.

3.1.2.1 Statistics of the bond market

In Table 3.1, we indicate the outstanding amount of debt securities by residence of
issuer5. The total is split into three sectors: general governments (Gov.), financial corpora-
tions (Fin.) and non-financial corporations (Corp.). In most countries, debt securities issued
by general governments largely dominate, except in the UK and US where debt securities

5The data are available in the website of the BIS: https://www.bis.org/statistics.

https://www.bis.org/
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issued by financial corporations (banks and other financial institutions) are more impor-
tant. The share of non-financial business varies considerably from one country to another.
For instance, it represents less than 10% in Germany, Italy, Japan and Spain, whereas it is
equal to 20% in Canada. The total amount of debt securities tends to rise, with the notable
exception of Germany, Japan and Spain.

FIGURE 3.3: US bond market outstanding (in $ tn)

Source: Securities Industry and Financial Markets Association (2019a).

The analysis of the US market is particularly interesting and relevant. Using the data
collected by the Securities Industry and Financial Markets Association6 (SIFMA), we have
reported in Figure 3.3 the evolution of outstanding amount for the following sectors: munic-
ipal bonds, treasury bonds, mortgage-related bonds, corporate related debt, federal agency
securities, money markets and asset-backed securities. We notice an important growth dur-
ing the beginning of the 2000s (see also Figure 3.4), followed by a slowdown after 2008.
However, the debt outstanding continues to grow because the average maturity of new is-
suance increases. Another remarkable fact is the fall of the liquidity, which can be measured
by the average daily volume (ADV). Figure 3.5 shows that the ADV of treasury bonds re-
mains constant since 2000 whereas the outstanding amount has been multiplied by four
during the same period. We also notice that the turnover of US bonds mainly concerns
treasury and agency MBS bonds. The liquidity on the other sectors is very poor. For in-
stance, according to SIFMA (2019a), the ADV of US corporate bonds is less than $30 bn
in 2014, which is 22 times lower than the ADV for treasury bonds7.

6Data are available in the website of the SIFMA: https://www.sifma.org/resources/archive/resear
ch/.

7However, the ratio between their outstanding amount is only 1.6.

https://www.sifma.org/
https://www.sifma.org/
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FIGURE 3.4: US bond market issuance (in $ tn)

Source: Securities Industry and Financial Markets Association (2019a).

FIGURE 3.5: Average daily trading volume in US bond markets (in $ bn)

Source: Securities Industry and Financial Markets Association (2019a).
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3.1.2.2 Bond pricing

We first explain how to price a bond by only considering the interest rate risk. Then,
we introduce the default risk and define the concept of credit spread, which is key in credit
risk modeling.'
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FIGURE 3.6: Cash flows of a bond with a fixed coupon rate

Without default risk We consider that the bond pays coupons C (tm) with fixing dates
tm and the notional N (or the par value) at the maturity date T . We have reported an
example of a cash flows scheme in Figure 3.6. Knowing the yield curve8, the price of the
bond at the inception date t0 is the sum of the present values of all the expected coupon
payments and the par value:

Pt0 =
nC∑
m=1

C (tm) ·Bt0 (tm) +N ·Bt0 (T )

where Bt (tm) is the discount factor at time t for the maturity date tm. When the valuation
date is not the issuance date, the previous formula remains valid if we take into account the
accrued interests. In this case, the buyer of the bond has the benefit of the next coupon.
The price of the bond then satisfies:

Pt +ACt =
∑
tm≥t

C (tm) ·Bt (tm) +N ·Bt (T ) (3.2)

8A convenient way to define the yield curve is to use a parametric model for the zero-coupon rates Rt (T ).
The most famous model is the parsimonious functional form proposed by Nelson and Siegel (1987):

Rt (T ) = θ1 + θ2

(1− exp (− (T − t)/ θ4)
(T − t)/ θ4

)
+

θ3

(1− exp (− (T − t)/ θ4)
(T − t)/ θ4

− exp (− (T − t)/ θ4)
)

(3.1)

This is a model with four parameters: θ1 is a parameter of level, θ2 is a parameter of rotation, θ3 controls
the shape of the curve and θ4 permits to localize the break of the curve. We also note that the short-term
and long-term interest rates Rt (t) and Rt (∞) are respectively equal to θ1 + θ2 and θ1.
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Here, ACt is the accrued coupon:

ACt = C (tc) ·
t− tc
365

and tc is the last coupon payment date with c = {m : tm+1 > t, tm ≤ t}. Pt +ACt is called
the ‘dirty price’ whereas Pt refers to the ‘clean price’. The term structure of interest rates
impacts the bond price. We generally distinguish three movements:

1. The movement of level corresponds to a parallel shift of interest rates.

2. A twist in the slope of the yield curve indicates how the spread between long and
short interest rates moves.

3. A change in the curvature of the yield curve affects the convexity of the term structure.

All these movements are illustrated in Figure 3.7.

FIGURE 3.7: Movements of the yield curve

The yield to maturity y of a bond is the constant discount rate which returns its market
price: ∑

tm≥t

C (tm) e−(tm−t)y +Ne−(T−t)y = Pt +ACt

We also define the sensitivity9 S of the bond price as the derivative of the clean price Pt
with respect to the yield to maturity y :

S = ∂ Pt
∂ y

= −
∑
tm≥t

(tm − t)C (tm) e−(tm−t)y − (T − t)Ne−(T−t)y

9This sensitivity is also called the $-duration or DV01.
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It indicates how the P&L of a long position on the bond moves when the yield to maturity
changes:

Π ≈ S ·∆y
Because S < 0, the bond price is a decreasing function with respect to interest rates. This
implies that an increase of interest rates reduces the value of the bond portfolio.

Example 21 We assume that the term structure of interest rates is generated by the Nelson-
Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider a bond with a
constant annual coupon of 5%. The nominal of the bond is $100. We would like to price the
bond when the maturity T ranges from 1 to 5 years.

TABLE 3.2: Price, yield to maturity and sensitivity of bonds
T Rt (T ) Bt (T ) Pt y S

1 0.52% 99.48 104.45 0.52% −104.45
2 0.99% 98.03 107.91 0.98% −210.86
3 1.42% 95.83 110.50 1.39% −316.77
4 1.80% 93.04 112.36 1.76% −420.32
5 2.15% 89.82 113.63 2.08% −520.16

TABLE 3.3: Impact of a parallel shift of the yield curve on the bond with five-year maturity
∆R

P̆t ∆Pt P̂t ∆Pt S ×∆y(in bps)
−50 116.26 2.63 116.26 2.63 2.60
−30 115.20 1.57 115.20 1.57 1.56
−10 114.15 0.52 114.15 0.52 0.52

0 113.63 0.00 113.63 0.00 0.00
10 113.11 −0.52 113.11 −0.52 −0.52
30 112.08 −1.55 112.08 −1.55 −1.56
50 111.06 −2.57 111.06 −2.57 −2.60

Using the Nelson-Siegel yield curve, we report in Table 3.2 the price of the bond with
maturity T (expressed in years) with a 5% annual coupon. For instance, the price of the
four-year bond is calculated in the following way:

Pt = 5
(1 + 0.52%) + 5

(1 + 0.99%)2 + 5
(1 + 1.42%)3 + 105

(1 + 1.80%)4 = $112.36

We also indicate the yield to maturity y (in %) and the corresponding sensitivity S. Let P̆t
(resp. P̂t) be the bond price by taking into account a parallel shift ∆R (in bps) directly on
the zero-coupon rates (resp. on the yield to maturity). The results are given in Table 3.3 in
the case of the bond with a five-year maturity10. We verify that the computation based on

10We have:
P̌t =

∑
tm≥t

C (tm) e−(tm−t)(Rt(tm)+∆R) +Ne−(T−t)(Rt(T )+∆R)

and:
P̂t =

∑
tm≥t

C (tm) e−(tm−t)(y+∆R) +Ne−(T−t)(y+∆R)
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FIGURE 3.8: Cash flows of a bond with default risk

the sensitivity provides a good approximation. This method has been already used in the
previous chapter on page 77 to calculate the value-at-risk of bonds.

With default risk In the previous paragraph, we assume that there is no default risk.
However, if the issuer defaults at time τ before the bond maturity T , some coupons and
the notional are not paid. In this case, the buyer of the bond recovers part of the notional
after the default time. An illustration is given in Figure 3.8. In terms of cash flows, we have
therefore:

• the coupons C (tm) if the bond issuer does not default before the coupon date tm:∑
tm≥t

C (tm) · 1 {τ > tm}

• the notional if the bond issuer does not default before the maturity date:

N · 1 {τ > T}

• the recovery part if the bond issuer defaults before the maturity date:

R ·N · 1 {τ ≤ T}

where R is the corresponding recovery rate.

If we assume that the recovery part is exactly paid at the default time τ , we deduce that
the stochastic discounted value of the cash flow leg is:

SVt =
∑
tm≥t

C (tm) · e−
∫ tm
t

rs ds · 1 {τ > tm}+

N · e−
∫ T
t
rs ds · 1 {τ > T}+ R ·N · e−

∫ τ
t
rs ds · 1 {τ ≤ T}
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The price of the bond is the expected value of the stochastic discounted value11: Pt+ACt =
E [SVt | Ft]. If we assume that (H1) the default time and the interest rates are independent
and (H2) the recovery rate is known and not stochastic, we obtain the following closed-form
formula:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) St (tm) +NBt (T ) St (T ) +

RN

∫ T

t

Bt (u) ft (u) du (3.3)

where St (u) is the survival function at time u and ft (u) the associated density function12.

Remark 20 If the issuer is not risky, we have St (u) = 1 and ft (u) = 0. In this case,
Equation (3.3) reduces to Equation (3.2).

Remark 21 If we consider an exponential default time with parameter λ – τ ∼ E (λ), we
have St (u) = e−λ(u−t), ft (u) = λe−λ(u−t) and:

Pt +ACt =
∑
tm≥t

C (tm)Bt (tm) e−λ(tm−t) +NBt (T ) e−λ(T−t) +

λRN

∫ T

t

Bt (u) e−λ(u−t) du

If we assume a flat yield curve – Rt (u) = r, we obtain:

Pt +ACt =
∑
tm≥t

C (tm) e−(r+λ)(tm−t) +Ne−(r+λ)(T−t) +

λRN

(
1− e−(r+λ)(T−t)

r + λ

)
Example 22 We consider a bond with ten-year maturity. The notional is $100 whereas the
annual coupon rate is equal to 4.5%.

If we consider that r = 0, the price of the non-risky bond is $145. With r = 5%, the
price becomes $95.19. Let us now take into account the default risk. We assume that the
recovery rate R is 40%. If λ = 2% (resp. 10%), the price of the risky bond is $86.65 (resp.
$64.63). If the yield curve is not flat, we must use the general formula (3.3) to compute
the price of the bond. In this case, the integral is evaluated with a numerical integration
procedure, typically a Gauss-Legendre quadrature13. For instance, if we consider the yield
curve defined in Example 21, the bond price is equal to $110.13 if there is no default risk,
$99.91 if λ = 2% and $73.34 if λ = 10%.

The yield to maturity of the defaultable bond is computed exactly in the same way as
without default risk. The credit spread s is then defined as the difference of the yield to
maturity with default risk y and the yield to maturity without default risk y?:

s = y − y? (3.4)

11It is also called the present value.
12We have:

St (u) = E [1 {τ > u | τ > t}] = Pr {τ > u | τ > t}
The density function is then given by ft (u) = −∂uSt (u).

13See Appendix A.1.2.3 on page 1037 for a primer on numerical integration.
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This spread is a credit risk measure and is an increasing function of the default risk. Re-
consider the simple model with a flat yield curve and an exponential default time. If the
recovery rate R is equal to zero, we deduce that the yield to maturity of the defaultable
bond is y = r+λ. It follows that the credit spread is equal to the parameter λ of the expo-
nential distribution. Moreover, if λ is relatively small (less than 20%), the annual probability
of default is:

PD = St (t+ 1) = 1− e−λ ≈ λ

In this case, the credit spread is approximately equal to the annual default probability
(s ≈ PD).

If we reuse our previous example with the yield curve specified in Example 21, we obtain
the results reported in Table 3.4. For instance, the yield to maturity of the bond is equal
to 3.24% without default risk. If λ and R are set to 200 bps and 0%, the yield to maturity
becomes 5.22% which implies a credit spread of 198.1 bps. If the recovery rate is higher,
the credit spread decreases. Indeed, with λ equal to 200 bps, the credit spread is equal to
117.1 bps if R = 40% and only 41.7 bps if R = 80%.

TABLE 3.4: Computation of the credit spread s
R λ PD Pt y s

(in %) (in bps) (in bps) (in $) (in %) (in bps)

0

0 0.0 110.1 3.24 0.0
10 10.0 109.2 3.34 9.9

200 198.0 93.5 5.22 198.1
1000 951.6 50.4 13.13 988.9

40

0 0.0 110.1 3.24 0.0
10 10.0 109.6 3.30 6.0

200 198.0 99.9 4.41 117.1
1000 951.6 73.3 8.23 498.8

80

0 0.0 110.1 3.24 0.0
10 10.0 109.9 3.26 2.2

200 198.0 106.4 3.66 41.7
1000 951.6 96.3 4.85 161.4

Remark 22 In the case of loans, we do not calculate a capital requirement for market
risk, only a capital requirement for credit risk. The reason is that there is no market price
of the loan, because it cannot be traded in an exchange. For bonds, we calculate a capital
requirement for both market and credit risks. In the case of the market risk, risk factors
are the yield curve rates, but also the parameters associated to the credit risk, for instance
the default probabilities and the recovery rate. In this context, market risk has a credit
component. To illustrate this property, we consider the previous example and we assume
that λt varies across time whereas the recovery rate R is equal to 40%. In Figure 3.9, we
show the evolution of the process λt for the next 10 years (top panel) and the clean price14
Pt (bottom/left panel). If we suppose now that the issuer defaults suddenly at time t = 6.25,
we observe a jump in the clean price (bottom/right panel). It is obvious that the market risk
takes into account the short-term evolution of the credit component (or the smooth part), but
does not incorporate the jump risk (or the discontinuous part) and also the large uncertainty
on the recovery price. This is why these risks are covered by credit risk capital requirements.

14We assume that the yield curve remains constant.
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FIGURE 3.9: Difference between market and credit risks for a bond

3.1.3 Securitization and credit derivatives
Since the 1990s, banks have developed credit transfer instruments in two directions:

credit securitization and credit derivatives. The term securitization refers to the process of
transforming illiquid and non-tradable assets into tradable securities. Credit derivatives are
financial instruments whose payoff explicitly depends on credit events like the default of
an issuer. These two topics are highly connected because credit securities can be used as
underlying assets of credit derivatives.

3.1.3.1 Credit securitization

According to AFME (2019), outstanding amount of securitization is close to e 9 tn.
Figure 3.10 shows the evolution of issuance in Europe and US since 2000. We observe that
the financial crisis had a negative impact on the growth of credit securitization, especially
in Europe that represents less than 20% of this market. This market is therefore dominated
by the US, followed by UK, France, Spain, the Netherlands and Germany.

Credit securities are better known as asset-backed securities (ABS), even if this term is
generally reserved to assets that are not mortgage, loans or corporate bonds. In its simplest
form, an ABS is a bond whose coupons are derived from a collateral pool of assets. We
generally make the following distinction with respect to the type of collateral assets:

• Mortgage-backed securities (MBS)

– Residential mortgage-backed securities (RMBS)
– Commercial mortgage-backed securities (CMBS)

• Collateralized debt obligations (CDO)

– Collateralized loan obligations (CLO)
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FIGURE 3.10: Securitization in Europe and US (in e tn)

Source: Association for Financial Markets in Europe (2019).

– Collateralized bond obligations (CBO)

• Asset-backed securities (ABS)

– Auto loans
– Credit cards and revolving credit
– Student loans

MBS are securities that are backed by residential and commercial mortgage loans. The
most basic structure is a pass-through security, where the coupons are the same for all
the investors and are proportional to the revenue of the collateral pool. Such structure is
shown in Figure 3.11. The originator (e.g. a bank) sells a pool of debt to a special purpose
vehicle (SPV). The SPV is an ad-hoc legal entity15 whose sole function is to hold the loans
as assets and issue the securities for investors. In the pass-through structure, the securities
are all the same and the cash flows paid to investors are directly proportional to interests
and principals of collateral assets. More complex structures are possible with several classes
of bonds (see Figure 3.12). In this case, the cash flows differ from one type of securities
to another one. The most famous example is the collateralized debt obligation, where the
securities are divided into tranches. This category includes also collateralized mortgage
obligations (CMO), which are both MBS and CDO. The two other categories of CDOs are
CLOs, which are backed by corporate bank debt (e.g. SME loans) and CBOs, which are
backed by bonds (e.g. high yield bonds). Finally, pure ABS principally concerns consumer
credit such as auto loans, credit cards and student loans.

15It may be a subsidiary of the originator.
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FIGURE 3.12: Structure of pay-through securities

In Table 3.5, we report some statistics about US mortgage-backed securities. SIFMA
(2019b) makes the distinction between agency MBS and non-agency MBS. After the Great
Depression, the US government created three public entities to promote home ownership and
provide insurance of mortgage loans: the Federal National Mortgage Association (FNMA or
Fannie Mae), the Federal Home Loan Mortgage Corporation (FHLMC or Freddie Mac) and
the Government National Mortgage Association (GNMA or Ginnie Mae). Agency MBS refer
to securities guaranteed by these three public entities and represent the main part of the US
MBS market. This is especially true since the 2008 financial crisis. Indeed, non-agency MBS
represent 53.5% of the issuance in 2006 and only 3.5% in 2012. Because agency MBS are
principally based on home mortgage loans, the RMBS market is ten times more larger than
the CMBS market. CDO and ABS markets are smaller and represent together about $1.5
tn (see Table 3.6). The CDO market strongly suffered from the subprime crisis16. During
the same period, the structure of the ABS market changed with an increasing proportion
of ABS backed by auto loans and a fall of ABS backed by credit cards and student loans.

Remark 23 Even if credit securities may be viewed as bonds, their pricing is not straight-
forward. Indeed, the measure of the default probability and the recovery depends on the

16For instance, the issuance of US CDO was less than $10 bn in 2010.
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TABLE 3.5: US mortgage-backed securities

Year Agency Non-agency Total
MBS CMO CMBS RMBS (in $ bn)

Issuance
2002 57.5% 23.6% 2.2% 16.7% 2 515
2006 33.6% 11.0% 7.9% 47.5% 2 691
2008 84.2% 10.8% 1.2% 3.8% 1 394
2010 71.0% 24.5% 1.2% 3.3% 2 013
2012 80.1% 16.4% 2.2% 1.3% 2 195
2014 68.7% 19.2% 7.0% 5.1% 1 440
2016 76.3% 15.7% 3.8% 4.2% 2 044
2018 69.2% 16.6% 4.7% 9.5% 1 899

Outstanding amount
2002 59.7% 17.4% 5.6% 17.2% 5 289
2006 45.7% 14.9% 8.3% 31.0% 8 390
2008 52.4% 14.0% 8.8% 24.9% 9 467
2010 59.2% 14.6% 8.1% 18.1% 9 258
2012 64.0% 14.8% 7.2% 14.0% 8 838
2014 68.0% 13.7% 7.1% 11.2% 8 842
2016 72.4% 12.3% 5.9% 9.5% 9 023
2018 74.7% 11.3% 5.6% 8.4% 9 732

Source: Securities Industry and Financial Markets Association (2019b,c) and author’s
calculations.

TABLE 3.6: US asset-backed securities

Year Auto CDO Credit Equip- Other Student Total
Loans & CLO Cards ement Loans (in $ bn)

Issuance
2002 34.9% 21.0% 25.2% 2.6% 6.8% 9.5% 269
2006 13.5% 60.1% 9.3% 2.2% 4.6% 10.3% 658
2008 16.5% 37.8% 25.9% 1.3% 5.4% 13.1% 215
2010 46.9% 6.4% 5.2% 7.0% 22.3% 12.3% 126
2012 33.9% 23.1% 12.5% 7.1% 13.7% 9.8% 259
2014 25.2% 35.6% 13.1% 5.2% 17.0% 4.0% 393
2016 28.3% 36.8% 8.3% 4.6% 16.9% 5.1% 325
2018 20.8% 54.3% 6.1% 5.1% 10.1% 3.7% 517

Outstanding amount
2002 20.7% 28.6% 32.5% 4.1% 7.5% 6.6% 905
2006 11.8% 49.3% 17.6% 3.1% 6.0% 12.1% 1 657
2008 7.7% 53.5% 17.3% 2.4% 6.2% 13.0% 1 830
2010 7.6% 52.4% 14.4% 2.4% 7.1% 16.1% 1 508
2012 11.0% 48.7% 10.0% 3.3% 8.7% 18.4% 1 280
2014 13.2% 46.8% 10.1% 3.9% 9.8% 16.2% 1 349
2016 13.9% 48.0% 9.3% 3.7% 11.6% 13.5% 1 397
2018 13.3% 48.2% 7.4% 5.0% 16.0% 10.2% 1 677

Source: Securities Industry and Financial Markets Association (2019b,c) and author’s
calculations.
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FIGURE 3.13: Outstanding amount of credit default swaps (in $ tn)

Source: Bank for International Settlements (2019).

characteristics of the collateral assets (individual default probabilities and recovery rates),
but also on the correlation between these risk factors. Measuring credit risk of such securities
is then a challenge. Another issue concerns design and liquidity problems faced when pack-
aging and investing in these assets17 (Duffie and Rahi, 1995; DeMarzo and Duffie, 1999).
This explains that credit securities suffered a lot during the 2008 financial crisis, even if
some of them were not linked to subprime mortgages. In fact, securitization markets pose
a potential risk to financial stability (Segoviano et al., 2013). This is a topic we will return
to in Chapter 8, which deals with systemic risk.

3.1.3.2 Credit default swap

A credit default swap (CDS) may be defined as an insurance derivative, whose goal is
to transfer the credit risk from one party to another. In a standard contract, the protection
buyer makes periodic payments (known as the premium leg) to the protection seller. In
return, the protection seller pays a compensation (known as the default leg) to the protection
buyer in the case of a credit event, which can be a bankruptcy, a failure to pay or a
debt restructuring. In its most basic form, the credit event refers to an issuer (sovereign
or corporate) and this corresponds to a single-name CDS. If the credit event relates to
a universe of different entities, we speak about a multi-name CDS. In Figure 3.13, we
report the evolution of outstanding amount of CDS since 2007. The growth of this market
was very strong before 2008 with a peak close to $60 tn. The situation today is different,
because the market of single-name CDS stabilized whereas the market of basket default
swaps continues to fall significantly. Nevertheless, it remains an important OTC market
with a total outstanding around $9 tn.

17The liquidity issue is treated in Chapter 6.



142 Handbook of Financial Risk Management'

&

$

%
-

?

t1

?

t2

?

t3

?

t4

?

t5

?

t6 · · ·
︷ ︸︸ ︷ccc ·N · (tm − tm−1)

6

t τ T

(1−R) ·N

timeu u u

FIGURE 3.14: Cash flows of a single-name credit default swap

In Figure 3.14, we report the mechanisms of a single-name CDS. The contract is defined
by a reference entity (the name), a notional principal N , a maturity or tenor T , a payment
frequency, a recovery rate R and a coupon rate18 ccc. From the inception date t to the
maturity date T or the default time τ , the protection buyer pays a fixed payment, which
is equal to ccc · N ·∆tm at the fixing date tm with ∆tm = tm − tm−1. This means that the
annual premium leg is equal to ccc ·N . If there is no credit event, the protection buyer will
also pay a total of ccc ·N · (T − t). In case of credit event before the maturity, the protection
seller will compensate the protection buyer and will pay (1−R) ·N .

Example 23 We consider a credit default swap, whose notional principal is $10 mn, ma-
turity is 5 years and payment frequency is quarterly. The credit event is the bankruptcy of
the corporate entity A. We assume that the recovery rate is set to 40% and the coupon rate
is equal to 2%.

Because the payment frequency is quarterly, there are 20 fixing dates, which are 3M, 6M,
9M, 1Y, . . . , 5Y. Each quarter, if the corporate A does not default, the protection buyer
pays a premium, which is approximately equal to $10mn×2%×0.25 = $50 000. If there is no
default during the next five years, the protection buyer will pay a total of $50 000×20 = $1
mn whereas the protection seller will pay nothing. Suppose now that the corporate defaults
two years and four months after the CDS inception date. In this case, the protection buyer
will pay $50 000 during 9 quarters and will receive the protection leg from the protection
seller at the default time. This protection leg is equal to (1− 40%)× $10 mn = $6 mn.

To compute the mark-to-market value of a CDS, we use the reduced-form approach as
in the case of bond pricing. If we assume that the premium is not paid after the default
time τ , the stochastic discounted value of the premium leg is19:

SVt (PL) =
∑
tm≥t

ccc ·N · (tm − tm−1) · 1 {τ > tm} · e
−
∫ tm
t

rs ds

18We will see that the coupon rate ccc is in fact the CDS spread s for par swaps.
19In order to obtain a simple formula, we do not deal with the accrued premium (see Remark 26 on page

149).
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Using the standard assumptions that the default time is independent of interest rates and
the recovery rate, we deduce the present value of the premium leg as follows:

PVt (PL) = E

 ∑
tm≥t

ccc ·N ·∆tm · 1 {τ > tm} · e
−
∫ tm
t

rs ds

∣∣∣∣∣∣Ft


=
∑
tm≥t

ccc ·N ·∆tm · E [1 {τ > tm}] · E
[
e
−
∫ tm
t

rs ds
]

= ccc ·N ·
∑
tm≥t

∆tmSt (tm)Bt (tm)

where St (u) is the survival function at time u. If we assume that the default leg is exactly
paid at the default time τ , the stochastic discount value of the default (or protection) leg
is20:

SVt (DL) = (1−R) ·N · 1 {τ ≤ T} · e−
∫ τ
t
r(s) ds

It follows that its present value is:

PVt (DL) = E
[

(1−R) ·N · 1 {τ ≤ T} · e−
∫ τ
t
rs ds

∣∣∣∣Ft]
= (1−R) ·N · E [1 {τ ≤ T} ·Bt (τ )]

= (1−R) ·N ·
∫ T

t

Bt (u) ft (u) du

where ft (u) is the density function associated to the survival function St (u). We deduce
that the mark-to-market of the swap is21:

Pt (T ) = PVt (DL)− PVt (PL)

= (1−R)N
∫ T

t

Bt (u) ft (u) du− cccN
∑
tm≥t

∆tmSt (tm)Bt (tm)

= N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc · RPV01

)
(3.5)

where RPV01 =
∑
tm≥t ∆tmSt (tm)Bt (tm) is called the risky PV01 and corresponds to the

present value of 1 bp paid on the premium leg. The CDS price is then inversely related
to the spread. At the inception date, the present value of the premium leg is equal to the
present value of the default leg meaning that the CDS spread corresponds to the coupon
rate such that P buyer

t = 0. We obtain the following expression:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∑

tm≥t ∆tmSt (tm)Bt (tm) (3.6)

The spread s is in fact the fair value coupon rate ccc in such a way that the initial value of
the credit default swap is equal to zero.

20Here the recovery rate R is assumed to be deterministic.
21Pt is the swap price for the protection buyer. We have then Pbuyer

t (T ) = Pt (T ) and P seller
t (T ) =

−Pt (T ).
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We notice that if there is no default risk, this implies that St (u) = 1 and we get s = 0.
In the same way, the spread is also equal to zero if the recovery rate is set to 100%. If we
assume that the premium leg is paid continuously, the formula (3.6) becomes:

s =
(1−R)

∫ T
t
Bt (u) ft (u) du∫ T

t
Bt (u) St (u) du

If the interest rates are equal to zero (Bt (u) = 1) and the default times is exponential with
parameter λ – St (u) = e−λ(u−t) and ft (u) = λe−λ(u−t), we get:

s =
(1−R) · λ ·

∫ T
t
e−λ(u−t) du∫ T

t
e−λ(u−t) du

= (1−R) · λ

If λ is relatively small, we also notice that this relationship can be written as follows:

s ≈ (1−R) · PD

where PD is the one-year default probability22. This relationship is known as the ‘credit
triangle’ because it is a relationship between three variables where knowledge of any two is
sufficient to calculate the third (O’Kane, 2008). It basically states that the CDS spread is
approximatively equal to the one-year loss. The spread contains also the same information
than the survival function and is an increasing function of the default probability. It can
then be interpreted as a credit risk measure of the reference entity.

We recall that the first CDS was traded by J.P. Morgan in 1994 (Augustin et al., 2014).
The CDS market structure has been organized since then, especially the standardization
of the CDS contract. Today, CDS agreements are governed by 2003 and 2014 ISDA credit
derivatives definitions. For instance, the settlement of the CDS contract can be either phys-
ical or in cash. In the case of cash settlement, there is a monetary exchange from the pro-
tection seller to the protection buyer23. In the case of physical settlement, the protection
buyer delivers a bond to the protection seller and receives the notional principal amount.
Because the price of the defaulted bond is equal to R ·N , this means that the implied mark-
to-market of this operation is N −R · N or equivalently (1−R) · N . Or course, physical
settlement is only possible if the reference entity is a bond or if the credit event is based
on the bond default. Whereas physical settlement was prevailing in the 1990s, most of the
settlements are today in cash. Another standardization concerns the price of CDS. With
the exception of very specific cases24, CDS contracts are quoted in (fair) spread expressed
in bps. In Figures 3.15 and 3.16, we show the evolution of some CDS spreads for a five-year
maturity. We notice the increase of credit spreads since the 2008 financial turmoil and the

22We have:

PD = Pr {τ ≤ t+ 1 | τ ≤ t}
= 1− St (t+ 1)
= 1− e−λ

' λ

For instance, if λ is equal respectively to 1%, 5%, 10% and 20% , the one-year default probability takes the
values 1.00%, 4.88%, 9.52% and 18.13%.

23 This monetary exchange is equal to (1−R) ·N .
24When the default probability is high (larger than 20%), CDS contracts can be quoted with an upfront

meaning that the protection seller is asking an initial amount to enter into the swap. For instance, it was
the case of CDS on Greece in spring 2013.
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FIGURE 3.15: Evolution of some sovereign CDS spreads

FIGURE 3.16: Evolution of some financial and corporate CDS spreads
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default of Lehman Brothers bankruptcy, the sensitivity of German and Italian spreads with
respect to the Eurozone crisis and also the difference in level between the different countries.
Indeed, the spread is globally lower for US than for Germany or Japan. In the case of Italy,
the spread is high and has reached 600 bps in 2012. We observe that the spread of some
corporate entities may be lower than the spread of many developed countries (see Figure
3.16). This is the case of Walmart, whose spread is lower than 20 bps since 2014. When a
company (or a country) is in great difficulty, the CDS spread explodes as in the case of Ford
in February 2009. CDS spreads can be used to compare the default risk of two entities in
the same sector. For instance, Figure 3.16 shows than the default risk of Citigroup is higher
that this of JPMorgan Chase.

The CDS spread changes over time, but depends also on the maturity or tenor. This
implies that we have a term structure of credit spreads for a given date t. This term structure
is known as the credit spread curve and is noted st (T ) where T is the maturity time. Figure
3.17 shows the credit curve for different entities as of 17 September 2015. We notice that
the CDS spread increases with the maturity. This is the most common case for investment
grade (IG) entities, whose short-term default risk is low, but long-term default risk is higher.
Nevertheless, we observe some distinguishing patterns between these credit curves. For
instance, the credit risk of Germany is lower than the credit risk of US if the maturity is
less than five years, but it is higher in the long run. There is a difference of 4 bps between
Google and Apple on average when the time-to-maturity is less than 5 years. In the case of
10Y CDS, the spread of Apple is 90.8 bps whereas it is only 45.75 bps for Google.

FIGURE 3.17: Example of CDS spread curves as of 17 September 2015

Remark 24 In other cases, the credit curve may be decreasing (for some high yield cor-
porates) or have a complex curvature (bell-shaped or U-shaped). In fact, Longstaff et al.
(2005) showed that the dynamics of credit default swaps also depends on the liquidity risk.
For instance, the most liquid CDS contract is generally the 5Y CDS. The liquidity on the
other maturities depends on the reference entity and other characteristics such as the bond
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market liquidity. For example, the liquidity may be higher for short maturities when the
credit risk of the reference entity is very high.

Initially, CDS were used to hedge the credit risk of corporate bonds by banks and
insurance companies. This hedging mechanism is illustrated in Figure 3.18. We assume that
the bond holder buys a protection using a CDS, whose fixing dates of the premium leg are
exactly the same as the coupon dates of the bond. We also assume that the credit even is
the bond default and the notional of the CDS is equal to the notional of the bond. At each
fixing date tm, the bond holder receives the coupon C (tm) of the bond and pays to the
protection seller the premium s ·N . This implies that the net cash flow is C (tm)− s ·N . If
the default occurs, the value of the bond becomes R ·N , but the protection seller pays to
the bond holder the default leg (1−R)·N . In case of default, the net cash flow is then equal
to R ·N +(1−R) ·N = N , meaning that the exposure on the defaultable bond is perfectly
hedged. We deduce that the annualized return R of this hedged portfolio is the difference
between the yield to maturity y of the bond and the annual cost s of the protection:

R = y − s (3.7)

We recognize a new formulation of Equation (3.4) on page 135. In theory, R is then equal
to the yield to maturity y? of the bond without credit risk.'

&

$

%
t τ time

R ·N

(1−R) ·N

C (tm)

s ·N

t1 t2 t3 t4 t5 t6

FIGURE 3.18: Hedging a defaultable bond with a credit default swap

Since the 2000s, end-users of CDS are banks and securities firms, insurance firms in-
cluding pension funds, hedge funds and mutual funds. They continue to be used as hedging
instruments, but they have also become financial instruments to express views about credit
risk. In this case, ‘long credit’ refers to the position of the protection seller who is exposed
to the credit risk, whereas ‘short credit’ is the position of the protection buyer who sold the
credit risk of the reference entity25. To understand the mark-to-market of such positions,
we consider the initial position at the inception date t of the CDS contract. In this case, the
CDS spread st (T ) verifies that the face value of the swap is equal to zero. Let us introduce
the notation Pt,t′ (T ), which defines the mark-to-market of a CDS position whose inception
date is t, valuation date is t′ and maturity date is T . We have:

P seller
t,t (T ) = P buyer

t,t (T ) = 0

25Said differently, a long exposure implies that the default results in a loss, whereas a short exposure
implies that the default results in a gain.
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At date t′ > t, the mark-to-market price of the CDS is:

P buyer
t,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T ) · RPV01

)

whereas the value of the CDS spread satisfies the following relationship:

P buyer
t′,t′ (T ) = N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T ) · RPV01

)
= 0

We deduce that the P&L of the protection buyer is:

Πbuyer = P buyer
t,t′ (T )− P buyer

t,t (T ) = P buyer
t,t′ (T )

Using Equation (3.8), we know that P buyer
t′,t′ (T ) = 0 and we obtain:

Πbuyer = P buyer
t,t′ (T )− P buyer

t′,t′ (T )

= N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st (T ) · RPV01

)
−

N

(
(1−R)

∫ T

t′
Bt′ (u) ft′ (u) du− st′ (T ) · RPV01

)
= N · (st′ (T )− st (T )) · RPV01 (3.8)

This equation highlights the role of the term RPV01 when calculating the P&L of the CDS
position. Because Πseller = −Πbuyer, we distinguish two cases:

• If st′ (T ) > st (T ), the protection buyer makes a profit, because this short credit
exposure has benefited from the increase of the default risk.

• If st′ (T ) < st (T ), the protection seller makes a profit, because the default risk of the
reference entity has decreased.

Suppose that we are in the first case. To realize its P&L, the protection buyer has three
options (O’Kane, 2008):

1. He could unwind the CDS exposure with the protection seller if the latter agrees. This
implies that the protection seller pays the mark-to-market P buyer

t,t′ (T ) to the protection
buyer.

2. He could hedge the mark-to-market value by selling a CDS on the same reference
entity and the same maturity. In this situation, he continues to pay the spread st (T ),
but he now receives a premium, whose spread is equal to st′ (T ).

3. He could reassign the CDS contract to another counterparty as illustrated in Figure
3.19. The new counterparty (the protection buyer C in our case) will then pay the
coupon rate st (T ) to the protection seller. However, the spread is st′ (T ) at time t′,
which is higher than st (T ). This is why the new counterparty also pays the mark-to-
market P buyer

t,t′ (T ) to the initial protection buyer.
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Transfers the agreement

Pays the mark-to-market

Time t Time t′

st (T ) st (T )

(1−R) ·N (1−R) ·N

Protection
Seller
A

Protection
Buyer
B

Protection
Buyer
C

FIGURE 3.19: An example of CDS offsetting

Remark 25 When the default risk is very high, CDS are quoted with an upfront26. In this
case, the annual premium leg is equal to ccc? · N where ccc? is a standard value27, and the
protection buyer has to pay an upfront UFt to the protection seller defined as follows:

UFt = N

(
(1−R)

∫ T

t

Bt (u) ft (u) du− ccc? · RPV01

)
Remark 26 Until now, we have simplified the pricing of the premium leg in order to avoid
complicated calculations. Indeed, if the default occurs between two fixing dates, the protection
buyer has to pay the premium accrual. For instance, if τ ∈ ]tm−1, tm[, the accrued premium
is equal to ccc ·N · (τ − tm−1) or equivalently to:

AP =
∑
tm≥t

ccc ·N · (τ − tm−1) · 1 {tm−1 ≤ τ ≤ tm}

We deduce that the stochastic discount value of the accrued premium is:

SVt (AP) =
∑
tm≥t

ccc ·N · (τ − tm−1) · 1 {tm−1 ≤ τ ≤ tm} · e
−
∫ τ
t
rs ds

It follows that:

PVt (AP) = ccc ·N ·
∑
tm≥t

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du

All the previous formulas remain valid by replacing the expression of the risky PV01 by the
following term:

RPV01 =
∑
tm≥t

(
∆tmSt (tm)Bt (tm) +

∫ tm

tm−1

(u− tm−1)Bt (u) ft (u) du
)

(3.9)

26It was the case several times for CDS on Greece.
27For distressed names, the default coupon rate ccc? is typically equal to 500 bps.
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Example 24 We assume that the yield curve is generated by the Nelson-Siegel model with
the following parameters: θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider several
credit default swaps on the same entity with quarterly coupons and a notional of $1 mn. The
recovery rate R is set to 40% whereas the default time τ is an exponential random variable,
whose parameter λ is equal to 50 bps. We consider seven maturities (6M, 1Y, 2Y, 3Y, 5Y,
7Y and 10Y) and two coupon rates (10 and 100 bps).

To calculate the prices of these CDS, we use Equation (3.5) with N = 106, ccc = 10
(or 100) ×10−4, ∆tm = 1/4, λ = 50 × 10−4 = 0.005, R = 0.40, St (u) = e−0.005(u−t),
ft (u) = 0.005 · e−0.005(u−t) and Bt (u) = e−(u−t)Rt(u) where the zero-coupon rate is given
by Equation (3.1). To evaluate the integral, we consider a Gauss-Legendre quadrature of
128th order. By including the accrued premium28, we obtain results reported in Table 3.7.
For instance, the price of the 5Y CDS is equal to $9 527 if ccc = 10 × 10−4 and −$33 173 if
ccc = 100×10−4. In the first case, the protection buyer has to pay an upfront to the protection
seller because the coupon rate is too low. In the second case, the protection buyer receives
the upfront because the coupon rate is too high. We also indicate the spread s and the risky
PV01. We notice that the CDS spread is almost constant. This is normal since the default
rate is constant. This is why the CDS spread is approximatively equal to (1− 40%) × 50
bps or 30 bps. The difference between the several maturities is due to the yield curve. The
risky PV01 is a useful statistic to compute the mark-to-market. Suppose for instance that
the two parties entered in a 7Y credit default swap of 10 bps spread two years ago. Now,
the residual maturity of the swap is five years, meaning that the mark-to-market of the
protection buyer is equal to:

Πbuyer = 106 ×
(
30.08× 10−4 − 10× 10−4)× 4.744

= $9 526

We retrieve the 5Y CDS price (subject to rounding error).

TABLE 3.7: Price, spread and risky PV01 of CDS contracts

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 998 −3 492 30.01 0.499
1 1 992 −6 963 30.02 0.995
2 3 956 −13 811 30.04 1.974
3 5 874 −20 488 30.05 2.929
5 9 527 −33 173 30.08 4.744
7 12 884 −44 804 30.10 6.410

10 17 314 −60 121 30.12 8.604

Example 25 We consider a variant of Example 24 by assuming that the default time fol-
lows a Gompertz distribution:

St (u) = exp
(
φ
(

1− eγ(u−t)
))

The parameters φ and γ are set to 5% and 10%.

28This means that the risky PV01 corresponds to Equation (3.9). We also report results without taking
into account the accrued premium in Table 3.8. We notice that its impact is limited.
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TABLE 3.8: Price, spread and risky PV01 of CDS contracts (without the accrued pre-
mium)

T
Pt (T ) s RPV01ccc = 10 ccc = 100

1/2 999 −3 489 30.03 0.499
1 1 993 −6 957 30.04 0.994
2 3 957 −13 799 30.06 1.973
3 5 876 −20 470 30.07 2.927
5 9 530 −33 144 30.10 4.742
7 12 888 −44 764 30.12 6.406

10 17 319 −60 067 30.14 8.598

Results are reported in Table 3.9. In this example, the spread is increasing with the
maturity of the CDS. Until now, we have assumed that we know the survival function
St (u) in order to calculate the CDS spread. However, in practice, the CDS spread s is a
market price and St (u) has to be determined thanks to a calibration procedure. Suppose
for instance that we postulate that τ is an exponential default time with parameter λ. We
can calibrate the estimated value λ̂ such that the theoretical price is equal to the market
price. For instance, Table 3.9 shows the parameter λ̂ for each CDS. We found that λ̂ is
equal to 51.28 bps for the six-month maturity and 82.92 bps for the ten-year maturity. We
face here an issue, because the parameter λ̂ is not constant, meaning that we cannot use an
exponential distribution to represent the default time of the reference entity. This is why
we generally consider a more flexible survival function to calibrate the default probabilities
from a set of CDS spreads29.

TABLE 3.9: Calibration of the CDS spread curve using the exponential model

T
Pt (T ) s RPV01 λ̂

ccc = 10 ccc = 100
1/2 1 037 −3 454 30.77 0.499 51.28

1 2 146 −6 808 31.57 0.995 52.59
2 4 585 −13 175 33.24 1.973 55.34
3 7 316 −19 026 35.00 2.927 58.25
5 13 631 −28 972 38.80 4.734 64.54
7 21 034 −36 391 42.97 6.380 71.44

10 33 999 −42 691 49.90 8.521 82.92

3.1.3.3 Basket default swap

A basket default swap is similar to a credit default swap except that the underlying
asset is a basket of reference entities rather than one single reference entity. These products
are part of multi-name credit default swaps with collateralized debt obligations.

First-to-default and kth-to-default credit derivatives Let us consider a credit port-
folio with n reference entities, which are referenced by the index i. With a first-to-default
(FtD) credit swap, the credit event corresponds to the first time that a reference entity of the

29This problem will be solved later in Section 3.3.3.1 on page 203.
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credit portfolio defaults. We deduce that the stochastic discounted values of the premium
and default legs are30:

SVt (PL) = ccc ·N ·
∑
tm≥t

∆tm · 1 {τ1:n > tm} · e
−
∫ tm
t

r(s) ds

and:
SVt (DL) = X · 1 {τ1:n ≤ T} · e

−
∫ τ1:n
t

rs ds

where τi is the default time of the ith reference entity, τ1:n = min (τ1, . . . , τn) is the first
default time in the portfolio and X is the payout of the protection leg:

X =
n∑
i=1

1 {τ1:n = τi} · (1−Ri) ·Ni

= (1−Ri?) ·Ni?

In this formula, Ri and Ni are respectively the recovery and the notional of the ith reference
entity whereas the index i? = {i : τi = τ1:n} corresponds to the first reference entity that
defaults. For instance, if the portfolio is composed by 10 names and the third name is the
first default, the value of the protection leg will be equal to (1−R3) ·N3. Using the same
assumptions than previously, we deduce that the FtD spread is:

sFtD = E [X · 1 {τ1:n ≤ T} ·Bt (τ1:n)]
N
∑
tm≥t ∆tm · S1:n,t (tm) ·Bt (tm)

where S1:n,t (u) is the survival function of τ1:n. If we assume a homogenous basket (same
recovery Ri = R and same notional Ni = N), the previous formula becomes:

sFtD =
(1−R)

∫ T
t
Bt (u) f1:n,t (u) du∑

tm≥t ∆tmS1:n,t (tm)Bt (tm) (3.10)

where f1:n,t (u) is the survival function of τ1:n.
To compute the spread31, we use Monte Carlo simulation (or numerical integration

when the number of entities is small). In fact, the survival function of τ1:n is related to
the individual survival functions, but also to the dependence between the default times
τ1, . . . , τn. The spread of the FtD is then a function of default correlations32. If we denote
by sCDS

i the CDS spread of the ith reference, we can show that:

max
(
sCDS
1 , . . . , sCDS

n

)
≤ sFtD ≤

n∑
i=1

sCDS
i (3.11)

When the default times are uncorrelated, the FtD is equivalent to buy the basket of all
the credit defaults swaps. In the case of a perfect correlation, one default is immediately
followed by the other n− 1 defaults, implying that the FtD is equivalent to the CDS with
the worst spread. In practice, the FtD spread is therefore located between these two bounds
as expressed in Equation (3.11). From the viewpoint of the protection buyer, a FtD is seen
as a hedging method of the credit portfolio with a lower cost than buying the protection

30In order to simplify the notations, we do not take into account the accrued premium.
31Laurent and Gregory (2005) provide semi-explicit formulas that are useful for pricing basket default

swaps.
32This point is developed in Section 3.3.4 on page 220 and in Chapter 11 dedicated to copula functions.
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for all the credits. For example, suppose that the protection buyer would like to be hedged
to the default of the automobile sector. He can buy a FtD on the basket of the largest
car manufacturers in the world, e.g. Volkswagen, Toyota, Hyundai, General Motors, Fiat
Chrysler and Renault. If there is only one default, the protection buyer is hedged. However,
the protection buyer keeps the risk of multiple defaults, which is a worst-case scenario.

Remark 27 The previous analysis can be extended to kth-to-default swaps. In this case,
the default leg is paid if the kth default occurs before the maturity date. We then obtain a
similar expression as Equation (3.10) by considering the order statistic τk:n in place of τ1:n.

From a theoretical point of view, it is equivalent to buy the CDS protection for all the
components of the credit basket or to buy all the kth-to-default swaps. We have therefore
the following relationship:

n∑
i=1

sCDS
i =

n∑
i=1

s i:n (3.12)

We see that the default correlation highly impacts the distribution of the kth-to-default
spreads33.

Credit default indices Credit derivative indices34 have been first developed by J.P.
Morgan, Morgan Stanley and iBoxx between 2001 and 2003. A credit default index (or
CDX) is in fact a credit default swap on a basket of reference entities. As previously, we
consider a portfolio with n credit entities. The protection buyer pays a premium leg with a
coupon rate ccc. Every time a reference entity defaults, the notional is reduced by a factor,
which is equal to 1/n. At the same time, the protection buyer receives the portfolio loss
between two fixing dates. The expression of the notional outstanding is then given by:

Nt (u) = N ·

(
1− 1

n

n∑
i=1

1 {τi ≤ u}

)

At the inception date, we verify that Nt (t) = N . After the first default, the notional
outstanding is equal to N (1− 1/n). After the kth default, its value is N (1− k/n). At time
u ≥ t, the cumulative loss of the credit portfolio is:

Lt (u) = 1
n

n∑
i=1

N · (1−Ri) · 1 {τi ≤ u}

meaning that the incremental loss between two fixing dates is:

∆Lt (tm) = Lt (tm)− Lt (tm−1)

We deduce that the stochastic discounted value of the premium and default legs is:

SVt (PL) = ccc ·
∑
tm≥t

∆tm ·Nt (tm) · e−
∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆Lt (tm) · e−
∫ tm
t

rs ds

33See page 762 for an illustration.
34 They are also known as synthetic credit indices, credit default swap indices or credit default indices.
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We deduce that the spread of the CDX is:

sCDX =
E
[∑

tm≥t ∆Lt (tm) ·Bt (tm)
]

E
[∑

tm≥t ∆tm ·Nt (tm) ·Bt (tm)
] (3.13)

Remark 28 A CDX is then equivalent to a portfolio of CDS whose each principal notional
is equal to N/n. Indeed, when a default occurs, the protection buyer receives N/n · (1−Ri)
and stops to pay the premium leg of the defaulted reference entity. At the inception date,
the annual premium of the CDX is then equal to the annual premium of the CDS portfolio:

sCDX ·N =
n∑
i=1

sCDS
i · N

n

We deduce that the spread of the CDX is an average of the credit spreads that compose the
portfolio35:

sCDX = 1
n

n∑
i=1

sCDS
i (3.14)

Today, credit default indices are all managed by Markit and have been standardized. For
instance, coupon payments are made on a quarterly basis (March 20, June 20, September
20, December 20) whereas indices roll every six months with an updated portfolio36. With
respect to the original credit indices, Markit continues to produces two families:

• Markit CDX
It focuses on North America and Emerging Markets credit default indices. The three
major sub-indices are IG (investment grade), HY (high yield) and EM (emerging
markets). A more comprehensive list is provided in Table 3.10. Besides these credit
default indices, Markit CDX produces also four other important indices: ABX (basket
of ABS), CMBX (basket of CMBS), LCDX (portfolio of 100 US secured senior loans)
and MCDX (basket of 50 municipal bonds).

• Markit iTraxx
It focuses on Europe, Japan, Asia ex-Japan and Australia (see the list in Table 3.11).
Markit iTraxx also produces LevX (portfolio of 40 European secured loans), sec-
tor indices (e.g. European financials and industrials) and SovX, which corresponds
to a portfolio of sovereign issuers. There are 7 SovX indices: Asia Pacific, BRIC,
CEEMEA37, G7, Latin America, Western Europe and Global Liquid IG.

In Table 3.12, we report the spread of some CDX/iTraxx indices. We note that the spread
of the CDX.NA.HY index is on average four times larger than the spread of the CDX.NA.IG
index. While spreads of credit default indices have generally decreased between December
2012 and December 2014, we observe a reversal in 2015. For instance, the spread of the
CDX.NA.IG index is equal to 93.6 bps in September 2015 whereas it was only equal to
66.3 bps nine months ago. We observe a similar increase of 30 bps for the iTraxx Europe
index. For the CDX.NA.HY index, it is more impressive with a variation of +150 bps in
nine months.

35In fact, this is an approximation because the payment of the default leg does not exactly match between
the CDX index and the CDS portfolio.

36See Markit (2014) for a detailed explanation of the indices’ construction.
37Central and Eastern Europe, Middle East and Africa.
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TABLE 3.10: List of Markit CDX main indices
Index name Description n R
CDX.NA.IG Investment grade entities 125 40%
CDX.NA.IG.HVOL High volatility IG entities 30 40%
CDX.NA.XO Crossover entities 35 40%
CDX.NA.HY High yield entities 100 30%
CDX.NA.HY.BB High yield BB entities 37 30%
CDX.NA.HY.B High yield B entities 46 30%
CDX.EM EM sovereign issuers 14 25%
LCDX Secured senior loans 100 70%
MCDX Municipal bonds 50 80%

Source: Markit (2014).

TABLE 3.11: List of Markit iTraxx main indices
Index name Description n R
iTraxx Europe European IG entities 125 40%
iTraxx Europe HiVol European HVOL IG entities 30 40%
iTraxx Europe Crossover European XO entities 40 40%
iTraxx Asia Asian (ex-Japan) IG entities 50 40%
iTraxx Asia HY Asian (ex-Japan) HY entities 20 25%
iTraxx Australia Australian IG entities 25 40%
iTraxx Japan Japanese IG entities 50 35%
iTraxx SovX G7 G7 governments 7 40%
iTraxx LevX European leveraged loans 40 40%

Source: Markit (2014).

TABLE 3.12: Historical spread of CDX/iTraxx indices (in bps)

Date CDX iTraxx
NA.IG NA.HY EM Europe Japan Asia

Dec. 2012 94.1 484.4 208.6 117.0 159.1 108.8
Dec. 2013 62.3 305.6 272.4 70.1 67.5 129.0
Dec. 2014 66.3 357.2 341.0 62.8 67.0 106.0
Sep. 2015 93.6 505.3 381.2 90.6 82.2 160.5

3.1.3.4 Collateralized debt obligations

A collateralized debt obligation (CDO) is another form of multi-name credit default
swaps. It corresponds to a pay-through ABS structure38, whose securities are bonds linked
to a series of tranches. If we consider the example given in Figure 3.20, they are 4 types of
bonds, whose returns depend on the loss of the corresponding tranche (equity, mezzanine,
senior and super senior). Each tranche is characterized by an attachment point A and a

38See Figure 3.12 on page 139.
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detachment point D. In our example, we have:

Tranche Equity Mezzanine Senior Super senior
A 0% 15% 25% 35%
D 15% 25% 35% 100%

The protection buyer of the tranche [A,D] pays a coupon rate ccc[A,D] on the nominal out-
standing amount of the tranche to the protection seller. In return, he receives the protection
leg, which is the loss of the tranche [A,D]. However, the losses satisfy a payment priority
which is the following:

Credit
portfolio

Equity

Mezzanine

Senior

Super
Senior

Assets Liabilities

0− 15%

15− 25%

25− 35%

35− 100%

P
riority

of
paym

ent
w
aterfall

FIGURE 3.20: Structure of a collateralized debt obligation

• the equity tranche is the most risky security, meaning that the first losses hit this
tranche alone until the cumulative loss reaches the detachment point;

• from the time the portfolio loss is larger than the detachment point of the equity
tranche, the equity tranche no longer exists and this is the protection seller of the
mezzanine tranche, who will pay the next losses to the protection buyer of the mez-
zanine tranche;

• the protection buyer of a tranche pays the coupon from the inception of the CDO until
the death of the tranche, i.e., when the cumulative loss is larger than the detachment
point of the tranche; moreover, the premium payments are made on the reduced
notional after each credit event of the tranche.

Each CDO tranche can then be viewed as a CDS with a time-varying notional principal to
define the premium leg and a protection leg, which is paid if the portfolio loss is between
the attachment and detachment points of the tranche. We can therefore interpret a CDO
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as a basket default swap, where the equity, mezzanine, senior and super senior tranches
correspond respectively to a first-to-default, second-to-default, third-to-default and last-to-
default swaps.

Let us now see the mathematical framework to price a CDO tranche. Assuming a port-
folio of n credits, the cumulative loss is equal to:

Lt (u) =
n∑
i=1

Ni · (1−Ri) · 1 {τi ≤ u}

whereas the loss of the tranche [A,D] is given by39:

L
[A,D]
t (u) = (Lt (u)−A) · 1 {A ≤ Lt (u) ≤ D}+

(D −A) · 1 {Lt (u) > D}

where A and D are the attachment and detachment points expressed in $. The nominal
outstanding amount of the tranche is therefore:

N
[A,D]
t (u) = (D −A)− L[A,D]

t (u)

This notional principal decreases then by the loss of the tranche. At the inception of the
CDO, N [A,D]

t (t) is equal to the tranche thickness: (D −A). At the maturity date T , we
have:

N
[A,D]
t (T ) = (D −A)− L[A,D]

t (T )

=

 (D −A) if Lt (T ) ≤ A
(D − Lt (T )) if A < Lt (T ) ≤ D
0 if Lt (T ) > D

We deduce that the stochastic discounted value of the premium and default legs is:

SVt (PL) = ccc[A,D] ·
∑
tm≥t

∆tm ·N [A,D]
t (tm) · e−

∫ tm
t

rs ds

and:
SVt (DL) =

∑
tm≥t

∆L[A,D]
t (tm) · e−

∫ tm
t

rs ds

Therefore, the spread of the CDO tranche is40:

s [A,D] =
E
[∑

tm≥t ∆L[A,D]
t (tm) ·Bt (tm)

]
E
[∑

tm≥t ∆tm ·N [A,D]
t (tm) ·Bt (tm)

] (3.15)

We obviously have the following inequalities:

sEquity > sMezzanine > sSenior > sSuper senior

39Another expression is:
L

[A,D]
t (u) = min

(
D −A, (Lt (u)−A)+)

40This formula is obtained by assuming no upfront and accrued interests.
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As in the case of kth-to-default swaps, the distribution of these tranche spreads highly
depends on the default correlation41. Depending on the model and the parameters, we can
therefore promote the protection buyer/seller of one specific tranche with respect to the
other tranches.

When collateralized debt obligations emerged in the 1990s, they were used to transfer
credit risk from the balance sheet of banks to investors (e.g. insurance companies). They
were principally portfolios of loans (CLO) or asset-backed securities (ABS CDO). With
these balanced-sheet CDOs, banks could recover regulatory capital in order to issue new
credits. In the 2000s, a new type of CDOs was created by considering CDS portfolios as
underlying assets. These synthetic CDOs are also called arbitrage CDOs, because they have
used by investors to express their market views on credit.

The impressive success of CDOs with investors before the 2008 Global Financial Cri-
sis is due to the rating mechanism of tranches. Suppose that the underlying portfolio is
composed of BB rated credits. It is obvious that the senior and super senior tranches will
be rated higher than BB, because the probability that these tranches will be impacted is
very low. The slicing approach of CDOs enables then to create high-rated securities from
medium or low-rated debts. Since the appetite of investors for AAA and AA rated bonds
was very important, CDOs were solutions to meet this demand. Moreover, this lead to the
development of rating methods in order to provide an attractive spread. This explains that
most of AAA-rated CDO tranches promised a return higher than AAA-rated sovereign and
corporate bonds. In fact, the 2008 GFC has demonstrated that many CDO tranches were
more risky than expected, because the riskiness of the assets were underestimated42.

TABLE 3.13: List of Markit credit default tranches
Index name Tranche
CDX.NA.IG 0− 3 3− 7 7− 15 15− 100
CDX.NA.HY 0− 10 10− 15 15− 25 25− 35 35− 100
LCDX 0− 5 5− 8 8− 12 12− 15 15− 100
iTraxx Europe 0− 3 3− 6 6− 9 9− 12 12− 22 22− 100
iTraxx Europe XO 0− 10 10− 15 15− 25 25− 35 35− 100
iTraxx Asia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Australia 0− 3 3− 6 6− 9 9− 12 12− 22
iTraxx Japan 0− 3 3− 6 6− 9 9− 12 12− 22

Source: Markit (2014).

For some years now, CDOs have been created using credit default indices as the under-
lying portfolio. For instance, Table 3.13 provides the list of available tranches on Markit
indices43. We notice that attachment and detachment points differ from one index to another
index. The first tranche always indicates the equity tranche. For IG underlying assets, the
notional corresponds to the first 3% losses of the portfolio, whereas the detachment point
is higher for crossover or high yield assets. We also notice that some senior tranches are not
traded (Asia, Australia and Japan). These products are mainly used in correlation trading
activities and also served as benchmarks for all the other OTC credit debt obligations.

41See Section 3.3.4 on page 220.
42More details of the impact of the securitization market on the 2008 Global Financial Crisis are developed

in Chapter 8 dedicated to systemic risk.
43They are also called credit default tranches (CDT).
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3.2 Capital requirement
This section deals with regulatory aspects of credit risk. From a historical point of view,

this is the first risk which has requested regulatory capital before market risk. Nevertheless,
the development of credit risk management is more recent and was accelerated with the Basel
II Accord. Before presenting the different approaches for calculating capital requirements,
we need to define more precisely what credit risk is.

It is the risk of loss on a debt instrument resulting from the failure of the borrower to
make required payments. We generally distinguish two types of credit risk. The first one is
the ‘default risk’, which arises when the borrower is unable to pay the principal or interests.
An example is a student loan or a mortgage loan. The second type is the ‘downgrading risk’,
which concerns debt securities. In this case, the debt holder may face a loss, because the
price of the debt security is directly related to the credit risk of the borrower. For instance,
the price of the bond may go down because the credit risk of the issuer increases and even
if the borrower does not default. Of course, default risk and downgrading risk are highly
correlated, because it is rare that a counterparty suddenly defaults without downgrading of
its credit rating.

To measure credit risk, we first need to define the default of the obligor. BCBS (2006)
provides the following standard definition:

“A default is considered to have occurred with regard to a particular obligor
when either or both of the two following events have taken place.

• The bank considers that the obligor is unlikely to pay its credit obligations
to the banking group in full, without recourse by the bank to actions such
as realizing security (if held).
• The obligor is past due more than 90 days on any material credit obligation
to the banking group. Overdrafts will be considered as being past due once
the customer has breached an advised limit or been advised of a limit
smaller than current outstandings” (BCBS, 2006, page 100).

This definition contains both objective elements (when a payment has been missed or de-
layed) and subjective elements (when a loss becomes highly probable). This last case gener-
ally corresponds to an extreme situation (specific provision, distressed restructuring, etc.).
The Basel definition of default covers then two types of credit: debts under litigation and
doubtful debts.

Downgrading risk is more difficult to define. If the counterparty is rated by an agency, it
can be measured by a single or multi-notch downgrade. However, it is not always the case
in practice, because the credit quality decreases before the downgrade announcement. A
second measure is to consider a market-based approach by using CDS spreads. However, we
notice that the two methods concern counterparties, which are able to issue debt securities,
in particular bonds. For instance, the concept of downgrading risk is difficult to apply for
retail assets.

The distinction between default risk and downgrading risk has an impact on the credit
risk measure. For loans and debt-like instruments that cannot be traded in a market, the
time horizon for managing credit risk is the maturity of the credit. Contrary to this held-to-
maturity approach, the time horizon for managing debt securities is shorter, typically one
year. In this case, the big issue is not to manage the default, but the mark-to-market of the
credit exposure.
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3.2.1 The Basel I framework
According to Tarullo (2008), two explanatory factors were behind the Basel I Accord.

The first motivation was to increase capital levels of international banks, which were very
low at that time and had continuously decreased for many years. For instance, the ratio of
equity capital to total assets44 was 5.15% in 1970 and only 3.83% in 1981 for the 17 largest
US banks. In 1988, this capital ratio was equal to 2.55% on average for the five largest bank
in the world. The second motivation concerned the distortion risk of competition resulting
from heterogeneous national capital requirements. One point that was made repeatedly,
especially by US bankers, was the growth of Japanese banks. In Table 3.14, we report the
ranking of the 10 world’s largest banks in terms of assets ($ bn) between 2001 and 2008.
While there is only one Japanese bank in the top 10 in 1981, nine Japanese banks are
included in the ranking seven years later. In this context, the underlying idea of the Basel
I Accord was then to increase capital requirements and harmonize national regulations for
international banks.

TABLE 3.14: World’s largest banks in 1981 and 1988
1981 1988

Bank Assets Bank Assets
1 Bank of America (US) 115.6 Dai-Ichi Kangyo (JP) 352.5
2 Citicorp (US) 112.7 Sumitomo (JP) 334.7
3 BNP (FR) 106.7 Fuji (JP) 327.8
4 Crédit Agricole (FR) 97.8 Mitsubishi (JP) 317.8
5 Crédit Lyonnais (FR) 93.7 Sanwa (JP) 307.4
6 Barclays (UK) 93.0 Industrial Bank (JP) 261.5
7 Société Générale (FR) 87.0 Norinchukin (JP) 231.7
8 Dai-Ichi Kangyo (JP) 85.5 Crédit Agricole (FR) 214.4
9 Deutsche Bank (DE) 84.5 Tokai (JP) 213.5

10 National Westminster (UK) 82.6 Mitsubishi Trust (JP) 206.0

Source: Tarullo (2008).

The Basel I Accord provides a detailed definition of bank capital C and risk-weighted
assets RWA. We reiterate that tier one (T1) capital consists mainly of common stock and
disclosed reserves, whereas tier two (T2) capital includes undisclosed reserves, general pro-
visions, hybrid debt capital instruments and subordinated term debt. Risk-weighted assets
are simply calculated as the product of the asset notional (the exposure at default or EAD)
by a risk weight (RW). Table 3.15 shows the different values of RW with respect to the
category of the asset. For off-balance sheet assets, BCBS (1988) defines credit conversion
factor (CCF) for converting the amount E of a credit line or off-balance sheet asset to an
exposure at default:

EAD = E · CCF

The CCF values are 100% for direct credit substitutes (standby letters of credit), sale and
repurchase agreements, forward asset purchases, 50% for standby facilities and credit lines
with an original maturity of over one year, note issuance facilities and revolving underwriting
facilities, 20% for short-term self-liquidating trade-related contingencies and 0% for standby
facilities and credit lines with an original maturity of up to one year. The above framework
is used to calculate the Cooke ratio, which is in fact a set of two capital ratios. The core

44All the statistics of this section comes from Chapters 2 and 3 of Tarullo (2008).
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TABLE 3.15: Risk weights by category of on-balance sheet assets
RW Instruments

0%

Cash
Claims on central governments and central banks denominated in
national currency and funded in that currency
Other claims on OECD central governments and central banks
Claims† collateralized by cash of OECD government securities

20%

Claims† on multilateral development banks
Claims† on banks incorporated in the OECD and claims guaranteed
by OECD incorporated banks
Claims† on securities firms incorporated in the OECD subject to
comparable supervisory and regulatory arrangements
Claims† on banks incorporated in countries outside the OECD with
a residual maturity of up to one year
Claims† on non-domestic OECD public-sector entities
Cash items in process of collection

50% Loans fully secured by mortgage on residential property

100%

Claims on the private sector
Claims on banks incorporated outside the OECD with a residual
maturity of over one year
Claims on central governments outside the OECD and non denom-
inated in national currency
All other assets

†or guaranteed by these entities.

Source: BCBS (1988).

capital ratio includes only tier one capital whereas the total capital ratio considers both tier
one C1 and tier two C2 capital:

Tier 1 ratio = C1

RWA ≥ 4%

Tier 2 ratio = C1 + C2

RWA ≥ 8%

Example 26 The assets of the bank are composed of $100 mn of US treasury bonds, $20
mn of Mexico government bonds denominated in US dollar, $20 mn of Argentine debt de-
nominated in Argentine peso, $500 mn of residential mortgage, $500 mn of corporate loans,
$20 mn of non-used standby facilities for OECD governments and $100 mn of retail credit
lines, which are decomposed as follows: $40 mn are used and 70% of non-used credit lines
have a maturity greater than one year.

For each asset, we calculate RWA by choosing the right risk weight and credit conversion
factor for off-balance sheet items. We obtain the results below. The risk-weighted assets of
the bank are then equal to $831 mn. We deduce that the required capital K is $33.24 mn
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for tier one.

Balance Asset E CCF EAD RW RWASheet

On-

US bonds 100 0% 0
Mexico bonds 20 100% 20
Argentine debt 20 0% 0
Home mortgage 500 50% 250
Corporate loans 500 100% 500
Credit lines 40 100% 40

Off-
Standby facilities 20 100% 20 0% 0
Credit lines (> 1Y) 42 50% 21 100% 21
Credit lines (≤ 1Y) 18 0% 0 100% 0
Total 831

3.2.2 The Basel II standardized approach
The main criticism of the Cooke ratio is the lack of economic rationale with respect to

risk weights. Indeed, most of the claims have a 100% risk weight and do not reflect the
real credit risk of the borrower. Other reasons have been given to justify a reformulation of
capital requirements for credit risk with the goal to:

• obtain a better credit risk measure by taking into account the default probability of
the counterparty;

• avoid regulatory arbitrage, in particular by using credit derivatives;

• have a more coherent framework that supports credit risk mitigation.

3.2.2.1 Standardized risk weights

In Basel II, the probability of default is the key parameter to define risk weights. For
the standardized approach (SA), they depend directly on external ratings whereas they are
based on internal rating for the IRB approach. Table 3.16 shows the new matrix of risk
weights, when we consider the Standard & Poor’s rating system45. We notice that there are
four main categories of claims46: sovereigns, banks, corporates and retail portfolios.

The sovereign exposure category include central governments and central banks, whereas
non-central public sector entities are treated with the bank exposure category. We note that
there are two options for the latter, whose choice is left to the discretion of the national
supervisors47. Under the first option, the risk weight depends on the rating of the country
where the bank is located. Under the second option, it is the rating of the bank that
determines the risk weight, which is more favorable for short-term claims (three months or
less). The risk weight of a corporate is calculated with respect to the rating of the entity, but
uses a slightly different breakdown of ratings than the second option of the bank category.
Finally, the Basel Committee uses lower levels for retail portfolios than those provided in
the Basel I Accord. Indeed, residential mortgages and retail loans are now risk-weighted at
35% and 75% instead of 50% and 100% previously. Other comparisons between Basel I and
Basel II (with the second option for banks) are shown in Table 3.17.

45NR stands for non-rated entities.
46The regulatory framework is more comprehensive by considering three other categories (public sector

entities, multilateral development banks and securities firms), which are treated as banks. For all other
assets, the standard risk weight is 100%.

47The second option is more frequent and was implemented in Europe, US and Japan for instance.
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TABLE 3.16: Risk weights of the SA approach (Basel II)

Rating
AAA A+ BBB+ BB+ CCC+
to to to to to NR

AA− A− BBB− B− C
Sovereigns 0% 20% 50% 100% 150% 100%

Banks
1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

2 ST 20% 20% 20% 50% 150% 20%

Corporates BBB+ to BB− B+ to C
20% 50% 100% 150% 100%

Retail 75%
Residential mortgages 35%
Commercial mortgages 100%

TABLE 3.17: Comparison of risk weights between Basel I and Basel II
Entity Rating Maturity Basel I Basel II
Sovereign (OECD) AAA 0% 0%
Sovereign (OECD) A- 0% 20%
Sovereign BBB 100% 50%
Bank (OECD) BBB 2Y 20% 50%
Bank BBB 2M 100% 20%
Corporate AA+ 100% 20%
Corporate BBB 100% 100%

The SA approach is based on external ratings and then depends on credit rating agencies.
The most famous are Standard & Poor’s, Moody’s and Fitch. However, they cover only large
companies. This is why banks will also consider rating agencies specialized in a specific sector
or a given country48. Of course, rating agencies must be first registered and certified by the
national supervisor in order to be used by the banks. The validation process consists of
two steps, which are the assessment of the six required criteria (objectivity, independence,
transparency, disclosure, resources and credibility) and the mapping process between the
ratings and the Basel matrix of risk weights.

Table 3.18 shows the rating systems of S&P, Moody’s and Fitch, which are very similar.
Examples of S&P’s rating are given in Tables 3.19, 3.20 and 3.21. We note that the rating
of many sovereign counterparties has been downgraded by at least one notch, except China
which has now a better rating than before the 2008 GFC. For some countries, the rating
in local currency is different from the rating in foreign currency, for instance Argentina,
Brazil, Russia and Ukraine49. We observe the same evolution for banks and it is now rare
to find a bank with a AAA rating. This is not the case of corporate counterparties, which
present more stable ratings across time.

Remark 29 Credit conversion factors for off-balance sheet items are similar to those de-
fined in the original Basel Accord. For instance, any commitment that is unconditionally
cancelable receives a 0% CCF. A CCF of 20% (resp. 50%) is applied to commitments with

48For instance, banks may use Japan Credit Rating Agency Ltd for Japanese public and corporate en-
tities, DBRS Ratings Limited for bond issuers, Cerved Rating Agency for Italian small and medium-sized
enterprises, etc.

49An SD rating is assigned in case of selective default of the obligor.
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TABLE 3.18: Credit rating system of S&P, Moody’s and Fitch
Prime High Grade Upper

Maximum Safety High Quality Medium Grade
S&P/Fitch AAA AA+ AA AA− A+ A A−
Moody’s Aaa Aa1 Aa2 Aa3 A1 A2 A3

Lower Non Investment Grade
Medium Grade Speculative

S&P/Fitch BBB+ BBB BBB− BB+ BB BB−
Moody’s Baa1 Baa2 Baa3 Ba1 Ba2 Ba3

Highly Substantial In Poor Extremely
Speculative Risk Standing Speculative

S&P/Fitch B+ B B− CCC+ CCC CCC− CC
Moody’s B1 B2 B3 Caa1 Caa2 Caa3 Ca

TABLE 3.19: Examples of country’s S&P rating

Country Local currency Foreign currency
Jun. 2009 Oct. 2015 Jun. 2009 Oct. 2015

Argentina B- CCC+ B- SD
Brazil BBB+ BBB- BBB- BB+
China A+ AA- A+ AA-
France AAA AA AAA AA
Italy A+ BBB- A+ BBB-
Japan AA A+ AA A+
Russia BBB+ BBB- BBB BB+
Spain AA+ BBB+ AA+ BBB+
Ukraine B- CCC+ CCC+ SD
US AAA AA+ AA+ AA+

Source: Standard & Poor’s, www.standardandpoors.com.

TABLE 3.20: Examples of bank’s S&P rating
Bank Oct. 2001 Jun. 2009 Oct. 2015
Barclays Bank PLC AA AA- A-
Credit Agricole S.A. AA AA- A
Deutsche Bank AG AA A+ BBB+
International Industrial Bank CCC+ BB-
JPMorgan Chase & Co. AA- A+ A
UBS AG AA+ A+ A

Source: Standard & Poor’s, www.standardandpoors.com.

http://www.standardandpoors.com
http://www.standardandpoors.com
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TABLE 3.21: Examples of corporate’s S&P rating
Corporate Jul. 2009 Oct. 2015
Danone A- A-
Exxon Mobil Corp. AAA AAA
Ford Motor Co. CCC+ BBB-
General Motors Corp. D BBB-
L’Oreal S.A. NR NR
Microsoft Corp. AAA AAA
Nestle S.A. AA AA
The Coca-Cola Co. A+ AA
Unilever PLC A+ A+

Source: Standard & Poor’s, www.standardandpoors.com.

an original maturity up to one year (resp. greater than one year). For revolving underwriting
facilities, the CCF is equal to 50% whereas it is equal to 100% for other off-balance sheet
items (e.g. direct credit substitutes, guarantees, sale and repurchase agreements, forward
asset purchases).

3.2.2.2 Credit risk mitigation

Credit risk mitigation (CRM) refers to the various techniques used by banks for reducing
the credit risk. These methods allow to decrease the credit exposure or to increase the
recovery in case of default. The most common approaches are collateralized transactions,
guarantees, credit derivatives and netting agreements.

Collateralized transactions In such operations, the credit exposure of the bank is par-
tially hedged by collateral posted by the counterparty. BCBS (2006) defines then the fol-
lowing eligible instruments:

1. Cash and comparable instruments;

2. Gold;

3. Debt securities which are rated AAA to BB- when issued by sovereigns or AAA to BBB-
when issued by other entities or at least A-3/P-3 for short-term debt instruments;

4. Debt securities which are not rated but fulfill certain criteria (senior debt issued by
banks, listed on a recognisee exchange and sufficiently liquid);

5. Equities that are included in a main index;

6. UCITS and mutual funds, whose assets are eligible instruments and which offer a
daily liquidity;

7. Equities which are listed on a recognized exchange and UCITS/mutual funds which
include such equities.

The bank has the choice between two approaches to take into account collateralized
transactions. In the simple approach50, the risk weight of the collateral (with a floor of

50Collateral instruments (7) are not eligible for this approach.

http://www.standardandpoors.com
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20%) is applied to the market value of the collateral C whereas the non-hedged exposure
(EAD−C) receives the risk weight of the counterparty:

RWA = (EAD−C) · RW +C ·max (RWC , 20%) (3.16)

where EAD is the exposure at default, C is the market value of the collateral, RW is the
risk weight appropriate to the exposure and RWC is the risk weight of the collateral. The
second method, called the comprehensive approach, is based on haircuts. The risk-weighted
asset amount after risk mitigation is RWA = RW ·EAD? whereas EAD? is the modified
exposure at default defined as follows:

EAD? = max (0, (1 +HE) · EAD− (1−HC −HFX) · C) (3.17)

where HE is the haircut applied to the exposure, HC is the haircut applied to the collateral
and HFX is the haircut for currency risk. Table 3.22 gives the standard supervisory values
of haircuts. If the bank uses an internal model to calculate haircuts, they must be based on
the value-at-risk with a 99% confidence level and an holding period which depends on the
collateral type and the frequency of remargining. The standard supervisory haircuts have
been calibrated by assuming daily mark-to-market, daily remargining and a 10-business day
holding period.

TABLE 3.22: Standardized supervisory haircuts for collateralized transactions

Rating Residual Sovereigns OthersMaturity
0−1Y 0.5% 1%

AAA to AA− 1−5Y 2% 4%
5Y+ 4% 8%
0−1Y 1% 2%

A+ to BBB− 1−5Y 3% 6%
5Y+ 6% 12%

BB+ to BB− 15%
Cash 0%
Gold 15%
Main index equities 15%
Equities listed on a recognized exchange 25%
FX risk 8%

Example 27 We consider a 10-year credit of $100 mn to a corporate firm rated A. The
credit is guaranteed by five collateral instruments: a cash deposit ($2 mn), a gold deposit ($5
mn), a sovereign bond rated AA with a 2-year residual maturity ($15 mn) and repurchase
transactions on Microsoft stocks ($20 mn) and Wirecard51 stocks ($20 mn).

Before credit risk mitigation, the risk-weighted asset amount is equal to:

RWA = 100× 50% = $50 mn

If we consider the simple approach, the repurchase transaction on Wirecard stocks is not
eligible, because it does not fall within categories (1)-(6). The risk-weighted asset amount

51Wirecard is a German financial company specialized in payment processing and issuing services. The
stock belongs to the MSCI Small Cap Europe index.
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becomes52:

RWA = (100− 2− 5− 15− 20)× 50% + (2 + 5 + 15 + 20)× 20%
= $37.40 mn

The repurchase transaction on Wirecard stocks is eligible in the comprehensive approach,
because these equity stocks are traded in Börse Frankfurt. The haircuts are 15% for gold, 2%
for the sovereign bond and 15% for Microsoft stocks53. For Wirecard stocks, a first haircut
of 25% is applied because this instrument belongs to the seventh category and a second
haircut of 8% is applied because there is a foreign exchange risk. The adjusted exposure at
default is then equal to:

EAD? = (1 + 8%)× 100− 2− (1− 15%)× 5− (1− 2%)× 15−
(1− 15%)× 20− (1− 25%− 8%)× 20

= $73.65 mn

It follows that:
RWA = 73.65× 50% = $36.82 mn

Guarantees and credit derivatives Banks can use these credit protection instruments
if they are direct, explicit, irrevocable and unconditional. In this case, banks use the simple
approach given by Equation (3.16). The case of credit default tranches is covered by rules
described in the securitization framework.

Maturity mismatches A maturity mismatch occurs when the residual maturity of the
hedge is less than that of the underlying asset. In this case, the bank uses the following
adjustment:

CA = C · min (TG, T, 5)− 0.25
min (T, 5)− 0.25 (3.18)

where T is the residual maturity of the exposure and TG is the residual maturity of the
collateral (or guarantee).

Example 28 The bank A has granted a credit of $30 mn to a corporate firm B, which
is rated BB. In order to hedge the default risk, the bank A buys $20 mn of a 3-year CDS
protection on B to the bank C, which is rated A+.

If the residual maturity of the credit is lower than 3 years, we obtain:

RWA = (30− 20)× 100% + 20× 50% = $20 mn

If the residual maturity is greater than 3 years, we first have to calculate the adjusted value
of the guarantee. Assuming that the residual maturity is 4 years, we have:

GA = 20× min (3, 4, 5)− 0.25
min (4, 5)− 0.25 = $14.67 mn

It follows that:

RWA = (30− 14.67)× 100% + 14.67× 50% = $22.67 mn
52The floor of 20% is applied to the cash, gold and sovereign bond collateral instruments. The risk weight

for Microsoft stocks is 20% because the rating of Microsoft is AAA.
53Because Microsoft belongs to the S&P 500 index, which is a main equity index.



168 Handbook of Financial Risk Management

3.2.3 The Basel II internal ratings-based approach
The completion of the internal ratings-based (IRB) approach was a complex task, be-

cause it required many negotiations between regulators, banks and politics. Tarullo (2008)
points out that the publication of the first consultative paper (CP1) in June 1999 was
both “anticlimactic and contentious”. The paper is curiously vague without a precise di-
rection. The only tangible proposal is the use of external ratings. The second consultative
paper is released in January 2001 and includes in particular the IRB approach, which has
been essentially developed by US members of the Basel Committee with the support of
large international banks. The press release dated 16 January 2001 indicated that the Basel
Committee would finalize the New Accord by the end of 2001, for an implementation in
2004. However, it has taken much longer than originally anticipated and the final version
of the New Accord was published in June 2004 and implemented from December 200654.
The main reason is the difficulty of calibrating the IRB approach in order to satisfy a large
part of international banks. The IRB formulas of June 2004 are significantly different from
the original ones and reflect compromises between the different participants without really
being satisfactory.

3.2.3.1 The general framework

Contrary to the standardized approach, the IRB approach is based on internal rating
systems. With such a method, the objectives of the Basel Committee were to propose a
more sensitive credit risk measure and define a common basis between internal credit risk
models. The IRB approach may be seen as an external credit risk model, whose parameters
are provided by the bank. Therefore, it is not an internal model, but a first step to harmonize
the internal risk management practices by focusing on the main risk components, which are:

• the exposure at default (EAD);

• the probability of default (PD);

• the loss given default (LGD);

• the effective maturity (M).

The exposure at default is defined as the outstanding debt at the time of default. For
instance, it is equal to the principal amount for a loan. The loss given default is the expected
percentage of exposure at default that is lost if the debtor defaults. At first approximation,
one can consider that LGD ' 1−R, where R is the recovery rate. While EAD is expressed
in $, LGD is measured in %. For example, if EAD is equal to $10 mn and LGD is set to 70%,
the expected loss due to the default is equal to $7 mn. The probability of default measures
the default risk of the debtor. In Basel II, the time horizon of PD is set to one year. When
the duration of the credit is not equal to one year, one has to specify its effective maturity
M. This is the combination of the one-year default probability PD and the effective maturity
M that measures the default risk of the debtor until the duration of the credit.

In this approach, the credit risk measure is the sum of individual risk contributions:

R (w) =
n∑
i=1
RCi

54See Chapter 4 entitled “Negotiating Basel II” of Tarullo (2008) for a comprehensive story of the Basel
II Accord.
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where RCi is a function of the four risk components:

RCi = fIRB (EADi,LGDi,PDi,Mi)

and fIRB is the IRB fomula. In fact, there are two IRB methodologies. In the foundation
IRB approach (FIRB), banks use their internal estimates of PD whereas the values of the
other components (EAD, LGD and M) are set by regulators. Banks that adopt the advanced
IRB approach (AIRB) may calculate all the four parameters (PD, EAD, LGD and M) using
their own internal models and not only the probability of default. The mechanism of the
IRB approach is then the following:

• a classification of exposures (sovereigns, banks, corporates, retail portfolios, etc.);

• for each credit i, the bank estimates the probability of default PDi;

• it uses the standard regulatory values of the other risk components (EADi, LGDi and
Mi) or estimates them in the case of AIRB;

• the bank calculate then the risk-weighted assets RWAi of the credit by applying the
right IRB formula fIRB to the risk components.

Internal ratings are central to the IRB approach. Table 3.23 gives an example of an internal
rating system, where risk increases with the number grade (1, 2, 3, etc.). Another approach
is to consider alphabetical letter grades55. A third approach is to use an internal rating
scale similar to that of S&P56.

3.2.3.2 The credit risk model of Basel II

Decomposing the value-at-risk into risk contributions BCBS (2004a) used the
Merton-Vasicek model (Merton, 1974; Vasicek, 2002) to derive the IRB formula. In this
framework, the portfolio loss is equal to:

L =
n∑
i=1

wi · LGDi ·1 {τi ≤ Ti} (3.19)

where wi and Ti are the exposure at default and the residual maturity of the ith credit.
We assume that the loss given default LGDi is a random variable and the default time
τi depends on a set of risk factors X, whose probability distribution is denoted by H. Let
pi (X) be the conditional default probability. It follows that the (unconditional or long-term)
default probability is:

pi = EX [1 {τi ≤ Ti}]
= EX [pi (X)]

We also introduce the notation Di = 1 {τi ≤ Ti}, which is the default indicator function.
Conditionally to the risk factors X, Di is a Bernoulli random variable with probability
pi (X). If we consider the standard assumption that the loss given default is independent

55For instance, the rating system of Crédit Agricole is: A+, A, B+, B, C+, C, C-, D+, D, D-, E+, E and
E- (source: Credit Agricole, Annual Financial Report 2014, page 201).

56This is the case of JPMorgan Chase & Co. (source: JPMorgan Chase & Co., Annual Report 2014, page
104).
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TABLE 3.23: An example of internal rating system

Degree
of risk

Borrower
Rating Definition category by

self-assessment

1 No essential
risk

Extremely high degree of certainty of
repayment

Normal

2 Negligible
risk High degree of certainty of repayment

3 Some risk Sufficient certainty of repayment

4
A
B
C

Better
than

average

There is certainty of repayment but
substantial changes in the
environment in the future may have
some impact on this uncertainty

5
A
B
C

Average

There are no problems foreseeable in
the future, but a strong likelihood of
impact from changes in the
environment

6
A

Tolerable
There are no problems foreseeable in
the future, but the future cannot be
considered entirely safe

B
C

7
Lower
than

average

There are no problems at the current
time but the financial position of the
borrower is relatively weak

8
A

B

Needs
preventive

management

There are problems with lending
terms or fulfilment, or the borrower’s
business conditions are poor or
unstable, or there are other factors
requiring careful management

Needs
attention

9 Needs
serious

management

There is a high likelihood of
bankruptcy in the future

In danger
of bankruptcy

10 I The borrower is in serious financial
straits and “effectively bankrupt”

Effectively
bankruptcy

II The borrower is bankrupt Bankrupt

Source: Ieda et al. (2000).

from the default time and we also assume that the default times are conditionally indepen-
dent57, we obtain:

E [L | X] =
n∑
i=1

wi · E [LGDi] · E [Di | X]

=
n∑
i=1

wi · E [LGDi] · pi (X) (3.20)

and58:

σ2 (L | X) = E
[
L2 | X

]
− E2 [L | X]

=
n∑
i=1

w2
i ·
(
E
[
LGD2

i

]
· E
[
D2
i | X

]
− E2 [LGDi] · p2

i (X)
)

57The default times are not independent, because they depend on the common risk factors X. However,
conditionally to these factors, they become independent because idiosyncratic risk factors are not correlated.

58Because the conditional covariance between Di and Dj is equal to zero. The derivation of this formula
is given in Exercise 3.4.8 on page 255.
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We have E
[
D2
i | X

]
= pi (X) and E

[
LGD2

i

]
= σ2 (LGDi) + E2 [LGDi]. We deduce that:

σ2 (L | X) =
n∑
i=1

w2
i ·Ai (3.21)

where:
Ai = E2 [LGDi] · pi (X) · (1− pi (X)) + σ2 (LGDi) · pi (X)

BCBS (2004a) assumes that the portfolio is infinitely fine-grained, which means that there
is no concentration risk:

lim
n→∞

max wi∑n
j=1 wj

= 0 (3.22)

In this case, Gordy (2003) shows that the conditional distribution of L degenerates to its
conditional expectation E [L | X]. The intuition of this result is given by Wilde (2001a).
He considers a fine-grained portfolio equivalent to the original portfolio by replacing the
original credit i by m credits with the same default probability pi, the same loss given
default LGDi but an exposure at default divided by m. Let Lm be the loss of the equivalent
fine-grained portfolio. We have:

E [Lm | X] =
n∑
i=1

 m∑
j=1

wi
m

 · E [LGDi] · E [Di | X]

=
n∑
i=1

wi · E [LGDi] · pi (X)

= E [L | X]

and:

σ2 (Lm | X) =
n∑
i=1

 m∑
j=1

w2
i

m2

 ·Ai
= 1

m

n∑
i=1

w2
i ·Ai

= 1
m
σ2 (Lm | X)

When m tends to ∞, we obtain the infinitely fine-grained portfolio. We note that
E [L∞ | X] = E [L | X] and σ2 (L∞ | X) = 0. Conditionally to the risk factors X, the
portfolio loss L∞ is equal to the conditional mean E [L | X]. The associated probability
distribution F is then:

F (`) = Pr {L∞ ≤ `}
= Pr {E [L | X] ≤ `}

= Pr
{

n∑
i=1

wi · E [LGDi] · pi (X) ≤ `
}

Let g (x) be the function
∑n
i=1 wi · E [LGDi] · pi (x). We have:

F (`) =
∫
· · ·
∫
1 {g (x) ≤ `} dH (x)
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However, it is not possible to obtain a closed-form formula for the value-at-risk F−1 (α)
defined as follows:

F−1 (α) = {` : Pr {g (X) ≤ `} = α}

If we consider a single risk factor and assume that g (x) is an increasing function, we obtain:

Pr {g (X) ≤ `} = α ⇔ Pr
{
X ≤ g−1 (`)

}
= α

⇔ H
(
g−1 (`)

)
= α

⇔ ` = g
(
H−1 (α)

)
We finally deduce that the value-at-risk has the following expression:

F−1 (α) = g
(
H−1 (α)

)
=

n∑
i=1

wi · E [LGDi] · pi
(
H−1 (α)

)
(3.23)

Equation (3.23) is appealing because the value-at-risk satisfies the Euler allocation principle.
Indeed, we have:

RCi = wi ·
∂ F−1 (α)
∂ wi

= wi · E [LGDi] · pi
(
H−1 (α)

)
(3.24)

and:
n∑
i=1
RCi = F−1 (α)

Remark 30 If g (x) is a decreasing function, we obtain Pr
{
X ≥ g−1 (`)

}
= α and:

F−1 (α) =
n∑
i=1

wi · E [LGDi] · pi
(
H−1 (1− α)

)
The risk contribution becomes:

RCi = wi · E [LGDi] · pi
(
H−1 (1− α)

)
(3.25)

We reiterate that Equation (3.24) has been obtained under the following assumptions:

H1 the loss given default LGDi is independent from the default time τi;

H2 the default times (τ1, . . . , τn) depend on a single risk factor X and are conditionally
independent with respect to X;

H3 the portfolio is infinitely fine-grained, meaning that there is no exposure concentration.

Equation (3.24) is a very important result for two main reasons. First, it implies that,
under the previous assumptions, the value-at-risk of an infinitely fine-grained portfolio can
be decomposed as a sum of independent risk contributions. Indeed, RCi depends solely on
the characteristics of the ith credit (exposure at default, loss given default and probability
of default). This facilitates the calculation of the value-at-risk for large portfolios. Second,
the risk contribution RCi is related to the expected value of the loss given default. We don’t
need to model the probability distribution of LGDi, only the mean E [LGDi] is taken into
account.
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Closed-form formula of the value-at-risk In order to obtain a closed-form formula,
we need a model of default times. BCBS (2004a) has selected the one-factor model of Merton
(1974), which has been formalized by Vasicek (1991). Let Zi be the normalized asset value
of the entity i. In the Merton model, the default occurs when Zi is below a given barrier
Bi:

Di = 1⇔ Zi < Bi

By assuming that Zi is Gaussian, we deduce that:

pi = Pr {Di = 1}
= Pr {Zi < Bi}
= Φ (Bi)

The value of the barrier Bi is then equal to Φ−1 (pi). We assume that the asset value Zi
depends on the common risk factor X and an idiosyncratic risk factor εi as follows:

Zi = √ρX +
√

1− ρεi

X and εi are two independent standard normal random variables. We note that59:

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= E
[
ρX2 + (1− ρ) εiεj +X

√
ρ (1− ρ) (εi + εj)

]
= ρ

where ρ is the constant asset correlation. We now calculate the conditional default proba-
bility:

pi (X) = Pr {Di = 1 | X}
= Pr {Zi < Bi | X}

= Pr
{√

ρX +
√

1− ρεi < Bi

}
= Pr

{
εi <

Bi −
√
ρX

√
1− ρ

}
= Φ

(
Bi −

√
ρX

√
1− ρ

)
Using the framework of the previous paragraph, we obtain:

g (x) =
n∑
i=1

wi · E [LGDi] · pi (x)

=
n∑
i=1

wi · E [LGDi] · Φ
(Φ−1 (pi)−

√
ρx

√
1− ρ

)
We note that g (x) is a decreasing function if wi ≥ 0. Using Equation (3.25) and the
relationship Φ−1 (1− α) = −Φ−1 (α), it follows that:

RCi = wi · E [LGDi] · Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
(3.26)

59We have E [εiεj ] = 0 because εi and εj are two specific risk factors.
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Remark 31 We verify that pi is the unconditional default probability. Indeed, we have:

EX [pi (X)] = EX
[
Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)]
=

∫ ∞
−∞

Φ
(Φ−1 (pi)−

√
ρx

√
1− ρ

)
φ (x) dx

We recognize the integral function analyzed in Appendix A.2.2.5 on page 1063. We deduce
that:

EX [pi (X)] = Φ2

(
∞, Φ−1 (pi)√

1− ρ
·
(

1
1− ρ

)−1/2

;
√
ρ

√
1− ρ

(
1

1− ρ

)−1/2
)

= Φ2
(
∞,Φ−1 (pi) ;√ρ

)
= Φ

(
Φ−1 (pi)

)
= pi

Example 29 We consider a homogeneous portfolio with 100 credits. For each credit, the
exposure at default, the expected LGD and the probability of default are set to $1 mn, 50%
and 5%.

Let us assume that the asset correlation ρ is equal to 10%. We have reported the nu-
merical values of F−1 (α) for different values of α in Table 3.24. If we are interested in the
cumulative distribution function, F (`) is equal to the numerical solution α of the equation
F−1 (α) = `. Using a bisection algorithm, we find the probabilities given in Table 3.24. For
instance, the probability to have a loss less than or equal to $3 mn is equal to 70.44%. Fi-
nally, to calculate the probability density function of the portfolio loss, we use the following
relationship60:

f (x) = 1
∂α F−1 (F (x))

where:

∂α F−1 (α) =
n∑
i=1

wi · E [LGDi] ·
√

ρ

1− ρ ·
1

φ (Φ−1 (α)) ·

φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
In Figure 3.21, we compare the probability functions for two different values of the asset
correlation ρ. We note that the level of ρ has a big impact on the quantile function and the
shape of the density function.

TABLE 3.24: Numerical values of f (`), F (`) and F−1 (α) when ρ is equal to 10%

` (in $ mn) 0.10 1.00 2.00 3.00 4.00 5.00
F (`) (in %) 0.03 16.86 47.98 70.44 83.80 91.26
f (`) (in %) 1.04 31.19 27.74 17.39 9.90 5.43
α (in %) 10.00 25.00 50.00 75.00 90.00 95.00
F−1 (α) (in $ mn) 0.77 1.25 2.07 3.28 4.78 5.90

60See Appendix A.2.2.3 on page 1062.
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FIGURE 3.21: Probability functions of the credit portfolio loss

The risk contribution RCi depends on three credit parameters (the exposure at default
wi, the expected loss given default E [LGDi] and the probability of default pi) and two
model parameters (the asset correlation ρ and the confidence level α of the value-at-risk). It
is obvious that RCi is an increasing function of the different parameters with the exception
of the correlation. We obtain:

sign ∂RCi
∂ ρ

= sign 1
2 (1− ρ)3/2

(
Φ−1 (pi) + Φ−1 (α)

√
ρ

)
We deduce that the risk contribution is not a monotone function with respect to ρ. It
increases if the term √ρΦ−1 (pi)+Φ−1 (α) is positive. This implies that the risk contribution
may decrease if the probability of default is very low and the confidence level is larger than
50%. The two limiting cases are ρ = 0 and ρ = 1. In the first case, the risk contribution is
equal to the expected loss:

RCi = E [Li] = wi · E [LGDi] · pi

In the second case, the risk contribution depends on the value of the probability of default:

lim
ρ→1
RCi =

 0 if pi < 1− α
0.5 · wi · E [LGDi] if pi = 1− α
wi · E [LGDi] if pi > 1− α

The behavior of the risk contribution is illustrated in Figure 3.22 with the following base
parameter values: wi = 100, E [LGDi] = 70%, ρ = 20% and α = 90%. We verify that the
risk contribution is an increasing function of E [LGDi] (top/left panel) and α (top/right
panel). When pi and α are set to 10% and 90%, the risk contribution increases with ρ and
reaches the value 35, which corresponds to half of the nominal loss given default. When
pi and α are set to 5% and 90%, the risk contribution increases in a first time and then
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decreases (bottom/left panel). The maximum is reached for the value61 ρ? = 60.70%. When
α is equal to 99%, this behavior vanishes (bottom/right panel).

FIGURE 3.22: Relationship between the risk contribution RCi and model parameters

In this model, the maturity Ti is taken into account through the probability of default.
Indeed, we have pi = Pr {τi ≤ Ti}. Let us denote PDi the annual default probability of the
obligor. If we assume that the default time is Markovian, we have the following relationship:

pi = 1− Pr {τi > Ti}
= 1− (1− PDi)Ti

We can then rewrite Equation (3.26) such that the risk contribution depends on the exposure
at default, the expected loss given default, the annualized probability of default and the
maturity, which are the 4 parameters of the IRB approach.

3.2.3.3 The IRB formulas

A long process to obtain the finalized formulas The IRB formula of the second
consultative portfolio was calibrated with α = 99.5%, ρ = 20% and a standard maturity
of three years. To measure the impact of this approach, the Basel Committee conducted a
quantitative impact study (QIS) in April 2001. A QIS is an Excel workbook to be filled by the
bank. It allows the Basel Committee to gauge the impact of the different proposals for capital
requirements. The answers are then gathered and analyzed at the industry level. Results
were published in November 2001. Overall, 138 banks from 25 countries participated in the
QIS. Not all participating banks managed to calculate the capital requirements under the

61We have:

ρ? = max2
(

0,−
Φ−1 (α)
Φ−1 (pi)

)
=
(1.282

1.645

)2
= 60.70%
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three methods (SA, FIRB and AIRB). However, 127 banks provided complete information
on the SA approach and 55 banks on the FIRB approach. Only 22 banks were able to
calculate the AIRB approach for all portfolios.

TABLE 3.25: Percentage change in capital requirements under CP2 proposals
SA FIRB AIRB

G10 Group 1 6% 14% −5%
Group 2 1%

EU Group 1 6% 10% −1%
Group 2 −1%

Others 5%

Source: BCBS (2001b).

In Table 3.25, we report the difference in capital requirements between CP2 proposals
and Basel I. Group 1 corresponds to diversified, internationally active banks with tier 1
capital of at least e 3 bn whereas Group 2 consists of smaller or more specialized banks.
BCBS (2001b) concluded that “on average, the QIS2 results indicate that the CP2 proposals
for credit risk would deliver an increase in capital requirements for all groups under both
the SA and FIRB approaches”. It was obvious that these figures were not satisfactory. The
Basel Committee considered then several modifications in order to (1) maintain equivalence
on average between current required capital and the revised SA approach and (2) provide
incentives under the FIRB approach. A third motivation has emerged rapidly. According
to many studies62, Basel II may considerably increase the procyclicality of capital require-
ments. Indeed, capital requirements may increase in an economic meltdown, because LGD
increases in bad times and credits receive lower ratings. In this case, capital requirements
may move in an opposite direction than the macroeconomic cycle, leading banks to reduce
their supply of credit during a crisis. In this scenario, Basel II proposals may amplify credit
crises and economic downturns. All these reasons explain the long period to finalize the
Basel II Accord. After two new QIS (QIS 2.5 in July 2002 and QIS 3 in May 2003) and
a troubled period at the end of 2003, the new Capital Accord is finally published in June
2004. However, there was a shared feeling that it was more a compromise than a terminated
task. Thus, several issues remained unresolved and two new QIS will be conducted in 2004
and 2005 before the implementation in order to confirm the calibration.

The supervisory formula If we use the notations of the Basel Committee, the risk
contribution has the following expression:

RC = EAD ·LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+√ρΦ−1 (α)
√

1− ρ


where EAD is the exposure at default, LGD is the (expected) loss given default, PD is the
(one-year) probability of default and M is the effective maturity. Because RC is directly the
capital requirement (RC = 8%× RWA), we deduce that the risk-weighted asset amount is
equal to:

RWA = 12.50 · EAD ·K? (3.27)

62See for instance Goodhart et al. (2004) or Kashyap and Stein (2004).
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where K? is the normalized required capital for a unit exposure:

K? = LGD ·Φ

Φ−1
(

1− (1− PD)M
)

+√ρΦ−1 (α)
√

1− ρ

 (3.28)

In order to obtain the finalized formulas, the Basel Committee has introduced the following
modifications:

• a maturity adjustment ϕ (M) has been added in order to separate the impact of the
one-year probability of default and the effect of the maturity; the function ϕ (M) has
then been calibrated such that Expression (3.28) becomes:

K? ≈ LGD ·Φ
(Φ−1 (PD) +√ρΦ−1 (α)

√
1− ρ

)
· ϕ (M) (3.29)

• it has used a confidence level of 99.9% instead of the 99.5% value;

• it has defined a parametric function ρ (PD) for the default correlation in order that
low ratings are not too penalizing for capital requirements;

• it has considered the unexpected loss as the credit risk measure:

ULα = VaRα−E [L]

In summary, the risk-weighted asset amount in the IRB approach is calculated using Equa-
tion (3.27) and the following normalized required capital:

K? =
(

LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
· ϕ (M) (3.30)

Risk-weighted assets for corporate, sovereign, and bank exposures The three
asset classes use the same formula:

K? =
(

LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD

)
·(

1 + (M− 2.5) · b (PD)
1− 1.5 · b (PD)

)
(3.31)

with b (PD) = (0.11852− 0.05478 · ln (PD))2 and:

ρ (PD) = 12%×
(

1− e−50×PD

1− e−50

)
+ 24%×

(
1− 1− e−50×PD

1− e−50

)
(3.32)

We note that the maturity adjustment ϕ (M) vanishes when the effective maturity is one
year. For a defaulted exposure, we have:

K? = max (0,LGD−EL)

where EL is the bank’s best estimate of the expected loss63.

63We can assimilate it to specific provisions.
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For small and medium-sized enterprises64, a firm-size adjustment is introduced by defin-
ing a new parametric function for the default correlation:

ρSME (PD) = ρ (PD)− 0.04 ·
(

1− (max (S, 5)− 5)
45

)
where S is the reported sales expressed in e mn. This adjustment has the effect to reduce
the default correlation and then the risk-weighted assets. Similarly, the Basel Committee
proposes specific arrangements for specialized lending and high-volatility commercial real
estate (HVCRE).

In the foundation IRB approach, the bank estimates the probability of default, but uses
standard values for the other parameters. In the advanced IRB approach, the bank always
estimates the parameters PD and M, and may use its own estimates for the parameters
EAD and LGD subject to certain minimum requirements. The risk components are defined
as follows:

1. The exposure at default is the amount of the claim, without taking into account
specific provisions or partial write-offs. For off-balance sheet positions, the bank uses
similar credit conversion factors for the FIRB approach as for the SA approach. In
the AIRB approach, the bank may use its own internal measures of CCF.

2. In the FIRB approach, the loss given default is set to 45% for senior claims and
75% for subordinated claims. In the AIRB approach, the bank may use its own es-
timates of LGD. However, they must be conservative and take into account adverse
economic conditions. Moreover, they must include all recovery costs (litigation cost,
administrative cost, etc.).

3. PD is the one-year probability of default calculated with the internal rating system.
For corporate and bank exposures, a floor of 3 bps is applied.

4. The maturity is set to 2.5 years in the FIRB approach. In the advanced approach, M
is the weighted average time of the cash flows, with a one-year floor and a five-year
cap.

Example 30 We consider a senior debt of $3 mn on a corporate firm. The residual maturity
of the debt is equal to 2 years. We estimate the one-year probability of default at 5%.

To determine the capital charge, we first calculate the default correlation:

ρ (PD) = 12%×
(

1− e−50×0.05

1− e−50

)
+ 24%×

(
1− 1− e−50×0.05

1− e−50

)
= 12.985%

We have:

b (PD) = (0.11852− 0.05478× ln (0.05))2

= 0.0799

It follows that the maturity adjustment is equal to:

ϕ (M) = 1 + (2− 2.5)× 0.0799
1− 1.5× 0.0799

= 1.0908
64They are defined as corporate entities where the reported sales for the consolidated group of which the

firm is a part is less than e 50 mn.
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The normalized capital charge with a one-year maturity is:

K? = 45%× Φ
(

Φ−1 (5%) +
√

12.985%Φ−1 (99.9%)√
1− 12.985%

)
− 45%× 5%

= 0.1055

When the maturity is two years, we obtain:

K? = 0.1055× 1.0908
= 0.1151

We deduce the value taken by the risk weight:

RW = 12.5× 0.1151
= 143.87%

It follows that the risk-weighted asset amount is equal to $4.316 mn whereas the capital
charge is $345 287. Using the same process, we have calculated the risk weight for different
values of PD, LGD and M in Table 3.26. The last two columns are for a SME claim by
considering that sales are equal to e 5 mn.

TABLE 3.26: IRB risk weights (in %) for corporate exposures

Maturity M = 1 M = 2.5 M = 2.5 (SME)
LGD 45% 75% 45% 75% 45% 75%

PD (in %)

0.10 18.7 31.1 29.7 49.4 23.3 38.8
0.50 52.2 86.9 69.6 116.0 54.9 91.5
1.00 73.3 122.1 92.3 153.9 72.4 120.7
2.00 95.8 159.6 114.9 191.4 88.5 147.6
5.00 131.9 219.8 149.9 249.8 112.3 187.1

10.00 175.8 292.9 193.1 321.8 146.5 244.2
20.00 223.0 371.6 238.2 397.1 188.4 314.0

Risk-weighted assets for retail exposures Claims can be included in the regulatory
retail portfolio if they meet certain criteria: in particular, the exposure must be to an
individual person or to a small business; it satisfies the granularity criterion, meaning that
no aggregate exposure to one counterpart can exceed 0.2% of the overall regulatory retail
portfolio; the aggregated exposure to one counterparty cannot exceed e 1 mn. In these cases,
the bank uses the following IRB formula:

K? = LGD ·Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (99.9%)√

1− ρ (PD)

)
− LGD ·PD (3.33)

We note that this IRB formula correspond to a one-year fixed maturity. The value of the
default correlation depends on the categories. For residential mortgage exposures, we have
ρ (PD) = 15% whereas the default correlation ρ (PD) is equal to 4% for qualifying revolving
retail exposures. For other retail exposures, it is defined as follows:

ρ (PD) = 3%×
(

1− e−35×PD

1− e−35

)
+ 16%×

(
1− 1− e−35×PD

1− e−35

)
(3.34)

In Table 3.27, we report the corresponding risk weights for the three categories and for two
different values of LGD.
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TABLE 3.27: IRB risk weights (in %) for retail exposures

Mortgage Revolving Other retail
LGD 45% 25% 45% 85% 45% 85%

PD (in %)

0.10 10.7 5.9 2.7 5.1 11.2 21.1
0.50 35.1 19.5 10.0 19.0 32.4 61.1
1.00 56.4 31.3 17.2 32.5 45.8 86.5
2.00 87.9 48.9 28.9 54.6 58.0 109.5
5.00 148.2 82.3 54.7 103.4 66.4 125.5

10.00 204.4 113.6 83.9 158.5 75.5 142.7
20.00 253.1 140.6 118.0 222.9 100.3 189.4

The other two pillars The first pillar of Basel II, which concerns minimum capital re-
quirements, is completed by two new pillars. The second pillar is the supervisory review
process (SRP) and is composed of two main processes: the supervisory review and evaluation
process (SREP) and the internal capital adequacy assessment process (ICAAP). The SREP
defines the regulatory response to the first pillar, in particular the validation processes of
internal models. Nevertheless, the SREP is not limited to capital requirements. More gen-
erally, the SREP evaluates the global strategy and resilience of the bank. ICAAP addresses
risks that are not captured in Pillar 1 like concentration risk or non-granular portfolios
in the case of credit risk65. For instance, stress tests are part of Pillar 2. The goal of the
second pillar is then to encourage banks to continuously improve their internal models and
processes for assessing the adequacy of their capital and to ensure that supervisors have
the adequate tools to control them. The third pillar, which is also called market discipline,
requires banks to publish comprehensive information about their risk management process.
This is particularly true since the publication in January 2015 of the revised Pillar 3 dis-
closure requirements. Indeed, BCBS (2015a) imposes the use of templates for quantitative
disclosure with a fixed format in order to facilitate the comparison between banks.

3.2.4 The Basel III revision
For credit risk capital requirements, Basel III is close to the Basel II framework with some

adjustments, which mainly concern the parameters66. Indeed, the SA and IRB methods
continue to be the two approaches for computing the capital charge for credit risk.

3.2.4.1 The standardized approach

Risk-weighted exposures External credit ratings continue to be the backbone of the
standardized approach in Basel III. Nevertheless, they are not the only tool for measuring
the absolute riskiness of debtors and loans. First, the Basel Committee recognizes that
external credit ratings are prohibited in some jurisdictions for computing regulatory capital.
For example, this is the case of the United States, which had abandoned in 2010 the use of
commercial credit ratings after the Dodd-Frank reform. Second, the Basel Committee links
risk weights to the loan-to-value ratio (LTV) for some categories.

When external ratings are allowed67, the Basel Committee defines a new table of risk
weights, which is close to the Basel II table. In Table 3.28, we indicate the main cate-
gories and the risk weights associated to credit ratings. We notice that the risk weights for

65Since Basel III, ICAAP is completed by the internal liquidity adequacy assessment process (ILAAP).
66The Basel III framework for credit risk is described in BCBS (2017c).
67This method is called the external credit risk assessment approach (ECRA).
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TABLE 3.28: Risk weights of the SA approach (ECRA, Basel III)

Rating
AAA A+ BBB+ BB+ CCC+
to to to to to NR

AA− A− BBB− B− C
Sovereigns 0% 20% 50% 100% 150% 100%

PSE 1 20% 50% 100% 100% 150% 100%
2 20% 50% 50% 100% 150% 50%

MDB 20% 30% 50% 100% 150% 50%

Banks
2 20% 30% 50% 100% 150% SCRA

2 ST 20% 20% 20% 50% 150% SCRA
Covered 10% 20% 20% 50% 100% (∗)

Corporates 20% 50% 75% 100% 150% 100%
Retail 75%

(∗) For unrated covered bonds, the risk weight is generally half of the risk weight of the issuing
bank.

sovereign exposures and non-central government public sector entities (PSE) are unchanged.
The risk weights for multilateral development banks (MDB) continue to be related to the
risk weights for banks. However, we notice that the first option is removed and we observe
some differences for exposures to banks. First, the risk weight for the category A+/A−
is reduced from 50% to 30%. Second, for unrated exposures, the standard figure of 50%
is replaced by the standardized credit risk approach (SCRA). Third, the Basel Commit-
tee considers the special category of covered bonds, whose development has emerged after
the 2008 Global Financial Crisis and the introduction of capital requirements for systemic
risks68. For exposures to corporates, the Basel Committee uses the same scale than for
other categories contrary to Basel II (see Table 3.16 on page 163). Finally, the risk weight
for retail exposures remains unchanged.

The standardized credit risk approach (SCRA) must be used for all exposures to banks
in two situations: (1) when the exposure is unrated; (2) when external credit ratings are
prohibited. In this case, the bank must conduct a due diligence analysis in order to classify
the exposures into three grades: A, B, and C. Grade A refers to the most solid banks, whose
capital exceeds the minimum regulatory capital requirements, whereas Grade C refers to
the most vulnerable banks. The risk weight is respectively equal to 40%, 75% and 150%
(20%, 50% and 150% for short-term exposures).

When external credit ratings are prohibited, the risk weight of exposures to corporates is
equal to 100% with two exceptions. A 65% risk weight is assigned to corporates, which can
be considered investment grade (IG). For exposures to small and medium-sized enterprises,
a 75% risk weight can be applied if the exposure can be classified in the retail category and
85% for the others.

The case of retail is particular because we have to distinguish real estate exposures
and other retail exposures. By default, the risk weight is equal to 75% for this last cat-
egory, which includes revolving credits, credit cards, consumer credit loans, auto loans,
student loans, etc. For real estate exposures, the risk weights depend on the loan-to-value
ratio (LTV). Suppose that someone borrows $100 000 to purchase a house of $150 000, the
LTV ratio is 100 000/150 000 or 66.67%. This ratio is extensively used in English-speaking

68See Chapter 8 on page 453.
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countries (e.g. the United States) to measure the risk of the loan. The idea is that the
lender’s haircut ($100 000 in our example) represents the lender risk. If the borrower de-
faults, the lender recovers the property, that will be sold. The risk is then to sell the property
below the lender’s haircut. The higher the LTV ratio, the riskier the loan is for the lender.
In continental Europe, the risk of home property loans is measured by the ability of the
borrower to repay the capital and service his debt. In this case, the risk of the loan is
generally related to the income of the borrower. It is obvious that these two methods for
assessing the credit risk are completely different and this explains the stress in Europe to
adopt the LTV approach. In Table 3.29, we have reported the value of risk weights with
respect to the LTV (expressed in %) in the case of residential real estate exposures. The
Basel Committee considers two categories depending if the repayment depends on the cash
flows generated by property (D) or not (ND). The risk weight ranges from 20% to 105% in
Basel III, whereas it was equal to 35% in Basel II.

TABLE 3.29: Risk weights of the SA approach (ECRA, Basel III)

Residential real estate Commercial real estate
Cash flows ND D Cash flows ND D
LTV ≤ 50 20% 30% LTV ≤ 60 min (60%, 70%50 < LTV ≤ 60 25% 35% RWC)

60 < LTV ≤ 80 30% 45% 60 < LTV ≤ 80 RWC 90%
80 < LTV ≤ 90 40% 60%
90 < LTV ≤ 100 50% 75% LTV > 80 RWC 110%

LTV > 100 70% 105%

The LTV ratio is also used to determine the risk weight of commercial real estate,
land acquisition, development and construction exposures. Table 3.29 gives the risk weight
for commercial real estate exposures. If the repayment does not depend on the cash flows
generated by property (ND), we use the risk weight of the counterparty with a cap of
60%. If the repayment depends on the cash flows generated by the property (D), the risk
weight ranges from 70% to 110%, whereas it was equal to 100% in Basel II. Commercial real
estate exposures that do not meet specific qualitative requirements will be risk-weighted at
150%, which is also the default figure for land acquisition, development and construction
exposures.

For off-balance sheet items, credit conversion factors (CCF) have been revised. They
can take the values 10%, 20%, 40%, 50% and 100%. This is a more granular scale without
the possibility to set the CCF to 0%. Generally speaking, the CCF values in Basel III are
more conservative than in Basel II.

Credit risk mitigation The regulatory framework for credit risk mitigation techniques
changes very little from Basel II to Basel III: the two methods remain the simple and
comprehensive approaches; the treatment of maturity mismatches is the same; the formulas
for computing the risk weighted assets are identical, etc. Minor differences concern the
description of eligible financial collateral and the haircut parameters, which are given in
Table 3.30. For instance, we see that the Basel Committee makes the distinction of issuers
for debt securities between sovereigns, other issuers and securitization exposures. While the
haircuts do not change for sovereign debt securities with respect to Basel II, the scale is
more granular for the two other categories. Haircuts are also increased by 5% for gold and
equity collateral instruments.

The major difference concerns the treatment of securities financing transactions (SFT)
such as repo-style transactions, since the Basel Committee has developed a specific approach
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TABLE 3.30: Standardized supervisory haircuts for collateralized transactions (Basel III)

Rating Residual Sovereigns Others Securitization
Maturity exposures
0−1Y 0.5% 1% 2%
1−3Y 2% 3% 8%

AAA to AA− 3−5Y 2% 4% 8%
5Y−10Y 4% 6% 16%
10Y+ 4% 12% 16%
0−1Y 1% 2% 4%
1−3Y 3% 4% 12%

A+ to BBB− 3−5Y 3% 6% 12%
5Y−10Y 6% 12% 24%
10Y+ 6% 20% 24%

BB+ to BB− 15%
Cash 0%
Gold 20%
Main index equities 20%
Equities listed on a recognized exchange 30%
FX risk 8%

for calculating the modified exposure EAD? of these instruments in the comprehensive
approach (BCBS, 2017c, pages 43-47).

3.2.4.2 The internal ratings-based approach

The methodology of the IRB approach does not change with respect to Basel II, since
the formulas are the same69. The only exception is the correlation parameter for bank
exposures70, which becomes:

ρ (PD) = 1.25×
(

12%×
(

1− e−50×PD

1− e−50

)
+ 24%×

1−
(
1− e−50×PD)
1− e−50

)

= 15%×
(

1− e−50×PD

1− e−50

)
+ 30%×

(
1−

(
1− e−50×PD)
1− e−50

)
(3.35)

Therefore, the correlation range for the bank category increases from 12%− 24% to 15%−
30%. In fact, the main differences concern the computation of the LGD parameter, and
the validation of the IRB approach, which is much more restrictive. For instance, the IRB
approaches are not permitted for exposures to equities, and we cannot develop an AIRB
approach for exposures to banks and exposures to corporates with annual revenues greater
than e500 mn. For banks and large corporates, only the FIRB approach is available.

The Basel Committee still considers five asset classes: corporates, sovereigns, banks,
retail and equities. In the FIRB approach, the bank estimates the PD parameter, while

69This concerns Equation (3.27) for risk-weighted assets, Equations (3.31) and (3.32) for corporate,
sovereign, and bank exposures, Equations (3.33) and (3.34) for retail exposures, the maturity adjustment
b (PD), the correlation formula ρSME (PD) for SME exposures, the correlation parameters for retail expo-
sures, etc.

70The multiplier of 1.25 is applied for regulated financial institutions with a total asset larger than $100
bn and all unregulated financial institutions.
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it uses the regulatory estimates of EAD, LGD and M71. In the AIRB approach, the bank
estimates all the parameters, but they are subject to some input floors. For example, the
minimum PD is set to 5 bps for corporate and bank exposures.

Certainly, LGD is the most challenging parameter in Basel III. In the FIRB approach,
the default values are 75% for subordinated claims, 45% for senior claims on financial
institutions and 40% for senior claims on corporates. When considering a collateral, the
LGD parameter becomes:

LGD? = ω · LGD + (1− ω) · LGDC

where LGD and LGDC apply to the unsecured exposure and the collateralized part, and ω
is the relative weight between LGD and LGDC :

ω = 1− (1−HC) · C
(1 +HE) · EAD

Here, HE is the SA haircut for the exposure, C is the value of the collateral, and HC is
the specific haircut for the collateral. LGDC is equal to 0% for financial collateral, 20%
for receivables and real estate and 25% for other physical collateral, whereas HC can be
from 0% to 100%. In the AIRB approach, the LGD parameter may be estimated by the
bank, under the constraint that it is greater than the input floor LGDFloor. For unsecured
exposures, we have LGD ≥ LGDFloor where LGDFloor = 25%. For secured exposures, we
have LGD? ≥ LGDFloor

? where:

LGDFloor
? = ω · LGDFloor + (1− ω) · LGDFloor

C

LGDFloor = 25% and LGDFloor
C depends on the collateral type: 0% for financial collateral,

10% for receivables and real estate and 15% for other physical collateral.

Remark 32 Since the capital requirement is based on the unexpected loss, the Basel Com-
mittee imposes that the expected loss is deduced from regulatory capital.

3.2.5 The securitization framework
Capital calculations for securitization require developing a more complex approach than

the IRB approach, because the bank is not directly exposed to the loss of the credit portfolio,
but to the conditional loss of the credit portfolio. This is particularly true if we consider
a CDO tranche since we cannot measure the risk of equity, mezzanine and senior tranches
in the same way. In what follows, we do not study the Basel II framework, which was very
complex, but presented many weaknesses during the 2008 Global Financial Crisis. We prefer
to focus on the Basel III framework (BCBS, 2016e), which is implemented since January
2018.

3.2.5.1 Overview of the approaches

The securitization framework consists of three approaches:

1. Securitization internal ratings-based approach (SEC-IRBA)

2. Securitization external ratings-based approach (SEC-ERBA)

3. Securitization standardized approach (SEC-SA)

71We recall that M is set to 2.5 years for all exposures, except for repo-style and retail exposures where
the maturity is set to 6 and 12 months.
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Contrary to credit risk, the hierarchy is reversed. The SEC-IRBA must be first used and is
based on the capital charge KIRB of the underlying exposures. If the bank cannot calculate
KIRB for a given securitization exposure, because it has not access to the collateral pool of
the debt72, it has to use the SEC-ERBA. If the tranche is unrated or if external ratings are
not allowed, the bank must finally use the SEC-SA. When it is not possible to use one of
the three approaches, the risk weight of the securitization exposure is set to 1 250%.

This framework has been developed for three types of exposures: STC securitization,
non-STC securitization and resecuritization. STC stands for simple, transparent and com-
parable securitizations. In July 2015, the BCBS and the Board of IOSCO have published a
set of 14 criteria for identifying STC exposures. These criteria are related to the collateral
pool (asset risk), the transparency (structural risk) and the governance (fiduciary and ser-
vicer risk) of the SPV. Examples of criteria are the nature of the assets, the payment status,
alignment of interests, transparency to investors, etc. Resecuritization implies that some un-
derlying assets are themselves securitization exposures. For example, a CDO-squared is a
resecuritization, because the asset pool is a basket of CDO tranches.

3.2.5.2 Internal ratings-based approach (SEC-IRBA)

In order to implement SEC-IRBA, the bank must conduct a strict due diligence of the
pay-through securitization exposure in order to have a comprehensive information of the
underlying exposures. For each asset that composes the collateral pool, it calculates the
capital charge. Then, the bank determines KIRB as the ratio between the sum of individual
capital charges and the exposure amount of the collateral pool. If the bank has not all the
information, it can use the following formula:

KIRB = ω ·K?
IRB + (1− ω) ·KSA

where K?
IRB is the IRB capital requirement for the IRB pool73, KSA is the SA capital

requirement for the underlying exposures and ω is the percentage of the IRB pool. However,
this formula is only valid if ω ≥ 95%. Otherwise, the bank must use the SEC-SA.

We consider a tranche, where A is the attachment point and D is the detachment point.
If KIRB ≥ D, the Basel Committee considers that the risk is very high and RW is set to
1 250%. Otherwise, we have:

RW = 12.5 ·
(

max (KIRB, A)−A
D −A

)
+

12.5 ·
(
D −max (KIRB, A)

D −A

)
·KSSFA (KIRB) (3.36)

where KSSFA (KIRB) is the capital charge for one unit of securitization exposure74. There-
fore, we obtain two cases. If A < KIRB < D, we replace max (KIRB, A) by KIRB in the
previous formula. It follows that the capital charge between the attachment point A and
KIRB is risk-weighted by 1 250% and the remaining part between KIRB and the detachment
point D is risk-weighted by 12.5 · KSSFA (KIRB). This is equivalent to consider that the
sub-tranche KIRB − A has already defaulted, while the credit risk is on the sub-tranche
D −KIRB. In the second case KIRB < A < D, the first term of the formula vanishes, and
we retrieve the RWA formula (3.27) on page 177.

72The structure of pay-through securitization is shown in Figure 3.12 on page 139.
73It corresponds to the part of the collateral pool, for which the bank has the information on the individual

underlying exposures.
74It corresponds to the variable K? in the IRB formula on page 177.
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The capital charge for one unit of securitization exposure is equal to75:

KSSFA (KIRB) = exp (cu)− exp (cl)
c (u− l)

where c = − (pKIRB)−1, u = D −KIRB, l = (A−KIRB)+ and:

p = max
(

0.3;mSTC

(
α+ β

N
+ γ ·KIRB + δ · LGD +ε ·M[A;D]

))
The parameter p is called the supervisory parameter and is a function of the effective num-
ber76 of loans N , the average LGD and the effective maturity77 M[A;D] of the tranche. The
coefficient mSTC is equal to 1 for non-STC securitizations and 0.5 for STC securitizations,
while the other parameters α, β, γ, δ and ε are given in Table 3.31. We notice that the
values depend on the underlying portfolio (wholesale or retail), the granularity (N < 25 or
N ≥ 25) and the seniority.

TABLE 3.31: Value of the parameters α, β, γ, δ and ε (SEC-IRBA)

Category Senior Granularity α β γ δ ε

Wholesale

X N ≥ 25 0.00 3.56 −1.85 0.55 0.07
X N < 25 0.11 2.61 −2.91 0.68 0.07

N ≥ 25 0.16 2.87 −1.03 0.21 0.07
N < 25 0.22 2.35 −2.46 0.48 0.07

Retail X 0.00 0.00 −7.48 0.71 0.24
0.00 0.00 −5.78 0.55 0.27

Remark 33 The derivation of these formulas is based on the model of Gordy and Jones
(2003).

Example 31 We consider a non-STC CDO based on wholesale assets with three tranches:
equity (0%−5%), mezzanine (5%−30%) and senior (30%−100%). The remaining maturity
is equal to 10 years. The analysis of the underlying portfolio shows that the effective number
of loans N is equal to 30 and the average LGD is equal to 30%. We also assume that
K?

IRB = 18%, KSA = 20% and ω = 95%.

We have KIRB = 0.95 × 18% + 0.05 × 20% = 18.1%. Since KIRB > Dequity, we deduce
that RWequity = 1 250%. For the mezzanine tranche, we have 1 + 0.8× (M − 1) = 8.2 years,
meaning that the 5-year cap is applied. Using Table 3.31 (fourth row), we deduce that
α = 0.16, β = 2.87, γ = −1.03, δ = 0.21 and ε = 0.07. It follows that:

p = max
(

0.30; 0.16 + 2.87
30 − 1.03× 18.1% + 0.21× 30% + 0.07× 5

)
= 48.22%

75SSFA means simplified supervisory formula approach.
76The effective number is equal to the inverse of the Herfindahl index H where H =

∑n

i=1 w
2
i and wi is

the weight of the ith asset. In our case, we have wi = EADi /
∑n

j=1 EADj , implying that:

N =

(∑n

i=1 EADi
)2∑n

i=1 EAD2
i

77Like for the IRB approach,M[A;D] is the effective maturity with a one-year floor and five-year cap. The
effective maturity can be calculated as the weighted-average maturity of the cash-flows of the tranche or
1 + 0.8 · (M − 1) where M is the legal maturity of the tranche.
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Since we have c = −11.46, u = 11.90% and l = 0%, we obtain KSSFA (KIRB) = 54.59%.
Finally, Equation (3.36) gives RWmezzanine = 979.79%. If we perform the same analysis for
the senior tranche78, we obtain RWsenior = 10.84%.

3.2.5.3 External ratings-based approach (SEC-ERBA)

Under the ERBA, we have:
RWA = EAD ·RW

where EAD is the securitization exposure amount and RW is the risk weight that depends
on the external rating79 and four other parameters: the STC criterion, the seniority of the
tranche, the maturity and the thickness of the tranche. In the case of short-term ratings,
the risk weights are given below:

Rating A-1/P-1 A-2/P-2 A-3/P-3 Other
STC 10% 30% 60% 1 250%

non-STC 15% 50% 100% 1 250%

For long term ratings, the risk weight goes from 15% for AAA-grade to 1 250% (Table 2,
BCBS 2016e, page 27). An example of risk weights for non-STC securitizations is given
below:

Rating Senior Non-senior
1Y 5Y 1Y 5Y

AAA 15% 20% 15% 70%
AA 25% 40% 30% 120%
A 50% 65% 80% 180%

BBB 90% 105% 220% 310%
BB 160% 180% 620% 760%
B 310% 340% 1 050% 1 050%

CCC 460% 505% 1 250% 1 250%
Below CCC- 1 250% 1 250% 1 250% 1 250%

These risk weights are then adjusted for taking into account the effective maturity M[A;D]
and the thickness D − A of the tranche. The maturity adjustment corresponds to a linear
interpolation between one and five years. The thickness adjustment must be done for non-
senior tranches by multiplying the risk weight by the factor 1−min (D −A; 0.5).

Example 32 We consider Example 31 and we assume that the mezzanine and senior
tranches are rated BB and AAA.

Using the table above, we deduce that the non-adjusted risk weights are equal to
1 250% for the equity tranche, 760% for the mezzanine tranche and 20% for the se-
nior tranche. There is no maturity adjustment because M[A;D] is equal to five years. Fi-
nally, we obtain RWequity = 1 250% × (1−min (5%, 50%)) = 1187.5%, RWmezzanine =
760%× (1−min (25%, 50%)) = 570% and RWsenior = 20%.

3.2.5.4 Standardized approach (SEC-SA)

The SA is very close to the IRBA since it uses Equation (3.36) by replacing KIRB
by KA and the supervisory parameter p by the default values 0.5 and 1 for STC and non-
STC securitizations. To calculate KA, we first determine KSA which is the ratio between the

78In this case, the parameters are α = 0, β = 3.56, γ = −1.85, δ = 0.55 and ε = 0.07 (second row
in Table 3.31). We have p = max (30%; 29.88%) = 30%, c = −18.42, u = 81.90%, l = 11.90%, and
KSSFA (KIRB) = 0.87%.

79By definition, this approach is only available for tranches that are rated.
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weighted average capital charge of the underlying portfolio computed with the SA approach
and the exposure amount of the underlying portfolio. Then, we have:

KA = (1−$) ·KSA +$ · 50%

where $ is the percentage of underlying exposures that are 90 days or more past due.

Remark 34 The SEC-SA is the only approach allowed for calculating the capital require-
ment of resecuritization exposures. In this case, $ is set to zero and the supervisory param-
eter p is equal to 1.5.

If we consider Example 31 on page 187 and assume that $ = 0, we obtain RWequity =
1 250%, RWmezzanine = 1 143% and RWsenior = 210.08%.

FIGURE 3.23: Risk weight of securitization exposures

Example 33 We consider a CDO tranche, whose attachment and detachment points are
A and D. We assume that KIRB = KA = 20%, N = 30, LGD = 50% and $ = 0.

In Figure 3.23, we have represented the evolution of the risk weight RW of the tranche
[A,D] for different values of A and D. For the first third panels, the thickness of the tranche
is equal to 5%, while the detachment point is set to 100% for the fourth panel. In each panel,
we consider two cases: non-STC and STC. If we compare the first and second panels, we
notice the impact of the asset category (wholesale vs retail) on the risk weight. The third
panel shows that the SA approach penalizes more non-STC securitization exposures. Since
the detachment point is equal to 100%, the fourth panel corresponds to a senior tranche for
high values of the attachment point A and a non-senior tranche when the attachment point
A is low. In this example, we assume that the tranche becomes non-senior when A < 30%.
We observe a small cliff effect for non-STC securitization exposures.
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3.3 Credit risk modeling
We now address the problem of parameter specification. This mainly concerns the ex-

posure at default, the loss given default and the probability of default because the effective
maturity is well defined. This section also analyzes default correlations and non granular
portfolios when the bank develops its own credit model for calculating economic capital and
satisfying Pillar 2 requirements.

3.3.1 Exposure at default
According to BCBS (2017c), the exposure at default “for an on-balance sheet or off-

balance sheet item is defined as the expected gross exposure of the facility upon default of
the obligor”. Generally, the computation of EAD for on-balance sheet assets is not an issue.
For example, EAD corresponds to the gross notional in the case of a loan or a credit. In
fact, the big issue concerns off-balance sheet items, such as revolving lines of credit, credit
cards or home equity lines of credit (HELOC). At the default time τ , we have (Taplin et
al., 2007):

EAD (τ | t) = B (t) + CCF · (L (t)−B (t)) (3.37)

where B (t) is the outstanding balance (or current drawn) at time t, L (t) is the current un-
drawn limit of the credit facility80 and CCF is the credit conversion factor. This means that
the exposure at default for off-balance sheet items has two components: the current drawn,
which is a non-random component and the future drawn, which is a random component.

From Equation (3.37), we deduce that:

CCF = EAD (τ | t)−B (t)
L (t)−B (t) (3.38)

At first sight, it looks easy to estimate the credit conversion factor. Let us consider the
off-balance sheet item i that has defaulted. We have:

CCFi (τi − t) = Bi (τi)−Bi (t)
Li (t)−Bi (t)

At time τi, we observe the default of Asset i and the corresponding exposure at default,
which is equal to the outstanding balance Bi (τi). Then, we have to choose a date t < τi
to observe Bi (t) and Li (t) in order to calculate the CCF. We notice that it is sensitive to
the time period τi − t, but banks generally use a one-year time period. Therefore, we can
calculate the mean or the quantile α of a sample {CCF1, . . . ,CCFn} for a given homogenous
category of off-balance sheet items. Like the supervisory CCF values, the estimated CCF is
a figure between 0% and 100%.

In practice, it is difficult to estimate CCF values for five reasons:

1. As explained by Qi (2009), there is a ‘race to default’ between borrowers and lenders.
Indeed, “as borrowers approach default, their financial conditions deteriorate and they
may use the current undrawn as a source of funding, whereas lenders may cut back
credit lines to reduce potential losses” (Qi, 2009, page 4).

2. Li (t) depends on the current time t, meaning that it could evolve over time.

80The current undrawn L (t) − B (t) is the amount that the debtor is able to draw upon in addition to
the current drawn B (t).
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3. The computation of the CCF is sensitive to the denominator Li (t)−Bi (t), which can
be small. When Li (t) ≈ Bi (t), the CCF ratio is unstable.

4. We have made the assumption that CCFi (τi − t) ∈ [0, 1], implying that Bi (τi) ≥
Bi (t) and Bi (τi) ≤ Li (t). This is not always true. We can imagine that the outstand-
ing balance decreases between the current time and the default time (CCFi (τi − t) <
0) or the outstanding balance at the default time is greater than the limit Li (t). Ja-
cobs, Jr. (2010) reports extreme variation larger than ±3 000% when computing raw
CCF values!

5. The credit conversion factor is generally an increasing function of the default proba-
bility of the borrower.

Because of the previous issues, the observed CCF is floored at 0% and capped at 100%.
Tong et al. (2016) report the distribution of the credit conversion factor of credit cards from
a UK bank81, and notice that the observations are mainly concentred on the two extreme
points 0% and 100% after truncation. Another measure for modeling the exposure at default
is to consider the facility utilization change factor (Yang and Tkachenko, 2012):

UCF = Bi (τi)−Bi (t)
Li (t)

It corresponds to the credit conversion factor, where the current undrawn amount Li (t)−
Bi (t) is replaced by the current authorized limit Li (t). It has the advantage to be more
stable, in particular around the singularity Li (t) = Bi (t).

The econometrics of CCF is fairly basic. As said previously, it consists in estimating the
mean or the quantile α of a sample {CCF1, . . . ,CCFn}. For that, we can use the cohort
method or the time horizon approach (Witzany, 2011). In the cohort method, we divide
the study period into fixed intervals (6 or 12 months). For each asset, we identify if it has
defaulted during the interval, and then we set t to the starting date of the interval. In the
time horizon approach, t is equal to the default time τi minus a fixed horizon (e.g. one,
three or 12 months). Sometimes, it can be useful to include some explanatory variables. In
this case, the standard model is the Tobit linear regression, which is presented on page 708,
because data are censored and the predicted value of CCF must lie in the interval [0, 1].

3.3.2 Loss given default
3.3.2.1 Definition

The recovery rate R is the percentage of the notional on the defaulted debt that can be
recovered. In the Basel framework, the recovery rate is not explicitly used, and the concept
of loss given default is preferred for measuring the credit portfolio loss. The two metrics are
expressed as a percentage of the face value, and we have:

LGD ≥ 1−R

Let us consider a bank that is lending $100 mn to a corporate firm. We assume that the
firm defaults at one time and the bank recovers $60 mn. We deduce that the recovery rate
is equal to:

R = 60
100 = 60%

81See Figure 1 on page 912 in Tong et al. (2016).
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In order to recover $60 mn, the bank has incurred some operational and litigation costs,
whose amount is $5 mn. In this case, the bank has lost $40 mn plus $5 mn, implying that
the loss given default is equal to:

LGD = 40 + 5
100 = 45%

In fact, this example shows that R and LGD are related in the following way:

LGD = 1−R + c

where c is the litigation cost. We now understand why the loss given default is the right
measure when computing the portfolio loss.

Schuermann (2004) identifies three approaches for calculating the loss given default:

1. Market LGD

2. Implied LGD

3. Workout LGD

The market LGD is deduced from the bond price just after the default82. It is easy to
calculate and available for large corporates and banks. The implied LGD is calculated from
a theoretical pricing model of bonds or CDS. The underlying idea is to estimate the implied
loss given default, which is priced by the market. As for the first method, this metric
is easy to calculate, but it depends on the model assumptions. The last approach is the
workout or ultimate LGD. Indeed, the loss given default has three components: the direct
loss of principal, the loss of carrying non-performing loans and the workout operational and
legal costs. The workout LGD is the right measure when considering the IRB approach.
Nevertheless, Schuermann (2004) notices that between two and three years are needed on
average to obtain the recovery.

In what follows, we present two approaches for modeling LGD. The first approach con-
siders that LGD is a random variable, whose probability distribution has to be estimated:

LGD ∼ F (x) (3.39)

However, we recall that the loss given default in the Basel IRB formulas does not correspond
to the random variable, but to its expectation E [LGD]. Therefore, the second approach
consists in estimating the conditional expectation:

E [LGD] = E [LGD | X1 = x1, . . . , Xm = xm]
= g (x1, . . . , xm) (3.40)

where (X1, . . . , Xm) are the risk factors that determine the loss given default.

Remark 35 We notice that R ∈ [0, 1], but LGD ≥ 0. Indeed, we can imagine that the
litigation cost can be high compared to the recovery part of the debt. In this case, we can
have c >R, implying that LGD > 100%. For instance, if R = 20% and c = 30%, we obtain
LGD = 110%. This situation is not fanciful, because R and c are not known at the default
time. The bank will then begin to engage costs without knowing the recovery amount. For
example, one typical situation is R = 0% and c > 0, when the bank discovers that there is
no possible recovery, but has already incurs some litigation costs. Even if LGD can be larger
than 100%, we assume that LGD ∈ [0, 1] because these situations are unusual.

82This measure is also called ‘trading price recovery’.
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3.3.2.2 Stochastic modeling

Using a parametric distribution In this case, we generally use the beta distribution
B (α, β), which is described on page 1053. Its density function is given by:

f (x) = xα−1 (1− x)β−1

B (α, β)

where B (α, β) =
∫ 1

0 t
α−1 (1− t)β−1

dt. The mean and the variance are:

µ (X) = E [X] = α

α+ β

and:
σ2 (X) = var (X) = αβ

(α+ β)2 (α+ β + 1)
When α and β are greater than 1, the distribution has one mode xmode =
(α− 1) / (α+ β − 2). This probability distribution is very flexible and allows to obtain
various shapes that are given in Figure 3.24:

• if α = 1 and β = 1, we obtain the uniform distribution; if α → ∞ and β → ∞, we
obtain the Dirac distribution at the point x = 0.5; if one parameter goes to zero, we
obtain a Bernoulli distribution;

• if α = β, the distribution is symmetric around x = 0.5; we have a bell curve when
the two parameters α and β are higher than 1, and a U-shape curve when the two
parameters α and β are lower than 1;

• if α > β, the skewness is negative and the distribution is left-skewed, if α < β, the
skewness is positive and the distribution is right-skewed.

Given the estimated mean µ̂LGD and standard deviation σ̂LGD of a sample of losses given
default, we can calibrate the parameters α and β using the method of moments83:

α̂ = µ̂2
LGD (1− µ̂LGD)

σ̂2
LGD

− µ̂LGD (3.41)

and:

β̂ = µ̂LGD (1− µ̂LGD)2

σ̂2
LGD

− (1− µ̂LGD) (3.42)

The other approach is to use the method of maximum likelihood, which is described in
Section 10.1.2 on page 614.

Example 34 We consider the following sample of losses given default: 68%, 90%, 22%,
45%, 17%, 25%, 89%, 65%, 75%, 56%, 87%, 92% and 46%.

We obtain µ̂LGD = 59.77% and σ̂LGD = 27.02%. Using the method of moments, the
estimated parameters are α̂MM = 1.37 and β̂MM = 0.92, whereas we have α̂ML = 1.84
and β̂ML = 1.25 for the method of maximum likelihood. We notice that the two calibrated
probability distributions have different shapes (see Figure 3.25).

83See Section 10.1.3.1 on page 628.
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FIGURE 3.24: Probability density function of the beta distribution B (α, β)

FIGURE 3.25: Calibration of the beta distribution
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FIGURE 3.26: Maximum standard deviation σ+ (µ)

Remark 36 We can calibrate the beta distribution as long as we respect some constraints
on µ̂LGD and σ̂LGD. Using Equations (3.41) and (3.42), we deduce that:

σ̂LGD <
√
µ̂LGD (1− µ̂LGD)

because α̂ and β̂ must be positive. This condition is not well restrictive. Indeed, if we consider
a general random variable X on [0, 1], we have E

[
X2] ≤ E [X], implying that:

σ (X) ≤ σ+ (µ) =
√
µ (1− µ)

where µ = E [X]. Therefore, only the limit case cannot be reached by the beta distribution84.
However, we notice that the standard deviation cannot be arbitrary fixed to a high level. For
example, Figure 3.26 shows that there is no random variable on [0, 1] such that µ = 10%
and σ > 30%, µ = 20% and σ > 40%, µ = 50% and σ > 50%, etc.

In Figure 3.27, we have reported the calibrated beta distribution using the method of
moments for several values of µLGD and σLGD = 30%. We obtain U-shaped probability dis-
tributions. In order to obtain a concave (or bell-shaped) distribution, the standard deviation
σLGD must be lower (see Figure 3.28).

Remark 37 The previous figures may leave us believing that the standard deviation must
be very low in order to obtain a concave beta probability density function. In fact, this is not
a restriction due to the beta distribution, since it is due to the support [0, 1] of the random
variable. Indeed, we can show that the standard deviation is bounded85 by

√
1/12 ' 28.86%

when the probability distribution has one mode on [0, 1].

84The limit case corresponds to the Bernoulli distribution B (p) where p = µ.
85The bound is the standard deviation of the uniform distribution U[0,1].
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FIGURE 3.27: Calibration of the beta distribution when σLGD = 30%

FIGURE 3.28: Calibration of the beta distribution when σLGD = 10%



Credit Risk 197

As noted by Altman and Kalotay (2014), the beta distribution is not always appropriate
for modeling loss given default even if it is widespread used by the industry. Indeed, we ob-
serve that losses given default tend to be bimodal, meaning that the recovery rate is quite
high or quite low (Loterman et al., 2012). This is why Altman and Kalotay (2014) propose
to model the loss given default as a Gaussian mixture model. They first apply the transfor-
mation yi = Φ−1 (LGDi) to the sample, then calibrate86 the 4-component mixture model on
the transformed data (y1, . . . , yn) and finally perform the inverse transform for estimating
the parametric distribution. They show that the estimated distribution fits relatively well
the non-parametric distribution estimated with the kernel method.

Using a non-parametric distribution The beta distribution is either bell-shaped or
U-shaped. In this last case, the limit is the Bernoulli distribution:

LGD 0% 100%
Probability (1− µLGD) µLGD

This model is not necessarily absurd, since it means that the recovery can be very high or
very low. Figure 2 in Bellotti and Crook (2012) represents the histogram of recovery rates of
55 000 defaulted credit card accounts from 1999 to 2005 in the UK. The two extreme cases
(R = 0% andR = 100%) are the most frequent cases. Therefore, it is interesting to consider
the empirical distribution instead of an estimated distribution. In this case, we generally
consider risk classes, e.g. 0%− 5%, 5%− 10%, 10%− 20%, . . . , 80%− 90%, 90%− 100%.

Example 35 We consider the following empirical distribution of LGD:

LGD (in %) 0 10 20 25 30 40 50 60 70 75 80 90 100
p̂ (in %) 1 2 10 25 10 2 0 2 10 25 10 2 1

This example illustrates the shortcoming of the beta modeling when we have a bimodal
LGD distribution. In Figure 3.29, we have reported the empirical distribution, and the
corresponding (rescaled) calibrated beta distribution. We notice that it is very far from the
empirical distribution.

Remark 38 Instead of using the empirical distribution by risk classes, we can also consider
the kernel approach, which is described on page 637.

Example 36 We consider a credit portfolio of 10 loans, whose loss is equal to:

L =
10∑
i=1

EaDi ·LGDi ·1 {τi ≤ Ti}

where the maturity Ti is equal to 5 years, the exposure at default EaDi is equal to $1 000
and the default time τi is exponential with the following intensity parameter λi:

i 1 2 3 4 5 6 7 8 9 10
λi (in bps) 10 10 25 25 50 100 250 500 500 1 000

The loss given default LGDi is given by the empirical distribution, which is described in
Example 35.

86The estimation of Gaussian mixture models is presented on page 624.
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FIGURE 3.29: Calibration of a bimodal LGD distribution

In Figure 3.30, we have calculated the distribution of the portfolio loss with the Monte
Carlo method. We compare the loss distribution when we consider the empirical distribution
and the calibrated beta distribution for the loss given default. We also report the loss
distribution when we replace the random variable LGDi by its expected value E [LGDi] =
50%. We observe that the shape of L highly depends on the LGD model. For example, we
observe a more pronounced fat tail with the calibrated beta distribution. This implies that
the LGD model has a big impact for calculating the value-at-risk. For instance, we have
reported the loss distribution using the beta model for different values of (µLGD, σLGD)
in Figure 3.31. We conclude that the modeling of LGD must not be overlooked. In many
cases, the model errors have more impact when they concern the loss given default than the
probability of default.

Remark 39 The expression of the portfolio loss is:

L =
n∑
i=1

EADi ·LGDi ·1 {τi ≤ Ti}

If the portfolio is fined grained, we have:

E [L | X] =
n∑
i=1

EADi ·E [LGDi] · pi (X)

We deduce that the distribution of the portfolio loss is equal to:

Pr {L ≤ `} =
∫
· · ·
∫
1

{
n∑
i=1

EADi ·E [LGDi] · pi (x) ≤ `
}

dH (x)

This loss distribution does not depend on the random variables LGDi, but on their expected
values E [LGDi]. This implies that it is not necessary to model the loss given default, but
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FIGURE 3.30: Loss frequency in % of the three LGD models

FIGURE 3.31: Loss frequency in % for different values of µLGD and σLGD
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only the mean. Therefore, we can replace the previous expression of the portfolio loss by:

L =
n∑
i=1

EADi ·E [LGDi] · 1 {τi ≤ Ti}

3.3.2.3 Economic modeling

There are many factors that influence the recovery process. In the case of corporate
debt, we distinguish between specific and economic factors. For instance, specific factors
are the relative seniority of the debt or the guarantees. Senior debt must be repaid before
subordinated or junior debt is repaid. If the debt is collateralized, this affects the loss given
default. Economic factors are essentially the business cycle and the industry. In the third
version of Moody’s LossCalc, Dwyer and Korablev (2009) consider seven factors that are
grouped in three major categories:

1. factors external to the issuer: geography, industry, credit cyle stage;

2. factors specific to the issuer: distance-to-default, probability of default (or leverage
for private firms);

3. factors specific to the debt issuance: debt type, relative standing in capital structure,
collateral.

Curiously, Dwyer and Korablev (2009) explain that “some regions have been characterized
as creditor-friendly, while others are considered more creditor-unfriendly”. For instance,
recovery rates are lower in the UK and Europe than in the rest of the world. However, the
most important factors are the seniority followed by the industry, as it is illustrated by the
Moody’s statistics on ultimate recoveries. From 1987 to 2017, the average corporate debt
recovery rate is equal to 80.4% for loans, 62.3% for senior secured bonds, 47.9% for senior
unsecured bonds and 28.0% for subordinated bonds (Moody’s, 2018). It is interesting to
notice that the recovery rate and the probability of default are negatively correlated. Indeed,
Dwyer and Korablev (2009) take the example of two corporate firms A and B, and they
assume that PDB � PDA. In this case, we may think that the assets of A relative to its
liabilities is larger than the ratio of B. Therefore, we must observe a positive relationship
between the loss given default and the probability of default.

Remark 40 The factors depend of the asset class. For instance, we will consider more
microeconomic variables when modeling the loss given default for mortgage loans (Tong et
al., 2013).

Once the factors are identified, we must estimate the LGD model:

LGD = f (X1, . . . , Xm)

where X1, . . . , Xm are the m factors, and f is a non-linear function. Generally, we consider
a transformation of LGD in order to obtain a more tractable variable. We can apply a logit
transform Y = ln (LGD) − ln (1− LGD), a probit transform Y = Φ−1 (LGD) or a beta
transformation (Bellotti and Crook, 2012). In this case, we can use the different statistical
tools given in Chapters 10 and 15 to model the random variable Y . The most popular models
are the logistic regression, regression trees and neural networks (Bastos, 2010). However,
according to EBA (2017), multivariate regression remains the most widely used methods,
despite the strong development of machine learning techniques, that are presented on page
943.
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Remark 41 We do not develop here the econometric approach, because it is extensively
presented in Chapter 15 dedicated to the credit scoring. Indeed, statistical models of LGD
use the same methods than statistical models of PD. We also refer to Chapter 14 dedicated
to stress testing methods when we would like to calculate stressed LGD parameters.

3.3.3 Probability of default
3.3.3.1 Survival function

The survival function is the main tool to characterize the probability of default. It is
also known as reduced-form modeling.

Definition and main properties Let τ be a default (or survival) time. The survival
function87 is defined as follows:

S (t) = Pr {τ > t}
= 1− F (t)

where F is the cumulative distribution function. We deduce that the probability density
function is related to the survival function in the following manner:

f (t) = −∂ S (t)
∂ t

(3.43)

In survival analysis, the key concept is the hazard function λ (t), which is the instantaneous
default rate given that the default has not occurred before t:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt | τ ≥ t}
dt

We deduce that:

λ (t) = lim
dt→0+

Pr {t ≤ τ ≤ t+ dt}
dt · 1

Pr {τ ≥ t}

= f (t)
S (t)

Using Equation (3.43), another expression of the hazard function is:

λ (t) = −∂t S (t)
S (t)

= −∂ ln S (t)
∂ t

The survival function can then be rewritten with respect to the hazard function and we
have:

S (t) = e
−
∫ t

0
λ(s) ds (3.44)

In Table 3.32, we have reported the most common hazard and survival functions. They can
be extended by adding explanatory variables in order to obtain proportional hazard models
(Cox, 1972). In this case, the expression of the hazard function is λ (t) = λ0 (t) exp

(
β>x

)
where λ0 (t) is the baseline hazard rate and x is the vector of explanatory variables, which
are not dependent on time.

87Previously, we have noted the survival function as St0 (t). Here, we assume that the current time t0 is
0.
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TABLE 3.32: Common survival functions
Model S (t) λ (t)
Exponential exp (−λt) λ
Weibull exp (−λtγ) λγtγ−1

Log-normal 1− Φ (γ ln (λt)) γt−1φ (γ ln (λt)) / (1− Φ (γ ln (λt)))
Log-logistic 1/

(
1 + λt

1
γ

)
λγ−1t

1
γ /
(
t+ λt1+ 1

γ

)
Gompertz exp (λ (1− eγt)) λγ exp (γt)

The exponential model holds a special place in default time models. It can be justified
by the following problem in physics:

“Assume that a system consists of n identical components which are connected
in series. This means that the system fails as soon as one of the components fails.
One can assume that the components function independently. Assume further
that the random time interval until the failure of the system is one nth of the
time interval of component failure” (Galambos, 1982).

We have Pr {min (τ1, . . . , τn) ≤ t} = Pr {τi ≤ n · t}. The problem is then equivalent to solve
the functional equation S (t) = Sn (t/n) with S (t) = Pr {τ1 > t}. We can show that the
unique solution for n ≥ 1 is the exponential distribution. Following Galambos and Kotz
(1978), its other main properties are:

1. the mean residual life E [τ | τ ≥ t] is constant;

2. it satisfies the famous lack of memory property:

Pr {τ ≥ t+ u | τ ≥ t} = Pr {τ ≥ u}

or equivalently S (t+ u) = S (t) S (u);

3. the probability distribution of n · τ1:n is the same as probability distribution of τi.

Piecewise exponential model In credit risk models, the standard probability distri-
bution to define default times is a generalization of the exponential model by considering
piecewise constant hazard rates:

λ (t) =
M∑
m=1

λm · 1
{
t?m−1 < t ≤ t?m

}
= λm if t ∈

]
t?m−1, t

?
m

]
where t?m are the knots of the function88. For t ∈

]
t?m−1, t

?
m

]
, the expression of the survival

function becomes:

S (t) = exp
(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))
= S

(
t?m−1

)
e−λm(t−t?m−1)

88We have t?0 = 0 and t?M+1 =∞.



Credit Risk 203

It follows that the density function is equal to89:

f (t) = λm exp
(
−
m−1∑
k=1

λk
(
t?k − t?k−1

)
− λm

(
t− t?m−1

))

In Figure 3.32, we have reported the hazard, survival and density functions for three set
of parameters {(t?m, λm) ,m = 1, . . . ,M}:

{(1, 1%) , (2, 1.5%) , (3, 2%) , (4, 2.5%) , (∞, 3%)} for λ1 (t)
{(1, 10%) , (2, 7%) , (5, 5%) , (7, 4.5%) , (∞, 6%)} for λ2 (t)

and λ3 (t) = 4%. We note the special shape of the density function, which is not smooth at
the knots.

FIGURE 3.32: Example of the piecewise exponential model

Estimation To estimate the parameters of the survival function, we can use the cohort
approach. Under this method, we estimate the empirical survival function by counting the
number of entities for a given population that do not default over the period ∆t:

Ŝ (∆t) = 1−
∑n
i=1 1 {t < τi ≤ t+ ∆t}

n

where n is the number of entities that compose the population. We can then fit the survival
function by using for instance the least squares method.

89We verify that:
f (t)
S (t)

= λm if t ∈
]
t?m−1, t

?
m

]
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Example 37 We consider a population of 1 000 corporate firms. The number of defaults
nD (∆t) over the period ∆t is given in the table below:

∆t (in months) 3 6 9 12 15 18 21 22
nD (∆t) 2 5 9 12 16 20 25 29

We obtain Ŝ (0.25) = 0.998, Ŝ (0.50) = 0.995, Ŝ (0.75) = 0.991, Ŝ (1.00) = 0.988,
Ŝ (1.25) = 0.984, Ŝ (1.50) = 0.980, Ŝ (1.75) = 0.975 and Ŝ (2.00) = 0.971. For the exponen-
tial model, the least squares estimator λ̂ is equal to 1.375%. In the case of the Gompertz
survival function, we obtain λ̂ = 2.718% and γ̂ = 0.370. If we consider the piecewise expo-
nential model, whose knots correspond to the different periods ∆t, we have λ̂1 = 0.796%,
λ̂2 = 1.206%, λ̂3 = 1.611%, λ̂4 = 1.216%, λ̂5 = 1.617%, λ̂6 = 1.640%, λ̂7 = 2.044% and
λ̂8 = 1.642%. To compare these three calibrations, we report the corresponding hazard
functions in Figure 3.33. We deduce that the one-year default probability90 is respectively
equal to 1.366%, 1.211% and 1.200%.

FIGURE 3.33: Estimated hazard function

In the piecewise exponential model, we can specify an arbitrary number of knots. In the
previous example, we use the same number of knots than the number of observations to
calibrate. In such case, we can calibrate the parameters using the following iterative process:

1. We first estimate the parameter λ1 for the earliest maturity ∆t1.

2. Assuming that
(
λ̂1, . . . , λ̂i−1

)
have been estimated, we calculate λ̂i for the next ma-

turity ∆ti.

3. We iterate step 2 until the last maturity ∆tm.

90We have PD = 1− S (1).
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This algorithm works well if the knots t?m exactly match the maturities. It is known as
the bootstrap method and is very popular to estimate the survival function from market
prices. Let {s (T1) , . . . , s (TM )} be a set of CDS spreads for a given name. Assuming that
T1 < T2 < . . . < TM , we consider the piecewise exponential model with t?m = Tm. We
first estimate λ̂1 such that the theoretical spread is equal to s (T1). We then calibrate the
hazard function in order to retrieve the spread s (T2) of the second maturity. This means
to consider that λ (t) is known and equal to λ̂1 until time T1 whereas λ (t) is unknown from
T1 to T2:

λ (t) =
{
λ̂1 if t ∈ ]0, T1]
λ2 if t ∈ ]T1, T2]

Estimating λ̂2 is therefore straightforward because it is equivalent to solve one equation
with one variable. We proceed in a similar way for the other maturities.

Example 38 We assume that the term structure of interest rates is generated by the Nelson-
Siegel model with θ1 = 5%, θ2 = −5%, θ3 = 6% and θ4 = 10. We consider three credit
curves, whose CDS spreads expressed in bps are given in the following table:

Maturity #1 #2 #3(in years)
1 50 50 350
3 60 60 370
5 70 90 390
7 80 115 385

10 90 125 370

The recovery rate R is set to 40%.

TABLE 3.33: Calibrated piecewise exponential model from CDS prices
Maturity #1 #2 #3(in years)

1 83.3 83.3 582.9
3 110.1 110.1 637.5
5 140.3 235.0 702.0
7 182.1 289.6 589.4

10 194.1 241.9 498.5

Using the bootstrap method, we obtain results in Table 3.33. We notice that the piecewise
exponential model coincide for the credit curves #1 and #2 for t < 3 years. This is normal
because the CDS spreads of the two credit curves are equal when the maturity is less or
equal than 3 years. The third credit curve illustrates that the bootstrap method is highly
sensitive to small differences. Indeed, the calibrated intensity parameter varies from 499 to
702 bps while the CDS spreads varies from 350 to 390 bps. Finally, the survival function
associated to these 3 bootstrap calibrations are shown in Figure 3.34.

Remark 42 Other methods for estimating the probability of default are presented in Chap-
ter 19 dedicated to credit scoring models.
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FIGURE 3.34: Calibrated survival function from CDS prices

3.3.3.2 Transition probability matrix

When dealing with risk classes, it is convenient to model a transition probability matrix.
For instance, this approach is used for modeling credit rating migration.

Discrete-time modeling We consider a time-homogeneous Markov chainR, whose tran-
sition matrix is P = (pi,j). We note S = {1, 2, . . . ,K} the state space of the chain and pi,j
is the probability that the entity migrates from rating i to rating j. The matrix P satisfies
the following properties:

• ∀i, j ∈ S, pi,j ≥ 0;

• ∀i ∈ S,
∑K
j=1 pi,j = 1.

In credit risk, we generally assume that K is the absorbing state (or the default state),
implying that any entity which has reached this state remains in this state. In this case, we
have pK,K = 1. Let R (t) be the value of the state at time t. We define p (s, i; t, j) as the
probability that the entity reaches the state j at time t given that it has reached the state
i at time s. We have:

p (s, i; t, j) = Pr {R (t) = j | R (s) = i}
= p

(t−s)
i,j

This probability only depends on the duration between s and t because of the Markov prop-
erty. Therefore, we can restrict the analysis by calculating the n-step transition probability:

p
(n)
i,j = Pr {R (t+ n) = j | R (t) = i}
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and the associated n-step transition matrix P (n) =
(
p

(n)
i,j

)
. For n = 2, we obtain:

p
(2)
i,j = Pr {R (t+ 2) = j | R (t) = i}

=
K∑
k=1

Pr {R (t+ 2) = j,R (t+ 1) = k | R (t) = i}

=
K∑
k=1

Pr {R (t+ 2) = j | R (t+ 1) = k} · Pr {R (t+ 1) = k | R (t) = i}

=
K∑
k=1

pi,k · pk,j

In a similar way, we obtain:

p
(n+m)
i,j =

K∑
k=1

p
(n)
i,k · p

(m)
k,j ∀n,m > 0 (3.45)

This equation is called the Chapman-Kolmogorov equation. In matrix form, we have:

P (n+m) = P (n) · P (m)

with the convention P (0) = I. In particular, we have:

P (n) = P (n−1) · P (1)

= P (n−2) · P (1) · P (1)

=
n∏
t=1

P (1)

= Pn

We deduce that:
p (t, i; t+ n, j) = p

(n)
i,j = e>i Pnej (3.46)

When we apply this framework to credit risk, R (t) denotes the rating (or the risk class)
of the firm at time t, pi,j is the one-period transition probability from rating i to rating j
and pi,K is the one-period default probability of rating i. In Table 3.34, we report the S&P
one-year transition probability matrix for corporate bonds estimated by Kavvathas (2001).
We read the figures as follows91: a firm rated AAA has a one-year probability of 92.82% to
remain AAA; its probability to become AA is 6.50%; a firm rated CCC defaults one year
later with a probability equal to 23.50%; etc. In Tables 3.35 and 3.36, we have reported the
two-year and five-year transition probability matrices. We detail below the calculation of
p

(2)
AAA,AAA:

p
(2)
AAA,AAA = pAAA,AAA × pAAA,AAA + pAAA,AA × pAA,AAA + pAAA,A × pA,AAA +

pAAA,BBB × pBBB,AAA + pAAA,BB × pBB,AAA + pAAA,B × pB,AAA +
pAAA,CCC × pCCC,AAA

= 0.92832 + 0.0650× 0.0063 + 0.0056× 0.0008 +
0.0006× 0.0005 + 0.0006× 0.0004

= 86.1970%
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TABLE 3.34: Example of credit migration matrix (in %)

AAA AA A BBB BB B CCC D
AAA 92.82 6.50 0.56 0.06 0.06 0.00 0.00 0.00
AA 0.63 91.87 6.64 0.65 0.06 0.11 0.04 0.00
A 0.08 2.26 91.66 5.11 0.61 0.23 0.01 0.04

BBB 0.05 0.27 5.84 87.74 4.74 0.98 0.16 0.22
BB 0.04 0.11 0.64 7.85 81.14 8.27 0.89 1.06
B 0.00 0.11 0.30 0.42 6.75 83.07 3.86 5.49

CCC 0.19 0.00 0.38 0.75 2.44 12.03 60.71 23.50
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Source: Kavvathas (2001).

We note π(n)
i the probability of the state i at time n:

π
(n)
i = Pr {R (n) = i}

and π(n) =
(
π

(n)
1 , . . . , π

(n)
K

)
the probability distribution. By construction, we have:

π(n+1) = P>π(n)

The Markov chain R admits a stationary distribution π? if92:

π? = P>π?

In this case, π?i is the limiting probability of state i:

lim
n→∞

p
(n)
k,i = π?i

We can interpret π?i as the average duration spent by the chain R in the state i. Let Ti be
the return period93 of state i:

Ti = inf {n : R (n) = i | R (0) = i}

The average return period is then equal to:

E [Ti] = 1
π?i

For credit migration matrices, there is no stationary distribution because the long-term
rating R (∞) is the absorbing state as noted by Jafry and Schuermann:

“Given sufficient time, all firms will eventually sink to the default state. This
behavior is clearly a mathematical artifact, stemming from the idealized linear,
time invariant assumptions inherent in the simple Markov model. In reality
the economy (and hence the migration matrix) will change on time-scales far
shorter than required to reach the idealized default steady-state proscribed by an
assumed constant migration matrix” (Jafry and Schuermann, 2004, page 2609).

91The rows represent the initial rating whereas the columns indicate the final rating.
92Not all Markov chains behave in this way, meaning that π? does not necessarily exist.
93This concept plays an important role when designing stress scenarios (see Chapter 18).
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TABLE 3.35: Two-year transition probability matrix P 2 (in %)

AAA AA A BBB BB B CCC D
AAA 86.20 12.02 1.47 0.18 0.11 0.01 0.00 0.00
AA 1.17 84.59 12.23 1.51 0.18 0.22 0.07 0.02
A 0.16 4.17 84.47 9.23 1.31 0.51 0.04 0.11

BBB 0.10 0.63 10.53 77.66 8.11 2.10 0.32 0.56
BB 0.08 0.24 1.60 13.33 66.79 13.77 1.59 2.60
B 0.01 0.21 0.61 1.29 11.20 70.03 5.61 11.03

CCC 0.29 0.04 0.68 1.37 4.31 17.51 37.34 38.45
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

TABLE 3.36: Five-year transition probability matrix P 5 (in %)

AAA AA A BBB BB B CCC D
AAA 69.23 23.85 5.49 0.96 0.31 0.12 0.02 0.03
AA 2.35 66.96 24.14 4.76 0.86 0.62 0.13 0.19
A 0.43 8.26 68.17 17.34 3.53 1.55 0.18 0.55

BBB 0.24 1.96 19.69 56.62 13.19 5.32 0.75 2.22
BB 0.17 0.73 5.17 21.23 40.72 20.53 2.71 8.74
B 0.07 0.47 1.73 4.67 16.53 44.95 5.91 25.68

CCC 0.38 0.24 1.37 2.92 7.13 18.51 9.92 59.53
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

We note that the survival function Si (t) of a firm whose initial rating is the state i is
given by:

Si (t) = 1− Pr {R (t) = K | R (0) = i}
= 1− e>i P teK (3.47)

In the piecewise exponential model, we recall that the survival function has the following
expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1)

for t ∈
]
t?m−1, t

?
m

]
. We deduce that S (t?m) = S

(
t?m−1

)
e−λm(t?m−t?m−1), implying that:

ln S (t?m) = ln S
(
t?m−1

)
− λm

(
t?m − t?m−1

)
and:

λm =
ln S

(
t?m−1

)
− ln S (t?m)

t?m − t?m−1
It is then straightforward to estimate the piecewise hazard function:
• the knots of the piecewise function are the years m ∈ N∗;

• for each initial rating i, the hazard function λi (t) is defined as:

λi (t) = λi,m if t ∈ ]m− 1,m]

where:

λi,m = ln Si (m− 1)− ln Si (m)
m− (m− 1)

= ln
(

1− e>i Pm−1eK
1− e>i PmeK

)
and P 0 = I.
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If we consider the credit migration matrix given in Table 3.34 and estimate the piecewise
exponential model, we obtain the hazard function94 λi (t) shown in Figure 3.35. For good
initial ratings, hazard rates are low for short maturities and increase with time. For bad
initial ratings, we obtain the opposite effect, because the firm can only improve its rating if
it did not default. We observe that the hazard function of all the ratings converges to the
same level, which is equal to 102.63 bps. This indicates the long-term hazard rate of the
Markov chain, meaning that 1.02% of firms default every year on average.

FIGURE 3.35: Estimated hazard function λi (t) from the credit migration matrix

Continuous-time modeling We now consider the case t ∈ R+. We note P (s; t) the
transition matrix defined as follows:

Pi,j (s; t) = p (s, i; t, j)
= Pr {R (t) = j | R (s) = i}

Assuming that the Markov chain is time-homogenous, we have P (t) = P (0; t). Jarrow et
al. (1997) introduce the generator matrix Λ = (λi,j) where λi,j ≥ 0 for all i 6= j and:

λi,i = −
K∑
j 6=i

λi,j

In this case, the transition matrix satisfies the following relationship:

P (t) = exp (tΛ) (3.48)

94Contrary to what the graph suggests, λi (t) is a piecewise constant function (see details of the curve in
the fifth panel for very short maturities).
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where exp (A) is the matrix exponential of A. Let us give a probabilistic interpretation of
Λ. If we assume that the probability of jumping from rating i to rating j in a short time
period ∆t is proportional to ∆t, we have:

p (t, i; t+ ∆t, j) = λi,j∆t

The matrix form of this equation is P (t; t+ ∆t) = Λ ∆t. We deduce that:

P (t+ ∆t) = P (t)P (t; t+ ∆t)
= P (t) Λ ∆t

and:
dP (t) = P (t) Λ dt

Because we have exp (0) = I, we obtain the solution P (t) = exp (tΛ). We then interpret
λi,j as the instantaneous transition rate of jumping from rating i to rating j.

Remark 43 In Appendix A.1.1.3, we present the matrix exponential function and its math-
ematical properties. In particular, we have eA+B = eAeB and eA(s+t) = eAseAt where A
and B are two square matrices such that AB = BA and s and t are two real numbers.

Example 39 We consider a rating system with three states: A (good rating), B (bad rating)
and D (default). The Markov generator is equal to:

Λ =

 −0.30 0.20 0.10
0.15 −0.40 0.25
0.00 0.00 0.00


The one-year transition probability matrix is equal to:

P (1) = eΛ =

 75.16% 14.17% 10.67%
10.63% 68.07% 21.30%
0.00% 0.00% 100.00%


For the two-year maturity, we get:

P (2) = e2Λ =

 58.00% 20.30% 21.71%
15.22% 47.85% 36.93%
0.00% 0.00% 100.00%


We verify that P (2) = P (1)2. This derives from the property of the matrix exponential:

P (t) = etΛ =
(
eΛ)t = P (1)t

The continuous-time framework allows to calculate transition matrices for non-integer ma-
turities, which do not correspond to full years. For instance, the one-month transition prob-
ability matrix of the previous example is equal to:

P (2) = e
1
12 Λ =

 97.54% 1.62% 0.84%
1.21% 96.73% 2.05%
0.00% 0.00% 100.00%


One of the issues with the continuous-time framework is to estimate the Markov gen-

erator Λ. One solution consists in using the empirical transition matrix P̂ (t), which have
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been calculated for a given time horizon t. In this case, the estimate Λ̂ must satisfy the
relationship P̂ (t) = exp

(
tΛ̂
)
. We deduce that:

Λ̂ = 1
t

ln
(
P̂ (t)

)
where lnA is the matrix logarithm of A. However, the matrix Λ̂ cannot verify the Markov
conditions λ̂i,j ≥ 0 for all i 6= j and

∑K
j=1 λi,j = 0. For instance, if we consider the previous

S&P transition matrix, we obtain the generator Λ̂ given in Table 3.37. We notice that six off-
diagonal elements of the matrix are negative95. This implies that we can obtain transition
probabilities which are negative for short maturities. In this case, Israel et al. (2001) propose
two estimators to obtain a valid generator:

1. the first approach consists in adding the negative values back into the diagonal values: λ̄i,j = max
(
λ̂i,j , 0

)
i 6= j

λ̄i,i = λ̂i,i +
∑
j 6=i min

(
λ̂i,j , 0

)
2. in the second method, we carry forward the negative values on the matrix entries

which have the correct sign:

Gi =
∣∣∣λ̂i,i∣∣∣+

∑
j 6=i max

(
λ̂i,j , 0

)
Bi =

∑
j 6=i max

(
−λ̂i,j , 0

)
λ̃i,j =


0 if i 6= j and λ̂i,j < 0
λ̂i,j −Bi

∣∣∣λ̂i,j∣∣∣ /Gi if Gi > 0
λ̂i,j if Gi = 0

Using the estimator Λ̂ and the two previous algorithms, we obtain the valid generators given
in Tables 3.39 and 3.40. We find that

∥∥∥P̂ − exp
(
Λ̄
)∥∥∥

1
= 11.02×10−4 and

∥∥∥P̂ − exp
(
Λ̃
)∥∥∥

1
=

10.95 × 10−4, meaning that the Markov generator Λ̃ is the estimator that minimizes the
distance to P̂ . We can then calculate the transition probability matrix for all maturities,
and not only for calendar years. For instance, we report the 207-day transition probability

matrix P
(

207
365

)
= exp

(
207
365Λ̃

)
in Table 3.41.

Remark 44 The continuous-time framework is more flexible when modeling credit risk.
For instance, the expression of the survival function becomes:

Si (t) = Pr {R (t) = K | R (0) = i} = 1− e>i exp (tΛ) eK
We can therefore calculate the probability density function in an easier way:

fi (t) = −∂t Si (t) = e>i Λ exp (tΛ) eK
For illustration purposes, we represent the probability density function of S&P ratings esti-
mated with the valid generator Λ̃ in Figure 3.36.

95We have also calculated the estimator described in Israel et al. (2001):

Λ̆ =
∞∑
n=1

(−1)n+1

(
P̂ − I

)n
n

We do not obtain the same matrix as for the estimator Λ̂, but there are also six negative off-diagonal
elements (see Table 3.38).
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TABLE 3.37: Markov generator Λ̂ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.49 703.67 35.21 3.04 6.56 −0.79 −0.22 0.02
AA 67.94 −859.31 722.46 51.60 2.57 10.95 4.92 −1.13
A 7.69 245.59 −898.16 567.70 53.96 20.65 −0.22 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B −0.84 11.83 30.11 8.71 818.31 −1936.82 539.18 529.52

CCC 25.11 −2.89 44.11 84.87 272.05 1678.69 −5043.00 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.38: Markov generator Λ̆ (in bps)

AAA AA A BBB BB B CCC D
AAA −745.85 699.11 38.57 2.80 6.27 −0.70 −0.16 −0.05
AA 67.54 −855.70 716.56 54.37 2.81 10.81 4.62 −1.01
A 7.77 243.62 −891.46 560.45 56.33 20.70 0.07 2.53

BBB 5.06 22.68 641.55 −1335.03 542.46 91.05 16.09 16.15
BB 4.18 10.12 48.00 903.40 −2111.65 965.71 98.28 81.96
B −0.56 11.61 29.31 19.39 789.99 −1887.69 491.46 546.49

CCC 23.33 −1.94 42.22 81.25 272.44 1530.66 −4725.22 2777.25
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.39: Markov generator Λ̄ (in bps)

AAA AA A BBB BB B CCC D
AAA −748.50 703.67 35.21 3.04 6.56 0.00 0.00 0.02
AA 67.94 −860.44 722.46 51.60 2.57 10.95 4.92 0.00
A 7.69 245.59 −898.38 567.70 53.96 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.11 8.71 818.31 −1937.66 539.18 529.52

CCC 25.11 0.00 44.11 84.87 272.05 1678.69 −5045.89 2941.06
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 3.40: Markov generator Λ̃ (in bps)

AAA AA A BBB BB B CCC D
AAA −747.99 703.19 35.19 3.04 6.55 0.00 0.00 0.02
AA 67.90 −859.88 721.98 51.57 2.57 10.94 4.92 0.00
A 7.69 245.56 −898.27 567.63 53.95 20.65 0.00 2.80

BBB 5.07 21.53 650.21 −1352.28 557.64 85.56 16.08 16.19
BB 4.22 10.22 41.74 930.55 −2159.67 999.62 97.35 75.96
B 0.00 11.83 30.10 8.71 818.14 −1937.24 539.06 529.40

CCC 25.10 0.00 44.10 84.84 271.97 1678.21 −5044.45 2940.22
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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TABLE 3.41: 207-day transition probability matrix (in %)

AAA AA A BBB BB B CCC D
AAA 95.85 3.81 0.27 0.03 0.04 0.00 0.00 0.00
AA 0.37 95.28 3.90 0.34 0.03 0.06 0.02 0.00
A 0.04 1.33 95.12 3.03 0.33 0.12 0.00 0.02

BBB 0.03 0.14 3.47 92.75 2.88 0.53 0.09 0.11
BB 0.02 0.06 0.31 4.79 88.67 5.09 0.53 0.53
B 0.00 0.06 0.17 0.16 4.16 89.84 2.52 3.08

CCC 0.12 0.01 0.23 0.45 1.45 7.86 75.24 14.64
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

3.3.3.3 Structural models

The previous approaches are purely statistical and are called reduced-form models. We
now consider economic models for modeling default times. These approaches are based on
accounting and market data and are called structural models.

The Merton model The structural approach of credit risk has been formalized by Mer-
ton (1974). In this framework, the bond holders will liquidate the corporate firm if the asset
value A (t) goes below a threshold B related to the total amount of debt. The underlying
idea is that bond holders monitor the asset value and compare A (t) to the default barrier
B.

Merton (1974) assumes that the dynamics of the assets A (t) follows a geometric Brow-
nian motion:

dA (t) = µAA (t) dt+ σAA (t) dW (t)

where A (0) = A0. The default occurs if the asset value A (t) falls under the threshold B:

τ := inf {t : A (t) ≤ B}

In this case, the bond holders receive A (T ), and lose B−A (T ). The payoff of bond holders
is then equal to:

D = B −max (B −A (T ) , 0)

where D is the debt value of maturity T . The holding of a risky bond can be interpreted as
a trading strategy where we have bought a zero-coupon and financed the cost by selling a
put on A (t) with an exercise price B and a maturity T . From the viewpoint of the equity
holders, the payoff is equal to max (A (T )−D, 0). The holding of an equity share can be
interpreted as a trading strategy where we have bought a call option with a strike equal to
the debt value D. It follows that the current value E0 of the equity is:

E0 = e−rT · E [max (A (T )−D, 0)]
= A0Φ (d1)− e−rTDΦ (d2)

where:
d1 = lnA0 − lnD + rT

σA
√
T

+ 1
2σA
√
T

and d2 = d1 − σA
√
T . We notice that the equity value depends on the current asset value

A0, the leverage ratio L = D/A0, the asset volatility σA and the time of repayment T .
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FIGURE 3.36: Probability density function fi (t) of S&P ratings

The KMV implementation In the nineties, the Merton model has been implemented
by KMV96 with a lot of success. The underlying idea of the KMV implementation is to
estimate the default probability of a firm. One of the difficulties is to estimate the asset
volatility σA. However, Jones et al. (1984) show that it is related to the equity volatility
σE . Indeed, we have E (t) = C (t, A (t)), implying that:

dE (t) = ∂tC (t, A (t)) dt+ µAA (t) ∂AC (t, A (t)) dt+
1
2σ

2
AA

2 (t) ∂2
AC (t, A (t)) dt+ σAA (t) ∂AC (t, A (t)) dW (t)

Since the stochastic term is also equal to σEE (t) dW (t), we obtain the following equality
at time t = 0:

σEE0 = σAA0Φ (d1)
Therefore, Crosbie and Bohn (2002) deduce the following system of equations:{

A0Φ (d1)− e−rTDΦ (d2)− E0 = 0
σEE0 − σAA0Φ (d1) = 0 (3.49)

Once we have estimated A0 and σA, we can calculate the survival function:

S (t) = Pr {A (t) ≥ D | A (0) = A0}

= Φ
(

lnA0 − lnD + µAt

σA
√
t

+ 1
2σA
√
t

)
and deduce the probability of default F (t) = 1−S (t) and the distance to default DD (t) =
Φ−1 (S (t)).

96KMV was a company dedicated to credit risk modeling, and was founded by Stephen Kealhofer, John
McQuown and Oldrich Vasícek. In 2002, they sold KMV to Moody’s.
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Example 40 Crosbie and Bohn (2002) assume that the market capitalization E0 of the
firm is $3 bn, its debt liability D is $10 bn, the corresponding equity volatility σE is equal
to 40%, the maturity T is one year and the expected return µA is set to 7%.

Using an interest rate r = 5% and solving Equation (3.49), we find that the asset valueA0
is equal to $12.512 bn and the implied asset volatility σA is equal to 9.609%. Therefore, we
can calculate the distance-to-default DD (1) = 3.012 and the one-year probability PD (1) =
12.96 bps. In Figure 3.37, we report the probability of default for different time horizons.
We also show the impact of the equity volatility σE and the expected return µA, which can
be interpreted as a return-on-equity ratio (ROE). We verify that the probability of default
is an increasing function of the volatility risk and a decreasing function of the profitability.

FIGURE 3.37: Probability of default in the KMV model

Remark 45 The KMV model is more complex than the presentation above. In particular,
the key variable is not the probability of default, but the distance-to-default (see Figure 3.38).
Once this measure is calculated, it is converted into an expected default frequency (EDF)
by considering an empirical distribution of PD conditionally to the distance-to-default. For
instance, DD (1) = 4 is equivalent to PD (1) = 100 bps (Crosbie and Bohn, 2002).

The CreditGrades implementation The CreditGrades approach is an extension of
the Merton model, uses the framework of Black and Cox (1976) and has been developed by
Finkelstein et al. (2002). They assume that the asset-per-share value A (t) is a geometric
Brownian motion without drift:

dA (t) = σAA (t) dW (t)

whereas the default barrier B is defined as the recovery value of bond holders. B is equal to
the product R ·D, where R ∈ [0, 1] is the recovery rate and D is the debt-per-share value.
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FIGURE 3.38: Distance-to-default in the KMV model

They also assume that R and A (t) are independent and R ∼ LN (µR, σR). We recall that
the default time is defined by:

τ := inf {t ≥ 0 : t ∈ D}

where D = {A (t) ≤ B}. Since we have A (t) = A0e
σAW (t)−σ2

At/2 and B = DeµR+σRε where
ε ∼ N (0, 1), it follows that:

D =
{
A0e

σAW (t)−σ2
At/2 ≤ DeµR+σRε

}
The authors introduce the average recovery rate R̄ = E [R] = eµR+σ2

R/2. We deduce that:

D =
{
A0e

σAW (t)−σ2
At/2 ≤ R̄DeσRε−σ2

R/2
}

=
{
A0e

σAW (t)−σ2
At/2−σRε+σ2

R/2 ≤ R̄D
}

(3.50)

Finkelstein et al. (2002) introduce the process X (t) defined by:

X (t) = σAW (t)− 1
2σ

2
At− σRε−

1
2σ

2
R

It follows that Inequality (3.50) becomes:

D =
{
X (t) ≤ ln

(
R̄D

A0e
σ2
R

)}
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By assuming that X (t) can be approximated by a geometric Brownian motion with drift
−σ2

A/2 and diffusion rate σA, we can show that97:

S (t) = Φ
(
−σ (t)

2 + lnϕ
σ (t)

)
− ϕΦ

(
−σ (t)

2 − lnϕ
σ (t)

)
where σ (t) =

√
σ2
At+ σ2

R and:

ϕ = A0e
σ2
R

R̄D

This survival function is then calibrated by assuming that A0 = S0 + R̄D and:

σA = σS
S?

S? + R̄D

where S0 is the current stock price, S? is the reference stock price and σS is the stock (implied
or historical) volatility. All the parameters (S0, S?, σS , R̄, D) are easy to calibrate, except
the volatility of the recovery rate σR. We have:

σ2
R = var (lnR) = var (lnB)

We deduce that σR is the uncertainty of the default barrier B.

FIGURE 3.39: Probability of default in the CreditGrades model

97By considering the reflection principle and Equation (A.24) defined on page 1074, we deduce that:

Pr
{

infs≤t µs+ σW (s) > c
}

= Φ
(
µt− c
σ
√
t

)
− e2µc/σ

2
Φ
(
µt+ c

σ
√
t

)
The expression of S (t) is obtained by setting µ = −σ2

A/2, σ = σA and c = ln
(
R̄D
)
− ln

(
A0e

σ2
R

)
, and

using the change of variable u = t+ σ2
R/σ2

A.
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In Figure 3.39, we illustrate the CreditGrades model by computing the probability of
default when S0 = 100, S? = 100, σS = 20%, R̄ = 50%, σR = 10% and D = 100. We notice
that PD (t) is an increasing function of S?, σS , R̄, and σR. The impact of the recovery
rate may be curious, but bond holders may be encouraged to cause the default when the
recovery rate is high.

Relationship with intensity (or reduced-form) models Let λ (s) be a positive con-
tinuous process. We define the default time by τ := inf

{
t ≥ 0 :

∫ t
0 λ (s) ds ≥ θ

}
where θ is

a standard exponential random variable. We have:

S (t) = Pr {τ > t}

= Pr
{∫ t

0
λ (s) ds ≤ θ

}
= E

[
exp

(
−
∫ t

0
λ (s) ds

)]
Let Λ (t) =

∫ t
0 λ (s) ds be the integrated hazard function. If λ (s) is deterministic, we obtain

S (t) = exp (−Λ (t)). In particular, if λ (s) is a piecewise constant function, we obtain the
piecewise exponential model.

FIGURE 3.40: Intensity models and the default barrier issue

We now consider the stochastic case λ (t) = σW 2 (t) where W (t) is a Brownian motion.
In Figure 3.40, we illustrate the simulation mechanism of defaults. First, we simulate the
exponential variable B. In our example, it is equal to 1.157. Second, we simulate the Brow-
nian motion W (t) (top/left panel). Then, we calculate λ (t) where σ = 1.5% (top/right
panel), and the integrated hazard function Λ (t) (bottom/left panel). Finally, we determine
the default time when the integrated hazard function crosses the barrier B. In our example,
τ is equal to 3.30. In fact, the simulation mechanism may be confusing. Indeed, we have the
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impression that we know the barrier B, implying that the default is predictable. In intensity
models, this is the contrary. We don’t know the stochastic barrier B, but the occurrence of
the default unveils the barrier B as illustrated in the bottom/right panel in Figure 3.40. In
structural models, we assume that the barrier B is known and we can predict the default
time because we observe the distance to the barrier. Intensity and structural models are
then the two faces of the same coin. They use the same concept of default barrier, but its
interpretation is completely different.

3.3.4 Default correlation
In this section, we consider the modeling of default correlations, which corresponds

essentially to two approaches: the copula model and the factor model. Then, we see how to
estimate default correlations. Finally, we show how to consider the dependence of default
times in the pricing of basket derivatives.

3.3.4.1 The copula model

Copula functions are extensively studied in Chapter 11, and we invite the reader to
examine this chapter before to go further. Let F be the joint distribution of the random
vector (X1, . . . , Xn), we show on page 719 that F admits a copula representation:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

where Fi is the marginal distribution of Xi and C is the copula function associated to F.
Since there is a strong relationship between probability distributions and survival functions,
we can also show that the survival function S of the random vector (τ1, . . . , τn) has a copula
representation:

S (t1, . . . , tn) = C̆ (S1 (t1) , . . . ,Sn (tn))

where Si is the survival function of τi and C̆ is the survival copula associated to S. The
copula C̆ is unique if the marginals are continuous. The copula functions C and C̆ are not
necessarily the same, except when the copula C is radially symmetric (Nelsen, 2006). This
is for example the case of the Normal (or Gaussian) copula and the Student’s t copula.
Since these two copula functions are the only ones that are really used by professionals98,
we assume that C̆ = C in the sequel.

The Basel model We have seen that the Basel framework for modeling the credit risk
is derived from the Merton model. Let Zi ∼ N (0, 1) be the (normalized) asset value of the
ith firm. In the Merton model, the default occurs when Zi is below a non-stochastic barrier
Bi:

Di = 1⇔ Zi ≤ Bi
The Basel Committee assumes that Zi = √ρX +

√
1− ρεi where X ∼ N (0, 1) is the

systematic risk factor and εi ∼ N (0, 1) is the specific risk factor. We have shown that the
default barrier Bi is equal to Φ−1 (pi) where pi is the unconditional default probability. We
have also demonstrated that the conditional default probability is equal to:

pi (X) = Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
98They can also use some Archimedean copulas that are not radially symmetric such as the Clayton

copula, but it generally concerns credit portfolios with a small number of exposures.
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Remark 46 In the Basel framework, we assume a fixed maturity. If we introduce the time
dimension, we obtain:

pi (t) = Pr {τi ≤ t}
= 1− Si (t)

and:
pi (t,X) = Φ

(Φ−1 (1− Si (t))−√ρX
√

1− ρ

)
where Si (t) is the survival function of the ith firm.

The vector of assets Z = (Z1, . . . , Zn) is Gaussian with a constant covariance matrix
C = Cn (ρ):

C =


1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1


It follows that the joint default probability is:

p1,...,n = Pr {D1 = 1, . . . , Dn = 1}
= Pr {Z1 ≤ B1, . . . , Zn ≤ Bn}
= Φ (B1, . . . , Bn;C)

Since we have Bi = Φ−1 (pi), we deduce that the Basel copula between the default indicator
functions is a Normal copula, whose parameters are a constant correlation matrix Cn (ρ):

p1,...,n = Φ
(
Φ−1 (p1) , . . . ,Φ−1 (pn) ;C

)
= C (p1, . . . , pn;Cn (ρ))

Let us now consider the dependence between the survival times:

S (t1, . . . , tn) = Pr {τ1 > t1, . . . , τn > tn}
= Pr

{
Z1 > Φ−1 (p1 (t1)) , . . . , Zn > Φ−1 (pn (tn))

}
= C (1− p1 (t1) , . . . , 1− pn (tn) ;C)
= C (S1 (t1) , . . . ,Sn (tn) ;Cn (ρ))

The dependence between the default times is again the Normal copula with the matrix of
parameters Cn (ρ).

Extension to other copula models The Basel model assumes that the asset correlation
is the same between the different firms. A first extension is to consider that the dependence
between the default times remain a Normal copula, but with a general correlation matrix:

C =


1 ρ1,2 · · · ρ1,n

1
...

. . . ρn−1,n
1

 (3.51)



222 Handbook of Financial Risk Management

This approach is explicitly proposed by Li (2000), but it was already implemented in Cred-
itMetrics (Gupton et al., 1997). The correlation matrix can be estimated using a structural
model or approximated by the correlation of stock returns. However, this approach is only
valid for publicly traded companies and is not always stable. This is why professionals prefer
to use direct extensions of the one-factor model.

Let Xj be a Gaussian factor where j = 1, . . . ,m. We assume that the asset value Zi
depends on one of these common risk factors:

Zi =
m∑
j=1

βi,jXj + εi (3.52)

with
∑m
j=1 1 {βi,j > 0} = 1. We assume that the common risk factors are correlated with

each other, but they are independent of the specific risks (ε1, . . . , εn), which are by definition
not correlated. For instance, Xj can represent the systematic risk factor of the jth sector
or industry. Of course, we can extend this approach to a higher dimension such as sector
× region. For example, if we consider three sectors (S1, S2 and S3) and two geographical
regions (R1 and R2), we obtain six common risk factors:

S1 S2 S3
R1 X1 X2 X3
R2 X4 X5 X6

These risk factors can then be seen as composite sectors. We note map (i) the mapping
function, which indicates the composite sector j (or the risk factor j): map (i) = j if i ∈ Xj .
We assume that the dependence between the default times (τ1, . . . , τn) is a Normal copula
function, whose correlation matrix C is equal to:

C =


1 ρ (map (1) ,map (2)) · · · ρ (map (1) ,map (n))

1
...

. . . ρ (map (n− 1) ,map (n))
1

 (3.53)

In practice, we have m � n and many elements of the correlation matrix C are equal. In
fact, there are only m × (m+ 1) /2 different values, which correspond to inter-sector and
intra-sector correlations.

Example 41 Let us consider the case of four sectors:

Factor X1 X2 X3 X4
X1 30% 20% 10% 0%
X2 40% 30% 20%
X3 50% 10%
X4 60%

The inter-sector correlations are indicated in bold, whereas the intra-sector correlations are
underlined.

If the portfolio is composed of seven loans of corporate firms that belong to the following
sectors:

i 1 2 3 4 5 6 7
j = map (i) 1 1 2 3 3 3 4
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we obtain the following correlation matrix:

C =



1.00 0.30 0.20 0.10 0.10 0.10 0.00
1.00 0.20 0.10 0.10 0.10 0.00

1.00 0.30 0.30 0.30 0.20
1.00 0.50 0.50 0.10

1.00 0.50 0.10
1.00 0.10

1.00


Simulation of copula models With the exception of the Normal copula with a constant
correlation matrix and an infinitely fine-grained portfolio, we cannot calculate analytically
the value-at-risk or the expected shortfall of the portfolio loss. In this case, we consider
Monte Carlo methods, and we use the method of transformation for simulating copula
functions99. Since we have Si (τi) ∼ U[0,1], the simulation of correlated default times is
obtained with the following algorithm:

1. we simulate the random vector (u1, . . . , un) from the copula function C;

2. we set τi = S−1
i (ui).

In many cases, we don’t need to simulate the default time τi, but the indicator function
Di (ti) = 1 {τi ≤ ti}. Indeed, Di is a Bernoulli random variable with parameter Fi (t) =
1 − Si (t), implying that D (t) = (D1 (t1) , . . . , Dn (tn)) is a Bernoulli random vector with
parameter p (t) = (p1 (t1) , . . . , pn (tn)). Since the copula of D (t) is the copula of the random
vector τ = (τ1, . . . , τn), we obtain the following algorithm to simulate correlated indicator
functions:

1. we simulate the random vector (u1, . . . , un) from the copula function C;

2. we set Di (ti) = 1 if ui > Si (ti).

In the case of the Normal copula, the simulation of u = (u1, . . . , un) requires calculating
the Cholesky decomposition of the correlation matrix C. However, this approach is valid for
a small size n of the credit portfolio, because we are rapidly limited by the memory storage
capacity of the computer. In a 32-bit computer, the storage of a double requires 8 bytes,
meaning that the storage of a n× n Cholesky matrix requires 78.125 KB if n = 100, 7.629
MB if n = 1 000, 762.94 MB if n = 10 000, etc. It follows that the traditional Cholesky
algorithm is not adapted when considering a large credit portfolio. However, if we consider
the Basel model, we can simulate the correlated default times using the following [BASEL]
algorithm:

1. we simulate n+ 1 Gaussian independent random variables X and (ε1, . . . , εn);

2. we simulate the Basel copula function:

(u1, . . . , un) =
(

Φ
(√

ρX +
√

1− ρε1

)
, . . . ,Φ

(√
ρX +

√
1− ρεn

))
(3.54)

3. we set τi = S−1
i (ui).

99See Section 13.1.3.2 on page 802.
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The [BASEL] algorithm is the efficient way to simulate the one-factor model and demon-
strates that we don’t always need to use the Cholesky decomposition for simulating the
Normal (or the Student’s t) copula function. Let us generalize the [BASEL] algorithm when
we consider the Normal copula with the correlation matrix given by Equation (3.53). The
eigendecomposition of C is equal to V ΛV >, where V is the matrix of eigenvectors and Λ is
the diagonal matrix of eigenvalues. Let u be a vector of n independent Gaussian standard-
ized random numbers. Then, Z = V Λ1/2u is a Gaussian vector with correlation C. We note
C? =

(
ρ?j1,j2

)
the m×m correlation matrix based on intra- and inter-sector correlations100

and we consider the corresponding eigendecomposition C? = V ?Λ?V ?>. Let X? be a m× 1
Gaussian standardized random vector. It follows that the random vector Z = (Z1, . . . , Zn)
is a Gaussian random vector with correlation matrix C = map (C?) where101:

Zi =
m∑
j=1

A?map(i),jX
?
j +

√
1− ρ?map(i),map(i)εi

and A? = V ? (Λ?)1/2 and V ? are the L2-normalized eigenvectors. The [EIG] algorithm
proposed by Jouanin et al. (2004) consists then in replacing the second step of the [BASEL]
algorithm:

1. we simulate n + m Gaussian independent random variables (X?
1 , . . . , X

?
m) and

(ε1, . . . , εn);

2. for the ith credit, we calculate:

Zi =
m∑
j=1

A?map(i),jX
?
j +

√
1− ρ?map(i),map(i)εi (3.55)

3. we simulate the copula function:

(u1, . . . , un) = (Φ (Z1) , . . . ,Φ (Zn))

4. we set τi = S−1
i (ui).

Here is a comparison of the efficiency of the [EIG] algorithm with respect to the traditional
[CHOL] algorithm:

Algorithm Matrix Random Number of operations
dimension numbers + ×

CHOL n× n n n× (n− 1) n× n
EIG m×m n+m n× (m+ 1) n× (m+ 1)

10 000 loans + 20 sectors
CHOL 108 10 000 ' 108 108

EIG 400 10 020 2.1× 105 2.1× 105

These results explain why the [EIG] algorithm is faster than the [CHOL] algorithm102. We
also notice that the [EIG] algorithm corresponds to the [BASEL] algorithm in the case m = 1
when there is only one common factor.

100The diagonal elements correspond to intra-sector correlations, whereas the off-diagonal elements corre-
spond to inter-sector correlations.

101Jouanin et al. (2004) showed that if the eigenvalues of C? are positive, then C = map (C?) is a correlation
matrix.

102On average, the computational time is divided by a factor of n/m.
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Let us consider Example 41. We obtain:

A? =


−0.2633 0.1302 −0.3886 0.2504
−0.5771 −0.1980 −0.1090 0.1258
−0.5536 0.0943 0.3281 0.2774
−0.4897 0.0568 −0.0335 −0.5965


We deduce that the second step of the [EIG] algorithm is:

• if the credit belongs to the first sector, we simulate Zi as follows:

Zi = −0.263 ·X?
1 − 0.130 ·X?

2 + 0.389 ·X?
3 + 0.250 ·X?

4 + 0.837 · εi

• if the credit belongs to the second sector, we simulate Zi as follows:

Zi = −0.577 ·X?
1 − 0.198 ·X?

2 − 0.109 ·X?
3 + 0.126 ·X?

4 + 0.775 · εi

• if the credit belongs to the third sector, we simulate Zi as follows:

Zi = −0.554 ·X?
1 + 0.094 ·X?

2 + 0.328 ·X?
3 + 0.277 ·X?

4 + 0.707 · εi

• if the credit belongs to the fourth sector, we simulate Zi as follows:

Zi = −0.490 ·X?
1 + 0.057 ·X?

2 − 0.034 ·X?
3 − 0.597 ·X?

4 + 0.632 · εi

Remark 47 The extension to the Student’s t copula is straightforward, because the multi-
variate Student’s t distribution is related to the multivariate normal distribution103.

3.3.4.2 The factor model

In the previous paragraph, the multivariate survival function writes:

S (t1, . . . , tn) = C (S1 (t1) , . . . ,Sn (tn) ;C)

where C is the Normal copula and C is the matrix of default correlations. In the sector
approach, we note C = map (C?) where map is the mapping function and C? is the matrix
of intra- and inter-correlations. In this model, we characterize the default time by the
relationship τi < t⇔ Zi < Bi (t) where Zi =

∑m
j=1A

?
map(i),jX

?
j +
√

1− ρ?map(i),map(i)εi and
Bi (t) = Φ−1 (PDi (t)) = Φ−1 (1− Si (t)).

The risk factors X?
j are not always easy to interpret. If m = 1, we retrieve Zi = √ρ ·

X +
√

1− ρ · εi where ρ is the uniform correlation and X is the common factor. It generally
corresponds to the economic cycle. Let us consider the case m = 2:

C? =
(
ρ1 ρ
ρ ρ2

)
where ρ1 and ρ2 are the intra-sector correlations and ρ is the inter-sector correlation. We
have:

Zi = A?map(i),1 ·X
?
1 +A?map(i),2 ·X

?
2 +

√
1− ρmap(i) · εi

It is better to consider the following factor decomposition:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi (3.56)

103See pages 737 and 1055.
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In this case, we have three factors, and not two factors: X is the common factor, whereas
X1 and X2 are the two specific sector factors. We can extend the previous approach to a
factor model with m+ 1 factors:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi (3.57)

Equations (3.56) and (3.57) are exactly the same, except the number of factors. However,
the copula function associated to the factor model described by Equation (3.57) is the
copula of the sector model, when we assume that the inter-sector correlation is the same
for all the sectors, meaning that the off-diagonal elements of C? are equal. In this case, we
can use the previous decomposition for simulating the default times. This algorithm called
[CISC] (constant inter-sector correlation) requires simulating one additional random number
compared to the [EIG] algorithm. However, the number of operations is reduced104.

Let τ1 and τ2 be two default times, whose joint survival function is S (t1, t2) =
C (S1 (t1) ,S2 (t2)). We have:

S1 (t | τ2 = t?) = Pr {τ1 > t | τ2 = t?}
= ∂2C (S1 (t) ,S2 (t?))
= C2|1 (S1 (t) ,S2 (t?))

where C2|1 is the conditional copula function105. If C 6= C⊥, the default probability of one
firm changes when another firm defaults (Schmidt and Ward, 2002). This implies that the
credit spread of the first firm jumps at the default time of the second firm. This phenomenon
is called spread jump or jump-to-default (JTD). Sometimes it might be difficult to explain
the movements of these spread jumps in terms of copula functions. The interpretation is
easier when we consider a factor model. For example, we consider the Basel model. Figures
3.41 to 3.45 show the jumps of the hazard function of the S&P one-year transition matrix
for corporate bonds given in Table 3.34 on page 208. We recall that the rating R (t) = K
corresponds to the default state and we note R (t) = i the initial rating of the firm. We
have seen that Si (t) = 1 − e>i exp (tΛ) eK where Λ is the Markov generator. The hazard
function is equal to:

λi (t) = fi (t)
Si (t) = e>i Λ exp (tΛ) eK

1− e>i exp (tΛ) eK
We deduce that:

λi1 (t | τi2 = t?) = fi1 (t | τi2 = t?)
Si1 (t | τi2 = t?)

With the Basel copula, we have:

Si1 (t | τi2 = t?) = Φ
(

Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√
1− ρ2

)
and:

fi1 (t | τi2 = t?) = φ

(
Φ−1 (Si1 (t))− ρΦ−1 (Si2 (t?))√

1− ρ2

)
·

fi1 (t)√
1− ρ2φ (Φ−1 (Si1 (t)))

104For the [EIG] algorithm, we have n × (m+ 1) operations (+ and ×), while we have 3n elementary
operations for the [CISC] algorithm.

105The mathematical analysis of conditional copulas is given on page 737.
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The reference to the factor model allows an easier interpretation of the jumps of the hazard
rate. For example, it is obvious that the default of a CCC-rated company in ten years implies
a negative jump for the well rated companies (Figure 3.45). Indeed, this indicates that the
high idiosyncratic risk of the CCC-rated firm has been compensated by a good economic
cycle (the common risk factor X). If the default of the CCC-rated company has occurred
at an early stage, the jumps were almost zero, because we can think that the default is due
to the specific risk of the company. On the contrary, if a AAA-rated company defaults, the
jump would be particularly high as the default is sudden, because it is more explained by
the common risk factor than by the specific risk factor (Figure 3.42). We deduce that there
is a relationship between jump-to-default and default correlation.

FIGURE 3.41: Hazard function λi (t) (in bps)

3.3.4.3 Estimation methods

The Normal copula model with sector correlations requires the estimation of the matrix
C?, which is abusively called the default correlation matrix. In order to clarify this notion,
we make the following distinctions:

• the ‘canonical or copula correlations’ correspond to the parameter matrix of the copula
function that models the dependence between the defaults;

• the ‘default time correlations’ are the correlations between the default times
(τ1, . . . , τn); they depend on the copula function, but also on the unidimensional
survival functions;

• the ‘discrete default correlations’ are the correlations between the indicator functions
(D1 (t) , . . . , Dn (t)); they depend on the copula function, the unidimensional survival
functions and the time horizon t; this is why we don’t have a unique default correlation
between two firms, but a term structure of default correlations;
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FIGURE 3.42: Hazard function λi (t) (in bps) when a AAA-rated company defaults after
10 years (ρ = 5%)

FIGURE 3.43: Hazard function λi (t) (in bps) when a AAA-rated company defaults after
10 years (ρ = 50%)
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FIGURE 3.44: Hazard function λi (t) (in bps) when a BB-rated company defaults after
10 years (ρ = 50%)

FIGURE 3.45: Hazard function λi (t) (in bps) when a CCC-rated company defaults after
10 years (ρ = 50%)
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• the ‘asset correlations’ are the correlations between the asset values in the Merton
model;

• the ‘equity correlations’ are the correlations between the stock returns; in a Merton-
like model, they are assumed to be equal to the asset correlations.

In practice, the term ‘default correlation’ is used as a generic term for these different mea-
sures.

Relationship between the different default correlations We consider two firms. Li
(2000) introduces two measures of default correlation. The discrete default correlation is
equal to:

ρ (t1, t2) = E [D1 (t1)D2 (t2)]− E [D1 (t1)]E [D2 (t2)]
σ (D1 (t1))σ (D2 (t2))

where Di (ti) = 1 {τi ≤ ti}, whereas the default (or survival) time correlation is equal to:

ρ (τ1, τ2) = E [τ1τ2]− E [τ1]E [τ2]
σ (τ1)σ (τ2)

These two measures give very different numerical results. Concerning the asset correlation,
it is equal to:

ρ (Z1, Z2) = E [Z1Z2]− E [Z1]E [Z2]
σ (Z1)σ (Z2)

These three measures depend on the canonical correlation. Let us denote by ρ the copula
parameter of the Normal copula between the two default times τ1 and τ2. We have:

ρ (t1, t2) = C (PD1 (t1) ,PD2 (t2) ; ρ)− PD1 (t1) · PD2 (t2)√
PD1 (t1) (1− PD1 (t1)) ·

√
PD2 (t2) (1− PD2 (t2))

and:
ρ (τ1, τ2) = cov (τ1, τ2)√

var (τ1) · var (τ1)
where cov (τ1, τ2) =

∫∞
0
∫∞

0 (S (t1, t2)− S1 (t1) S2 (t2)) dt1 dt2 and var (τi) = 2
∫∞

0 tSi (t) dt−[∫∞
0 Si (t) dt

]2. We verify that ρ (t1, t2) 6= ρ and ρ (τ1, τ2) 6= ρ. We can also show that
ρ (t1, t2) < ρ and ρ (τ1, τ2) < ρ for the Normal copula. In the Basel model, we have
ρ (Z1, Z2) = ρ.

We consider two exponential default times τ1 ∼ E (λ1) and τ2 ∼ E (λ2). In Tables 3.42,
3.43 and 3.44, we report the discrete default correlations ρ (t1, t2) for different time horizons.
We notice that ρ (t1, t2) is much lower than 20%„ which is the copula correlation. We have
also calculated ρ (τ1, τ2), which is respectively equal to 17.0%, 21.5% and 18.0%. We notice
that the correlations are higher for the Student’s t copula than for the Normal copula106.

Statistical inference of the default correlation In the case of a factor model, we
have:

Z̃i,t = β>X̃i,t +
√

1− ‖β‖22 · ε̃i,t

where Z̃i,t is the standardized asset value of the ith firm at time t and X̃i,t is the standardized
vector of risk factors at time t for the ith firm. We can then estimate the parameter β using
OLS or GMM techniques. Let us consider the constant inter-sector correlation model:

Zi = √ρ ·X +
√
ρmap(i) − ρ ·Xmap(i) +

√
1− ρmap(i) · εi

106This phenomenon is explained in the chapter dedicated to the copula functions.
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TABLE 3.42: Discrete default correlation in % (λ1 = 100 bps, λ2 = 50 bps, Normal copula
with ρ = 20%)

t1 / t2 1 2 3 4 5 10 25 50
1 2.0 2.4 2.7 2.9 3.1 3.6 4.2 4.5
2 2.3 2.9 3.3 3.6 3.8 4.5 5.3 5.7
3 2.6 3.2 3.6 4.0 4.2 5.0 6.0 6.5
4 2.7 3.4 3.9 4.2 4.5 5.4 6.5 7.1
5 2.9 3.6 4.1 4.5 4.8 5.7 6.9 7.5

10 3.2 4.1 4.7 5.1 5.5 6.6 8.2 9.1
25 3.4 4.5 5.1 5.7 6.1 7.5 9.6 10.9
50 3.3 4.4 5.1 5.6 6.1 7.6 9.9 11.5

TABLE 3.43: Discrete default correlation in % (λ1 = 100 bps, λ2 = 50 bps, Student’s t
copula with ρ = 20% and ν = 4)

t1 / t2 1 2 3 4 5 10 25 50
1 13.9 14.5 14.5 14.3 14.0 12.6 9.8 7.2
2 12.8 14.3 14.8 14.9 14.9 14.3 11.9 9.2
3 11.9 13.7 14.5 14.9 15.1 15.0 13.1 10.4
4 11.2 13.1 14.1 14.6 14.9 15.3 13.8 11.3
5 10.6 12.6 13.7 14.3 14.7 15.4 14.3 11.9

10 8.5 10.5 11.8 12.6 13.3 14.8 15.2 13.6
25 5.5 7.2 8.3 9.2 9.9 11.9 14.0 14.3
50 3.3 4.5 5.3 5.9 6.5 8.3 11.0 12.6

TABLE 3.44: Discrete default correlation in % (λ1 = 20%, λ2 = 10%, Normal copula with
ρ = 20%)

t1 / t2 1 2 3 4 5 10 25 50
1 8.8 10.2 10.7 11.0 11.1 10.4 6.6 2.4
2 9.4 11.0 11.8 12.1 12.3 11.9 7.9 3.1
3 9.3 11.0 11.9 12.4 12.7 12.5 8.6 3.4
4 9.0 10.8 11.7 12.2 12.6 12.6 8.9 3.7
5 8.6 10.4 11.3 11.9 12.3 12.4 9.0 3.8

10 6.3 7.8 8.7 9.3 9.7 10.3 8.1 3.7
25 1.9 2.4 2.8 3.1 3.3 3.8 3.5 1.9
50 0.2 0.3 0.3 0.3 0.4 0.5 0.5 0.3
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The corresponding linear regression is:

Z̃i,t = β0 · X̃0,t + β>X̃i,t +
√

1− ρmap(i) · ε̃i,t

where X̃i,t is equal to ei � X̃t, X̃t is the set of the risk factors, which are specific to the
sectors at time t and X̃0,t is the common risk factor. We deduce that the estimation of ρ
and ρ1, . . . , ρm are given by the following relationships: ρ̂ = β̂2

0 and ρ̂j = β̂2
0 + β̂2

j .
A second approach is to consider the correlation between the default rates of homoge-

neous cohorts107. This correlation converges asymptotically to the survival time correlation.
Then, we have to inverse the relationship between the survival time correlation and the cop-
ula correlation for estimating the parameters of the copula function.

The third approach has been suggested by Gordy and Heitfield (2002). They consider
the Basel model: Zi = √ρ ·X +

√
1− ρ · εi, where X ∼ H and εi ∼ N (0, 1). The default

probability conditionally to X = x is equal to:

pi (x;Bi, ρ) = Φ
(
Bi −

√
ρx

√
1− ρ

)
We note dt the number of defaulted firms and nt the total number of firms at time t. If we
have a historical sample of default rates, we can estimate ρ using the method of maximum
likelihood. Let `t (θ) be the log-likelihood of the observation t. If we assume that there is
only one risk class C (Bi = B), the conditional number of defaults D is a binomial random
variable:

Pr {D = dt | X = x} =
(
nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt

We deduce that:

`t (θ) = ln
∫

Pr {D = dt | X = x} dH (x)

= ln
∫ (

nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt dH (x)

Generally, we consider a one-year time horizon for calculating default rates. Moreover, if we
assume that the common factor X is Gaussian, we deduce that B = Φ−1 (PD) where PD
is the one-year default probability for the risk class C. It follows that:

`t (θ) = ln
∫ (

nt
dt

)
p
(
x; Φ−1 (PD) , ρ

)dt (1− p (x; Φ−1 (PD) , ρ
))nt−dt dΦ (x)

Therefore, we can estimate the parameter ρ. If there are several risk classes, we can assume
that:

`t (θ) = ln
∫ (

nt
dt

)
p (x;B, ρ)dt (1− p (x;B, ρ))nt−dt dΦ (x)

In this case, we have two parameters to estimate: the copula correlation ρ and the implied
default barrier B.

The underlying idea of this approach is that the distribution of the default rate depends
on the default probability and the copula correlation. More specifically, the mean of the
default rate of a risk class C is equal to the default probability of C whereas the volatility
of the default rate is related to the default correlation. We introduce the notation:

ft = dt
nt

107Each cohort corresponds to a risk class.
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FIGURE 3.46: Distribution of the default rate (in %)

where ft is the default rate at time t. We assume that the one-year default probability of
C is equal to 20%. In Figure 3.46, we report the distribution of the one-year default rate
for different values of ρ when the number of firms nt is equal to 1 000. We also report some
statistics (mean, standard deviation and quantile functions) in Table 3.45. By definition,
the four probability distributions have the same mean, which is equal to 20%, but their
standard deviations are different. If ρ = 0%, σ (ft) is equal to 1.3% while σ (ft) = 33.2% in
the case ρ = 90%.

TABLE 3.45: Statistics of the default rate (in %))

ρ µ (ft) σ (ft)
Qα (ft)

1% 10% 25% 50% 75% 90% 99%
0% 20.0 1.3 17.1 18.4 19.1 20.0 20.8 21.6 23.0

20% 20.0 13.0 1.7 5.6 10.0 17.4 27.3 38.3 59.0
50% 20.0 21.7 0.0 0.6 3.1 11.7 30.3 53.8 87.3
90% 20.0 33.2 0.0 0.0 0.0 0.4 26.3 88.2 100.0

Example 42 We consider a risk class C, whose probability of default is equal to 200 bps.
Over the last 20 years, we have observed the following annual number of defaults: 3, 1, 14,
0, 33, 3, 53, 1, 4, 0, 1, 8, 7, 3, 5, 5, 0, 49, 0 and 7. We assume that the number of firms is
equal to 500 every year.

If we estimate the Basel model with the method of maximum likelihood by assuming
that B = Φ−1 (PD), we obtain ρ̂ = 28.93%. If we estimate both the default correlation
and the default barrier, we have ρ̂ = 28.58% and B̂ = −2.063, which is equivalent to a
default probability of 195 bps. It is better to estimate the barrier if we don’t trust the
default probability of the risk class because the estimation can be biased. For instance, if
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we assume that PD = 100 bps, we obtain ρ̂ = 21.82%, which is relatively lower than the
previous estimate.

The previous estimation method has been generalized by Demey et al. (2004) to the
CISC model with several intra-sector correlations, but a unique inter-sector correlation. In
Table 3.46, we report their results for the period between 1981 and 2002. We notice that
the default correlations are relatively low between 7% and 36%. The largest correlations are
observed for the sectors of energy, finance, real estate, telecom and utilities. We also notice
some significant differences between the Basel model and the CISC model.

TABLE 3.46: Estimation of canonical default correlations
Sector CISC model Basel model
Aerospace/Automobile 11.2% 11.6%
Consumer/Service sector 8.7% 7.5%
Energy/Natural resources 21.3% 11.5%
Financial institutions 15.7% 12.2%
Forest/Building products 6.8% 14.5%
Health 8.3% 9.2%
High technology 6.8% 4.7%
Insurance 12.2% 7.6%
Leisure time/Media 7.0% 7.0%
Real estate 35.9% 27.7%
Telecom 27.1% 34.3%
Transportation 6.8% 8.3%
Utilities 18.3% 21.2%
Inter-sector 6.8% X

Source: Demey et al. (2004).

Remark 48 There are very few publications on the default correlations. Moreover, they
generally concern the one-year discrete default correlations ρ (1, 1), not the copula correla-
tion. For example, Nagpal and Bahar (2001) estimate ρ (t1, t2) for US corporates and the
period 1981-1999. They distinguish the different sectors, three time horizons (1Y, 5Y and
7Y) and IG/HY credit ratings. Even if the range goes from −5.35% to 39.35%, they obtain a
very low correlation on average. However, these results should be taken with caution, because
we know that the default correlation has increased since the 2008 Global Financial Crisis
(Christoffersen et al., 2017).

3.3.4.4 Dependence and credit basket derivatives

Interpretation and pitfalls of the Basel copula The Basel copula is the basic model
for pricing CDO tranches, just as the Black-Scholes model is for options. We define the
implied correlation as the parameter ρ that gives the market spread of the CDO tranche.
In some sense, the implied correlation for CDOs is the equivalent of the implied volatility
for options. Since the implied correlation depends on attachment and detachment points of
the CDO tranche, we don’t have a single value, but a curve which is not flat. Therefore, we
observe a correlation smile or skew, meaning that the correlation is not constant.

In order to understand this phenomenon, we come back to the economic interpretation
of the Basel model. In Figure 3.47, we report the mapping between the economic cycle and
the common risk factor X. In this case, negative values of X correspond to bad economic
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times whereas positive values of X correspond to good economic times. We notice that the
factor model does not encompass the dynamics of the economic cycle. The Basel model is
typically a through-the-cycle approach, and not a point-in-time approach, meaning that the
time horizon is the long-run (typically an economic cycle of 7 years).

FIGURE 3.47: Economic interpretation of the common factor X

We recall that the loss function is L =
∑n
i=1 EADi ·LGDi ·1 {τi ≤ Ti}. Let A and D be

the attachment and detachment points of the tranche. We have:

E [L | A ≤ L < D] = EX [L (X) | A ≤ L < D]

where L (X) is the conditional loss with respect to the common factor X. With this model,
the pricing of a CDO tranche uses all the economic scenarios, which are equally weighted.
In practice, we know that market participants are more sensitive to bad economic times and
have a shorter time horizon than the duration of an economic cycle. From a mathematical
point of view, this implies that the factor component √ρX is certainly not Gaussian and
symmetric about 0. Two directions have then been investigated in order to introduce skew-
ness in credit risk modeling. The first approach assumes that the copula correlation ρ is not
constant but stochastic, while the second approach states that the copula correlation is a
function of the common factor X. These two approaches are two visions of the link between
default correlations and the economic cycle.

Stochastic correlation model We consider an extension of the Basel model:

Zi =
√
RiX +

√
1−Ri εi

where Ri ∈ [0, 1] is a random variable that represents the stochastic correlation (Andersen
and Sidenius, 2005). We notice that the conditional process Zi | Ri = ρ remains Gaussian,
whereas the conditional probability of default becomes:

pi (X) =
∫ 1

0
Φ
(
Bi −

√
ρX

√
1− ρ

)
dG (ρ)
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where G is the probability distribution of Ri. Burtschell et al. (2007) propose to model the
stochastic correlation Ri as a binary random variable:

Ri = (1− Yi)
√
ρ1 + Yi

√
ρ2

where Yi is a Bernoulli random variable B (p). For example, if p = 5%, ρ1 = 0% and
ρ2 = 100%, the defaults are uncorrelated most of the time and perfectly correlated in 5%
of cases. The copula of default times is then a mixture of the copula functions C⊥ and C+

as shown in Figure 3.48. From an economic point of view, we obtain a two-regime model.

FIGURE 3.48: Dependogram of default times in the stochastic correlation model

Local correlation model In this model, we have:

Zi = β (X)X +
√

1− ‖β (X) ‖22 εi

where the factor loading β (X) is a function of the factor X, meaning that β (X) depends
on the position in the economic cycle. In Figure 3.49, we consider two functions: β0 (X)
is constant (Basel model) and β1 (X) decreases with the common factor. In this last case,
the factor loading is high in bad economic times, meaning that the default correlation
ρ = β2 (X) is larger at the bottom of the economic cycle than at its top. This implies that
the latent variable Zi is not Gaussian and exhibits a skewness and an excess kurtosis. We
verify this property on the normalized probability density function of the factor component
β (X)X (bottom/right panel in Figure 3.49). This specification has an impact of the joint
distribution of defaults. For example, we report the empirical copula of default times in
Figure 3.50 when the factor loading is β1 (X). We notice that this copula function is not
symmetric and the joint dependence of defaults is very high in bad economic times when
the value of X is low. When β (X) is a decreasing function of X, we observe a correlation
skew. It is equivalent to change the probability measure in order to penalize the bad states
of the economic cycle or to introduce a risk premium due to the misalignment between the
time horizon of investors and the duration of the economic cycle.
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FIGURE 3.49: Distribution of the latent variable Z in the local correlation model

FIGURE 3.50: Dependogram of default times in the local correlation model
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To implement this model, we consider the normalization Z?i = σ−1
Z (Zi −mZ) where:

mZ = E [Zi] =
∫ +∞

−∞
β (x)xφ(x) dx

and:
σ2
Z = var (Zi) =

∫ +∞

−∞

(
1− β2 (x) + β2 (x)x2)φ(x) dx−m2

Z

We notice that the probability distribution of the latent variable Z?i is equal to:

F? (z) = Pr {Z?i ≤ z}

=
∫ +∞

−∞
Φ
(
mz + σZz − β (x)x√

1− ‖β (x) ‖22

)
φ(x) dx

To simulate correlated defaults108, we use the inversion method such that Ui = F? (Zi).
We consider the following parametrization:

β (x) =
{

1−
(
1−√ρ

)
e−

1
2αx

2 if x < 0√
ρ if x ≥ 0

The function β (x) depends on two parameters ρ and α. The local correlation ρ (x) = β2 (x)
is given in Figure 3.51. The parameter ρ represents the default correlation when the economic
cycle is good or the common factor X is positive. We also notice that the local correlation
ρ (x) tends to 1 when x tends to −∞. This implies an absolute contagion of the default
times when the economic situation is dramatic. The parameter α is then a measure of the
contagion intensity when the economic cycle is unfavorable. Figure 3.52 shows the base
correlation109 which are generated by this model110. We observe that these concave skews
are coherent with respect to those observed in the market.

In Figure 3.53, we report the base correlation of the 5Y European iTraxx index at
the date of 14 June 2005. The estimation of the local correlation model gives ρ = 0.5%
and α = 60%. We notice that the calibrated model fits well the correlation skew of the
market. Moreover, the calibrated model implies an asymmetric distribution and a left fat
tail of the factor component (top/right panel in Figure 3.54) and an implied economic cycle,
which is more flattened than the economic cycle derived from a Gaussian distribution. In
particular, we observe small differences within good economic times and large differences
within bad economic times. If we consider the copula function, we find that defaults are
generally weakly correlated except during deep economic crisis. Let us consider the ordinal
sum of the two copula functions C⊥ and C+. This copula is represented in Figure 3.55. The
10% worst economic scenarios correspond to the perfect dependence (copula C+) whereas
the remaining 90% economic scenarios correspond to the zero-correlation situation (copula
C⊥). We notice that this copula function fits very well the correlation skew. We conclude
that market participants underestimate default correlations in good times and overestimate
default correlations in bad times.

108We calculate mZ , σZ and F? (z). For F? (z), we consider a meshgrid (zk). When z ∈ (zk, zk+1), we use
the linear or the Gaussian interpolation.

109The base correlation is the implied correlation of an equity tranche, where the attachment point is equal
to 0 and the detachment point is equal to the strike.

110We consider a CDO with a five-year maturity. The coupons are paid every quarter. The portfolio of
underlying assets is homogenous with a spread of 100 bps and a recovery rate of 40%. The pricing is done
with the method of Monte Carlo and one million simulations
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FIGURE 3.51: Local correlation ρ (x) = β2 (x)

FIGURE 3.52: Correlation skew generated by the local correlation model
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FIGURE 3.53: Calibration of the correlation skew (local correlation model)

FIGURE 3.54: Implied local correlation model
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FIGURE 3.55: Calibration of the correlation skew (ordinal sum of C⊥ and C+)

3.3.5 Granularity and concentration
The risk contribution of the Basel model has been obtained under the assumption that

the portfolio is infinitely fine-grained. In this case, the common risk factor X largely dom-
inates the specific risk factors εi. When the portfolio is concentrated in a few number of
credits, the risk contribution formula, which has been derived on page 173, is not valid.
In this case, the Basel regulation implies to calculate an additional capital. In the second
consultative paper on the Basel II Accord (BCBS, 2001a), the Basel Committee suggested
to complement the IRB-based capital by a ‘granularity adjustment’ that captures the risk
of concentration. Finally, the Basel Committee has abandoned the idea to calculate the ad-
ditional capital in the first pillar. In fact, this granularity adjustment is today treated in the
second pillar, and falls under the internal capital adequacy assessment process (ICAAP).

3.3.5.1 Difference between fine-grained and concentrated portfolios

Definition of the granularity adjustment We recall that the portfolio loss is given
by:

L =
n∑
i=1

EADi ·LGDi ·1 {τi ≤ Ti} (3.58)

Under the assumption that the portfolio is infinitely fine-grained (IFG), we have shown that
the one-year value-at-risk is given by111:

VaRα (wIFG) =
n∑
i=1

EADi ·E [LGDi] · Φ
(Φ−1 (PDi) +√ρΦ−1 (PDi)√

1− ρ

)
(3.59)

However, this assumption does not always hold, and the portfolio w cannot be fine-grained
and present some concentration issues. In this case, the one-year value-at-risk is equal to

111Without any loss of generality, we assume that Ti = 1 in the sequel.
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the quantile α of the loss distribution:

VaRα (w) = F−1
L (α)

The granularity adjustment GA is the difference between the two risk measures. In the case
of the VaR and UL credit risk measures, we obtain:

GA = VaRα (w)−VaRα (wIFG)

In most cases, we expect that the granularity adjustment is positive, meaning that the
IRB-based capital underestimates the credit risk of the portfolio.

The case of a perfectly concentrated portfolio Let us consider a portfolio that is
composed of one credit. We have:

L = EAD ·LGD ·1 {τ ≤ T}

Let G be the distribution function of the loss given default. It follows that:

FL (`) = Pr {EAD ·LGD ·1 {τ ≤ T} ≤ `}

Since we have ` = 0 ⇔ τ > T , we deduce that FL (0) = Pr {τ > T} = 1 − PD. If ` 6= 0,
this implies that the default has occurred and we have:

FL (`) = FL (0) + Pr {EAD ·LGD ≤ ` | τ ≤ T}

= (1− PD) + PD ·G
(

`

EAD

)
The value-at-risk of this portfolio is then equal to:

VaRα (w) =

 EAD ·G−1
(
α+ PD−1

PD

)
if α ≥ 1− PD

0 otherwise

In figure 3.56, we consider an illustration when the exposure at default is equal to one.
The first panel compares the value-at-risk VaRα (w) when LGD ∼ U [0, 1] and LGD =
50%. Except for low default probabilities, VaRα (w) is larger when the loss given default
is stochastic than when the loss given default is set to the mean E [LGD]. The next panels
also shows that the IRB value-at-risk VaRα (wIFG) underestimates the true value-at-risk
VaRα (w) when PD is high. We conclude that the granularity adjustment depends on two
main factors:

• the discrepancy between LGD and its expectation E [LGD];

• the specific risk that can increase or decrease112 the credit risk of the portfolio.

The diversification effect and the default correlation We also notice that the gran-
ularity adjustment is equal to zero when the default correlation tends to one:

lim
ρ→1

VaRα (w) = VaRα (wIFG)

112For instance, the true value-at-risk can be lower than the sum of IRB contributions for well-rated
portfolios.



Credit Risk 243

FIGURE 3.56: Comparison between the 99.9% value-at-risk of a loan and its risk contri-
bution in an IFG portfolio

Indeed, when ρ = 1, there is no diversification effect. To illustrate this property, we re-
port the loss distribution of an infinitely fine-grained portfolio113 in Figure 3.57. When the
correlation is equal to zero, the conditional expected loss does not depend on X and we
have:

L = E [L | X] = EAD ·LGD ·PD

When the correlation is different from zero, we have:{
E [L | X] > E [L] for low values of X
E [L | X] < E [L] for high values of X

Since the value-at-risk considers a bad economic scenario, it is normal that the value-at-risk
increases with respect to ρ because E [L | X] is an increasing function of ρ in bad economic
times.

In Figure 3.58, we compare the normalized loss distribution114 of non fined-grained,
but homogenous portfolios. We notice that the loss distribution of the portfolio converges
rapidly to the loss distribution of the IFG portfolio. It suffices that the number of credits is
larger than 50. However, this result assumes that the portfolio is homogenous. In the case of
non-homogenous portfolio, it is extremely difficult to define a rule to know if the portfolio
is fine-grained or not.

113This is a homogeneous portfolio of 50 credits with the following characteristics: EAD = 1, E [LGD] =
50% and PD = 10%.

114This is the loss of the portfolio divided by the number n of credits in the portfolio.
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FIGURE 3.57: Loss distribution of an IFG portfolio

FIGURE 3.58: Comparison of the loss distribution of non-IFG and IFG portfolios
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3.3.5.2 Granularity adjustment

Monte Carlo approach The first approach to compute the granularity adjustment is to
estimate the quantile F̂−1

L (α) of the portfolio loss using the Monte Carlo method. In Table
3.47, we have reported the (relative) granularity adjustment, which is defined as:

GA? = F̂−1
L (α)−VaRα (wIFG)

VaRα (wIFG)

for different homogenous credit portfolios when EAD = 1. We consider different values of
the default probability PD (1% and 10%), the size n of the portfolio (50, 100 and 500) and
the confidence level α of the value-at-risk (90%, 99% and 99.9%). For the loss given default,
we consider two cases: LGD = 50% and LGD ∼ U [0, 1]. For each set of parameters, we
use 10 million simulations for estimating the quantile F̂−1

L (α) and the same seed for the
random number generator115 in order to compare the results. For example, when n = 50,
PD = 10%, ρ = 10%, LGD ∼ U [0, 1] and α = 90%, we obtain GA? = 13.8%. This means
that the capital charge is underestimated by 13.8% if we consider the IRB formula. We
notice that the granularity adjustment is positive in the different cases we have tested. We
verify that it decreases with respect to the portfolio size. However, it is difficult to draw
other conclusions. For instance, it is not necessarily an increasing function of the confidence
level.

TABLE 3.47: Granularity adjustment GA? (in %)

n 50 100 500 50 100 500
Parameters α LGD ∼ U[0,1] LGD = 50%

PD = 10%
ρ = 10%

90% 13.8 7.4 1.6 12.5 6.8 1.2
99% 19.3 10.0 2.1 13.3 6.2 1.2

99.9% 21.5 10.9 2.3 12.2 6.9 1.6

PD = 10%
ρ = 20%

90% 8.1 4.2 0.9 2.7 2.7 0.9
99% 10.3 5.3 1.1 6.7 4.1 0.6

99.9% 11.3 5.6 1.2 6.5 2.8 0.6

PD = 1%
ρ = 20%

90% 43.7 23.5 5.0 60.1 20.1 4.0
99% 36.7 18.8 3.9 32.9 19.6 3.7

99.9% 30.2 15.3 3.1 23.7 9.9 1.7

Analytical approach Let w be a credit portfolio. We have the following identity:

VaRα (w) = VaRα (wIFG) + VaRα (w)−VaRα (wIFG)︸ ︷︷ ︸
Granularity adjustment GA

(3.60)

The granularity adjustment is then the capital we have to add to the IRB value-at-risk in
order to obtain the true value-at-risk (Wilde, 2001b; Gordy, 2003). Since we have seen that
VaRα (wIFG) is the conditional expected loss when the risk factor X corresponds to the
quantile 1− α, we obtain:

VaRα (w) = VaRα (wIFG) + GA
= E [L | X = xα] + GA

115See Chapter 13 on page 787.
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where xα = H−1 (1− α) and H (x) is the cumulative distribution function of X. In order
to derive the expression of the granularity adjustment, we rewrite Equation (3.60) in terms
of portfolio loss:

L = E [L | X] + (L− E [L | X])

Since we have VaRα (w) = F−1 (α) where F (`) is the loss distribution, we deduce that:

VaRα (w) = VaRα (L)
= VaRα (E [L | X] + η (L− E [L | X]))|η=1

Emmer and Tasche (2005) consider the second-order Taylor expansion of the value-at-risk:

VaRα (w) ≈ VaRα (E [L | X]) +
∣∣∣∣∂ VaRα (E [L | X] + η (L− E [L | X]))

∂ η

∣∣∣∣
η=1

+1
2

∣∣∣∣∂2 VaRα (E [L | X] + η (L− E [L | X]))
∂ η2

∣∣∣∣
η=1

Under some assumptions (homogeneous portfolio, regularity of the conditional expected
loss, single factor model, etc.), Wilde (2001b) and Gordy (2003) show that the second-order
Taylor expansion reduces to116:

VaRα (w) ≈ µ (xα)− 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)∣∣∣∣
x=xα

where h (x) is the probability density function of X, µ (x) is the conditional expected loss
function:

µ (x) = E [L | X = x]

and υ (x) is the conditional variance function:

υ (x) = σ2 (L | X = x)

Since µ (xα) = VaRα (wIFG), we deduce that:

VaRα (w) ≈ VaRα (wIFG) + GA

where the granularity adjustment is equal to:

GA = − 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)∣∣∣∣
x=xα

= 1
2υ (xα) ∂2

xµ (xα)
(∂xµ (xα))2 −

1
2
∂xυ (xα)
∂xµ (xα) −

1
2υ (xα) ∂x ln h (xα)

∂xµ (xα)

The granularity adjustment has been extensively studied117. Originally, the Basel Commit-
tee proposed to include the granularity adjustment in the first pillar (BCBS, 2001a), but it
has finally preferred to move this issue into the second pillar118.

116In fact, we can show that the first derivative vanishes (Gouriéroux et al., 2000). If we remember the
Euler allocation principle presented on page 105, this is not surprising since VaRα (E [L | X]) is the sum of
risk contributions and already includes the first-order effects. In this case, it only remains the second-order
effects.

117See for example Gordy (2003, 2004), Gordy and Marrone (2012), Gordy and Lütkebohmert (2013). The
works of Wilde (2001a,b) and Emmer and Tasche (2005) are a good introduction to this topic.

118See Exercise 3.4.7 on page 253 for a derivation of the original Basel granularity adjustment.
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3.4 Exercises
3.4.1 Single- and multi-name credit default swaps

1. We assume that the default time τ follows an exponential distribution with parameter
λ. Write the cumulative distribution function F, the survival function S and the
density function f of the random variable τ . How do we simulate this default time?

2. We consider a CDS 3M with two-year maturity and $1 mn notional principal. The
recovery rate R is equal to 40% whereas the spread s is equal to 150 bps at the
inception date. We assume that the protection leg is paid at the default time.

(a) Give the cash flow chart. What is the P&L of the protection seller A if the
reference entity does not default? What is the P&L of the protection buyer B if
the reference entity defaults in one year and two months?

(b) What is the relationship between s , R and λ? What is the implied one-year
default probability at the inception date?

(c) Seven months later, the CDS spread has increased and is equal to 450 bps.
Estimate the new default probability. The protection buyer B decides to realize
his P&L. For that, he reassigns the CDS contract to the counterparty C. Explain
the offsetting mechanism if the risky PV01 is equal to 1.189.

3. We consider the following CDS spread curves for three reference entities:

Maturity #1 #2 #3
6M 130 bps 1 280 bps 30 bps
1Y 135 bps 970 bps 35 bps
3Y 140 bps 750 bps 50 bps
5Y 150 bps 600 bps 80 bps

(a) Define the notion of credit curve. Comment the previous spread curves.
(b) Using the Merton Model, we estimate that the one-year default probability is

equal to 2.5% for #1, 5% for #2 and 2% for #3 at a five-year time horizon.
Which arbitrage position could we consider about the reference entity #2?

4. We consider a basket of n single-name CDS.

(a) What is a first-to-default (FtD), a second-to-default (StD) and a last-to-default
(LtD)?

(b) Define the notion of default correlation. What is its impact on the three previous
spreads?

(c) We assume that n = 3. Show the following relationship:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

where sCDS
i is the CDS spread of the ith reference entity.

(d) Many professionals and academics believe that the subprime crisis is due to the
use of the Normal copula. Using the results of the previous question, what could
you conclude?
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3.4.2 Risk contribution in the Basel II model
1. We note L the portfolio loss of n credit and wi the exposure at default of the ith

credit. We have:

L (w) = w>ε =
n∑
i=1

wi · εi (3.61)

where εi is the unit loss of the ith credit. Let F be the cumulative distribution function
of L (w).

(a) We assume that ε = (ε1, . . . , εn) ∼ N (0,Σ). Compute the value-at-risk VaRα (w)
of the portfolio when the confidence level is equal to α.

(b) Deduce the marginal value-at-risk of the ith credit. Define then the risk contri-
bution RCi of the ith credit.

(c) Check that the marginal value-at-risk is equal to:

∂ VaRα (w)
∂ wi

= E
[
εi | L (w) = F−1 (α)

]
Comment on this result.

2. We consider the Basel II model of credit risk and the value-at-risk risk measure. The
expression of the portfolio loss is given by:

L =
n∑
i=1

EADi ·LGDi ·1 {τi < Ti} (3.62)

(a) Define the different parameters EADi, LGDi, τi and Ti. Show that Model (3.62)
can be written as Model (3.61) by identifying wi and εi.

(b) What are the necessary assumptions H to obtain this result:

E
[
εi | L = F−1 (α)

]
= E [LGDi] · E

[
Di | L = F−1 (α)

]
with Di = 1 {τi < Ti}.

(c) Deduce the risk contribution RCi of the ith credit and the value-at-risk of the
credit portfolio.

(d) We assume that the credit i defaults before the maturity Ti if a latent variable
Zi goes below a barrier Bi:

τi ≤ Ti ⇔ Zi ≤ Bi

We consider that Zi = √ρ ·X +
√

1− ρ · εi where Zi, X and εi are three inde-
pendent Gaussian variables N (0, 1). X is the factor (or the systematic risk) and
εi is the idiosyncratic risk.
i. Interpret the parameter ρ.
ii. Calculate the unconditional default probability:

pi = Pr {τi ≤ Ti}

iii. Calculate the conditional default probability:

pi (x) = Pr {τi ≤ Ti | X = x}
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(e) Show that, under the previous assumptions H, the risk contribution RCi of the
ith credit is:

RCi = EADi ·E [LGDi] · Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
(3.63)

when the risk measure is the value-at-risk.

3. We now assume that the risk measure is the expected shortfall:

ESα (w) = E [L | L ≥ VaRα (w)]

(a) In the case of the Basel II framework, show that we have:

ESα (w) =
n∑
i=1

EADi ·E [LGDi] · E
[
pi (X) | X ≤ Φ−1 (1− α)

]
(b) By using the following result:∫ c

−∞
Φ(a+ bx)φ(x) dx = Φ2

(
c,

a√
1 + b2

; −b√
1 + b2

)
where Φ2 (x, y; ρ) is the cdf of the bivariate Gaussian distribution with correlation
ρ on the space [−∞, x] · [−∞, y], deduce that the risk contribution RCi of the ith
credit in the Basel II model is:

RCi = EADi ·E [LGDi] ·
C
(
1− α, pi;

√
ρ
)

1− α (3.64)

where C (u1, u2; θ) is the Normal copula with parameter θ.
(c) What do the results (3.63) and (3.64) become if the correlation ρ is equal to

zero? Same question if ρ = 1.

4. The risk contributions (3.63) and (3.64) were obtained by considering the assumptions
H and the default model defined in Question 2(d). What are the implications in terms
of Pillar 2?

3.4.3 Calibration of the piecewise exponential model
1. We denote by F and S the distribution and survival functions of the default time τ .

Define the function S (t) and deduce the expression of the associated density function
f (t).

2. Define the hazard rate λ (t). Deduce that the exponential model corresponds to the
particular case λ (t) = λ.

3. We assume that the interest rate r is constant. In a continuous-time model, we recall
that the CDS spread is given by the following expression:

s (T ) =
(1−R) ·

∫ T
0 e−rtf (t) dt∫ T

0 e−rtS (t) dt
(3.65)

where R is the recovery rate and T is the maturity of the CDS. Find the triangle
relationship when τ ∼ E (λ).
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4. Let us assume that:

λ (t) =

 λ1 if t ≤ 3
λ2 if 3 < t ≤ 5
λ3 if t > 5

(a) Give the expression of the survival function S (t) and calculate the density func-
tion f (t). Verify that the hazard rate λ (t) is a piecewise constant function.

(b) Find the expression of the CDS spread using Equation (3.65).
(c) We consider three credit default swaps, whose maturities are respectively equal

to 3, 5 and 7 years. Show that the calibration of the piecewise exponential model
implies to solve a set of 3 equations with the unknown variables λ1, λ2 and λ3.
What is the name of this calibration method?

(d) Find an approximated solution when r is equal to zero and λm is small. Comment
on this result.

(e) We consider the following numerical application: r = 5%, s (3) = 100 bps, s (5) =
150 bps, s (7) = 160 bps and R = 40%. Estimate the implied hazard function.

(f) Using the previous numerical results, simulate the default time with the uniform
random numbers 0.96, 0.23, 0.90 and 0.80.

3.4.4 Modeling loss given default
1. What is the difference between the recovery rate and the loss given default?

2. We consider a bank that grants 250 000 credits per year. The average amount of a
credit is equal to $50 000. We estimate that the average default probability is equal to
1% and the average recovery rate is equal to 65%. The total annual cost of the litigation
department is equal to $12.5 mn. Give an estimation of the loss given default?

3. The probability density function of the beta probability distribution B (α, β) is:

f (x) = xα−1 (1− x)β−1

B (α, β)

where B (α, β) =
∫ 1

0 u
α−1 (1− u)β−1 du.

(a) Why is the beta probability distribution a good candidate to model the loss given
default? Which parameter pair (α, β) does correspond to the uniform probability
distribution?

(b) Let us consider a sample (x1, . . . , xn) of n losses in case of default. Write the log-
likelihood function. Deduce the first-order conditions of the maximum likelihood
estimator.

(c) We recall that the first two moments of the beta probability distribution are:

E [X] = α

α+ β

σ2 (X) = αβ

(α+ β)2 (α+ β + 1)

Find the method of moments estimator.



Credit Risk 251

4. We consider a risk class C corresponding to a customer/product segmentation specific
to retail banking. A statistical analysis of 1 000 loss data available for this risk class
gives the following results:

LGDk 0% 25% 50% 75% 100%
nk 100 100 600 100 100

where nk is the number of observations corresponding to LGDk.

(a) We consider a portfolio of 100 homogeneous credits, which belong to the risk class
C. The notional is $10 000 whereas the annual default probability is equal to 1%.
Calculate the expected loss of this credit portfolio with a one-year time horizon
if we use the previous empirical distribution to model the LGD parameter.

(b) We assume that the LGD parameter follows a beta distribution B (α, β). Cali-
brate the parameters α and β with the method of moments.

(c) We assume that the Basel II model is valid. We consider the portfolio described
in Question 4(a) and calculate the unexpected loss. What is the impact if we
use a uniform probability distribution instead of the calibrated beta probability
distribution? Why does this result hold even if we consider different factors to
model the default time?

3.4.5 Modeling default times with a Markov chain
We consider a rating system with 4 risk classes (A, B, C and D), where rating D

represents the default. The transition probability matrix with a two-year time horizon is
equal to:

P (2) =


94% 3% 2% 1%
10% 80% 5% 5%
10% 10% 60% 20%
0% 0% 0% 100%


We also have:

P (4) =


88.860% 5.420% 3.230% 2.490%
17.900% 64.800% 7.200% 10.100%
16.400% 14.300% 36.700% 32.600%
0.000% 0.000% 0.000% 100.000%


and:

P (6) =


84.393% 7.325% 3.986% 4.296%
24.026% 53.097% 7.918% 14.959%
20.516% 15.602% 23.063% 40.819%
0.000% 0.000% 0.000% 100.000%


Let us denote by SA (t), SB (t) and SC (t) the survival functions of each risk class A, B and
C.

1. How are the matrices P (4) and P (6) calculated?

2. Assuming a piecewise exponential model, calibrate the hazard function of each risk
class for 0 < t ≤ 2, 2 < t ≤ 4 and 4 < t ≤ 6.
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3. Give the definition of a Markovian generator. How can we estimate the generator Λ
associated to the transition probability matrices? Verify numerically that the direct
estimator is equal to:

Λ̂ =


−3.254 1.652 1.264 0.337

5.578 −11.488 3.533 2.377
6.215 7.108 −25.916 12.593
0.000 0.000 0.000 0.000

× 10−2

4. In Figure 3.59, we show the hazard function λ (t) deduced from Questions 2 and 3.
Explain how do we calculate λ (t) in both cases. Why do we obtain an increasing
curve for rating A, a decreasing curve for rating C and an inverted U-shaped curve
for rating B?

FIGURE 3.59: Hazard function λ (t) (in bps) estimated respectively with the piecewise
exponential model and the Markov generator

3.4.6 Continuous-time modeling of default risk
We consider a credit rating system with four risk classes (A, B, C and D), where rating

D represents the default. The one-year transition probability matrix is equal to:

P = P (1) =


94% 3% 2% 1%
10% 80% 7% 3%
5% 15% 60% 20%
0% 0% 0% 0%


We denote by SA (t), SB (t) and SC (t) the survival functions of each risk class A, B and
C.
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1. Explain how we can calculate the n-year transition probability matrix P (n)? Find
the transition probability matrix P (10).

2. Let V =
(
V1

...V2
...V3

...V4

)
andD = diag (λ1, λ2, λ3, λ4) be the matrices of eigenvectors

and eigenvalues associated to P .

(a) Show that:
P (n)V = V Dn

Deduce a second approach for calculating the n-year transition probability matrix
P (n).

(b) Calculate the eigendecomposition of the transition probability matrix P . Deduce
the transition probability matrix P (10).

3. We assume that the default time follows a piecewise exponential model. Let Si (n)
and λi (n) be the survival function and the hazard rate of a firm whose initial rating
is the state i (A, B or C). Give the expression of Si (n) and λi (n). Show that:

λi (1) = − ln
(
1− e>i Pne4

)
Calculate Si (n) and λi (n) for n ∈ {0, . . . , 10, 50, 100}.

4. Give the definition of a Markov generator. How can we estimate the generator Λ
associated to the transition probability matrices? Give an estimate Λ̂.

5. Explain how we can calculate the transition probability matrix P (t) for the time
horizon t ≥ 0. Give the theoretical approximation of P (t) based on Taylor expansion.
Calculate the 6-month transition probability matrix.

6. Deduce the expression of Si (t) and λi (t).

3.4.7 Derivation of the original Basel granularity adjustment
In this exercise, we derive the formula of the granularity adjustment that was proposed

by the Basel Committee in 2001. The mathematical proof follows Chapter 8 (§422 to §457)
of BCBS (2001a) and the works of Wilde (2001a,b) and Gordy (2003, 2004). We encourage
the reader to consult carefully these references. Most of the time, we use the notations of
the Basel Committee119. We consider the Basel model that has been presented in Section
3.2.3.2 on page 169.

1. We consider the normalized loss:

Li = LGDi ·Di

We assume that the conditional probability of default is given by the CreditRisk+
model (Gordy, 2000):

pi (X) = pi (1 +$i (X − 1))

where $i ∈ [0, 1] is the factor weight and X is the systematic risk factor, which follows
the gamma distribution G (αg, βg). Calculate the conditional expected loss120:

µ (x) = E [Li | X = x]

119When they are different, we indicate the changes in footnotes.
120We use the notation Ei = E [LGDi].
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and the conditional variance:

υ (x) = σ2 (Li | X = x)

The Basel Committee assumes that (BCBS, 2001a, §447):

σ (LGDi) = 1
2
√
Ei (1− Ei)

Deduce that we have the following approximation:

υ (x) ≈ Ei
(

1
4 + 3

4Ei
)
pi (1 +$i (x− 1))

2. Calculate the granularity adjustment function:

β (x) = 1
2h (x)

d
dx

(
h (x) υ (x)
∂xµ (x)

)
3. In order to maintain the coherency with the IRB formula, the Basel Committee im-

poses that the conditional probabilities are the same for the IRB formula (Vasicek
model) and the granularity formula (CreditRisk+ model). Show that:

$i = 1
(x− 1)

Fi
pi

where:
Fi = Φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
− pi

Deduce the expression of β (x).

4. The calibration has been done by assuming that E [X] = 1 and σ (X) = 2 (BCBS,
2001a, §445). Show that:

β (xα) = (0.4 + 1.2 · Ei)
(

0.76229640 + 1.0747964 · pi
Fi

)
We recall that the Basel Committee finds the following expression of β (xα):

β (xα) = (0.4 + 1.2 · Ei)
(

0.76 + 1.10 · pi
Fi

)
How to obtain exactly this formula?

5. In order to transform the granularity adjustment function β (xα) into risk-weighted
assets, the Basel Committee indicates that it uses a scaling factor c = 1.5 (BCBS,
2001a, §457). Moreover, the Basel Committee explains that the “the baseline IRB risk-
weights for non-retail assets (i.e. the RWA before granularity adjustment) incorporate
a margin of 4% to cover average granularity”. Let w? be the equivalent homogenous
portfolio of the current portfolio w. Show that the granularity adjustment is equal
to121:

GA = EAD?

n?
·GSF−0.04 · RWANR

121The Basel Committee uses the notation �AG instead of �? for the equivalent homogeneous portfolio.
The global exposure EAD? corresponds to the variable TNRE (total non-retail exposure) of the Basel
Committee.
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where RWANR are the risk-weighted assets for non-retail assets and:

GSF = (0.6 + 1.8 · E?)
(

9.5 + 13.75 · p
?

F ?

)
6. The Basel Committee considers the following definition of the portfolio loss:

L =
nC∑
j=1

∑
i∈Cj

EADi ·LGDi ·Di

where Cj is the jth class of risk. Find the equivalent homogeneous portfolio w? of size
n? and exposure EAD?. Calibrate the parameters p?, E? and σ (LGD?).

7. Using the notations of BCBS (2001a), summarize the different steps for computing
the original Basel granularity adjustment.

3.4.8 Variance of the conditional portfolio loss
The portfolio loss is given by:

L =
n∑
i=1

wi · LGDi ·Di

where wi is the exposure at default of the ith credit, LGDi is the loss given default, Ti is the
residual maturity and Di = 1 {τi ≤ Ti} is the default indicator function. We suppose the
assumptions of the Basel II model are satisfied. We note Di (X) and pi (X) the conditional
default indicator function and the conditional default probability with respect to the risk
factor X.

1. Define Di (X). Calculate E [Di (X)], E
[
D2
i (X)

]
and E [Di (X)Dj (X)].

2. Define the conditional portfolio loss L (X).

3. Calculate the expectation of L (X).

4. Show that the variance of L (X) is equal to:

σ2 (L (X)) =
n∑
i=1

w2
i

(
E [Di (X)]σ2 (LGDi) + E2 [LGDi]σ2 (Di (X))

)
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Chapter 4
Counterparty Credit Risk and Collateral
Risk

Counterparty credit risk and collateral risk are other forms of credit risk, where the un-
derlying credit risk is not directly generated by the economic objective of the financial
transaction. Therefore, it can reduce the P&L of the portfolio and create a loss even if the
business objective is reached. A typical example is the purchase transaction of a credit de-
fault swap. In this case, we have previously seen that the protection buyer is hedged against
the credit risk if the reference entity defaults. This is partially true, because the protection
buyer faces the risk that the protection seller also defaults. In this example, we see that the
total P&L of the financial transaction is the direct P&L of the economic objective minus the
potential loss due to the transaction settlement. Another example concerns the collateral
risk, since the P&L of the financial transaction is directly affected by the mark-to-market
of the collateral portfolio.

In this chapter, we study the counterparty credit risk (CCR) and show its computation.
We also focus on the regulatory framework that has evolved considerably since the collapse of
the LTCM hedge fund in 1997, which has shocked the entire financial system, not because of
the investor losses, but because of the indirect losses generated by the counterparty credit
risk1. The second section is dedicated to the credit valuation adjustment (CVA), which
can be considered as the ‘little brother ’ of the CCR. This risk has been mainly identified
with the bankruptcy of Lehman Brothers, which has highlighted the market risk of CCR.
Finally, Section three reviews different topics associated to the collateral risk management,
particularly in the repo markets.

4.1 Counterparty credit risk
We generally make the distinction between credit risk (CR) and counterparty credit risk

(CCR). The counterparty credit risk on market transactions is the risk that the counterparty
could default before the final settlement of the transaction’s cash flows. For instance, if the
bank buys a CDS protection on a firm and the seller of the CDS protection defaults before
the maturity of the contract, the bank could not be hedged against the default of the firm.
Another example of CCR is the delivery/settlement risk. Indeed, few financial transactions
are settled on the same-day basis and the difference between the payment date and the
delivery date is generally between one and five business days. There is then a counterparty
credit risk if one counterparty defaults when the payment date is not synchronized with the
delivery date. This settlement risk is low when it is expressed as a percent of the notional
amount because the maturity mismatch is short, but it concerns large amounts from an
aggregate point of view. In a similar way, when an OTC contract has a positive mark-to-

1Chapter 8 on page 453 describes the impact of the LTCM bankruptcy on systemic risk.
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market, the bank suffers a loss if the counterparty defaults. To reduce this risk, the bank
can put in place bilateral netting agreements. We note that this risk disappears (or more
precisely decreases) when the bank uses an exchange, because the counterparty credit risk is
transferred to the central counterparty clearing house, which guarantees the expected cash
flows.

4.1.1 Definition
BCBS (2004a) measures the counterparty credit risk by the replacement cost of the OTC

derivative. Let us consider two banks A and B that have entered into an OTC contract C.
We assume that the bank B defaults before the maturity of the contract. According to
Pykhtin and Zhu (2006), Bank A can then face two situations:

• The current value of the contract C is negative. In this case, Bank A closes out the
position and pays the market value of the contract to Bank B. To replace the contract
C, Bank A can enter with another counterparty C into a similar contract C′. For that,
Bank A receives the market value of the contract C′ and the loss of the bank is equal
to zero.

• The current value of the contract C is positive. In this case, Bank A close out the
position, but receives nothing from Bank B. To replace the contract, Bank A can
enter with another counterparty C into a similar contract C′. For that, Bank A pays
the market value of the contract C′ to C. In this case, the loss of the bank is exactly
equal to the market value.

We note that the counterparty exposure is then the maximum of the market value and
zero. Moreover, the counterparty credit risk differs from the credit risk by two main aspects
(Canabarro and Duffie, 2003):

1. The counterparty credit risk is bilateral, meaning that both counterparties may face
losses. In the previous example, Bank B is also exposed to the risk that Bank A
defaults.

2. The exposure at default is uncertain, because we don’t know what will be the replace-
ment cost of the contract when the counterparty defaults.

Using the notations introduced in the previous chapter, we deduce that the credit loss of
an OTC portfolio is:

L =
n∑
i=1

EADi (τi) · LGDi ·1 {τi ≤ Ti}

This is the formula of a credit portfolio loss, except that the exposure at default is random
and depends on different factors: the default time of the counterparty, the evolution of
market risk factors and the correlation between the market value of the OTC contract and
the default of the counterparty.

Let MtM (t) be the mark-to-market value of the OTC contract at time t. The exposure
at default is defined as:

EAD = max (MtM (τ ) , 0)
If we consider a portfolio of OTC derivatives with the same counterparty entity, the exposure
at default is the sum of positive market values:

EAD =
n∑
i=1

max (MtMi (τ ) , 0)
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This is why the bank may be interested in putting in place a global netting agreement:

EAD = max
(

n∑
i=1

MtMi (τ ) , 0
)

≤
n∑
i=1

max (MtMi (τ ) , 0)

In practice, it is extremely complicated and rare that two counterparties succeed in signing
such agreement. Most of the time, there are several netting agreements on different trading
perimeters (equities, bonds, interest rate swaps, etc.). In this case, the exposure at default
is:

EAD =
∑
k

max
(∑
i∈Nk

MtMi (τ ) , 0
)

+
∑
i/∈∪Nk

max (MtMi (τ ) , 0)

where Nk corresponds to the kth netting arrangement and defines a netting set. Since
the default of Lehman Brothers, we observe a strong development of (global and partial)
netting agreements in order to reduce potential losses, but also the capital charge induced
by counterparty credit risk.

Example 43 Banks A and B have traded five OTC products, whose mark-to-market values2
are given in the table below:

t 1 2 3 4 5 6 7 8
C1 5 5 3 0 −4 0 5 8
C2 −5 10 5 −3 −2 −8 −7 −10
C3 0 2 −3 −4 −6 −3 0 5
C4 2 −5 −5 −5 2 3 5 7
C5 −1 −3 −4 −5 −7 −6 −7 −6

If we suppose that there is no netting agreement, the counterparty exposure of Bank
A corresponds to the second row in Table 4.1. We notice that the exposure changes over
time. If there is a netting agreement, we obtain lower exposures. We now consider a more
complicated situation. We assume that Banks A and B have two netting agreements: one
on equity OTC contracts (C1 and C2) and one on fixed income OTC contracts (C3 and C4).
In this case, we obtain results given in the last row in Table 4.1. For instance, the exposure
at default for t = 8 is calculated as follows:

EAD = max (8− 10, 0) + max (5 + 7, 0) + max (−6, 0) = 12

TABLE 4.1: Counterparty exposure of Bank A
t 1 2 3 4 5 6 7 8

No netting 7 17 8 0 2 3 10 20
Global netting 1 9 0 0 0 0 0 4
Partial netting 2 15 8 0 0 0 5 12

If we consider Bank B, the counterparty exposure is given in Table 4.2. This illustrates the
bilateral nature of the counterparty credit risk. Indeed, except if there is a global netting
arrangement, both banks have a positive counterparty exposure.

2They are calculated from the viewpoint of Bank A.
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TABLE 4.2: Counterparty exposure of Bank B
t 1 2 3 4 5 6 7 8

No netting 6 8 12 17 19 17 14 16
Global netting 0 0 4 17 17 14 4 0
Partial netting 1 6 12 17 17 14 9 8

Remark 49 In the previous example, we have assumed that the mark-to-market value of
the OTC contract for one bank is exactly the opposite of the mark-to-market value for the
other bank. In practice, banks calculate mark-to-model prices, implying that they can differ
from one bank to another one.

4.1.2 Modeling the exposure at default
In order to understand the counterparty credit risk, we begin by an example and illus-

trate the time-varying property of the exposure at default. Then, we introduce the different
statistical measures that are useful for characterizing the EAD and show how to calculate
them.

4.1.2.1 An illustrative example

Example 44 We consider a bank that buys 1 000 ATM call options, whose maturity is one-
year. The current value of the underlying asset is equal to $100. We assume that the interest
rate r and the cost-of-carry parameter b are equal to 5%. Moreover, the implied volatility of
the option is considered as a constant and is equal to 20%.

By considering the previous parameters, the value C0 of the call option3 is equal to
$10.45. At time t, the mark-to-market of this derivative exposure is defined by:

MtM (t) = nC · (C (t)− C0)

where nC and C (t) are the number and the value of call options. Let e (t) be the exposure
at default. We have:

e (t) = max (MtM (t) , 0)
At the initial date of the trade, the mark-to-market value and the counterparty exposure
are zero. When t > 0, the mark-to-market value is not equal to zero, implying that the
counterparty exposure e (t) may be positive. In Table 4.3, we have reported the values
taken by C (t), MtM (t) and e (t) for two scenarios of the underlying price S (t). If we
consider the first scenario, the counterparty exposure is equal to zero during the first three
months, because the mark-to-market value is negative. The counterparty exposure is then
positive for the next four months. For instance, it is equal to $2 519 at the end of the fourth
month4. In the case of the second scenario, the counterparty exposure is always equal to zero
except for two months. Therefore, we notice that the counterparty exposure is time-varying
and depends of the trajectory of the underlying price. This implies that the counterparty
exposure cannot be calculated once and for all at the initial date of the trade. Indeed, the
counterparty exposure changes with time. Moreover, we don’t known what the future price
of the underlying asset will be. That’s why we are going to simulate it.

3We use the Black-Scholes formula given by Equation (2.10) on page 94 to price the option.
4We have:

MtM (t) = 1 000× (12.969− 10.450) = $2 519
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TABLE 4.3: Mark-to-market and counterparty exposure of the call option

t
Scenario #1 Scenario #2

S (t) C (t) MtM (t) e (t) S (t) C (t) MtM (t) e (t)
1M 97.58 8.44 −2 013 0 91.63 5.36 −5 092 0
2M 98.19 8.25 −2 199 0 89.17 3.89 −6 564 0
3M 95.59 6.26 −4 188 0 97.60 7.35 −3 099 0
4M 106.97 12.97 2 519 2 519 97.59 6.77 −3 683 0
5M 104.95 10.83 382 382 96.29 5.48 −4 970 0
6M 110.73 14.68 4 232 4 232 97.14 5.29 −5 157 0
7M 113.20 16.15 5 700 5 700 107.71 11.55 1 098 1 098
8M 102.04 6.69 −3 761 0 105.71 9.27 −1 182 0
9M 115.76 17.25 6 802 6 802 107.87 10.18 −272 0
10M 103.58 5.96 −4 487 0 108.40 9.82 −630 0
11M 104.28 5.41 −5 043 0 104.68 5.73 −4 720 0
1Y 104.80 4.80 −5 646 0 115.46 15.46 5 013 5 013

We note MtM (t1; t2) the mark-to-market value between dates t1 and t2. By construction,
we have:

MtM (0; t) = MtM (0; t0) + MtM (t0; t)

where 0 is the initial date of the trade, t0 is the current date and t is the future date. This
implies that the mark-to-market value at time t has two components:

1. the current mark-to-market value MtM (0; t0) that depends on the past trajectory of
the underlying price;

2. and the future mark-to-market value MtM (t0; t) that depends on the future trajectory
of the underlying price.

In order to evaluate the second component, we need to define the probability distribution of
S (t). In our example, we can assume that the underlying price follows a geometric Brownian
motion:

dS (t) = µS (t) dt+ σS (t) dW (t)

We face here an issue because we have to define the parameters µ and σ. There are two
approaches:

1. the first method uses the historical probability measure P, meaning that the parame-
ters µ and σ are estimated using historical data;

2. the second method considers the risk-neutral probability measure Q, which is used to
price the OTC derivative.

While the first approach is more relevant to calculate the counterparty exposure, the second
approach is more frequent because it is easier for a bank to implement it. Indeed,Q is already
available because of the hedging portfolio, which is not the case of P. In our example, this is
equivalent to set µ and σ to their historical estimates µ̂ and σ̂ if we consider the historical
probability measure P, while they are equal to the interest rate r and the implied volatility
Σ if we consider the risk-neural probability measure Q.

In Figure 4.1, we report an illustration of scenario generation when the current date t0 is
6 months. This means that the trajectory of the asset price S (t) is given when t ≤ t0 whereas
it is simulated when t > t0. At time t0 = 0.5, the asset price is equal to $114.77. We deduce
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FIGURE 4.1: Probability density function of the counterparty exposure after six months

that the option price C (t0) is equal to $18.17. The mark-to-market value is then positive
and equal to $7 716. Using 10 000 simulated scenarios, we estimate the probability density
function of the mark-to-market value MtM (0; 1) at the maturity date (bottom/left panel in
Figure 4.1) and deduce the probability density function of the counterparty exposure e (1)
(bottom/right panel in Figure 4.1). We notice that the probability to obtain a negative
mark-to-market at the maturity date is significant. Indeed, it is equal to 36% because it
remains 6 months and the asset price may sufficiently decrease. Of course, this probability
depends on the parameters used for simulating the trajectories, especially the trend µ. Using
a risk-neutral approach has the advantage to limit the impact of this coefficient.

Remark 50 The mark-to-market value presents a very high skew, because it is bounded.
Indeed, the worst-case scenario is reached when the asset price S (1) is lower than the strike
K = 100. In this case, we obtain:

MtM (0; 1) = 1 000× (0− 10.45)
= −$10 450

We suppose now that the current date is nine months. During the last three months, the
asset price has changed and it is now equal to $129.49. The current counterparty exposure
has then increased and is equal to5 $20 294. In Figure 4.2, we observe that the shape of the
probability density function has changed. Indeed, the skew has been highly reduced, because
it only remains three months before the maturity date. The price is then sufficiently high
that the probability to obtain a positive mark-to-market at the settlement date is almost
equal to 100%. This is why the two probability density functions are very similar.

We can use the previous approach of scenario generation in order to represent the evo-
lution of counterparty exposure. In Figure 4.3, we consider two observed trajectories of the

5Using the previous parameters, the BS price of the call option is now equal to $30.74.
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FIGURE 4.2: Probability density function of the counterparty exposure after nine months

FIGURE 4.3: Evolution of the counterparty exposure
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asset price. For each trajectory, we report the current exposure, the expected exposure and
the 95% quantile of the counterparty exposure at the maturity date. All these counter-
party measures converge at the maturity date, but differ before because of the uncertainty
between the current date and the maturity date.

4.1.2.2 Measuring the counterparty exposure

We define the counterparty exposure at time t as the random credit exposure6:

e (t) = max (MtM (0; t) , 0) (4.1)

This counterparty exposure is also known as the potential future exposure (PFE). When
the current date t0 is not equal to the initial date 0, the counterparty exposure can be
decomposed in two parts:

e (t) = max (MtM (0; t0) + MtM (t0; t) , 0)
= max (MtM (0; t0) , 0) +

(max (MtM (0; t0) + MtM (t0; t) , 0)−max (MtM (0; t0) , 0))

The first component is the current exposure, which is always positive:

CE (t0) = max (MtM (0; t0) , 0)

The second component is the credit variation between t0 and t. While the current mark-
to-market value is negative, the second component can only be a positive value. However,
the credit variation may also be negative if the future mark-to-market value is negative.
Let us denote by F[0,t] the cumulative distribution function of the potential future exposure
e (t). The peak exposure (PE) is the quantile of the counterparty exposure at the confidence
level α:

PEα (t) = F−1
[0,t] (α)

= {inf x : Pr {e (t) ≤ x} ≥ α} (4.2)

The maximum value of the peak exposure is referred as the maximum peak exposure7
(MPE):

MPEα (0; t) = sup
s

PEα (0; s) (4.3)

We now introduce the traditional counterparty credit risk measures:
• The expected exposure (EE) is the average of the distribution of the counterparty
exposure at the future date t:

EE (t) = E [e (t)]

=
∫ ∞

0
x dF[0,t] (x) (4.4)

• The expected positive exposure (EPE) is the weighted average over time [0, t] of the
expected exposure:

EPE (0; t) = E
[

1
t

∫ t

0
e (s) ds

]
= 1

t

∫ t

0
EE (s) ds (4.5)

6The definitions introduced in this paragraph come from Canabarro and Duffie (2003) and the Basel II
framework.

7It is also known as the maximum potential future exposure (MPFE).
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• The effective expected exposure (EEE) is the maximum expected exposure that occurs
at the future date t or any prior date:

EEE (t) = sup
s≤t

EE (s)

= max
(
EEE

(
t−
)
,EE (t)

)
(4.6)

• Finally, the effective expected positive exposure (EEPE) is the weighted average over
time [0, t] of the effective expected exposure:

EEPE (0; t) = 1
t

∫ t

0
EEE (s) ds (4.7)

We can make several observations concerning the previous measures. Some of them are
defined with respect to a future date t. This is the case of PEα (t), EE (t) and EEE (t). The
others depend on the time period [0; t], typically a one-year time horizon. Previously, we
have considered the counterparty measure e (t), which defines the potential future exposure
between the initial date 0 and the future date t. We can also use other credit measures like
the potential future exposure between the current date t0 and the future date t:

e (t) = max (MtM (t0; t) , 0)

The counterparty exposure e (t) can be defined with respect to one contract or to a basket
of contracts. In this last case, we have to take into account netting arrangements.

4.1.2.3 Practical implementation for calculating counterparty exposure

We consider again Example 44 and assume that the current date t0 is the initial date
t = 0. Using 50 000 simulations, we have calculated the different credit measures with
respect to the time t and reported them in Figure 4.4. For that, we have used the risk-
neutral distribution probability Q in order to simulate the trajectory of the asset price
S (t). Let {t0, t1, . . . , tn} be the set of discrete times. We note nS the number of simulations
and Sj (ti) the value of the asset price at time ti for the jth simulation. For each simulated
trajectory, we then calculate the option price Cj (ti) and the mark-to-market value:

MtMj (ti) = nC · (Cj (ti)− C0)

Therefore, we deduce the potential future exposure:

ej (ti) = max (MtMj (ti) , 0)

The peak exposure at time ti is estimated using the order statistics:

PEα (ti) = eαnS :nS (ti) (4.8)

We use the empirical mean to calculate the expected exposure:

EE (ti) = 1
nS

nS∑
j=1

ej (ti) (4.9)

For the expected positive exposure, we approximate the integral by the following sum:

EPE (0; ti) = 1
ti

i∑
k=1

EE (tk) ∆tk (4.10)
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If we consider a fixed-interval scheme with ∆tk = ∆t, we obtain:

EPE (0; ti) = ∆t
ti

i∑
k=1

EE (tk)

= 1
i

i∑
k=1

EE (tk) (4.11)

By definition, the effective expected exposure is given by the following recursive formula:

EEE (ti) = max (EEE (ti−1) ,EE (ti)) (4.12)

where EEE (0) is initialized with the value EE (0). Finally, the effective expected positive
exposure is given by:

EEPE (0; ti) = 1
ti

i∑
k=1

EEE (tk) ∆tk (4.13)

In the case of a fixed-interval scheme, this formula becomes:

EEPE (0; ti) = 1
i

i∑
k=1

EEE (tk) (4.14)

If we consider Figure 4.4, we observe that the counterparty exposure is increasing with
respect to the time horizon8. This property is due to the fact that the credit risk evolves
according to a square-root-of-time rule

√
t. In the case of an interest rate swap, the counter-

party exposure takes the form of a bell-shaped curve. In fact, there are two opposite effects
that determine the counterparty exposure (Pykhtin and Zhu, 2007):

• the diffusion effect of risk factors increases the counterparty exposure over time, be-
cause the uncertainty is greater in the future and may produce very large potential
future exposures compared to the current exposure;

• the amortization effect decreases the counterparty exposure over time, because it
reduces the remaining cash flows that are exposed to default.

In Figure 4.5, we have reported counterparty exposure in the case of an interest swap with
a continuous amortization. The peak exposure initially increases because of the diffusion
effect and generally reaches its maximum at one-third of the remaining maturity. It then
decreases because of the amortization effect. This is why it is equal to zero at the maturity
date when the swap is fully amortized.

4.1.3 Regulatory capital
The Basel II Accord includes three approaches to calculate the capital requirement

for the counterparty credit risk: current exposure method (CEM), standardized method
(SM) and internal model method (IMM). In March 2014, the Basel Committee decided to
replace non-internal model approaches (CEM and SM) by a more sensitive approach called
standardized approach (or SA-CCR), which is has been implemented since January 2017.

Each approach defines how the exposure at default EAD is calculated. The bank uses
this estimate with the appropriated credit approach (SA or IRB) in order to measure the
capital requirement. In the SA approach, the capital charge is equal to:

K = 8% · EAD ·RW
8This implies that MPEα (0; t) = PEα (t) and EEE (t) = EE (t).
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FIGURE 4.4: Counterparty exposure profile of options

FIGURE 4.5: Counterparty exposure profile of interest rate swaps
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where RW is the risk weight of the counterparty. In the IRB approach, we recall that:

K = EAD ·LGD ·
(

Φ
(

Φ−1 (PD) +
√
ρ (PD)Φ−1 (0.999)√

1− ρ (PD)

)
− PD

)
· ϕ (M)

where LGD and PD are the loss given default and the probability of default, which apply
to the counterparty. The correlation ρ (PD) is calculated using the standard formula (3.35)
given on page 184.

4.1.3.1 Internal model method

In the internal model method, the exposure at default is calculated as the product of a
scalar α and the one-year effective expected positive exposure9:

EAD = α · EEPE (0; 1)

The Basel Committee has set the value α at 1.4. The maturity M used in the IRB formula
is equal to one year if the remaining maturity is less or equal than one year. Otherwise, it
is calculated as follows10:

M = min
(

1 +
∑
k=1 1 {tk > 1} · EE (tk) ·∆tk ·B0 (tk)∑
k=1 1 {tk ≤ 1} · EEE (tk) ·∆tk ·B0 (tk) , 5

)

Under some conditions, the bank may uses its own estimates for α. Let LEE be the loan
equivalent exposure such that:

K (LEE ·LGD ·1 {τ ≤ T}) = K (EAD (τ ) · LGD ·1 {τ ≤ T}) (4.15)

The loan equivalent exposure is then the deterministic exposure at default, which gives the
same capital than the random exposure at default EAD (τ ). Using a one-factor credit risk
model, Canabarro et al. (2003) showed that:

α = LEE
EPE

This is the formula that banks must use in order to estimate α, subject to a floor of 1.2.

Example 45 We assume that the one-year effective expected positive exposure with respect
to a given counterparty is equal to $50.2 mn.

In Table 4.4, we have reported the required capital K for different values of PD under
the foundation IRB approach. The maturity M is equal to one year and we consider the
45% supervisory factor for the loss given default. The exposure at default is calculated
with α = 1.4. We show the impact of the Basel III multiplier applied to the correlation. In
this example, if the default probability of the counterparty is equal to 1%, this induces an
additional required capital of 27.77%.

9If the remaining maturity τ of the product is less than one year, the exposure at default becomes:

EAD = α · EEPE (0; τ)

10The maturity has then a cap of five years.
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TABLE 4.4: Capital charge of counterparty credit risk under the FIRB approach
PD 1% 2% 3% 4% 5%

Basel II ρ (PD) (in %) 19.28 16.41 14.68 13.62 12.99
K (in $ mn) 4.12 5.38 6.18 6.82 7.42

Basel III ρ (PD) (in %) 24.10 20.52 18.35 17.03 16.23
K (in $ mn) 5.26 6.69 7.55 8.25 8.89
∆K (in %) 27.77 24.29 22.26 20.89 19.88

4.1.3.2 Non-internal model methods (Basel II)

Under the current exposure method (CEM), we have:

EAD = CE (0) +A

where CE (0) is the current exposure and A is the add-on value. In the views of the Basel
Committee, CE (0) represents the replacement cost, whereas the add-on reflects the po-
tential future exposure of the contract. For a single OTC transaction, A is the product of
the notional and the add-on factor, which is given in Table 4.5. For a portfolio of OTC
transactions with netting agreements, the exposure at default is the sum of the current net
exposure plus a net add-one value AN , which is defined as follows:

AN = (0.4 + 0.6 ·NGR) ·AG

where AG =
∑
iAi is the gross add-on, Ai is the add-on of the ith transaction and NGR is

the ratio between the current net and gross exposures.

TABLE 4.5: Regulatory add-on factors for the current exposure method
Residual Fixed FX and Equity Precious Other
Maturity Income Gold Metals Commodities
0−1Y 0.0% 1.0% 8.0% 7.0% 10.0%
1Y−5Y 0.5% 5.0% 8.0% 7.0% 12.0%
5Y+ 1.5% 7.5% 10.0% 8.0% 15.0%

Example 46 We consider a portfolio of four OTC derivatives, which are traded with the
same counterparty:

Contract C1 C2 C3 C4
Asset class Fixed income Fixed income Equity Equity
Notional (in $ mn) 100 40 20 10
Maturity 2Y 6Y 6M 18M
Mark-to-market (in $ mn) 3.0 −2.0 2.0 −1.0

We assume that there are two netting arrangements: one concerning fixed income derivatives
and another one for equity derivatives.

In the case where there is no netting agreement, we obtain these results:

Contract C1 C2 C3 C4 Sum
CE (0) (in $ mn) 3.0 0.0 2.0 0.0 5.0
Add-on (in %) 0.5 1.5 8.0 8.0
A (in $ mn) 0.5 0.6 1.6 0.8 3.5
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The exposure at default is then equal to $8.5 mn. If we take into account the two netting
agreements, the current net exposure becomes:

CE (0) = max (3− 2, 0) + max (2− 1, 0) = $2 mn

We deduce that NGR is equal to 2/5 or 40%. It follows that:

AN = (0.4 + 0.6× 0.4)× 3.5 = $2.24 mn

Finally, the exposure at default is equal to $4.24 mn.
The standardized method was designed for banks that do not have the approval to

apply the internal model method, but would like to have a more sensitive approach that
the current exposure method. In this framework, the exposure at default is equal to:

EAD = β ·max

∑
i

CMVi,
∑
j

CCFj ·

∣∣∣∣∣∣
∑
i∈j

RPTi

∣∣∣∣∣∣


where CMVi is the current market value of transaction i, CCFj is the supervisory credit
conversion factor with respect to the hedging set j and RPTi is the risk position from
transaction i. The supervisory scaling factor β is set to 1.4. In this approach, the risk
positions have to be grouped into hedging sets, which are defined by similar instruments
(e.g. same commodity, same issuer, same currency, etc.). The risk position

∑
i∈j RPTi is

the sum of notional values of linear instruments and delta-equivalent notional values of non-
linear instruments, which belong to the hedging set j. The credit conversion factors ranges
from 0.3% to 10%. The initial goal of the Basel Committee was to provide an approach
which mimics the internal model method11. However, the SM approach was never really
used by banks. Indeed, it didn’t interest advanced banks that preferred to implement the
IMM, and it was too complicated for the other banks that have used the CEM.

4.1.3.3 SA-CCR method (Basel III)

The SA-CCR has been adopted by the Basel Committee in March 2014 in order to
replace non-internal models approaches since January 2017. The main motivation the Basel
Committee was to propose a more-sensitive approach, which can easily be implemented:

“Although being more risk-sensitive than the CEM, the SM was also criticized
for several weaknesses. Like the CEM, it did not differentiate between margined
and unmargined transactions or sufficiently capture the level of volatilities ob-
served over stress periods in the last five years. In addition, the definition of
hedging set led to operational complexity resulting in an inability to implement
the SM, or implementing it in inconsistent ways” (BCBS, 2014b, page 1).

The exposure at default under the SA-CCR is defined as follows:

EAD = α · (RC + PFE)

where RC is the replacement cost (or the current exposure), PFE is the potential future
exposure and α is equal to 1.4. We can view this formula as an approximation of the IMM
calculation, meaning that RC + PFE represents a stylized EEPE value. The PFE add-on is
given by:

PFE = γ ·
5∑
q=1

A(Cq)

11Indeed, the β multiplier coefficient is the equivalent of the α multiplier coefficient, whereas the rest of
the expression can be interpreted as an estimate of the effective expected positive exposure.
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where γ is the multiplier and A(Cq) is the add-on of the asset class Cq (interest rate, foreign
exchange, credit, equity and commodity). We have:

γ = min
(

1, 0.05 + 0.95 · exp
(

MtM
1.90 ·

∑5
q=1A

(Cq)

))

where MtM is the mark-to-market value of the derivative transactions minus the haircut
value of net collateral held. We notice that γ is equal to 1 when the mark-to-market is
positive and γ ∈ [5%, 1] when the net mark-to-market is negative. Figure 4.6 shows the
relationship between the ratio MtM

/∑5
q=1A

(Cq) and the multiplier γ. The role of γ is
then to reduce the potential future exposure in the case of negative mark-to-market.

FIGURE 4.6: Impact of negative mark-to-market on the PFE multiplier

The general steps for calculating the add-on are the following. First, we have to determine
the primary risk factors of each transaction in order to classify the transaction into one or
more asset classes. Second, we calculate an adjusted notional amount di at the transaction
level12 and a maturity factorMF i, which reflects the time horizon appropriate for this type
of transactions. For unmargined transactions, we have:

MF i =
√

min (Mi, 1)

12The trade-level adjusted notional di is defined as the product of current price of one unit and the
number of units for equity and commodity derivatives, the notional of the foreign currency leg converted to
domestic currency for foreign exchange derivatives and the product of the trade notional amount and the
supervisory duration SDi for interest rate and credit derivatives. The supervisory duration SDi is defined
as follows:

SDi = 20 ·
(
e−0.05·Si − e−0.05·Ei

)
where Si and Ei are the start and end dates of the time period referenced by the derivative instrument.
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where Mi is the remaining maturity of the transaction and is floored by 10 days. For
margined transactions, we have:

MF i = 3
2
√

M?
i

where M?
i is the appropriate margin period of risk (MPOR). Then, we apply a supervisory

delta adjustment ∆i to each transaction13 and a supervisory factor SFj to each hedging
set j in order to take the volatility into account. The add-on of one transaction i has then
the following expression:

Ai = SFj · (∆i · di · MF i)
Finally, we apply an aggregation method to calculate the add-on A(Cq) of the asset class Cq
by considering correlations between hedging sets. Here are the formulas that determine the
add-on values:

• The add-on for interest rate derivatives is equal to:

A(ir) =
∑
j

SFj ·

√√√√ 3∑
k=1

3∑
k′=1

ρk,k′ ·Dj,k ·Dj,k′

where notations j and k refer to currency j and maturity bucket14 k and the effective
notional Dj,k is calculated according to:

Dj,k =
∑
i∈(j,k)

∆i · di · MF i

• For foreign exchange derivatives, we obtain:

A(fx) =
∑
j

SFj ·

∣∣∣∣∣∣
∑
i∈j

∆i · di · MF i

∣∣∣∣∣∣
where the hedging set j refers to currency pair j.

• The add-on for credit and equity derivatives use the same formula:

A(credit/equity) =

√√√√(∑
k

ρk ·Ak

)2

+
∑
k

(1− ρ2
k) ·A2

k

where k represents entity k and:

Ak = SFk ·
∑
i∈k

∆i · di · MF i

• In the case of commodity derivatives, we have:

A(commodity) =
∑
j

√√√√(ρj ·∑
k

Aj,k

)2

+
(
1− ρ2

j

)
·
∑
k

A2
j,k

where j indicates the hedging set, k corresponds to the commodity type and:

Aj,k = SFj,k ·
∑
i∈(j,k)

∆i · di · MF i

13For instance ∆i is equal to −1 for a short position, +1 for a long position, the Black-Scholes delta for
an option position, etc.

14The three maturity buckets k are (1) less than one year, (2) between one and five years and (3) more
than five years.
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TABLE 4.6: Supervisory parameters for the SA-CCR approach
Asset class SFj ρk Σi

Interest rate
0−1Y 0.50% 100% 50%
1Y−5Y 0.50% 70% 100% 50%
5Y+ 0.50% 30% 70% 100% 50%

Foreign exchange 4.00% 15%

Credit

AAA 0.38% 50% 100%
AA 0.38% 50% 100%
A 0.42% 50% 100%
BBB 0.54% 50% 100%
BB 1.06% 50% 100%
B 1.60% 50% 100%
CCC 6.00% 50% 100%
IG index 0.38% 80% 80%
SG index 1.06% 80% 80%

Equity Single name 32.00% 50% 120%
Index 20.00% 80% 75%

Commodity

Electricity 40.00% 40% 150%
Oil & gas 18.00% 40% 70%
Metals 18.00% 40% 70%
Agricultural 18.00% 40% 70%
Other 18.00% 40% 70%

Source: BCBS (2014b).

For interest rate derivatives, hedging sets correspond to all derivatives in the same currency
(e.g. USD, EUR, JPY). For currency, they consists of all currency pairs (e.g. USD/EUR,
USD/JPY, EUR/JPY). For credit and equity, there is a single hedging set, which contains
all the entities (both single names and indices). Finally, there are four hedging sets for
commodity derivatives: energy (electricity, oil & gas), metals, agricultural and other. In
Table 4.6, we give the supervisory parameters15 for the factor SFj , the correlation16 ρk
and the implied volatility Σi in order to calculate Black-Scholes delta exposures. We notice
that the value of the supervisory factor can differ within one hedging set. For instance,
it is equal to 0.38% for investment grade (IG) indices, while it takes the value 1.06% for
speculative grade (SG) indices.

Example 47 The netting set consists of four interest rate derivatives17:

Trade Instrument Currency Maturity Swap Notional MtM
1 IRS USD 9M Payer 4 0.10
2 IRS USD 4Y Receiver 20 −0.20
3 IRS USD 10Y Payer 20 0.70
4 Swaption 10Y USD 1Y Receiver 5 0.50

This netting set consists of only one hedging set, because the underlying assets of all
these derivative instruments are USD interest rates. We report the different calculations in

15Source: BCBS (2014b).
16We notice that we consider cross-correlations between the three time buckets for interest rate derivatives.
17For the swaption, the forward rate swap and the strike value are equal to 6% and 5%.
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the following table:

i k Si Ei SDi ∆i di MF i Di

1 1 0.00 0.75 0.74 1.00 2.94 0.87 2.55
2 2 0.00 4.00 3.63 −1.00 72.51 1.00 −72.51
3 3 0.00 10.00 7.87 1.00 157.39 1.00 157.39
4 3 1.00 11.00 7.49 −0.27 37.43 1.00 −10.08

where k indicates the time bucket, Si is the start date, Ei is the end date, SDi is the
supervisory duration, ∆i is the delta, di is the adjusted notional, MF i is the maturity
factor and Di is the effective notional. For instance, we obtain the following results for the
swaption transaction:

SDi = 20×
(
e−0.05×1 − e−0.05×10) = 7.49

∆i = −Φ
(
− ln (6%/5%)

0.5×
√

1
+ 1

2 × 0.5×
√

1
)

= −0.27

di = 7.49× 5 = 37.43
MF i =

√
1 = 1

Di = −0.27× 37.43× 1 = −10.08

We deduce that the effective notional of time buckets is respectively equal to D1 = 2.55,
D2 = −72.51 and D3 +D4 = 147.30. It follows that:∑3

k=1

∑3

k′=1
ρk,k′Dj,kDj,k′ = 2.552 − 2× 70%× 2.55× 72.51 +

72.512 − 2× 70%× 72.51× 147.30 +
147.302 + 2× 30%× 2.55× 147.30

= 11 976.1

While the supervisory factor is 0.50%, the add-on value A(ir) is then equal to 0.55. The
replacement cost is:

RC = max (0.1− 0.2 + 0.7 + 0.5, 0) = 1.1

Because the mark-to-market of the netting set is positive, the PFE multiplier is equal to 1.
We finally deduce that:

EAD = 1.4× (1.1 + 1× 0.55) = 2.31

Remark 51 Annex 4 of BCBS (2014b) contains four examples of SA-CCR calculations
and presents also several applications including different hedging sets, netting sets and asset
classes.

Even if SA-CCR is a better approach for measuring the counterparty credit risk than
CEM and SM, its conservative calibration has been strongly criticized, in particular the
value of α. For instance, the International Swaps and Derivatives Association reports many
examples, where the EAD calculated with SA-CCR is a multiple of the EAD calculated with
CEM and IMM18. This is particularly true when the mark-to-market is negative and the
hedging set is unmargined. In fact, the industry considers that α ≈ 1 is more appropriate
than α = 1.4.

18www.isda.org/a/qTiDE/isda-letter-to-the-bcbs-on-sa-ccr-march-2017.pdf

http://www.isda.org/
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4.1.4 Impact of wrong way risk
According to ISDA (2014b), the wrong way risk (WWR) is defined as the risk that

“occurs when exposure to a counterparty or collateral associated with a transaction is
adversely correlated with the credit quality of that counterparty”. This means that the
exposure at default of the OTC contract and the default risk of the counterparty are not
independent, but positively correlated. Generally, we distinguish two types of wrong way
risk:

1. general (or conjectural) wrong way risk occurs when the credit quality of the coun-
terparty is correlated with macroeconomic factors, which also impact the value of the
transaction;

2. specific wrong way risk occurs when the correlation between the exposure at default
and the probability of default is mainly explained by some idiosyncratic factors.

For instance, general WWR arises when the level of interest rates both impacts the mark-
to-market of the transaction and the creditworthiness of the counterparty. An example of
specific WWR is when Bank A buys a CDS protection on Bank B from Bank C, and the
default probabilities of B and C are highly correlated. In this case, if the credit quality of B
deteriorates, both the mark-to-market of the transaction and the default risk of C increase.

Remark 52 Right way risk (RWR) corresponds to the situation where the counterparty
exposure and the default risk are negatively correlated. In this case, the mark-to-market of
the transaction decreases as the counterparty approaches the default. By definition, RWR is
less a concern from a regulation point of view.

4.1.4.1 An example

Let us assume that the mark-to-market of the OTC contract is given by a Brownian
motion:

MtM (t) = µ+ σW (t)

If we note e (t) = max (MtM (t) , 0), we have:

E [e (t)] =
∫ ∞
−∞

max
(
µ+ σ

√
tx, 0

)
φ (x) dx

= µ

∫ ∞
−µ/(σ√t)

φ (x) dx+ σ
√
t

∫ ∞
−µ/(σ√t)

xφ (x) dx

= µ

(
1− Φ

(
− µ

σ
√
t

))
+ σ
√
t

[
− 1√

2π
e−

1
2x

2
]∞
−µ/(σ√t)

= µΦ
(

µ

σ
√
t

)
+ σ
√
tφ

(
µ

σ
√
t

)
We consider the Merton approach for modeling the default time τ of the counterparty. Let
B (t) = Φ−1 (1− S (t)) be the default barrier, where S (t) is the survival function of the
counterparty. We assume that the dependence between the mark-to-market MtM (t) and
the survival time is equal to the Normal copula C (u1, u2; ρ) with parameter ρ. Redon (2006)
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shows that19:

E [e (t) | τ = t] = E [e (t) | B (t) = B]

= µBΦ
(
µB
σB

)
+ σBφ

(
µB
σB

)
where µB = µ+ ρσ

√
tB and σB =

√
1− ρ2σ

√
t. With the exception of ρ = 0, we have:

E [e (t)] 6= E [e (t) | τ = t]

In Figure 4.7, we report the conditional distribution of the mark-to-market given that the
default occurs at time t = 1. The parameters are µ = 0, σ = 1 and τ ∼ E (λ) where λ is
calibrated to fit the one-year probability of default PD 20. We notice that the exposure at
default decreases with the correlation ρ when PD is equal to 1% (top/left panel), whereas
it increases with the correlation ρ when PD is equal to 99% (top/right panel). We verify
the stochastic dominance of the mark-to-market with respect to the default probability.
Figure 4.8 shows the relationship between the conditional expectation E [e (t) | τ = t] and
the different parameters21. As expected, the exposure at default is an increasing function
of µ, σ, ρ and PD.

4.1.4.2 Calibration of the α factor

In the internal model method, the exposure at default is computed by scaling the effective
expected positive exposure:

EAD = α · EEPE (0; 1)

where α is the scaling factor. In this framework, we assume that the mark-to-market of
the OTC transaction and the default risk of the counterparty are not correlated. Therefore,
the Basel Committee requires that the calibration of the scaling factor α incorporates the
general wrong way risk. According to BCBS (2006), we have22:

α = K (EAD (τ) · LGD ·1 {τ ≤ T})
K (EPE ·LGD ·1 {τ ≤ T})

19Since we have 1 − S (t) ∼ U[0,1], it follows that B (t) ∼ N (0, 1). We deduce that the random vector
(MtM (t) , B (t)) is normally distributed:(

MtM (t)
B (t)

)
∼ N

((
µ
0

)
,

(
σ2t ρσ

√
t

ρσ
√
t 1

))
because the correlation ρ (MtM (t) , B (t)) is equal to the Normal copula parameter ρ. Using the conditional
expectation formula given on page 1062, it follows that:

MtM (t) | B (t) = B ∼ N
(
µB , σ

2
B

)
where:

µB = µ+ ρσ
√
t (B − 0)

and:
σ2
B = σ2t− ρ2σ2t =

(
1− ρ2

)
σ2t

20We have 1− e−λ = PD.
21The default values are µ = 0, σ = 1, PD = 90% and ρ = 50%.
22Using standard assumptions (single factor model, fined-grained portfolio, etc.), the first-order approxi-

mation is:
α ≈

LEE
EPE
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FIGURE 4.7: Conditional distribution of the mark-to-market

FIGURE 4.8: Conditional expectation of the exposure at default
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Again, the Basel Committee considers a conservative approach, since they use EPE instead
of EEPE for defining the denominator of α.

The calibration of α for a bank portfolio is a difficult task, because it is not easy to
consider a joint modeling of market and credit risk factors. Let us write the portfolio loss
as follows:

L =
n∑
i=1

EAD (τi,F1, . . . ,Fm) · LGDi ·1 {τi ≤ Ti}

where F = (F1, . . . ,Fm) are the market risk factors and τ = (τ1, . . . , τn) are the default
times. Wrong way risk implies to correlate the random vectors F and τ . Given a small
portfolio with a low number of transactions and counterparty entities, we can simulate the
portfolio loss and calculate the corresponding α, but this Monte Carlo exercise is unreal-
istic for a comprehensive bank portfolio. Nevertheless, we can estimate α for more or less
canonical portfolios. For instance, according to Cespedes et al. (2010), the scaling factor α
may range from 0.7 to 1.4. When market and credit risks are uncorrelated, α is close to one.
α is less than one for general right way risks, while it is larger than one for general wrong
way risks. However, for realistic market-credit correlations, α is below 1.2.

Remark 53 The treatment of specific wrong way risk is different. First, the bank must
identify all the counterparty entities where specific WWR is significant, and monitor these
operations. Second, the bank must calculate a conservative EAD figure.

Remark 54 The modeling of wrong way risk implies to correlate market and credit risk
factors. The main approach is to specify a copula model. As the dimension of the problem
is high (m risk factors and n counterparties), Cespedes et al. (2010) propose to consider a
resampling approach. Another way is to relate the hazard rate of survival functions with the
value of the contract (Hull and White, 2012). These two approaches will be discussed in the
next section.

4.2 Credit valuation adjustment
CVA is the adjustment to the risk-free (or fair) value of derivative instruments to ac-

count for counterparty credit risk. Thus, CVA is commonly viewed as the market price of
CCR. The concept of CVA was popularized after the 2008 Global Financial Crisis, even
if investments bank started to use CVA in the early 1990s (Litzenberger, 1992; Duffie and
Huang, 1996). Indeed, during the global financial crisis, banks suffered significant counter-
party credit risk losses on their OTC derivatives portfolios. However, according to BCBS
(2010), roughly two-thirds of these losses came from CVA markdowns on derivatives and
only one-third were due to counterparty defaults. In a similar way, the Financial Service
Authority concluded that CVA losses were five times larger than CCR losses for UK banks
during the period 2007-2009. In this context, BCBS (2010) included CVA capital charge in
the Basel III framework, whereas credit-related adjustments were introduced in the account-
ing standard IFRS 13 also called Fair Value Measurement23. Nevertheless, the complexity
of CVA raises several issues (EBA, 2015a). This is why questions around the CVA are not
stabilized and new standards are emerging, but they only provide partial answers.

23IFRS 13 was originally issued in May 2011 and became effective after January 2013.
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4.2.1 Definition
4.2.1.1 Difference between CCR and CVA

In order to understand the credit valuation adjustment, it is important to make the
distinction between CCR and CVA. CCR is the credit risk of OTC derivatives associated
to the default of the counterparty, whereas CVA is the market risk of OTC derivatives
associated to the credit migration of the two counterparties. This means that CCR occurs
at the default time. On the contrary, CVA impacts the market value of OTC derivatives
before the default time.

Let us consider an example with two banks A and B and an OTC contract C. The P&L
ΠA|B of Bank A is equal to:

ΠA|B = MtM−CVAB

where MtM is the risk-free mark-to-market value of C and CVAB is the CVA with respect
to Bank B. We assume that Bank A has traded the same contract with Bank C. It follows
that:

ΠA|C = MtM−CVAC

In a world where there is no counterparty credit risk, we have:

ΠA|B = ΠA|C = MtM

If we take into account the counterparty credit risk, the two P&Ls of the same contract are
different because Bank A does not face the same risk:

ΠA|B 6= ΠA|C

In particular, if Bank A wants to close the two exposures, it is obvious that the contact
C with the counterparty B has more value than the contact C with the counterparty C
if the credit risk of B is lower than the credit risk of C. In this context, the notion of
mark-to-market is complex, because it depends on the credit risk of the counterparties.

Remark 55 If the bank does not take into account CVA to price its OTC derivatives, it
does not face CVA risk. This situation is now marginal because of the accounting standards
IFRS 13.

4.2.1.2 CVA, DVA and bilateral CVA

Previously, we have defined the CVA as the market risk related to the credit risk of
the counterparty. According to EBA (2015a), it should reflect today’s best estimate of the
potential loss on the OTC derivative due to the default of the counterparty. In a similar way,
we can define the debit value adjustment (DVA) as the credit-related adjustment capturing
the entity’s own credit risk. In this case, DVA should reflect the potential gain on the
OTC derivative due to the entity’s own default. If we consider our previous example, the
expression of the P&L becomes:

ΠA|B = MtM + DVAA−CVAB︸ ︷︷ ︸
Bilateral CVA

The combination of the two credit-related adjustments is called the bivariate CVA. We then
obtain the following cases:

1. if the credit risk of Bank A is lower than the credit risk of Bank B (DVAA < CVAB),
the bilateral CVA of Bank A is negative and reduces the value of the OTC portfolio
from the perspective of Bank A;
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2. if the credit risk of Bank A is higher than the credit risk of Bank B (DVAA > CVAB),
the bilateral CVA of Bank A is positive and increases the value of the OTC portfolio
from the perspective of Bank A;

3. if the credit risk of Bank A is equivalent to the credit risk of Bank B, the bilateral
CVA is equal to zero.

We notice that the DVA of Bank A is the CVA of Bank A from the perspective of Bank B:

CVAA = DVAA

We also have DVAB = CVAB , which implies that the P&L of Bank B is equal to:

ΠB|A = −MtM + DVAB −CVAA

= −MtM + CVAB −DVAA

= −ΠA|B

We deduce that the P&Ls of Banks A and B are coherent in the bilateral CVA framework
as in the risk-free MtM framework. This is not true if we only consider the (unilateral or
one-sided) CVA or DVA adjustment.

In order to define more precisely CVA and DVA, we introduce the following notations:

• The positive exposure e+ (t) is the maximum between 0 and the risk-free mark-to-
market:

e+ (t) = max (MtM (t) , 0)
This quantity was previously denoted by e (t) and corresponds to the potential future
exposure in the CCR framework.

• The negative exposure e− (t) is the difference between the risk-free mark-to-market
and the positive exposure:

e− (t) = MtM (t)− e+ (t)

We also have:

e− (t) = −min (MtM (t) , 0)
= max (−MtM (t) , 0)

The negative exposure is then the equivalent of the positive exposure from the per-
spective of the counterparty.

The credit value adjustment is the risk-neutral discounted expected value of the potential
loss:

CVA = EQ
[
1 {τB ≤ T} · e

−
∫ τB

0
rt dt · L

]
where T is the maturity of the OTC derivative, τB is the default time of Bank B and L is
the counterparty loss:

L = (1−RB) · e+ (τB)
Using usual assumptions24, we obtain:

CVA = (1−RB) ·
∫ T

0
B0 (t) EpE (t) dFB (t) (4.16)

24The default time and the discount factor are independent and the recovery rate is constant.
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where EpE (t) is the risk-neutral discounted expected positive exposure:

EpE (t) = EQ [e+ (t)
]

and FB is the cumulative distribution function of τB . Knowing that the survival function
SB (t) is equal to 1− FB (t), we deduce that:

CVA = (1−RB) ·
∫ T

0
−B0 (t) EpE (t) dSB (t) (4.17)

In a similar way, the debit value adjustment is defined as the risk-neutral discounted
expected value of the potential gain:

DVA = EQ
[
1 {τA ≤ T} · e

−
∫ τA

0
rt dt ·G

]
where τA is the default time of Bank A and:

G = (1−RA) · e− (τA)

Using the same assumptions than previously, it follows that:

DVA = (1−RA) ·
∫ T

0
−B0 (t) EnE (t) dSA (t) (4.18)

where EnE (t) is the risk-neutral discounted expected negative exposure:

EnE (t) = EQ [e− (t)
]

We deduce that the bilateral CVA is:

BCVA = DVA−CVA

= (1−RA) ·
∫ T

0
−B0 (t) EnE (t) dSA (t)−

(1−RB) ·
∫ T

0
−B0 (t) EpE (t) dSB (t) (4.19)

When we calculate the bilateral CVA as the difference between the DVA and the CVA, we
consider that the DVA does not depend on τB and the CVA does not depend on τA. In the
more general case, we have:

BCVA = EQ

[
1 {τA ≤ min (T, τB)} · e−

∫ τA
0

rt dt ·G−
1 {τB ≤ min (T, τA)} · e−

∫ τB
0

rt dt · L

]
(4.20)

In this case, the calculation of the bilateral CVA requires considering the joint survival
function of (τA, τB).

Remark 56 If we assume that the yield curve is flat and SB (t) = e−λBt, we have dSB (t) =
−λBe−λBt dt and:

CVA = (1−RB) ·
∫ T

0
e−rt EpE (t)λBe−λBt dt

= sB ·
∫ T

0
e−(r+λB)t EpE (t) dt

We notice that the CVA is the product of the CDS spread and the discounted value of the
expected positive exposure.
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Example 48 Let us assume that the mark-to-market value is given by:

MtM (t) = N

∫ T

t

f (t, T )Bt (s) ds−N
∫ T

t

f (0, T )Bt (s) ds

where N and T are the notional and the maturity of the swap, and f (t, T ) is the instanta-
neous forward rate which follows a geometric Brownian motion:

df (t, T ) = µf (t, T ) dt+ σf (t, T ) dW (t)

We also assume that the yield curve is flat – Bt (s) = e−r(s−t) – and the risk-neutral survival
function is S (t) = e−λt.

Syrkin and Shirazi (2015) show that25:

EpE (t) = Nf (0, T )ϕ (t, T )
(
eµtΦ

((
µ

σ
+ 1

2σ
)√

t

)
− Φ

((
µ

σ
− 1

2σ
)√

t

))
where:

ϕ (t, T ) = 1− e−r(T−t)

r

It follows that the CVA at time t is equal to:

CVA (t) = sB ·
∫ T

t

e−(r+λ)(u−t) EpE (u) du

We consider the following numerical values: N = 1000, f (0, T ) = 5%, µ = 2%, σ = 25%,
T = 10 years and RB = 50%. In Figure 4.9, we have reported the value of CVA (t) when
λ is respectively equal to 20 and 100 bps. By construction, the CVA is maximum at the
starting date.

4.2.1.3 Practical implementation for calculating CVA

In practice, we calculate CVA and DVA by approximating the integral by a sum:

CVA = (1−RB) ·
∑
ti≤T

B0 (ti) · EpE (ti) · (SB (ti−1)− SB (ti))

and:
DVA = (1−RA) ·

∑
ti≤T

B0 (ti) · EnE (ti) · (SA (ti−1)− SA (ti))

where {ti} is a partition of [0, T ]. For the bilateral CVA, the expression (4.20) can be
evaluated using Monte Carlo methods.

We notice that the approximation of dSB (t) is equal to the default probability of Bank
B between two consecutive trading dates:

SB (ti−1)− SB (ti) = Pr {ti−1 < τB ≤ ti}
= PDB (ti−1, ti)

and we may wonder what is the best approach for estimating PDB (ti−1, ti). A straightfor-
ward solution is to use the default probabilities computed by the internal credit system.

25See Exercise 4.4.5 on page 303.
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FIGURE 4.9: CVA of fixed-float swaps

However, there is a fundamental difference between CCR and CVA. Indeed, CCR is a de-
fault risk and must then be calculated using the historical probability measure P. On the
contrary, CVA is a market price, implying that it is valued under the risk-neutral probability
measure Q. Therefore, PDB (ti−1, ti) is a risk-neutral probability. Using the credit triangle
relationship, we know that the CDS spread s is related to the intensity λ:

sB (t) = (1−RB) · λB (t)

We deduce that:

SB (t) = exp (−λB (t) · t)

= exp
(
−sB (t) · t

1−RB

)
It follows that the risk-neutral probability of default PDB (ti−1, ti) is equal to:

PDB (ti−1, ti) = exp
(
−sB (ti−1) · ti−1

1−RB

)
− exp

(
−sB (ti) · ti

1−RB

)

4.2.2 Regulatory capital
The capital charge for the CVA risk has been introduced by the Basel Committee in

December 2010 after the Global Financial Crisis. At that moment, banks had the choice
between two approaches: the advanced method (AM-CVA) and the standardized method
(SM-CVA). However, the Basel Committee completely changed the CVA framework in
December 2017 with two new approaches (BA-CVA and SA-CVA) that will replace the
previous approaches (AM-CVA and SM-CVA) with effect from January 2022. It is the first
time that the Basel Committee completely flip-flopped within the same accord, since these
different approaches are all part of the Basel III Accord.
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4.2.2.1 The 2010 version of Basel III

Advanced method The advanced method (or AM-CVA) can be considered by banks
that use IMM and VaR models. In this approach, we approximate the integral by the
middle Riemann sum:

CVA = LGDB ·
∑
ti≤T

(
EpE (ti−1)B0 (ti−1) +B0 (ti) EpE (ti)

2

)
· PDB (ti−1, ti)

where LGD = 1 − RB is the risk-neutral loss given default of the counterparty B and
PDB (ti−1, ti) is the risk neutral probability of default between ti−1 and ti:

PDB (ti−1, ti) = max
(

exp
(
−s (ti−1)

LGDB
· ti−1

)
− exp

(
− s (ti)

LGDB
· ti
)
, 0
)

We notice that a zero floor is added in order to verify that PDB (ti−1, ti) ≥ 0. The capital
charge is then equal to:

K = 3 · (CVA + SCVA)

where CVA is calculated using the last one-year period and SCVA is the stressed CVA based
on a one-year stressed period of credit spreads.

Standardized method In the standardized method (or SM-CVA), the capital charge is
equal to:

K = 2.33 ·
√
h ·

√√√√(1
2
∑
i

wi · Ωi − w?index · Ω?index

)2

+ 3
4
∑
i

w2
i · Ω2

i (4.21)

where:
Ωi = Mi · EADi ·

1− e−0.05·Mi

0.05 ·Mi
−M?

i ·H?
i ·

1− e−0.05·M?
i

0.05 ·M?
i

Ω?index = M?
index ·H?

index ·
1− e−0.05·M?

index

0.05 ·M?
index

In this formula, h is the time horizon (one year), wi is the weight of the ith counterparty
based on its rating, Mi is the effective maturity of the ith netting set, EADi is the exposure
at default of the ith netting set, M?

i is the maturity adjustment factor for the single name
hedge, H?

i is the hedging notional of the single name hedge, w?index is the weight of the
index hedge, M?

index is the maturity adjustment factor for the index hedge and H?
index is

the hedging notional of the index hedge. In this formula, EADi corresponds to the CCR
exposure at default calculated with the CEM or IMM approaches.

Remark 57 We notice that the Basel Committee recognizes credit hedges (single-name
CDS, contingent CDS and CDS indices) for reducing CVA volatility. If there is no hedge,
we obtain:

K = 2.33 ·
√
h ·

√√√√1
4

(∑
i

wi ·Mi · EADi

)2

+ 3
4
∑
i

w2
i ·M2

i · EAD2
i

The derivation of Equation (4.21) is explained in Pykhtin (2012). We consider a Gaus-
sian random vector X = (X1, . . . , Xn) with Xi ∼ N

(
0, σ2

i

)
. We assume that the random

variables X1, . . . , Xn follow a single risk factor model such that the correlation ρ (Xi, Xj)



Counterparty Credit Risk and Collateral Risk 285

is constant and equal to ρ. We consider another random variable Xn+1 ∼ N
(
0, σ2

n+1
)
such

that ρ (Xi, Xn+1) is also constant and equal to ρn+1. Let Y be the random variable defined
as the sum of Xi’s minus Xn+1:

Y =
n∑
i=1

Xi −Xn+1

It follows that Y ∼ N
(
0, σ2

Y

)
where:

σ2
Y =

n∑
i=1

σ2
i + 2ρ

n∑
i=1

i∑
j=1

σiσj − 2ρn+1σn+1

n∑
i=1

σi + σ2
n+1

We finally deduce that:

F−1
Y (α) = Φ−1 (α)

√√√√ n∑
i=1

σ2
i + 2ρ

n∑
i=1

i∑
j=1

σiσj − 2ρn+1σn+1

n∑
i=1

σi + σ2
n+1

Equation (4.21) is obtained by setting σi = wiΩi, σn+1 = w?indexΩ?index, ρ = 25%, ρn+1 =
50% and α = 99%. This means that Xi is the CVA net exposure of the ith netting set
(including individual hedges) and Xn+1 is the macro hedge of the CVA based on credit
indices.

4.2.2.2 The 2017 version of Basel III

There are now two approaches available for calculating CVA risk: the basic approach
(BA-CVA) and the standardized approach (SA-CVA). However, if the bank has a few expo-
sure on counterparty credit risk26, it may choose to set its CVA capital requirement equal
to its CCR capital requirement.

Basic approach Under the basic approach, the capital requirement is equal to:

K = β ·KReduced + (1− β) ·KHedged

where KReduced and KHedged are the capital requirements without and with hedging recog-
nition. The reduced version of the BA-CVA is obtained by setting β to 100%. A bank that
actively hedges CVA risks may choose the full version of the BA-CVA. In this case, β is set
to 25%.

For the reduced version, we have:

KReduced =

√√√√√ρ ·∑
j

SCVAj

2

+ (1− ρ2) ·
∑
j

SCVA2
j

where ρ = 50% and SCVAj is the CVA capital requirement for the jth counterparty:

SCVAj = 1
α
· RWj ·

∑
k

DFk ·EADk ·Mk

In this formula, α is set to 1.4, RWj is the risk weight for counterparty j, k is the netting
set, DFk is the discount factor, EADk is the CCR exposure at default and Mk is the effective

26The materiality threshold is e100 bn for the notional amount of non-centrally cleared derivatives.
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maturity. These last three quantities are calculated at the netting set level. If the bank use
the IMM to calculate the exposure at default, DFk is equal to one, otherwise we have:

DFk = 1− e−0.05·Mk

0.05 ·Mk

RWj depends on the credit quality of the counterparty (IG/HY) and its sector and is given
in Table 4.7.

TABLE 4.7: Supervisory risk weights (BA-CVA)

Sector Credit quality
IG HY/NR

Sovereign 0.5% 3.0%
Local government 1.0% 4.0%
Financial 5.0% 12.0%
Basic material, energy, industrial, agriculture, man-
ufacturing, mining and quarrying 3.0% 7.0%

Consumer goods and services, transportation and
storage, administrative and support service activities 3.0% 8.5%

Technology, telecommunication 2.0% 5.5%
Health care, utilities, professional and technical ac-
tivities 1.5% 5.0%

Other sector 5.0% 12.0%

Source: BCBS (2017c).

The full version of the BA-CVA recognizes eligible hedging transactions that are used for
mitigating the credit spread component of the CVA risk. They correspond to single-name
CDS and index CDS transactions. KHedged depends on three components:

KHedged =
√
K1 +K2 +K3

According to BCBS (2017c), the first term aggregates the systematic components of the
CVA risk:

K1 =

ρ ·∑
j

(SCVAj − SNHj)− IH

2

where SNHj is the CVA reduction for counterparty j due to single-name hedging and
IH is the global CVA reduction due to index hedging. The second term aggregates the
idiosyncratic components of the CVA risk:

K2 =
(
1− ρ2) ·∑

j

(SCVAj −SNHj)2

Finally, the third term corresponds to the hedging misalignment risk because of the mis-
match between indirect hedges and single-name hedges:

K3 =
∑
j

HMAj
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The single-name hedge SNHj is calculated as follows:

SNHj =
∑
h∈j

%h,j · (RWh ·DFh ·Nh ·Mh)

where h represents the single-name CDS transaction, %h,j is the supervisory correlation,
DFh is the discount factor27, Nh is the notional and Mh is the remaining maturity. These
quantities are calculated at the single-name CDS level. The correlation %h,j between the
credit spread of the counterparty and the credit spread of the CDS can take three values:
100% if CDS h directly refers to counterparty j, 80% if CDS h has a legal relation with
counterparty j, and 50% if CDS h and counterparty j are of the same sector and region.
For the index hedge IH, we have a similar formula:

IH =
∑
h′

RWh′ ·DFh′ ·Nh′ ·Mh′

where h′ represents the index CDS transaction. The other quantities RWh′ , DFh′ , Nh′ and
Mh′ are defined exactly as previously except that they are applied at the index CDS level.
For the risk weight, its value is the weighted average of risk weights of RWj :

RWh′ = 0.7 ·
∑
j∈h′

wj · RWj

where wj is the weight of the counterparty/sector j in the index CDS h′. We notice that
this formula reduces to RWh′ = 0.7 ·RWj when we consider a sector-specific index. Finally,
we have

HMAj =
∑
h∈j

(
1− %2

h,j

)
· (RWh ·DFh ·Nh ·Mh)2

Remark 58 In the case where there is no hedge, we have SNHj = 0, HMAj = 0, IH = 0,
and K = KReduced. If there is no hedging misalignment risk and no index CDS hedging, we
have:

K =

√√√√√ρ ·∑
j

Kj

2

+ (1− ρ2) ·
∑
j

K2
j

where Kj = SCVAj −SNHj is the single-name capital requirement for counterparty j.

Example 49 We assume that the bank has three financial counterparties A, B and C, that
are respectively rated IG, IG and HY. There are 4 OTC transactions, whose characteristics
are the following:

Transaction k 1 2 3 4
Counterparty A A B C

EADk 100 50 70 20
Mk 1 1 0.5 0.5

In order to reduce the counterparty credit risk, the bank has purchased a CDS protection
on A for an amount of $75 mn, a CDS protection on B for an amount of $10 mn and
a HY Financial CDX for an amount of $10 mn. The maturity of hedges exactly matches
the maturity of transactions. However, the CDS protection on B is indirect, because the
underlying name is not B, but B′ which is the parent company of B.

27We have:
DFh =

1− e−0.05·Mh

0.05 ·Mh

where Mh is the remaining maturity.
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We first begin to calculate the discount factors DFk for the four transactions. We obtain
DF1 = DF2 = 0.9754 and DF3 = DF4 = 0.9876. Then we calculate the single-name capital
for each counterparty. For example, we have:

SCVAA = 1
α
× RWA× (DF1×EAD1×M1 + DF2×EAD2×M2)

= 1
1.4 × 5%× (0.9754× 100× 1 + 0.9754× 50× 1)

= 5.225

We also find that SCVAB = 1.235 and SCVAC = 0.847. It follows that
∑
j SCVAj = 7.306

and
∑
j SCVA2

j = 29.546. The capital requirement without hedging is equal to:

KReduced =
√

(0.5× 7.306)2 + (1− 0.52)× 29.546 = 5.959

We notice that it is lower than the sum of individual capital charges. In order to take into
account the hedging effect, we calculate the single-name hedge parameters:

SNHA = 5%× 100%× 0.9754× 75× 1 = 3.658

and:
SNHB = 5%× 80%× 0.9876× 10× 0.5 = 0.198

Since the CDS protection is on B′ and not B, there is a hedging misalignment risk:

HMAB = 0.052 ×
(
1− 0.802)× (0.9876× 10× 0.5)2 = 0.022

For the CDX protection, we have:

IH = (0.7× 12%)× 0.9876× 10× 0.5 = 0.415

Then, we obtain K1 = 1.718, K2 = 3.187, K3 = 0.022 and KHedged = 2.220. Finally, the
capital requirement is equal to $3.154 mn:

K = 0.25× 5.959 + 0.75× 2.220 = 3.154

Standardized approach The standardized approach for CVA follows the same principles
than the standardized approach SA-TB for the market risk of the trading book. The main
difference is that SA-CVA is only based on delta and vega risks, and does not include
curvature, jump-to-default and residual risks:

K = KDelta + KVega

For computing the capital charge, we first consider two portfolios: the CVA portfolio and the
hedging portfolio. For each risk (delta and vega), we calculate the weighted CVA sensitivity
of each risk factor Fj :

WSCVA
j = SCVA

j · RWj

and:
WSHedge

j = SHedge
j · RWj

where Sj and RWj are the net sensitivity of the CVA or hedging portfolio with respect to
the risk factor and the risk weight of Fj . Then, we aggregate the weighted sensitivity in
order to obtain a net figure:

WSj = WSCVA
j + WSHedge

j
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Second, we calculate the capital requirement for the risk bucket Bk:

KBk =
√∑

j

WS2
j +

∑
j′ 6=j

ρj,j′ ·WSj ·WSj′ +1% ·
∑
j

(
WSHedge

j

)2

where Fj ∈ Bk. Finally, we aggregate the different buckets for a given risk class:

KDelta/Vega = mCVA ·
√∑

k

K2
Bk +

∑
k′ 6=k

γk,k′ ·KBk ·KBk′

where mCVA = 1.25 is the multiplier factor. As in the case of SA-TB, SA-CVA is then based
on the following set of parameters: the sensitivities Sj of the risk factors that are calculated
by the bank; the risk weights RWj of the risk factors; the correlation ρj,j′ between risk
factors within a bucket; the correlation γk,k′ between the risk buckets. The values of these
parameters are not necessarily equal to those of SA-TB28. For instance, the correlations ρj,j′
and γk,k′ are generally lower. The reason is that these correlations reflect the dependence
between credit risk factors and not market risk factors.

Remark 59 Contrary to the SA-TB, the bank must have the approval of the supervisory
authority to use the SA-CVA. Otherwise, it must use the BA-CVA framework.

4.2.3 CVA and wrong/right way risk
The wrong way or right way risk is certainly the big challenge when modeling CVA.

We have already illustrated this point in the case of the CCR capital requirement, but this
is even more relevant when computing the CVA capital requirement. The reason is that
the bank generally manages the CVA risk because it represents a huge cost in terms of
regulatory capital and it impacts on a daily basis the P&L of the trading book. For that,
the bank generally puts in place a CVA trading desk, whose objective is to mitigate CVA
risks. Therefore, the CVA desk must develop a fine modeling of WWR/RWR risks in order
to be efficient and to be sure that the hedging portfolio does not create itself another source
of hidden wrong way risk. This is why the CVA modeling is relatively complex, because we
cannot assume in practice that market and credit risks are not correlated.

We reiterate that the definition of the CVA is29:

CVA = E
[
1 {τ ≤ T} · e−

∫ τ
0
rt dt · (1−R) · e+ (τ )

]
where e+ (t) = max (ω, 0) and ω is the random variable that represents the mark-to-
market30. If we assume that the recovery rate is constant and interest rates are deterministic,
we obtain:

CVA = (1−R) ·
∫ T

0

∫ +∞

−∞
B0 (t) max (ω, 0) dF (ω, t)

= (1−R) ·
∫ T

0

∫ +∞

−∞
B0 (t) max (ω, 0) dC (Fω (ω) ,Fτ (t))

28See BCBS (2017c) on pages 119-127.
29In order to obtain more concise formulas, we delete the reference to the counterparty B and we write

R instead of RB .
30We implicitly assume that the mark-to-market is a stationary process. In fact, this assumption is not

verified. However, we use this simplification to illustrate how the dependence between the counterparty
exposure and the default times changes the CVA figure.
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where F (ω, t) is the joint distribution of the mark-to-market and the default time and C is
the copula between ω and R. If we assume that C = C⊥, we retrieve the traditional CVA
formula31:

CVA = (1−R) ·
∫ T

0

∫ +∞

−∞
B0 (t) max (ω, 0) dFω (ω) dFτ (t)

= (1−R) ·
∫ T

0
B0 (t) EpE (t) dFτ (t)

where EpE (t) is the expected positive exposure:

EpE (t) =
∫ +∞

−∞
max (ω, 0) dFω (ω) = E

[
e+ (t)

]
Otherwise, we have to model the dependence between the mark-to-market and the default
time. In what follows, we consider two approaches: the copula model introduced by Cespedes
et al. (2010) and the hazard rate model of Hull and White (2012).

The copula approach The Monte Carlo CVA is calculated as following:

CVA = (1−R) ·
∑
ti≤T

B0 (ti)
(

1
nS

nS∑
s=1

e+
s (ti;ωs)

)
(Fτ (ti)− Fτ (ti−1))

where e+ (ti;ωs) is the counterparty exposure of the sth simulated scenario ωs and nS is
the number of simulations. If market and credit risk factors are correlated, the Monte Carlo
CVA becomes:

CVA = (1−R) ·
∑
ti≤T

nS∑
s=1

B0 (ti) e+
s (ti;ωs)πs,i (4.22)

where32:
πs,i = Pr {ω = ωs, ti < τ ≤ ti}

The objective is then to calculate the joint probability by assuming a copula function C
between ω and τ . For that, we assume that the scenarios ωs are ordered. Let U = Fω (ω)
and V = Fτ (τ ) be the integral transform of ω and τ . Since U and V are uniform random
variables, we obtain:

πs,i = Pr {ωs−1 < ω ≤ ωs, ti < τ ≤ ti}
= Pr {us−1 < U ≤ us, vi−1 < V ≤ vi}
= C (us, vi)−C (us−1, vi)−C (us, vi−1) + C (us−1, vi−1) (4.23)

Generally, we don’t know the analytical expression of Fω. This is why we replace it by the
empirical distribution F̂ω where the probability of each scenario is equal to 1/nS .

In order to define the copula function C, Rosen and Saunders (2012) consider a market-
credit version of the Basel model. Let Zm = Φ−1 (Fω (ω)) and Zc = Φ−1 (Fτ (τ )) be the

31See Equation (4.16) on page 280.
32In the case where ω and τ are independent, we retrieve the previous formula because we have:

πs,i = Pr {ω = ωs} · Pr {ti ≤ τ ≤ ti}

=
Fτ (ti)− Fτ (ti−1)

nS
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normalized latent random variables for market and credit risks. Rosen and Saunders use
the one-factor model specification:{

Zm = ρmX +
√

1− ρ2
m εm

Zc = ρcX +
√

1− ρ2
c εc

where X is the systematic risk factor that impacts both market and credit risks, εm and
εc are the idiosyncratic market and credit risk factors, and ρm and ρc are the market and
credit correlations with the common risk factor. It follows that the market-credit correlation
is equal to:

ρm,c = E [ZmZc] = ρmρc

We deduce that the dependence between Zm and Zc is a Normal copula with parameter
ρm,c = ρmρc, and we can write:

Zm = ρm,cZc +
√

1− ρ2
m,c εm,c

where εm,c ∼ N (0, 1) is an independent specific risk factor. Since the expression of the
Normal copula is C (u, v; ρm,c) = Φ2

(
Φ−1 (u) ,Φ−1 (v) ; ρm,c

)
, Equation (4.23) becomes33:

πs,i = Φ2

(
Φ−1

(
s

nS

)
,Φ−1 (Fτ (ti)) ; ρm,c

)
−

Φ2

(
Φ−1

(
s− 1
nS

)
,Φ−1 (Fτ (ti)) ; ρm,c

)
−

Φ2

(
Φ−1

(
s

nS

)
,Φ−1 (Fτ (ti−1)) ; ρm,c

)
+

Φ2

(
Φ−1

(
s− 1
nS

)
,Φ−1 (Fτ (ti−1)) ; ρm,c

)
This approach is called the ordered-scenario copula model (OSC), because it is based on
the ordering trick of the scenarios ωs. Rosen and Saunders (2012) also propose different
versions of the CVA discretization leading to different expressions of Equation (4.22). For
instance, if we assume that the default occurs exactly at time ti and not in the interval
[ti−1, ti], we have:

πs,i ≈ πs|i · Pr {ti < τ ≤ ti}
and:

πs|i = Pr {ω = ωs | τ = ti}
= Pr {ωs−1 < ω ≤ ωs | τ = ti}
= Pr {us−1 < U ≤ us | V = vi}
= ∂2C (us, vi)− ∂2C (us−1, vi)

= ∂2C
(
s

nS
,Fτ (ti)

)
− ∂2C

(
s− 1
nS

,Fτ (ti)
)

In the case of the Rosen-Saunders model, we use the expression of the conditional Normal
copula given on page 737:

∂2C (u, v; ρm,c) = Φ

Φ−1 (u)− ρm,cΦ−1 (v)√
1− ρ2

m,c


33By definition, we have F−1

ω ($s) = s/nS because the scenarios are ordered.
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The hazard rate approach In Basel II, wrong way risk is addressed by introducing the
multiplier α = 1.4, which is equivalent to change the values of the mark-to-market. In the
Rosen-Saunders model, wrong way risk is modeled by changing the joint probability of the
mark-to-market and the default times. Hull and White (2012) propose a third approach,
which consists in changing the values of the default probabilities. They consider that the
hazard rate is a deterministic function of the mark-to-market: λ (t) = λ (t,MtM (t)). For
instance, they use two models:

λ (t,MtM (t)) = ea(t)+b·MtM(t) (4.24)

and:
λ (t,MtM (t)) = ln

(
1 + ea(t)+b·MtM(t)

)
(4.25)

The case b < 0 corresponds to the right way risk, whereas b > 0 corresponds to the wrong
way risk. When b = 0, the counterparty exposure is independent from the credit risk of the
counterparty.

Hull and White (2012) propose a two-step procedure to calibrate a (t) and b. First, they
assume that the term structure of the hazard rate is flat. Given two pairs (MtM1, s1) and
(MtM2, s2), a (0) and b satisfy the following system of equations:{

(1−R) · λ (0,MtM1) = s1
(1−R) · λ (0,MtM2) = s2

The solution is:  b = lnλ2 − lnλ1

MtM2−MtM1
a (0) = lnλ1 − b ·MtM1

where λi = si/ (1−R) for Model (4.24) and λi = exp (si/ (1−R)) − 1 for Model (4.25).
Hull and White (2012) consider the following example. They assume that the 5Y CDS
spread of the counterparty is 300 bps when the mark-to-market is $3 mn, and 600 bps when
the mark-to-market is $20 mn. If the recovery rate is set to 40%, the calibrated parameters
are a (0) = −3.1181 and b = 0.0408 for Model (4.24) and a (0) = −3.0974 and b = 0.0423
for Model (4.25). The second step of the procedure consists in calibrating the function a (t)
given the value of b estimated at the first step. Since we have:

S (t) = e
−
∫ t

0
λ(s,MtM(s)) ds

and:
S (t) = exp

(
−s (t) · t

1−R

)
the function a (t) must verify that the survival probability calculated with the model is
equal to the survival probability calculated with the credit spread:

e−
∑i

k=0
λ(tk,MtM(tk))·(tk−tk−1) = exp

(
−s (ti) · ti

1−R

)
In the case where the CVA is calculated with the Monte Carlo method, we have:

1
nS

nS∑
s=1

i∏
k=0

e−λ(tk,ωs(tk))·(tk−tk−1) = exp
(
−s (ti) · ti

1−R

)
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where ωs (tk) is the sth simulated value of MtM (tk). Therefore, a (t) is specified as a piece-
wise linear function and we use the bootstrap method34 for calibrating a (t) given the
available market CDS spreads35.

4.3 Collateral risk
4.3.1 Definition

When there is a margin agreement, the counterparty needs to post collateral and the
exposure at default becomes:

e+ (t) = max (MtM (t)− C (t) , 0) (4.26)

where C (t) is the collateral value at time t. Generally, the collateral transfer occurs when
the mark-to-market exceeds a threshold H:

C (t) = max (MtM (t− δC)−H, 0) (4.27)

H is the minimum collateral transfer amount whereas δC ≥ 0 is the margin period of risk
(MPOR). According to the Financial Conduct Authority (FCA), the margin period of risk
“stands for the time period from the most recent exchange of collateral covering a netting
set of financial instruments with a defaulting counterparty until the financial instruments
are closed out and the resulting market risk is re-hedged”. It can be seen as the necessary
time period for posting the collateral. In many models, δC is set to zero in order to obtain
analytical formulas. However, this is not realistic from a practical point of view. From a
regulatory point of view, δC is generally set to five or ten days (Cont, 2018).

If we combine Equations (4.26) and (4.27), it follows that:

e+ (t) = max (MtM (t)−max (MtM (t− δC)−H, 0) , 0)
= MtM (t) · 1 {0 ≤ MtM (t) ,MtM (t− δC) < H}+

(MtM (t)−MtM (t− δC) +H) ·
1 {H ≤ MtM (t− δC) ≤ MtM (t) +H}

We obtain some special cases:

• When H = +∞, C (t) is equal to zero and we obtain:

e+ (t) = max (MtM (t) , 0)

• When H = 0, the collateral C (t) is equal to MtM (t− δC) and the counterparty
exposure becomes:

e+ (t) = max (MtM (t)−MtM (t− δC) , 0)
= max (MtM (t− δC , t) , 0)

The counterparty credit risk corresponds to the variation of the mark-to-market
MtM (t− δC , t) during the liquidation period [t− δC , t].

34This method is presented on page 204.
35Generally, they correspond to the following maturities: 1Y, 3Y, 5Y, 7Y and 10Y.
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• When δC is set to zero, we deduce that:

e+ (t) = max (MtM (t)−max (MtM (t)−H, 0) , 0)
= MtM (t) · 1 {0 ≤ MtM (t) < H}+H · 1 {H ≤ MtM (t)}

• When δC is set to zero and there is no minimum collateral transfer amount, the
counterparty credit risk vanishes:

e+ (t) = 0

This last case is interesting, because it gives an indication how to reduce the counterparty
risk:

H ↘ 0 or δC ↘ 0⇒ e+ (t)↘ 0

In the first panel in Figure 4.10, we have simulated the mark-to-market of a portfolio for
a two-year period. In the second panel, we have reported the counterparty exposure when
there is no collateral. The other panels show the collateral C (t) and the counterparty
exposure e+ (t) for different values of δC and H. When there is no margin period of risk, we
verify that the exposure is capped at the collateral threshold H in the fourth panel. When
the threshold is equal to zero, the counterparty exposure corresponds to the lag effect due to
the margin period of risk as illustrated in the sixth panel. The riskier situation corresponds
to the combination of the threshold risk and the margin period of risk (eighth panel).

FIGURE 4.10: Impact of collateral on the counterparty exposure

4.3.2 Capital allocation
Taking into account collateral in the CVA computation is relatively straightforward

when we use Monte Carlo simulations. In fact, the CVA formula remains the same, only the
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computation of the expected positive exposure EpE (t) is changed. However, as mentioned
by Pykhtin and Rosen (2010), the big issue is the allocation of the capital. In Section 2.3 on
page 104, we have seen that the capital allocation is given by the Euler allocation principle.
Let R (w) be the risk measure of Portfolio w = (w1, . . . , wn). Under some assumptions, we
reiterate that:

R (w) =
n∑
i=1
RCi

where RCi is the risk contribution of the ith component:

RCi = wi ·
∂R (w)
∂ wi

The components can be assets, credits, trading desks, etc. For instance, in the case of credit
risk, the IRB formula gives the risk contribution of a loan within a portfolio. In the case of
a CVA portfolio, we have:

CVA (w) = (1−RB) ·
∫ T

0
−B0 (t) EpE (t;w) dSB (t)

where EpE (t;w) is the expected positive exposure with respect to the portfolio w. The
Euler allocation principle becomes:

CVA (w) =
n∑
i=1

CVAi (w)

where CVAi (w) is the CVA risk contribution of the ith component:

CVAi (w) = (1−RB) ·
∫ T

0
−B0 (t) EpEi (t;w) dSB (t)

and EpEi (t;w) is the EpE risk contribution of the ith component:

EpEi (t;w) = wi ·
∂ EpE (t;w)

∂ wi

Therefore, the difficulty for computing the CVA risk contribution is to compute the EpE
risk contribution.

We consider the portfolio w = (w1, . . . , wn), which is composed of n OTC contracts.
The mark-to-market of the portfolio is equal:

MtM (t) =
n∑
i=1

wi ·MtMi (t)

where MtMi (t) is the mark-to-market for the contract Ci. In the general case, the counter-
party exposure is given by:

e+ (t) = MtM (t) · 1 {0 ≤ MtM (t) < H}+H · 1 {MtM (t) ≥ H}

If there is no collateral, we have:

e+ (t) = MtM (t) · 1 {MtM (t) ≥ 0}

=
n∑
i=1

wi ·MtMi (t) · 1 {MtM (t) ≥ 0}
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We deduce that:
∂ E [e+ (t)]

∂ wi
= E [MtMi (t) · 1 {MtM (t) ≥ 0}]

and:
EpEi (t;w) = E [wi ·MtMi (t) · 1 {MtM (t) ≥ 0}]

Computing the EpE (or CVA) risk contribution is then straightforward in this case. In
the general case, Pykhtin and Rosen (2010) notice that EpE (t;w) is not a homogeneous
function of degree one because of the second term E [H · 1 {MtM (t) ≥ H}]. The idea of
these authors is then to allocate the threshold risk to the individual contracts:

E [H · 1 {MtM (t) ≥ H}] = H ·
n∑
i=1
E [ωi · 1 {MtM (t) ≥ H}]

by choosing an appropriate value of ωi such that
∑n
i=1 ωi = 1. They consider two proposi-

tions. Type A Euler allocation is given by:

EpEi (t;w) = E [wi ·MtMi (t) · 1 {0 ≤ MtM (t) < H}] +

H · E [1 {MtM (t) ≥ H}] · E [wi ·MtMi (t) · 1 {MtM (t) ≥ H}]
E [MtM (t) · 1 {MtM (t) ≥ H}]

whereas type B Euler allocation is given by:

RCi = E [wi ·MtMi (t) · 1 {0 ≤ MtM (t) < H}] +

H · E
[
wi ·MtMi (t)

MtM (t) · 1 {MtM (t) ≥ H}
]

Pykhtin and Rosen (2010) consider the Gaussian case when the mark-to-market for the
contract Ci is given by:

MtMi (t) = µi (t) + σi (t)Xi

where (X1, . . . , Xn) ∼ N (0n, ρ) and ρ = (ρi,j) is the correlation matrix. Let µw (t) and
σw (t) be the expected value and volatility of the portfolio mark-to-market MtM (t). The
authors show that36 the expected positive exposure is the sum of three components:

EpE (t;w) = EpEµ (t;w) + EpEσ (t;w) + EpEH (t;w)

where EpEµ (t;w) is the mean component:

EpEµ (t;w) = µw (t) ·
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
EpEσ (t;w) is the volatility component:

EpEσ (t;w) = σw (t) ·
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
and EpEH (t;w) is the collateral threshold component:

EpEH (t;w) = H · Φ
(
µw (t)−H
σw (t)

)
36See Exercise 4.4.6 on page 303.
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We notice that EpEµ (t;w) and EpEH (t;w) are always positive, while EpEσ (t;w) may be
positive or negative. When there is no collateral agreement, EpEH (t;w) is equal to zero and
EpE (t;w) depends on the ratio µw (t) /σw (t). Concerning the risk contributions, Pykhtin
and Rosen (2010) obtain a similar decomposition:

EpEi (t;w) = EpEµ,i (t;w) + EpEσ,i (t;w) + EpEH,i (t;w)

where:

EpEµ,i (t;w) = wi · µi (t) ·
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
EpEσ,i (t;w) = wi · γi (t) · σi (t) ·

(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
EpEH,i (t;w) = H · Φ

(
µw (t)−H
σw (t)

)
· ψi
ψw

γi (t) = σ (t)−1∑n
j=1 wj · ρi,j · σj (t) and:

ψi
ψw

=
wi · µi · (t) Φ

(
µw (t)−H
σw (t)

)
+ wi · γi (t) · σi (t) · φ

(
µw (t)−H
σw (t)

)
µw (t) · Φ

(
µw (t)−H
σw (t)

)
+ σw (t) · φ

(
µw (t)−H
σw (t)

)
Example 50 We consider a portfolio of two contracts C1 and C2 with the following char-
acteristics: µ1 (t) = $1 mn, σ1 (t) = $1 mn, µ2 (t) = $1 mn, σ2 (t) = $1 mn and ρ1,2 = 0%.

We first calculate the expected positive exposure EpE (t;w) when we change the value
of µ2 (t) and there is no collateral agreement. Results are given in Figure 4.11. In the first
panel, we observe that EpE (t;w) increases with respect to µ2 (t). We notice that the mean
component is the most important contributor when the expected value of the portfolio
mark-to-market is high and positive37:

µw (t)
σw (t) →∞⇒

{
EpEµ (t;w)→ EpE (t;w)
EpEσ (t;w)→ 0

The risk contribution EpE1 (t;w) and EpE2 (t;w) are given in the second panel in Figure
4.11. The risk contribution of the second contract is negative when µ2 (t) is less than−1. This
illustrate the diversification effect, implying that some trades can negatively contributes to
the CVA risk. This is why the concept of netting sets is important when computing the
CVA capital charge. In Figure 4.12, we have done the same exercise when we consider
different values of the correlation ρ1,2. We observe that the impact of this parameter is not
very important except when the correlation is negative. The reason is that the correlation
matrix has an impact on the volatility σw (t) of the portfolio mark-to-market, but not on
the expected value µw (t). We now consider that µ1 (t) = µ2 (t) = 1, σ1 (t) = σ2 (t) = 1 and
ρ1,2 = 0. In Figure 4.13, we analyze the impact of the collateral threshold H. We notice
that having a tighter collateral agreement (or a lower threshold H) allows to reduce the
counterparty exposure. However, this reduction is not monotonous. It is very important
when H is close to zero, but there is no impact when H is large.

37In this limit case, we obtain:

EpE (t;w) = µw (t) =
n∑
i=1

wiµi (t)
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FIGURE 4.11: Impact of µi (t) /σi (t) on the counterparty exposure

FIGURE 4.12: Impact of the correlation on the counterparty exposure
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FIGURE 4.13: Decomposition of the counterparty exposure when there is a collateral
agreement

FIGURE 4.14: Optimal collateral threshold
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The impact of the threshold can be measured by the ratio:

δ (H) = EpE (t;w,∞)− EpE (t;w,H)
EpE (t;w,∞)

where EpE (t;w,H) is the expected positive exposure for a given threshold H. If we would
like to reduce the counterparty exposure by δ?, we have to solve the non-linear equation
δ (H) = δ? in order to find the optimal value H?. We can also approximate EpE (t;w,H)
by its mean contribution:

δ (H) ≈ δµ (H)

= µw (t) · Φ (ζH)
EpEµ (t;w,∞)

In this case, the solution of the non-linear equation δµ (H) = δ? is equal to38:

H? = µw (t)− σw (t) · Φ−1
(EpEµ (t;w,∞)

µw (t) · δ?
)

The computation of H? is then straightforward since we have only to calculate µw (t), σw (t)
and the mean contribution EpEµ (t;w,∞) when there is no collateral agreement. However,
the value of H? is overestimated because EpEµ (t;w,H) is lower than EpE (t;w,H). A rule
of thumb is then to adjust the solution H? by a factor39, which is generally equal to 0.75.
In Figure 4.14, we have represented the optimal collateral threshold H? for the previous
example.

4.4 Exercises
4.4.1 Impact of netting agreements in counterparty credit risk

The table below gives the current mark-to-market of 7 OTC contracts between Bank A
and Bank B:

Equity Fixed income FX
C1 C2 C3 C4 C5 C6 C7

A +10 −5 +6 +17 −5 −5 +1
B −11 +6 −3 −12 +9 +5 +1

The table should be read as follows: Bank A has a mark-to-market equal to +10 for the
contract C1 whereas Bank B has a mark-to-market equal to −11 for the same contract,
Bank A has a mark-to-market equal to −5 for the contract C2 whereas Bank B has a
mark-to-market equal to +6 for the same contract, etc.

1. (a) Explain why there are differences between the MtM values of a same OTC con-
tract.

(b) Calculate the exposure at default of Bank A.
(c) Same question if there is a global netting agreement.
(d) Same question if the netting agreement only concerns equity products.

38The solution H? can be viewed as a quantile of the probability distribution of the portfolio mark-to-
market: MtM (t) ∼ N

(
µw (t) , σ2

w (t)
)
.

39The underlying idea is that EpEµ (t;w,H) ≈ 75% · EpE (t;w,H).
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2. In the following, we measure the impact of netting agreements on the exposure at
default.

(a) We consider an OTC contract C between Bank A and Bank B. The mark-to-
market MtM1 (t) of Bank A for the contract C is defined as follows:

MtM1 (t) = x1 + σ1W1 (t)

where W1 (t) is a Brownian motion. Calculate the potential future exposure of
Bank A.

(b) We consider a second OTC contract between Bank A and Bank B. The mark-
to-market is also given by the following expression:

MtM2 (t) = x2 + σ2W2 (t)

where W2 (t) is a second Brownian motion that is correlated with W1 (t). Let
ρ be this correlation such that E [W1 (t)W2 (t)] = ρ t. Calculate the expected
exposure of bank A if there is no netting agreement.

(c) Same question when there is a global netting agreement between Bank A and
Bank B.

(d) Comment on these results.

4.4.2 Calculation of the effective expected positive exposure
We denote by e (t) the potential future exposure of an OTC contract with maturity T .

The current date is set to t = 0.

1. Define the concepts of peak exposure PEα (t), maximum peak exposure MPEα (0; t),
expected exposure EE (t), expected positive exposure EPE (0; t), effective expected
exposure EEE (t) and effective expected positive exposure EEPE (0; t).

2. Calculate these different quantities when the potential future exposure is e (t) = σ ·√
t ·X where X ∼ U[0,1].

3. Same question when e (t) = exp
(
σ ·
√
t ·X

)
where X ∼ N (0, 1).

4. Same question when e (t) = σ ·
(
t3 − 7

3Tt
2 + 4

3T
2t
)
·X where X ∼ U[0,1].

5. Same question when e (t) = σ ·
√
t ·X where X is a random variable defined on [0, 1]

with the following probability density function40:

f (x) = xa

a+ 1

6. Comment on these results.

40We assume that a > 0.
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4.4.3 Calculation of the capital charge for counterparty credit risk
We denote by e (t) the potential future exposure of an OTC contract with maturity

T . The current date is set to t = 0. Let N and σ be the notional and the volatility of the
underlying contract. We assume that e (t) = N ·σ ·

√
t·X where 0 ≤ X ≤ 1, Pr {X ≤ x} = xγ

and γ > 0.

1. Calculate the peak exposure PEα (t), the expected exposure EE (t) and the effective
expected positive exposure EEPE (0; t).

2. The bank manages the credit risk with the foundation IRB approach and the coun-
terparty credit risk with an internal model. We consider an OTC contract with the
following parameters: N is equal to $3 mn, the maturity T is one year, the volatility
σ is set to 20% and γ is estimated at 2.

(a) Calculate the exposure at default EAD knowing that the bank uses the regulatory
value for the parameter α.

(b) The default probability of the counterparty is estimated at 1%. Calculate then
the capital charge for counterparty credit risk of this OTC contract41.

4.4.4 Calculation of CVA and DVA measures
We consider an OTC contract with maturity T between Bank A and Bank B. We denote

by MtM (t) the risk-free mark-to-market of Bank A. The current date is set to t = 0 and
we assume that:

MtM (t) = N · σ ·
√
t ·X

where N is the notional of the OTC contract, σ is the volatility of the underlying asset and
X is a random variable, which is defined on the support [−1, 1] and whose density function
is:

f (x) = 1
2

1. Define the concept of positive exposure e+ (t). Show that the cumulative distribution
function F[0,t] of e+ (t) has the following expression:

F[0,t] (x) = 1
{

0 ≤ x ≤ σ
√
t
}
·
(

1
2 + x

2 ·N · σ ·
√
t

)
where F[0,t] (x) = 0 if x ≤ 0 and F[0,t] (x) = 1 if x ≥ σ

√
t.

2. Deduce the value of the expected positive exposure EpE (t).

3. We note RB the fixed and constant recovery rate of Bank B. Give the mathematical
expression of the CVA.

4. By using the definition of the lower incomplete gamma function γ (s, x), show that
the CVA is equal to:

CVA =
N · (1−RB) · σ · γ

( 3
2 , λBT

)
4
√
λB

when the default time of Bank B is exponential with parameter λB and interest rates
are equal to zero.

41We will take a value of 70% for the LGD parameter and a value of 20% for the default correlation. We
can also use the approximations −1.06 ≈ −1 and Φ(−1) ≈ 16%.
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5. Comment on this result.

6. By assuming that the default time of Bank A is exponential with parameter λA,
deduce the value of the DVA without additional computations.

4.4.5 Approximation of the CVA for an interest rate swap
This exercise is based on the results of Syrkin and Shirazi (2015).

1. Calculate EpE (t) = E [max (MtM (t) , 0)] when the mark-to-market is equal to
MtM (t) = AeX −B and X ∼ N

(
µX , σ

2
X

)
.

2. We define the mark-to-market of the interest rate swap as follows:

MtM (t) = N

∫ T

t

f (t, T )Bt (s) ds−N
∫ T

t

f (0, T )Bt (s) ds

where N and T are the notional and the maturity of the swap, and f (t, T ) is the
instantaneous forward rate. Comment on this formulation. By assuming that f (t, T )
follows a geometric Brownian motion:

df (t, T ) = µf (t, T ) dt+ σf (t, T ) dW (t)

and the yield curve is flat – Bt (s) = e−r(s−t), calculate the value of the mark-to-
market. Deduce the confidence interval of MtM (t) with a confidence level α.

3. Calculate the expected mark-to-market and the expected counterparty exposure.

4. Give the expression of the CVA at time t if we assume that the default time is
exponentially distributed: τ ∼ E (λ).

5. Retrieve the approximation of the CVA found by Syrkin and Shirazi (2015).

6. We consider the following numerical values: N = 1000, f (0, T ) = 5%, µ = 2%,
σ = 25%, T = 10 years, λ = 1% and R = 50%.

(a) Calculate the 90% confidence interval of MtM (t).
(b) Compare the time profile of EpE (t) and E [MtM (t)].
(c) Compare the time profile of CVA (t) and its approximation.
(d) What do you think about the numerical value of µ?

4.4.6 Risk contribution of CVA with collateral
This exercise is based on the results of Pykhtin and Rosen (2010).

1. We consider the portfolio w = (w1, . . . , wn), which is composed of n OTC contracts.
We assume that the mark-to-market for the contract Ci is given by:

MtMi (t) = µi (t) + σi (t)Xi

where Xi ∼ N (0, 1). Determine the probability distribution of the portfolio mark-to-
market:

MtM (t) =
n∑
i=1

wi ·MtMi (t)

when (X1, . . . , Xn) ∼ N (0n, ρ) and ρ = (ρi,j) is the correlation matrix.



304 Handbook of Financial Risk Management

2. Calculate the correlation γi (t) between MtMi (t) and MtM (t).

3. Calculate the expected value of the counterparty exposure e+ (t) = max (MtM (t) −
C (t) , 0) when the collateral value is given by C (t) = max (MtM (t)−H, 0).

4. We consider the case where there is no collateral: C (t) = 0. What is the implicit value
of H? Deduce the expression of EpE (t;w) = E [e+ (t)]. Calculate the risk contribution
RCi of the contract Ci. Show that EpE (t;w) satisfies the Euler allocation principle.

5. We consider the case where there is a collateral: C (t) 6= 0. Calculate the risk contri-
bution RCi of the contract Ci. Demonstrate that:

n∑
i=1
RCi = EpE (t;w)−H · Φ

(
µw (t)−H
σw (t)

)
where µw (t) and σw (t) are the expected value and volatility of MtM (t). Comment
on this result.

6. Find the risk contribution RCi of type A Euler allocation.

7. Find the risk contribution RCi of type B Euler allocation.

8. We consider the Merton approach for modeling the default time τ of the counterparty:

Xi = %iXB +
√

1− %2
i ηi

where XB ∼ N (0, 1) and the idiosyncratic risk ηi ∼ N (0, 1) are independent. Calcu-
late the correlation %w (t) between MtM (t) and XB . Deduce the relationship between
MtM (t) and XB .

9. Let B (t) = Φ−1 (1− S (t)) be the default barrier and S (t) the survival function of the
counterparty. How to compute the conditional counterparty exposure E [e+ (t) | τ = t]
and the corresponding risk contribution RCi? Give their expressions.



Chapter 5
Operational Risk

The integration of operational risk into the Basel II Accord was a long process because of
the hostile reaction from the banking sector. At the end of the 1990s, the risk of operational
losses was perceived as relatively minor. However, some events had shown that it was not
the case. The most famous example was the bankruptcy of the Barings Bank in 1995. The
loss of $1.3 bn was due to a huge position of the trader Nick Leeson in futures contracts
without authorization. Other examples included the money laundering in Banco Ambrosiano
Vatican Bank (1983), the rogue trading in Sumitomo Bank (1996), the headquarter fire of
Crédit Lyonnais (1996), etc. Since the publication of the CP2 in January 2001, the position
of banks has significantly changed and operational risk is today perceived as a major risk
for the banking industry. Management of operational risk has been strengthened, with the
creation of dedicated risk management units, the appointment of compliance officers and
the launch of anti-money laundering programs.

5.1 Definition of operational risk
The Basel Committee defines the operational risk in the following way:
“Operational risk is defined as the risk of loss resulting from inadequate or failed
internal processes, people and systems or from external events. This definition
includes legal risk, but excludes strategic and reputational risk” (BCBS, 2006,
page 144).

The operational risk covers then all the losses of the bank that cannot be attributed to
market and credit risk. Nevertheless, losses that result from strategic decisions are not
taken into account. An example is the purchase of a software or an information system,
which is not relevant for the firm. Losses due to reputational risk are also excluded from
the definition of operational risk. They are generally caused by an event, which is related to
another risk. The difficulty is to measure the indirect loss of such events in terms of business.
For instance, if we consider the diesel emissions scandal of Volkswagen, we can estimate the
losses due to the recall of cars, class action lawsuits and potential fines. However, it is
impossible to know what the impact of this event will be on the future sales and the market
share of Volkswagen.

In order to better understand the concept of operational risk, we give here the loss even
type classification adopted by the Basel Committee:

1. Internal fraud (“losses due to acts of a type intended to defraud, misappropriate
property or circumvent regulations, the law or company policy, excluding diver-
sity/discrimination events, which involves at least one internal party”)

(a) Unauthorized activity
(b) Theft and fraud
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2. External fraud (“losses due to acts of a type intended to defraud, misappropriate
property or circumvent the law, by a third party”)

(a) Theft and fraud
(b) Systems security

3. Employment practices and workplace safety (“losses arising from acts inconsistent
with employment, health or safety laws or agreements, from payment of personal
injury claims, or from diversity/discrimination events”)

(a) Employee relations
(b) Safe environment
(c) Diversity & discrimination

4. Clients, products & business practices (“losses arising from an unintentional or neg-
ligent failure to meet a professional obligation to specific clients (including fiduciary
and suitability requirements), or from the nature or design of a product”)

(a) Suitability, disclosure & fiduciary
(b) Improper business or market practices
(c) Product flaws
(d) Selection, sponsorship & exposure
(e) Advisory activities

5. Damage to physical assets (“losses arising from loss or damage to physical assets from
natural disaster or other events”)

(a) Disasters and other events

6. Business disruption and system failures (“losses arising from disruption of business or
system failures”)

(a) Systems

7. Execution, delivery & process management (“losses from failed transaction processing
or process management, from relations with trade counterparties and vendors”)

(a) Transaction capture, execution & maintenance
(b) Monitoring and reporting
(c) Customer intake and documentation
(d) Customer/client account management
(e) Trade counterparties
(f) Vendors & suppliers

This is a long list of loss types, because the banking industry has been a fertile ground for
operational risks. We have already cited some well-know operational losses before the crisis.
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In 2009, the Basel Committee has published the results of a loss data collection exercise.
For this LDCE, 119 banks submitted a total of 10.6 million internal losses with an overall
loss amount of e59.6 bn. The largest 20 losses represented a total of e17.6 bn. In Table
5.1, we have reported statistics of the loss data, when the loss is larger than e20 000. For
each year, we indicate the number nL of losses, the total loss amount L and the number nB
of reporting banks. Each bank experienced more than 300 losses larger than e20 000 per
year on average. We also notice that these losses represented about 90% of the overall loss
amount.

TABLE 5.1: Internal losses larger than e20 000 per year
Year pre 2002 2002 2003 2004 2005 2006 2007
nL 14 017 10 216 13 691 22 152 33 216 36 386 36 622
L (in e bn) 3.8 12.1 4.6 7.2 9.7 7.4 7.9
nB 24 35 55 68 108 115 117

Source: BCBS (2009d).

Since 2008, operational risk has dramatically increased. For instance, rogue trading has
impacted many banks and the magnitude of these unauthorized trading losses is much
higher than before1. The Libor interest rate manipulation scandal led to very large fines
($2.5 bn for Deutsche Bank, $1 bn for Rabobank, $545 mn for UBS, etc.). In May 2015, six
banks (Bank of America, Barclays, Citigroup, J.P. Morgan, UBS and RBS) agreed to pay
fines totaling $5.6 bn in the case of the forex scandal2. The anti-money laundering controls
led BNP Paribas to pay a fine of $8.9 bn in June 2014 to the US federal government. In
this context, operational risk, and more specifically compliance and legal risk, is a major
concern for banks. It is an expansive risk, because of the direct losses, but also because of the
indirect costs induced by the proliferation of internal controls and security infrastructure3.

Remark 60 Operational risk is not limited to the banking sector. Other financial sectors
have been impacted by such risk. The most famous example is the Ponzi scheme organized
by Bernard Madoff, which caused a loss of $50 bn to his investors.

5.2 Basel approaches for calculating the regulatory capital
In this section, we present the three approaches described in the Basel II framework in

order to calculate the capital charge for operational risk:

1. the basic indicator approach (BIA);

2. the standardized approach (TSA);

3. and advanced measurement approaches (AMA).

1We can cite Société Générale in 2008 ($7.2 bn), Morgan Stanley in 2008 ($9.0 bn), BPCE in 2008 ($1.1
bn), UBS in 2011 ($2 bn) and JPMorgan Chase in 2012 ($5.8 bn).

2The Libor scandal was a series of fraudulent actions connected to the Libor (London Interbank Offered
Rate), while the forex scandal concerns several banks, which have manipulated exchange rates via electronic
chatrooms in which traders discussed the trades they planned to do.

3A typical example of expansive cost is the risk of cyber attacks.
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We also present the Basel III framework of the standardized approach for measuring oper-
ational risk capital with effect from January 2022.

5.2.1 The basic indicator approach
The basic indicator approach is the simplest method for calculating the operational risk

capital requirement. In this case, the capital charge is a fixed percentage of annual gross
income:

K = α ·GI

where α is set equal to 15% and GI is the average of the positive gross income over the
previous three years:

GI = max (GIt−1, 0) + max (GIt−2, 0) + max (GIt−3, 0)∑3
k=1 1 {GIt−k > 0}

In this approach, the capital charge is related to the financial results of the bank, but not
to its risk exposure.

5.2.2 The standardized approach
The standardized approach is an extended version of the previous method. In this case,

the bank is divided into eight business lines, which are given in Table 5.2. The bank then
calculates the capital charge for each business line:

Kj,t = βj ·GIj,t

where βj and GIj,t are a fixed percentage4 and the gross income corresponding to the jth

business line. The total capital charge is the three-year average of the sum of all the capital
charges:

K = 1
3

3∑
k=1

max

 8∑
j=1

Kj,t−k, 0


We notice that a negative capital charge in one business line may offset positive capital
charges in other business lines. If the values of gross income are all positive, the total
capital charge becomes:

K = 1
3

3∑
k=1

8∑
j=1

βj ·GIj,t−k

=
8∑
j=1

βj ·GIj

where GIj is the average gross income over the previous three years of the jth business line.

Example 51 We consider Bank A, whose activity is mainly driven by retail banking and
asset management. We compare it with Bank B, which is more focused on corporate finance.
We assume that the two banks are only composed of four business lines: corporate finance,

4The values taken by the beta coefficient are reported in Table 5.2.
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TABLE 5.2: Mapping of business lines for operational risk
Level 1 Level 2 βj

Corporate Finance†
Corporate Finance

18%Municipal/Government Finance
Merchant Banking
Advisory Services

Trading & Sales‡
Sales

18%Market Making
Proprietary Positions
Treasury

Retail Banking
Retail Banking

12%Private Banking
Card Services

Commercial Banking\ Commercial Banking 12%
Payment & Settlement External Clients 18%

Agency Services
Custody

15%Corporate Agency
Corporate Trust

Asset Management Discretionary Fund Management 12%Non-Discretionary Fund Management
Retail Brokerage Retail Brokerage 12%

†Mergers and acquisitions, underwriting, securitization, syndications, IPO, debt placements.
‡Buying and selling of securities and derivatives, own position securities, lending and repos, brokerage.
\Project finance, real estate, export finance, trade finance, factoring, leasing, lending, guarantees, bills of
exchange.

retail banking, agency services and asset management. The gross income expressed in $ mn
for the last three years is given below:

Business line Bank A Bank B
t− 1 t− 2 t− 3 t− 1 t− 2 t− 3

Corporate finance 10 15 −30 200 300 150
Retail banking 250 230 205 50 45 −30
Agency services 10 10 12
Asset management 70 65 72 12 8 −4

For Bank A, we obtain GIt−1 = 340, GIt−2 = 320 and GIt−3 = 259. The average gross
income is then equal to 306.33, implying that the BIA capital charge KBIA

A is equal to $45.95
mn. If we consider Bank B, the required capital KBIA

B is lower and equal to $36.55 mn. In
the case of the standardized approach, the beta coefficients are respectively equal to 18%,
12%, 15% and 12%. We deduce that:

KTSA
A = 1

3 × (max (18%× 10 + 12%× 250 + 15%× 10 + 12%× 70, 0) +

max (18%× 15 + 12%× 230 + 15%× 10 + 12%× 65, 0) +
max (−18%× 30 + 12%× 205 + 15%× 12 + 12%× 72, 0))

= $36.98 mn
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We also have KTSA
B = $42.24 mn. We notice that KBIA

A > KTSA
A and KBIA

B < KTSA
B . Bank

A has a lower capital charge when using TSA instead of BIA, because it is more exposed
to low-risk business lines (retail banking and asset management). For Bank B, it is the
contrary because its main exposure concerns high-risk business lines (corporate finance).
However, if we assume that the gross income of the corporate finance for Bank B at time
t − 3 is equal to −150 instead of +150, we obtain KBIA

B = $46.13 mn and KTSA
B = $34.60

mn. In this case, the TSA approach is favorable, because the gross income at time t− 3 is
negative implying that the capital contribution at time t− 3 is equal to zero.

Contrary to the basic indicator approach that requires no criteria to be used, banks must
satisfy a list of qualifying criteria for the standardized approach. For instance, the board
of directors must be actively involved in the oversight of the operational risk management
framework and each business line must have sufficient resources to manage operational risk.
International active banks must also collect operational losses and use this information for
taking appropriate action.

5.2.3 Advanced measurement approaches
Like the internal model-based approach for market risk, the AMA method is defined by

certain criteria without refereing to a specific statistical model:

• The capital charge should cover the one-year operational loss at the 99.9% confidence
level. It corresponds to the sum of expected loss (EL) and unexpected loss (UL).

• The model must be estimated using a minimum five-year observation period of internal
loss data, and capture tail loss events by considering for example external loss data
when it is needed. It must also include scenario analysis and factors reflecting internal
control systems.

• The risk measurement system must be sufficiently granular to capture the main oper-
ational risk factors. By default, the operational risk of the bank must be divided into
the 8 business lines and the 7 event types. For each cell of the matrix, the model must
estimate the loss distribution and may use correlations to perform the aggregation.

• The allocation of economic capital across business lines must create incentives to
improve operational risk management.

• The model can incorporate the risk mitigation impact of insurance, which is limited
to 20% of the total operational risk capital charge.

The validation of the AMA model does not only concern the measurement aspects, but also
the soundness of the entire operational risk management system. This concerns governance
of operational risk, dedicated resources, management structure, risk maps and key risk
indicators (KRI), notification and action procedures, emergency and crisis management,
business continuity and disaster recovery plans.

In order to better understand the challenges of an internal model, we have reported
in Table 5.3 the distribution of annualized loss amounts by business line and event type
obtained with the 2008 loss data collection exercise. We first notice an heterogeneity be-
tween business lines. For instance, losses were mainly concentrated in the fourth event type
(clients, products & business practices) for the corporate finance business line (93.7%) and
the seventh event type (execution, delivery & process management) for the payment &
settlement business line (76.4%). On average, these two event types represented more than
75% of the total loss amount. In contrast, fifth and sixth event types (damage to physical
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assets, business disruption and system failures) had a small contribution close to 1%. We
also notice that operational losses mainly affected retail banking, followed by corporate fi-
nance and trading & sales. One of the issues is that this picture of operational risk is no
longer valid after 2008 with the increase of losses in trading & sales, but also in payment
& settlement. The nature of operational risk changes over time, which is a big challenge to
build an internal model to calculate the required capital.

TABLE 5.3: Distribution of annualized operational losses (in %)

Business line Event type All1 2 3 4 5 6 7
Corporate Finance 0.2 0.1 0.6 93.7 0.0 0.0 5.4 28.0
Trading & Sales 11.0 0.3 2.3 29.0 0.2 1.8 55.3 13.6
Retail Banking 6.3 19.4 9.8 40.4 1.1 1.5 21.4 32.0
Commercial Banking 11.4 15.2 3.1 35.5 0.4 1.7 32.6 7.6
Payment & Settlement 2.8 7.1 0.9 7.3 3.2 2.3 76.4 2.6
Agency Services 1.0 3.2 0.7 36.0 18.2 6.0 35.0 2.6
Asset Management 11.1 1.0 2.5 30.8 0.3 1.5 52.8 2.5
Retail Brokerage 18.1 1.4 6.3 59.5 0.1 0.2 14.4 5.1
Unallocated 6.5 2.8 28.4 28.3 6.5 1.3 26.2 6.0
All 6.1 8.0 6.0 52.4 1.4 1.2 24.9 100.0

Source: BCBS (2009d).

5.2.4 Basel III approach
From January 2022, the standardized measurement approach (SMA) will replace the

three approaches of the Basel II framework. The SMA is based on three components: the
business indicator (BI), the business indicator component (BIC) and the internal loss mul-
tiplier (ILM). The business indicator is a proxy of the operational risk:

BI = ILDC + SC + FC

where ILDC is the interest, leases and dividends component, SC is the services component
and FC is the financial component. The underlying idea is to list the main activities that
generate operational risk: ILDC = min (|INC−EXP| , 2.25% · IRE) + DIV

SC = max (OI,OE) + max (FI,FE)
FC = |ΠTB|+ |ΠBB|

where INC represents the interest income, EXP the interest expense, IRE the interest
earning assets, DIV the dividend income, OI the other operating income, OE the other
operating expense, FI the fee income, FE the fee expense, ΠTB the net P&L of the trading
book and ΠBB the net P&L of the banking book. All these variables are calculated as the
average over the last three years. We can draw a parallel between the business indicator
components and the TSA components. For example, ILDC concerns corporate finance, retail
banking, commercial banking, SC is related to payment & settlement, agency services, asset
management, retail brokerage, while FC mainly corresponds to trading & sales. Once the
BI is calculated and expressed in $ bn, we determine the business indicator component,
which is given by:

BIC = 12% ·min (BI, $1 bn) + 15% ·min (BI−1, $30 bn) + 18% ·min (BI−30)+



312 Handbook of Financial Risk Management

The BIC formula recalls the basic indicator approach of Basel II, but it introduces a marginal
weight by BI tranches. Finally, the bank has to compute the internal loss multiplier, which
is defined as:

ILM = ln
(
e1 − 1 +

(
15 · L̄
BIC

)0.8)
where L̄ is the average annual operational risk losses over the last 10 years. ILM can be
lower or greater than one, depending on the value of L̄:

ILM < 1⇔ L̄ < BIC /15
ILM = 1⇔ L̄ = BIC /15
ILM > 1⇔ L̄ > BIC /15

The capital charge for the operational risk is then equal to5:

K = ILM ·BIC

Remark 61 The SMA of the Basel III framework may be viewed as a mix of the three
approaches of the Basel II framework: BIA, TSA and AMA. Indeed, SMA is clearly a
modified version of BIA by considering a basic indicator based on sources of operational
risk. In this case, the business indicator can be related to TSA. Finally, the introduction of
the ILM coefficient is a way to consider a more sensitive approach based on internal losses,
which is the basic component of AMA.

5.3 Loss distribution approach
Although the Basel Committee does not advocate any particular method for the AMA

method in the Basel II framework, the loss distribution approach (LDA) is the recognized
standard model for calculating the capital charge. This model is not specific to operational
risk because it was developed in the case of the collective risk theory at the beginning of
1900s. However, operational risk presents some characteristics that need to be considered.

5.3.1 Definition
The loss distribution approach is described in Klugman et al. (2012) and Frachot et

al. (2001). We assume that the operational loss L of the bank is divided into a matrix of
homogenous losses:

L =
K∑
k=1

Sk (5.1)

where Sk is the sum of losses of the kth cell and K is the number of cells in the matrix.
For instance, if we consider the Basel II classification, the mapping matrix contains 56 cells
corresponding to the 8 business lines and 7 event types. The loss distribution approach is a

5However, the computation of the ILM coefficient is subject to some standard requirements. For instance,
ILM is set to one for banks with a BIC lower than $1 bn and supervisors can impose the value of the ILM
coefficient for banks that do not meet loss data collection criteria.
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method to model the random loss Sk of a particular cell. It assumes that Sk is the random
sum of homogeneous individual losses:

Sk =
Nk(t)∑
n=1

X(k)
n (5.2)

where Nk (t) is the random number of individual losses for the period [0, t] and X(k)
n is the

nth individual loss. For example, if we consider internal fraud in corporate finance, we can
write the loss for the next year as follows:

S = X1 +X2 + . . .+XN(1)

where X1 is the first observed loss, X2 is the second observed loss, XN(1) is the last observed
loss of the year and N (1) is the number of losses for the next year. We notice that we face
two sources of uncertainty:

1. we don’t know what will be the magnitude of each loss event(severity risk);

2. we don’t know how many losses will occur in the next year (frequency risk).

In order to simplify the notations, we omit the index k and rewrite the random sum as
follows:

S =
N(t)∑
n=1

Xn (5.3)

The loss distribution approach is based on the following assumptions:

• the number N (t) of losses follows the loss frequency distribution P; the probability
that the number of loss events is equal to n is denoted by p (n);

• the sequence of individual losses Xn is independent and identically distributed (iid);
the corresponding probability distribution F is called the loss severity distribution;

• the number of events is independent from the amount of loss events.

Once the probability distributions P and F are chosen, we can determine the probability
distribution of the aggregate loss S, which is denoted by G and is called the compound
distribution.

Example 52 We assume that the number of losses is distributed as follows:

n 0 1 2 3
p (n) 50% 30% 17% 3%

The loss amount can take the values $100 and $200 with probabilities 70% and 30%.

To calculate the probability distribution G of the compound loss, we first define the
probability distribution of X1, X1 + X2 and X1 + X2 + X3, because the maximum num-
ber of losses is equal to 3. If there is only one loss, we have Pr {X1 = 100} = 70% and
Pr {X1 = 200} = 30%. In the case of two losses, we obtain Pr {X1 +X2 = 200} = 49%,
Pr {X1 +X2 = 300} = 42% and Pr {X1 +X2 = 400} = 9%. Finally, the sum of three losses
takes the values 300, 400, 500 and 600 with probabilities 34.3%, 44.1%, 18.9% and 2.7%
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respectively. We notice that these probabilities are in fact conditional to the number of
losses. Using Bayes theorem, we obtain:

Pr {S = s} =
∑
n

Pr
{∑n

i=1
Xi = s

∣∣∣N (t) = n
}
· Pr {N (t) = n}

We deduce that:

Pr {S = 0} = Pr {N (t) = 0}
= 50%

and:

Pr {S = 100} = Pr {X1 = 100} × Pr {N (t) = 1}
= 70%× 30%
= 21%

The compound loss can take the value 200 in two different ways:

Pr {S = 200} = Pr {X1 = 200} × Pr {N (t) = 1}+
Pr {X1 +X2 = 200} × Pr {N (t) = 2}

= 30%× 30% + 49%× 17%
= 17.33%

For the other values of S, we obtain Pr {S = 300} = 8.169%, Pr {S = 400} = 2.853%,
Pr {S = 500} = 0.567% and Pr {S = 600} = 0.081%.

The previous example shows that the cumulative distribution function of S can be
written as6:

G (s) =
{ ∑∞

n=1 p (n) Fn? (s) for s > 0
p (0) for s = 0 (5.4)

where Fn? is the n-fold convolution of F with itself:

Fn? (s) = Pr
{∑n

i=1
Xi ≤ s

}
(5.5)

In Figure 5.1, we give an example of a continuous compound distribution when the annual
number of losses follows the Poisson distribution P (50) and the individual losses follow the
log-normal distribution LN (8, 5). The capital charge, which is also called the capital-at-risk
(CaR), corresponds then to the percentile α:

CaR (α) = G−1 (α) (5.6)

The regulatory capital is obtained by setting α to 99.9%: K = CaR (99.9%). This capital-
at-risk is valid for one cell of the operational risk matrix. Another issue is to calculate
the capital-at-risk for the bank as a whole. This requires defining the dependence function
between the different compound losses (S1, S2, . . . , SK). In summary, here are the different
steps to implement the loss distribution approach:
• for each cell of the operational risk matrix, we estimate the loss frequency distribution
and the loss severity distribution;

• we then calculate the capital-at-risk;

• we define the dependence function between the different cells of the operational risk
matrix, and deduce the aggregate capital-at-risk.

6When F is a discrete probability function, it is easy to calculate Fn? (s) and then deduce G (s). However,
the determination of G (s) is more difficult in the general case of continuous probability functions. This
issue is discussed in Section 5.3.3 on page 327.
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FIGURE 5.1: Compound distribution when N ∼ P (50) and X ∼ LN (8, 5)

5.3.2 Parametric estimation
We first consider the estimation of the severity distribution, because we will see that the

estimation of the frequency distribution can only be done after this first step.

5.3.2.1 Estimation of the loss severity distribution

We assume that the bank has an internal loss database. We note {x1, . . . , xT } the sample
collected for a given cell of the operational risk matrix. We consider that the individual losses
follow a given parametric distribution F:

X ∼ F (x; θ)

where θ is the vector of parameters to estimate.
In order to be a good candidate for modeling the loss severity, the probability distribution

F must satisfy the following properties: the support of F is the interval R+, it is sufficiently
flexible to accommodate a wide variety of empirical loss data and it can fit large losses. We
list here the cumulative distribution functions that are the most used in operational risk
models:

• Gamma X ∼ G (α, β)

F (x; θ) = γ (α, βx)
Γ (α)

where α > 0 and β > 0.

• Log-gamma X ∼ LG (α, β)

F (x; θ) = γ (α, β ln x)
Γ (α)

where α > 0 and β > 0.
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• Log-logistic X ∼ LL (α, β)

F (x; θ) = 1
1 + (x/α)−β

= xβ

αβ + xβ

where α > 0 and β > 0.

• Log-normal X ∼ LN
(
µ, σ2)

F (x; θ) = Φ
(

ln x− µ
σ

)
where x > 0 and σ > 0.

• Generalized extreme value X ∼ GEV (µ, σ, ξ)

F (x; θ) = exp
{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

where x > µ− σ/ξ, σ > 0 and ξ > 0.

• Pareto X ∼ P (α, x−)

F (x; θ) = 1−
(
x

x−

)−α
where x ≥ x−, α > 0 and x− > 0.

The vector of parameters θ can be estimated by the method of maximum likelihood
(ML) or the generalized method of moments (GMM). In Chapter 10, we show that the
log-likelihood function associated to the sample is:

` (θ) =
T∑
i=1

ln f (xi; θ) (5.7)

where f (x; θ) is the density function. In the case of the GMM, the empirical moments are:{
hi,1 (θ) = xi − E [X]
hi,2 (θ) = (xi − E [X])2 − var (X) (5.8)

In Table 5.4, we report the density function f (x; θ), the mean E [X] and the variance var (X)
when X follows one of the probability distributions described previously. For instance, if we
consider that X ∼ LN

(
µ, σ2), it follows that the log-likelihood function is:

` (θ) = −
T∑
i=1

ln xi −
T

2 ln σ2 − T

2 ln 2π − 1
2

T∑
i=1

(
ln xi − µ

σ

)2

whereas the empirical moments are: hi,1 (θ) = xi − eµ+ 1
2σ

2

hi,2 (θ) =
(
xi − eµ+ 1

2σ
2
)2
− e2µ+σ2

(
eσ

2 − 1
)
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TABLE 5.4: Density function, mean and variance of parametric probability distribution

Distribution f (x; θ) E [X] var (X)

G (α, β)
βαxα−1e−βx

Γ (α)
α

β

α

β2

LG (α, β)
βα (lnx)α−1

xβ+1Γ (α)

(
β

β − 1

)α
if β > 1

(
β

β − 2

)α
−
(

β

β − 1

)2α
if β > 2

LL (α, β)
β (x/α)β−1

α
(
1 + (x/α)β

)2 απ

β sin (π/β)
if β > 1 α2

(
2π

β sin (2π/β)
−

π2

β2 sin2 (π/β)

)
if β > 2

LN
(
µ, σ2

) 1
xσ
√

2π
exp
(
−

1
2

(
x− µ
σ

)2
)

exp
(
µ+

1
2
σ2
)

exp
(
2µ+ σ2

) (
exp
(
σ2
)
− 1
)

GEV (µ, σ, ξ)

1
σ

[
1 + ξ

(
x− µ
σ

)]−(1+1/ξ)
µ+

σ

ξ
(Γ (1− ξ)− 1)

σ2

ξ2

(
Γ (1− 2ξ)− Γ2 (1− ξ)

)
exp
{
−
[

1 + ξ

(
x− µ
σ

)]−1/ξ
}

if ξ < 1 if ξ < 1
2

P (α, x−)
αxα−
xα+1

αx−

α− 1
if α > 1

αx2
−

(α− 1)2 (α− 2)
if α > 2

In the case of the log-normal distribution, the vector θ is composed of two parameters µ
and σ, implying that two moments are sufficient to define the GMM estimator. This is
also the case of other probability distributions, except the GEV distribution that requires
specification of three empirical moments7.

Example 53 We assume that the individual losses take the following values expressed in
thousand dollars: 10.1, 12.5, 14, 25, 317.3, 353, 1 200, 1 254, 52 000 and 251 000.

Using the method of maximum likelihood, we find that α̂ML and β̂ML are equal to 15.70 and
1.22 for the log-gamma distribution and 293 721 and 0.51 for the log-logistic distribution.
In the case of the log-normal distribution8, we obtain µ̂ML = 12.89 and σ̂ML = 3.35.

The previous analysis assumes that the sample of operational losses for estimating θ
represents a comprehensive and homogenous information of the underlying probability dis-
tribution F. In practice, loss data are plagued by various sources of bias. The first issue lies
in the data generating process which underlies the way data have been collected. In almost
all cases, loss data have gone through a truncation process by which data are recorded only
when their amounts are higher than some thresholds. In practice, banks’ internal thresholds
are set in order to balance two conflicting wishes: collecting as many data as possible while
reducing costs by collecting only significant losses. These thresholds, which are defined by
the global risk management policy of the bank, must satisfy some criteria:

7We can use the moment of order 3, which corresponds to:

E
[
(X − E [X])3] =

σ3

ξ3

(
Γ (1− 3ξ)− 3Γ (1− 2ξ) Γ (1− ξ) + 2Γ3 (1− ξ)

)
8If we consider the generalized method of moments, the estimates are µ̂GMM = 16.26 and σ̂GMM = 1.40.
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“A bank must have an appropriate de minimis gross loss threshold for internal
loss data collection, for example e10 000. The appropriate threshold may vary
somewhat between banks, and within a bank across business lines and/or event
types. However, particular thresholds should be broadly consistent with those
used by peer banks” (BCBS, 2006, page 153).

The second issue concerns the use of relevant external data, especially when there is reason to
believe that the bank is exposed to infrequent, yet potentially severe losses. Typical examples
are rogue trading or cyber attacks. If the bank has not yet experienced a large amount of
loss due to these events in the past, this does not mean that it will never experience such
problems in the future. Therefore, internal loss data must be supplemented by external data
from public and/or pooled industry databases. Unfortunately, incorporating external data
is rather dangerous and requires careful methodology to avoid the pitfalls regarding data
heterogeneity, scaling problems and lack of comparability between too heterogeneous data.
Unfortunately, there is no satisfactory solution to deal with these scaling issues, implying
that banks use external data by taking into account only reporting biases and a fixed and
known threshold9.

The previous issues imply that operational risk loss data cannot be reduced to the sam-
ple of individual losses, but also requires specifying the threshold Hi for each individual
loss xi. The form of operational loss data is then {(xi, Hi) , i = 1, . . . , T}, where xi is the
observed value of X knowing that X is larger than the threshold Hi. Reporting thresholds
affect severity estimation in the sense that the sample severity distribution (i.e. the severity
distribution of reported losses) is different from the ‘true’ one (i.e. the severity distribu-
tion one would obtain if all the losses were reported). Unfortunately, the true distribution
is the most relevant for calculating capital charge. As a consequence, linking the sample
distribution to the true one is a necessary task. From a mathematical point of view, the
true distribution is the probability distribution of X whereas the sample distribution is the
probability distribution of X | X ≥ Hi. We deduce that the sample distribution for a given
threshold H is the conditional probability distribution defined as follows:

F? (x; θ | H) = Pr {X ≤ x | X ≥ H}

= Pr {X ≤ x,X ≥ H}
Pr {X ≥ H}

= Pr {X ≤ x} − Pr {X ≤ min (x,H)}
Pr {X ≥ H}

= 1 {x ≥ H} · F (x; θ)− F (H; θ)
1− F (H; θ) (5.9)

It follows that the density function is:

f? (x; θ | H) = 1 {x ≥ H} · f (x; θ)
1− F (H; θ)

To estimate the vector of parameters θ, we continue to use the method of maximum like-
lihood or the generalized method of moments by considering the correction due to the

9See Baud et al. (2002, 2003) for more advanced techniques based on unknown and stochastic thresholds.
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truncation of data. For the ML estimator, we have then:

` (θ) =
T∑
i=1

ln f? (xi; θ | Hi)

=
T∑
i=1

ln f (xi; θ) +
T∑
i=1

ln1 {xi ≥ Hi} −
T∑
i=1

ln (1− F (Hi; θ))

(5.10)

where Hi is the threshold associated to the ith observation. The correction term
−
∑T
i=1 ln (1− F (Hi; θ)) shows that maximizing a conventional log-likelihood function

which ignores data truncation is totally misleading. We also notice that this term van-
ishes when Hi is equal to zero10. For the GMM estimator, the empirical moments become:{

hi,1 (θ) = xi − E [X | X ≥ Hi]
hi,2 (θ) = (xi − E [X | X ≥ Hi])2 − var (X | X ≥ Hi)

(5.11)

There is no reason that the conditional moment E [Xm | X ≥ Hi] is equal to the uncondi-
tional moment E [Xm]. Therefore, the conventional GMM estimator is biased and this is
why we have to apply again the threshold correction.

If we consider again the log-normal distribution, the expression of the log-likelihood
function (5.10) is11:

` (θ) = −T2 ln 2π − T

2 ln σ2 −
T∑
i=1

ln xi −
1
2

T∑
i=1

(
ln xi − µ

σ

)2
−

T∑
i=1

ln
(

1− Φ
(

lnHi − µ
σ

))
Let us now calculate the conditional moment µ′m (X) = E [Xm | X ≥ H]. By using the
notation Φc (x) = 1− Φ ((x− µ) /σ), we have:

µ′m (X) = 1
Φc (lnH)

∫ ∞
H

xm

xσ
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

dx

= 1
Φc (lnH)

∫ ∞
lnH

1
σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
+my

)
dy

=
exp

(
mµ+m2σ2/2

)
Φc (lnH)

∫ ∞
lnH

1
σ
√

2π
exp

−1
2

(
y −

(
µ+mσ2)
σ

)2
 dy

=
Φc
(
lnH −mσ2)
Φc (lnH) exp

(
mµ+m2σ2/2

)
We deduce that:

E [X | X ≥ H] = a (θ,H) =
1− Φ

(
lnH−µ−σ2

σ

)
1− Φ

(
lnH−µ

σ

) eµ+ 1
2σ

2

10Indeed, we have F (0; θ) = 0 and ln (1− F (0; θ)) = 0.
11By construction, the observed value xi is larger than the threshold Hi, meaning that ln1 {xi ≥ Hi} is

equal to 0.
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and:

E
[
X2 | X ≥ H

]
= b (θ,H) =

1− Φ
(

lnH−µ−2σ2

σ

)
1− Φ

(
lnH−µ

σ

) e2µ+2σ2

We finally obtain:{
hi,1 (θ) = xi − a (θ,Hi)
hi,2 (θ) = x2

i − 2xia (θ,Hi) + 2a2 (θ,Hi)− b (θ,Hi)

In order to illustrate the impact of the truncation, we report in Figure 5.2 the cumulative
distribution function and the probability density function of X | X > H when X follows
the log-normal distribution LN (8, 5). The threshold H is set at $10 000, meaning that the
bank collects operational losses when the amount is larger than this threshold. In the bottom
panels of the figure, we indicate the mean and the variance with respect to the threshold
H. We notice that data truncation increases the magnitude of the mean and the variance.
For instance, when H is set at $10 000, the conditional mean and variance are multiplied
by a factor equal to 3.25 with respect to the unconditional mean and variance.

FIGURE 5.2: Impact of the threshold H on the severity distribution

Example 54 We consider Example 53 and assume that the losses have been collected using
a unique threshold that is equal to $5 000.

By using the truncation correction, the ML estimates become µ̂ML = 8.00 and σ̂ML =
5.71 for the log-normal model. In Figure 5.3, we compare the log-normal cumulative distri-
bution function without and with the truncation correction. We notice that the results are
very different.

The previous example shows that estimating the parameters of the probability dis-
tribution is not sufficient to define the severity distribution. Indeed, ML and GMM give
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FIGURE 5.3: Comparison of the estimated severity distributions

two different log-normal probability distributions. The issue is to decide which is the best
parametrization. In a similar way, the choice between the several probability families (log-
normal, log-gamma, GEV, Pareto, etc.) is an open question. This is why fitting the severity
distribution does not reduce to estimate the parameters of a given probability distribu-
tion. It must be completed by a second step that consists in selecting the best estimated
probability distribution. However, traditional goodness-of-fit tests (Kolmogorov-Smirnov,
Anderson-Darling, etc.) are not useful, because they concern the entire probability distri-
bution. In operational risk, extreme events are more relevant. This explains why QQ plots
and order statistics are generally used to assess the fitting of the upper tail. A QQ plot
represents the quantiles of the empirical distribution against those of the theoretical model.
If the statistical model describes perfectly the data, we obtain the diagonal line y = x.
In Figure 5.4, we show an example of QQ plot. We notice that the theoretical quantiles
obtained from the statistical model are in line with those calculated with the empirical data
when the quantile is lower than 80%. Otherwise, the theoretical quantiles are above the em-
pirical quantiles, meaning that extreme events are underestimated by the statistical model.
We deduce that the body of the distribution is well estimated, but not the upper tail of
the distribution. However, medium losses are less important than high losses in operational
risk.

5.3.2.2 Estimation of the loss frequency distribution

In order to model the frequency distribution, we have to specify the counting process
N (t), which defines the number of losses occurring during the time period [0, t]. The number
of losses for the time period [t1, t2] is then equal to:

N (t1; t2) = N (t2)−N (t1)
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FIGURE 5.4: An example of QQ plot where extreme events are underestimated

We generally made the following statements about the stochastic process N (t):
• the distribution of the number of losses N (t; t+ h) for each h > 0 is independent of
t; moreover, N (t; t+ h) is stationary and depends only on the time interval h;

• the random variables N (t1; t2) and N (t3; t4) are independent if the time intervals
[t1, t2] and [t3, t4] are disjoint;

• no more than one loss may occur at time t.
These simple assumptions define a Poisson process, which satisfies the following properties:

1. there exists a scalar λ > 0 such that the distribution of N (t) has a Poisson distribution
with parameter λt;

2. the duration between two successive losses is iid and follows the exponential distribu-
tion E (λ).

Let p (n) be the probability to have n losses. We deduce that:
p (n) = Pr {N (t) = n}

= e−λt · (λt)n

n! (5.12)

Without loss of generality, we can fix t = 1 because it corresponds to the required one-
year time period for calculating the capital charge. In this case, N (1) is simply a Poisson
distribution with parameter λ. This probability distribution has a useful property for time
aggregation. Indeed, the sum of two independent Poisson variables N1 and N2 with param-
eters λ1 and λ2 is also a Poisson variable with parameter λ1 + λ2. This property is a direct
result of the definition of the Poisson process. In particular, we have:

K∑
k=1

N

(
k − 1
K

; k
K

)
= N (1)
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where N ((k − 1) /K; k/K) ∼ P (λ/K). This means that we can estimate the frequency
distribution at a quarterly or monthly period and convert it to an annual period by simply
multiplying the quarterly or monthly intensity parameter by 4 or 12.

The estimation of the annual intensity λ can be done using the method of maximum
likelihood. In this case, λ̂ is the mean of the annual number of losses:

λ̂ = 1
ny

ny∑
y=1

Ny (5.13)

where Ny is the number of losses occurring at year y and ny is the number of observations.
One of the key features of the Poisson distribution is that the variance equals the mean:

λ = E [N (1)] = var (N (1)) (5.14)

We can use this property to estimate λ by the method of moments. If we consider the first
moment, we obtain the ML estimator, whereas we have with the second moment:

λ̂ = 1
ny

ny∑
y=1

(
Ny − N̄

)2
where N̄ is the average number of losses.

Example 55 We assume that the annual number of losses from 2006 to 2015 is the fol-
lowing: 57, 62, 45, 24, 82, 36, 98, 75, 76 and 45.

The mean is equal to 60 whereas the variance is equal to 474.40. In Figure 5.5, we show
the probability mass function of the Poisson distribution with parameter 60. We notice that
the parameter λ is not enough large to reproduce the variance and the range of the sample.
However, using the moment estimator based on the variance is completely unrealistic.

When the variance exceeds the mean, we use the negative binomial distribution
NB (r, p), which is defined as follows:

p (n) =
(
r + n− 1

n

)
(1− p)r pn

= Γ (r + n)
n! Γ (r) (1− p)r pn

where r > 0 and p ∈ [0, 1]. The negative binomial distribution can be viewed as the proba-
bility distribution of the number of successes in a sequence of iid Bernoulli random variables
B (p) until we get r failures. The negative binomial distribution is then a generalization of
the geometric distribution. Concerning the first two moments, we have:

E [NB (r, p)] = p · r
1− p

and:
var (NB (r, p)) = p · r

(1− p)2

We verify that:

var (NB (r, p)) = 1
1− p · E [NB (r, p)]

> E [NB (r, p)]
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FIGURE 5.5: PMF of the Poisson distribution P (60)

Remark 62 The negative binomial distribution corresponds to a Poisson process where the
intensity parameter is random and follows a gamma distribution12:

NB (r, p) ∼ P (Λ) and Λ ∼ G (α, β)

where α = r and β = (1− p) /p.

We consider again Example 55 and assume that the number of losses is described by
the negative binomial distribution. Using the method of moments, we obtain the following
estimates:

r̂ = m2

v −m
= 602

474.40− 60 = 8.6873

and
p̂ = v −m

v
= 474.40− 60

474.40 = 0.8735

where m is the mean and v is the variance of the sample. Using these estimates as the
starting values of the numerical optimization procedure, the ML estimates are r̂ = 7.7788
and p̂ = 0.8852. We report the corresponding probability mass function p (n) in Figure 5.6.
We notice that this distribution better describes the sample that the Poisson distribution,
because it has a larger support. In fact, we show in Figure 5.7 the probability density
function of λ for the two estimated counting processes. For the Poisson distribution, λ is
constant and equal to 60, whereas λ has a gamma distribution G (7.7788, 0.1296) in the case
of the negative binomial distribution. The variance of the gamma distribution explains the
larger variance of the negative binomial distribution with respect to the Poisson distribution,
while we notice that the two distributions have the same mean.

12See Exercise 5.4.6 on page 346.
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FIGURE 5.6: PMF of the negative binomial distribution

FIGURE 5.7: Probability density function of the parameter λ
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As in the case of the severity distribution, data truncation and reporting bias have an
impact of the frequency distribution (Frachot et al., 2006). For instance, if one bank’s re-
porting threshold H is set at a high level, then the average number of reported losses will
be low. It does not imply that the bank is allowed to have a lower capital charge than an-
other bank that uses a lower threshold and is otherwise identical to the first one. It simply
means that the average number of losses must be corrected for reporting bias as well. It ap-
pears that the calibration of the frequency distribution comes as a second step (after having
calibrated the severity distribution) because the aforementioned correction needs an estimate
of the exceedance probability Pr {X > H} for its calculation. This is rather straightforward:
the difference (more precisely the ratio) between the number of reported events and the ‘true’
number of events (which would be obtained if all the losses were reported, i.e. with a zero-
threshold) corresponds exactly to the probability of one loss being higher than the threshold.
This probability is a direct by-product of the severity distribution.

Let NH (t) be the number of events that are larger than the threshold H. By definition,
NH (t) is the counting process of exceedance events:

NH (t) =
N(t)∑
i=1

1 {Xi > H}

It follows that:

E [NH (t)] = E

N(t)∑
i=1

1 {Xi > H}


= E

[
n∑
i=1

1 {Xi > H}

∣∣∣∣∣N (t) = n

]
= E [N (t)] · E [1 {Xi > H}]

because the random variables X1, . . . , Xn are iid and independent from the random number
of events N (t). We deduce that:

E [NH (t)] = E [N (t)] · Pr {Xi > H}
= E [N (t)] · (1− F (H; θ)) (5.15)

This latter equation provides information about the transformation of the counting process
N (t) into the exceedance process. However, it only concerns the mean and not the dis-
tribution itself. One interesting feature of data truncation is when the distribution of the
threshold exceedance process belongs to the same distribution class of the counting process.
It is the case of the Poisson distribution:

PH (λ) = P (λH)
Using Equation (5.15), it follows that the Poisson parameter λH of the exceedance process is
simply the product of the Poisson parameter λ by the exceedance probability Pr {X > H}:

λH = λ · (1− F (H; θ))

We deduce that the estimator λ̂ has the following expression:

λ̂ = λ̂H

1− F
(
H; θ̂

)
where λ̂H is the average number of losses that are collected above the threshold H and
F
(
x; θ̂
)
is the parametric estimate of the severity distribution.
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Example 56 We consider that the bank has collected the loss data from 2006 to 2015 with a
threshold of $20 000. For a given event type, the calibrated severity distribution corresponds
to a log-normal distribution with parameters µ̂ = 7.3 and σ̂ = 2.1, whereas the annual
number of losses is the following: 23, 13, 50, 12, 25, 36, 48, 27, 18 and 35.

Using the Poisson distribution, we obtain λ̂H = 28.70. The probability that the loss exceeds
the threshold H is equal to:

Pr {X > 20 000} = 1− Φ
(

ln (20 000)− 7.3
2.1

)
= 10.75%

This means that only 10.75% of losses can be observed when we apply a threshold of $20 000.
We then deduce that the estimate of the Poisson parameter is equal to:

λ̂ = 28.70
10.75% = 266.90

On average, there are in fact about 270 loss events per year.
We could discuss whether the previous result remains valid in the case of the negative

binomial distribution. If it is the case, then we have:

PH (r, p) = P (rH , pH)

Using Equation (5.15), we deduce that:
pH · rH
1− pH

= p · r
1− p · (1− F (H; θ))

If we assume that rH is equal to r, we obtain:

pH = p · (1− F (H; θ))
1− p · F (H; θ)

We verify the following inequality p ≤ pH ≤ 1. However, this solution is not completely
satisfactory.

5.3.3 Calculating the capital charge
Once the frequency and severity distributions are calibrated, the computation of the

capital charge is straightforward. For that, we can use the Monte Carlo method or different
analytical methods. The Monte Carlo method is much more used, because it is more flexible
and gives better results in the case of low frequency/high severity events. Analytical ap-
proaches, which are very popular in insurance, can be used for high frequency/low severity
events. One remaining challenge, however, is aggregating the capital charge of the different
cells of the mapping matrix. By construction, the loss distribution approach assumes that
aggregate losses are independent. Nevertheless, regulation are forcing banks to take into
account positive correlation between risk events. The solution is then to consider copula
functions.

5.3.3.1 Monte Carlo approach

We reiterate that the one-year compound loss of a given cell is defined as follows:

S =
N(1)∑
i=1

Xi
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where Xi ∼ F and N (1) ∼ P. The capital-at-risk is then the 99% quantile of the compound
loss distribution. To estimate the capital charge by Monte Carlo, we first simulate the annual
number of losses from the frequency distribution and then simulate individual losses in order
to calculate the compound loss. Finally, the quantile is estimated by order statistics. The
algorithm is described below.

Algorithm 1 Compute the capital-at-risk for an operational risk cell
Initialize the number of simulations nS
for j = 1 : nS do
Simulate an annual number n of losses from the frequency distribution P
Sj ← 0
for i = 1 : n do

Simulate a loss Xi from the severity distribution F
Sj = Sj +Xi

end for
end for
Calculate the order statistics S1:nS , . . . , SnS :nS
Deduce the capital-at-risk CaR = SαnS :nS with α = 99.9%
return CaR

Let us illustrate this algorithm when N (1) ∼ P (4) and Xi ∼ LN (8, 4). Using a linear
congruential method, the simulated values of N (1) are 3, 4, 1, 2, 3, etc. while the simulated
values ofXi are 3388.6, 259.8, 13328.3, 39.7, 1220.8, 1486.4, 15197.1, 3205.3, 5070.4, 84704.1,
64.9, 1237.5, 187073.6, 4757.8, 50.3, 2805.7, etc. For the first simulation, we have three losses
and we obtain:

S1 = 3388.6 + 259.8 + 13328.3 = $16 976.7

For the second simulation, the number of losses is equal to four and the compound loss is
equal to:

S2 = 39.7 + 1220.8 + 1486.4 + 15197.1 = $17 944.0

For the third simulation, we obtain S3 = $3 205.3, and so on. Using nS simulations, the
value of the capital charge is estimated with the 99.9% empirical quantile based on order
statistics. For instance, Figure 5.8 shows the histogram of 2 000 simulated values of the
capital-at-risk estimated with one million simulations. The true value is equal to $3.24 mn.
However, we notice that the variance of the estimator is large. Indeed, the range of the MC
estimator is between $3.10 mn and $3.40 mn in our experiments with one million simulation
runs.

The estimation of the capital-at-risk with a high accuracy is therefore difficult. The
convergence of the Monte Carlo algorithm is low and the estimated quantile can be very far
from the true quantile especially when the severity loss distribution is heavy tailed and the
confidence level α is high. That’s why it is important to control the accuracy of G−1 (α).
This can be done by verifying that the estimated moments are close to the theoretical ones.
For the first two central moments, we have:

E [S] = E [N (1)] · E [Xi]

and:
var (S) = E [N (1)] · var (Xi) + var (N (1)) · E2 [Xi]

To illustrate the convergence problem, we consider the example of the compound Poisson
distribution where N (1) ∼ P (10) and Xi ∼ LN

(
5, σ2). We compute the aggregate loss
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FIGURE 5.8: Histogram of the MC estimator ĈaR

distribution by the Monte Carlo method for different number nS of simulations and different
runs. To measure the accuracy, we calculate the ratio between the MC standard deviation
σ̂nS (S) and the true value σ (S):

R (ns) = σ̂nS (S)
σ (S)

We notice that the convergence is much more erratic when σ takes a high value (Figure
5.10) than when σ is low (Figure 5.9). When σ takes the value 1, the convergence of the
Monte Carlo method is verified with 100 000 simulations. When σ takes the value 2.5, 100
million simulations are not sufficient to estimate the second moment, and then the capital-
at-risk. Indeed, the occurrence probability of extreme events is generally underestimated.
Sometimes, a severe loss is simulated implying a jump in the empirical standard deviation
(see Figure 5.10). This is why we need a large number of simulations in order to be confident
when estimating the 99.9% capital-at-risk with high severity distributions.

Remark 63 With the Monte Carlo approach, we can easily integrate mitigation factors
such as insurance coverage. An insurance contract is generally defined by a deductive13 A
and the maximum amount B of a loss, which is covered by the insurer. The effective loss
X̃i suffered by the bank is then the difference between the loss of the event and the amount
paid by the insurer:

X̃i = Xi −max (min (Xi,B)−A, 0)
The relationship between Xi and X̃i is shown in Figure 5.11. In this case, the annual loss
of the bank becomes:

S =
N(1)∑
i=1

X̃i

13It corresponds to the loss amount the bank has to cover by itself.
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FIGURE 5.9: Convergence of the accuracy ratio R (ns) when σ = 1

FIGURE 5.10: Convergence of the accuracy ratio R (ns) when σ = 2.5
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Taking into account an insurance contract is therefore equivalent to replace Xi by X̃i in the
Monte Carlo simulations.

X̃i

Xi
B

A

A

A+ x−B

x

FIGURE 5.11: Impact of the insurance contract on the operational risk loss

5.3.3.2 Analytical approaches

There are three analytical (or semi-analytical) methods to compute the aggregate loss
distribution: the solution based on characteristic functions, Panjer recursion and the single
loss approximation.

Method of characteristic functions Formally, the characteristic function of the ran-
dom variable X is defined by:

ϕX (t) = E
[
eitX

]
If X has a continuous probability distribution F, we obtain:

ϕX (t) =
∫ ∞

0
eitx dF (x)

We notice that the characteristic function of the sum of n independent random variables is
the product of their characteristic functions:

ϕX1+...+Xn (t) = E
[
eit(X1+X2+···+Xn)

]
=

n∏
i=1
E
[
eitXi

]
=

n∏
i=1

ϕXi (t)

It comes that the characteristic function of the compound distribution G is given by:

ϕS (t) =
∞∑
n=0

p (n) (ϕX (t))n = ϕN(1) (ϕX (t))
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where ϕN(1) (t) is the probability generating function ofN (1). For example, ifN (1) ∼ P (λ),
we have:

ϕN(1) (t) = eλ(t−1)

and:
ϕS (t) = eλ(ϕX(t)−1)

We finally deduce that S has the probability density function given by the Laplace transform
of ϕS (t):

g (x) = 1
2π

∫ ∞
−∞

e−itxϕS (t) dt

Using this expression, we can easily compute the cumulative distribution function and its
inverse with the fast fourier transform.

Panjer recursive approach Panjer (1981) introduces recursive approaches to compute
high-order convolutions. He showed that if the probability mass function of the counting
process N (t) satisfies:

p (n) =
(
a+ b

n

)
p (n− 1)

where a and b are two scalars, then the following recursion holds:

g (x) = p (1) f (x) +
∫ x

0

(
a+ b

y

x

)
f (y) g (x− y) dy

where x > 0. For discrete severity distributions satisfying fn = Pr {Xi = nδ} where δ is the
monetary unit (e.g. $10 000), the Panjer recursion becomes:

gn = Pr {S = nδ}

= 1
1− af0

n∑
j=1

(
a+ bj

n

)
fjgn−j

where:

g0 =
∞∑
n=0

p (n) (f0)n

=
{
p (0) ebf0 if a = 0
p (0) (1− af0)−1−b/a otherwise

The capital-at-risk is then equal to:

CaR (α) = n?δ

where:

n? = inf

n :
n∑
j=0

gj ≥ α


Like the method of characteristic functions, the Panjer recursion is very popular among
academics, but produces significant numerical errors in practice when applied to operational
risk losses. The issue is the support of the compound distribution, whose range can be from
zero to several billions.
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Example 57 We consider the compound Poisson distribution with log-normal losses and
different sets of parameters:

(a) λ = 5, µ = 5, σ = 1.0;

(b) λ = 5, µ = 5, σ = 1.5;

(c) λ = 5, µ = 5, σ = 2.0;

(d) λ = 50, µ = 5, σ = 2.0.

In order to implement the Panjer recursion, we have to perform a discretization of the
severity distribution. Using the central difference approximations, we have:

fn = Pr
{
nδ − δ

2 ≤ Xi ≤ nδ + δ

2

}
= F

(
nδ + δ

2

)
− F

(
nδ − δ

2

)
To initialize the algorithm, we use the convention f0 = F (δ/2). In Figure 5.12, we compare
the cumulative distribution function of the aggregate loss obtained with the Panjer recursion
and Monte Carlo simulations14. We deduce the capital-at-risk for different values of α in
Table 5.5. In our case, the Panjer algorithm gives a good approximation, because the support
of the distribution is ‘bounded ’. When the aggregate loss can take very large values, we
need a lot of iterations to achieve the convergence15. Moreover, we may have underflow in
computations because g0 ≈ 0.

TABLE 5.5: Comparison of the capital-at-risk calculated with Panjer recursion and Monte
Carlo simulations

α
Panjer recursion Monte Carlo simulations

(a) (b) (c) (d) (a) (b) (c) (d)
90% 2400 4500 11000 91000 2350 4908 11648 93677
95% 2900 6500 19000 120000 2896 6913 19063 123569
99% 4300 13500 52000 231000 4274 13711 51908 233567
99.5% 4900 18000 77000 308000 4958 17844 77754 310172
99.9% 6800 32500 182000 604000 6773 32574 185950 604756

Single loss approximation If the severity belongs to the family of subexponential dis-
tributions, then Böcker and Klüppelberg (2005) and Böcker and Sprittulla (2006) show
that the percentile of the compound distribution can be approximated by the following
expression:

G−1 (α) ≈ (E [N (1)]− 1) · E [Xi] + F−1
(

1− 1− α
E [N (1)]

)
(5.16)

It follows that the capital-at-risk is the sum of the expected loss and the unexpected loss
defined as follows:

EL = E [N (1)] · E [Xi]

UL (α) = F−1
(

1− 1− α
N (1)

)
− E [Xi]

14We use one million simulations.
15In this case, it is not obvious that the Panjer recursion is faster than Monte Carlo simulations.
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FIGURE 5.12: Comparison between the Panjer and MC compound distributions

To understand Formula (5.16), we recall that subexponential distributions are a special case
of heavy-tailed distributions and satisfy the following property:

lim
x→∞

Pr {X1 + · · ·+Xn > x}
Pr {max (X1, . . . , Xn) > x}

= 1

This means that large values of the aggregate loss are dominated by the maximum loss of
one event. If we decompose the capital-at-risk as a sum of risk contributions, we obtain:

G−1 (α) =
E[N(1)]∑
i=1

RCi

where:
RCi = E [Xi] for i 6= i?

and:
RCi? = F−1

(
1− 1− α

N (1)

)
In this model, the capital-at-risk is mainly explained by the single largest loss i?. If we
neglect the small losses, the capital-at-risk at the confidence level αCaR is related to the
quantile αSeverity of the loss severity:

αSeverity = 1− 1− αCaR

N (1)

This relationship16 is shown in Figure 5.13 and explains why this framework is called the
single loss approximation (SLA). For instance, if the annual number of losses is equal to
100 on average, computing the capital-at-risk with a 99.9% confidence level is equivalent to
estimate the quantile 99.999% of the loss severity.
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FIGURE 5.13: Relationship between αCaR and αSeverity

FIGURE 5.14: Numerical illustration of the single loss approximation
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The most popular subexponential distributions used in operational risk modeling are the
log-gamma, log-logistic, log-normal and Pareto probability distributions (BCBS, 2014f). For
instance, if N (1) ∼ P (λ) and Xi ∼ LN

(
µ, σ2), we obtain:

EL = λ exp
(
µ+ 1

2σ
2
)

and:
UL (α) = exp

(
µ+ σΦ−1

(
1− 1− α

λ

))
− exp

(
µ+ 1

2σ
2
)

In Figure 5.14, we report the results of some experiments for different values of parameters.
In the top panels, we assume that λ = 100, µ = 5.0 and σ = 2.0 (left panel), and λ =
500, µ = 10.0 and σ = 2.5 (right panel). These two examples correspond to medium
severity/low frequency and high severity/low frequency events. In these cases, we obtain
a good approximation. In the bottom panel, the parameters are λ = 1000, µ = 8.0 and
σ = 1.0. The approximation does not work very well, because we have a low severity/high
frequency events and the risk can then not be explained by an extreme single loss. The
underestimation of the capital-at-risk is due to the underestimation of the number of losses.
In fact, with low severity/high frequency events, the risk is not to face a large single loss,
but to have a high number of losses in the year. This is why it is better to approximate the
capital-at-risk with the following formula:

G−1 (α) ≈
(
P−1 (α)− 1

)
E [Xi] + F−1

(
1− 1− α

E [N (1)]

)
where P is the cumulative distribution function of the counting process N (1). In Figure
5.14, we have also reported this approximation SLA∗ for the third example. We verify that
it gives better results for high frequency events than the classic approximation.

5.3.3.3 Aggregation issues

We recall that the loss at the bank level is equal to:

L =
K∑
k=1

Sk

where Sk is the aggregate loss of the kth cell of the mapping matrix. For in-
stance, if the matrix is composed of the eight business lines (BL) and seven even
types (ET) of the Basel II classification, we have L =

∑
k∈K Sk where K =

{(BLk1 ,ETk2) , k1 = 1, . . . , 8; k2 = 1, . . . , 7}. Let CaRk1,k2 (α) be the capital charge calcu-
lated for the business line k1 and the event type k2. We have:

CaRk1,k2 (α) = G−1
k1,k2

(α)

One solution to calculate the capital charge at the bank level is to sum up all the capital
charges:

CaR (α) =
8∑

k1=1

7∑
k2=1

CaRk1,k2 (α)

=
8∑

k1=1

7∑
k2=1

G−1
k1,k2

(α)

16In Chapter 12, we will see that such transformation is common in extreme value theory.
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From a theoretical point of view, this is equivalent to assume that all the aggregate losses
Sk are perfectly correlated. This approach is highly conservative and ignores diversification
effects between business lines and event types.

Let us consider the two-dimensional case:

L = S1 + S2

=
N1∑
i=1

Xi +
N2∑
j=1

Yj

In order to take into account the dependence between the two aggregate losses S1 and
S2, we can assume that frequencies N1 and N2 are correlated or severities Xi and Yj are
correlated. Thus, the aggregate loss correlation ρ (S1, S2) depends on two key parameters:

• the frequency correlation ρ (N1, N2);

• the severity correlation ρ (Xi, Yj).

For example, we should observe that historically, the number of external fraud events is
high (respectively low) when the number of internal fraud events is also high (respectively
low). Severity correlation is more difficult to justify. In effect, a basic feature of the LDA
model requires assuming that individual losses are jointly independent. Therefore it is con-
ceptually difficult to assume simultaneously severity independence within each class of risk
and severity correlation between two classes. By assuming that ρ (Xi, Yj) = 0, Frachot et
al. (2004) find an upper bound of the aggregate loss correlation. We have:

cov (S1, S2) = E [S1S2]− E [S1] · E [S2]

= E
[∑N1

i=1
Xi ·

∑N2

j=1
Yj

]
− E

[∑N1

i=1
Xi

]
· E
[∑N2

j=1
Yj

]
= E [N1N2] · E [Xi] · E [Yj ]− E [N1] · E [Xi] · E [N2] · E [Yj ]
= (E [N1N2]− E [N1] · E [N2]) · E [Xi] · E [Yj ]

and:
ρ (S1, S2) = (E [N1N2]− E [N1] · E [N2]) · E [Xi] · E [Yj ]√

var (S1) · var (S2)
If we assume that the counting processes N1 and N2 are Poisson processes with parameters
λ1 and λ2, we obtain:

ρ (S1, S2) = ρ (N1, N2) · η (Xi) · η (Yj)
where:

η (X) = E [X]√
E [X2]

= 1√
1 + CV2 (X)

≤ 1

Here CV (X) = σ (X) /E [X] denotes the coefficient of variation of the random variable X.
As a result, aggregate loss correlation is always lower than frequency correlation:

0 ≤ ρ (S1, S2) ≤ ρ (N1, N2) ≤ 1

We deduce that an upper bound of the aggregate loss correlation is equal to:

ρ+ = η (Xi) · η (Yj)
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For high severity events, severity independence likely dominates frequency correlation and
we obtain ρ+ ' 0 because η (Xi) ' 0.

Let us consider the example of log-normal severity distributions. We have:

ρ+ = exp
(
−1

2σ
2
X −

1
2σ

2
Y

)
We notice that this function is decreasing with respect to σX and σY . Figure 5.15 shows
the relationship between σX , σY and ρ+. We verify that ρ+ is small when σX and σY take
large values. For instance, if σX = σY = 2, the aggregate loss correlation is lower than 2%.

FIGURE 5.15: Upper bound ρ+ of the aggregate loss correlation

There are two ways to take into account correlations for computing the capital charge
of the bank. The first approach is to consider the normal approximation:

CaR (α) =
∑
k

ELk +
√∑
k,k′

ρk,k′ · (CaRk (α)− ELk) · (CaRk′ (α)− ELk′)

where ρk,k′ is the correlation between the cells k and k′ of the mapping matrix. The second
approach consists in introducing the dependence between the aggregate losses using a copula
function C. The joint distribution of (S1, . . . , SK) has the following form:

Pr {S1 ≤ s1, . . . , SK ≤ sK} = C (G1 (s1) , . . . ,GK (sK))

where Gk is the cumulative distribution function of the kth aggregate loss Sk. In this
case, the quantile of the random variable L =

∑K
k=1 Sk is estimated using Monte Carlo

simulations. The difficulty comes from the fact that the distributions Gk have no analytical
expression. The solution is then to use the method of empirical distributions, which is
presented on page 806.
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5.3.4 Incorporating scenario analysis
The concept of scenario analysis should deserve further clarification. Roughly speaking,

when we refer to scenario analysis, we want to express the idea that banks’ experts and
experienced managers have some reliable intuitions on the riskiness of their business and
that these intuitions are not entirely reflected in the bank’s historical internal data. As a first
requirement, we expect that experts should have the opportunity to give their approval to
capital charge results. In a second step, one can imagine that experts’ intuitions are directly
plugged into severity and frequency estimations. Experts’ intuition can be captured through
scenario building. More precisely, a scenario is given by a potential loss amount and the
corresponding probability of occurrence. As an example, an expert may assert that a loss of
one million dollars or higher is expected to occur once every (say) 5 years. This is a valuable
information in many cases, either when loss data are rare and do not allow for statistically
sound results or when historical loss data are not sufficiently forward-looking. In this last
case, scenario analysis allows to incorporate external loss data.

In what follows, we show how scenarios can be translated into restrictions on the param-
eters of frequency and severity distributions. Once these restrictions have been identified, a
calibration strategy can be designed where parameters are calibrated by maximizing some
standard criterion subject to these constraints. As a result, parameter estimators can be seen
as a mixture of the internal data-based estimator and the scenario-based implied estimator.

5.3.4.1 Probability distribution of a given scenario

We assume that the number of losses N (t) is a Poisson process with intensity λ. Let τn
be the arrival time of the nth loss:

τn = inf {t ≥ 0 : N (t) = n}

We know that the durations Tn = τn − τn−1 between two consecutive losses are iid expo-
nential random variables with parameter λ. We recall that the losses Xn are also iid with
distribution F. We note now Tn (x) the duration between two losses exceeding x. It is obvi-
ous that the durations are iid. It suffice now to characterize T1 (x). By using the fact that
a finite sum of exponential times is an Erlang distribution, we have:

Pr {T1 (x) > t} =
∑
n≥1

Pr {τn > t;X1 < x, . . . ,Xn−1 < x;Xn ≥ x}

=
∑
n≥1

Pr {τn > t} · F (x)n−1 · (1− F (x))

=
∑
n≥1

F (x)n−1 · (1− F (x)) ·
(
n−1∑
k=0

e−λt
(λt)k

k!

)

= (1− F (x)) ·
∞∑
k=0

e−λt
(λt)k

k!

( ∞∑
n=k

F (x)n
)

= e−λt
∞∑
k=0

(λt)k

k! F (x)k

= e−λ(1−F(x))t

We deduce that Tn (x) follows an exponential distribution with parameter λ (x) =
λ (1− F (x)). The average duration between two losses exceeding x is also the mean of
Tn (x):

E [Tn (x)] = 1
λ (1− F (x))
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Example 58 We assume that the annual number of losses follows a Poisson distribution
where λ = 5 and the severity of losses are log-normal LN (9, 4).

In Figure 5.16, we simulate the corresponding Poisson process N (t) and also the events
whose loss is larger than $20 000 and $50 000. We then show the exponential distribution17
of Tn (x).

FIGURE 5.16: Simulation of the Poisson process N (t) and peak over threshold events

5.3.4.2 Calibration of a set of scenarios

Let us consider a scenario defined as “a loss of x or higher occurs once every d years”. By
assuming a compound Poisson distribution with a parametric severity distribution F (x; θ),
λ is the average number of losses per year, λ (x) = λ (1− F (x; θ)) is the average number
of losses higher than x and 1/λ (x) is the average duration between two losses exceeding x.
As a result, for a given scenario (x, d), parameters (λ, θ) must satisfy:

d = 1
λ (1− F (x; θ))

Suppose that we face different scenarios {(xs, ds) , s = 1, . . . , nS}. We may estimate the
implied parameters underlying the expert judgements using the quadratic criterion:(

λ̂, θ̂
)

= arg min
nS∑
s=1

ws ·
(
ds −

1
λ (1− F (xs; θ))

)2

17For the parameter λ (x), we have:

λ
(
2× 104

)
= 5×

(
1− Φ

(
ln
(
2× 104

)
− 9

2

))
= 1.629

and λ
(
5× 104

)
= 0.907.
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where ws is the weight of the sth scenario. The previous approach belongs to the method of
moments. As a result, we can show that the optimal weights ws correspond to the inverse
of the variance of ds:

ws = 1
var (ds)

= λ (1− F (xs; θ))

To solve the previous optimization program, we proceed by iterations. Let
(
λ̂m, θ̂m

)
be the

solution of the minimization program:

(
λ̂m, θ̂m

)
= arg min

p∑
j=1

λ̂m−1 ·
(

1− F
(
xs; θ̂m−1

))
·
(
ds −

1
λ (1− F (xs; θ))

)2

Under some conditions, the estimator
(
λ̂m, θ̂m

)
converge to the optimal solution. We also

notice that we can simplify the optimization program by using the following approximation:

ws = 1
var (ds)

= 1
E [ds]

' 1
ds

Example 59 We assume that the severity distribution is log-normal and consider the fol-
lowing set of expert’s scenarios:

xs (in $ mn) 1 2.5 5 7.5 10 20
ds (in years) 1/4 1 3 6 10 40

If ws = 1, we obtain λ̂ = 43.400, µ̂ = 11.389 and σ̂ = 1.668 (#1). Using the approximation
ws ' 1/ds, the estimates become λ̂ = 154.988, µ̂ = 10.141 and σ̂ = 1.855 (#2). Finally, the
optimal estimates are λ̂ = 148.756, µ̂ = 10.181 and σ̂ = 1.849 (#3). In the table below, we
report the estimated values of the duration. We notice that they are close to the expert’s
scenarios.

xs (in $ mn) 1 2.5 5 7.5 10 20
#1 0.316 1.022 2.964 5.941 10.054 39.997
#2 0.271 0.968 2.939 5.973 10.149 39.943
#3 0.272 0.970 2.941 5.974 10.149 39.944

Remark 64 We can combine internal loss data, expert’s scenarios and external loss data18
by maximizing the penalized likelihood:

θ̂ = arg max $internal · ` (θ)−$expert ·
nS∑
s=1

ws

(
ds −

1
λ (1− F (xs; θ))

)2
−

$external ·
n?S∑
s=1

w?s

(
d?s −

1
λ (1− F (x?s; θ))

)2

where $internal, $expert and $external are the weights reflecting the confidence placed on
internal loss data, expert’s scenarios and external loss data.

18In this case, each external loss is treated as an expert’s scenario.
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5.3.5 Stability issue of the LDA model
One of the big issues of AMA (and LDA) models is their stability. It is obvious that the

occurrence of a large loss changes dramatically the estimated capital-at-risk as explained
by Ames et al. (2015):

“Operational risk is fundamentally different from all other risks taken on by
a bank. It is embedded in every activity and product of an institution, and
in contrast to the conventional financial risks (e.g. market, credit) is harder
to measure and model, and not straight forwardly eliminated through simple
adjustments like selling off a position. While it varies considerably, operational
risk tends to represent about 10-30% of the total risk pie, and has grown rapidly
since the 2008-09 crisis. It tends to be more fat-tailed than other risks, and the
data are poorer. As a result, models are fragile – small changes in the data
have dramatic impacts on modeled output – and thus required operational risk
capital is unstable”.

In this context, the Basel Committee has decided to review the different measurement
approaches to calculate the operational risk capital. In Basel III, advanced measurement
approaches have been dropped. This decision marks a serious setback for operational risk
modeling. The LDA model continues to be used by Basel II jurisdictions, and will continue
to be used by large international banks, because it is the only way to assess an economic
capital using internal loss data. Moreover, internal losses continue to be collected by banks
in order to implement the SMA of Basel III. Finally, the LDA model will certainly become
the standard model for satisfying Pillar 2 requirements. However, solutions for stabilizing
the LDA model can only be partial and even hazardous or counter-intuitive, because it
ignores the nature of operational risk.

5.4 Exercises
5.4.1 Estimation of the loss severity distribution

We consider a sample of n individual losses {x1, . . . , xn}. We assume that they can be
described by different probability distributions:

(i) X follows a log-normal distribution LN
(
µ, σ2).

(ii) X follows a Pareto distribution P (α, x−) defined by:

Pr {X ≤ x} = 1−
(
x

x−

)−α
where x ≥ x− and α > 0.

(iii) X follows a gamma distribution G (α, β) defined by:

Pr {X ≤ x} =
∫ x

0

βαtα−1e−βt

Γ (α) dt

where x ≥ 0, α > 0 and β > 0.

(iv) The natural logarithm of the loss X follows a gamma distribution: lnX ∼ G (α;β).
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1. We consider the case (i).

(a) Show that the probability density function is:

f (x) = 1
xσ
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

(b) Calculate the first two moments of X. Deduce the orthogonal conditions of the
generalized method of moments.

(c) Find the maximum likelihood estimators µ̂ and σ̂.

2. We consider the case (ii).

(a) Calculate the first two moments ofX. Deduce the GMM conditions for estimating
the parameter α.

(b) Find the maximum likelihood estimator α̂.

3. We consider the case (iii). Write the log-likelihood function associated to the sample
of individual losses {x1, . . . , xn}. Deduce the first-order conditions of the maximum
likelihood estimators α̂ and β̂.

4. We consider the case (iv). Show that the probability density function of X is:

f (x) = βα (ln x)α−1

Γ (α)xβ+1

What is the support of this probability density function? Write the log-likelihood
function associated to the sample of individual losses {x1, . . . , xn}.

5. We now assume that the losses {x1, . . . , xn} have been collected beyond a threshold
H meaning that X ≥ H.

(a) What does the generalized method of moments become in the case (i)?
(b) Calculate the maximum likelihood estimator α̂ in the case (ii).
(c) Write the log-likelihood function in the case (iii).

5.4.2 Estimation of the loss frequency distribution
We consider a dataset of individual losses {x1, . . . , xn} corresponding to a sample of T

annual loss numbers {NY1 , . . . , NYT }. This implies that:

T∑
t=1

NYt = n

If we measure the number of losses per quarter {NQ1 , . . . , NQ4T }, the previous equation
becomes:

4T∑
t=1

NQt = n

1. We assume that the annual number of losses follows a Poisson distribution P (λY ). Cal-
culate the maximum likelihood estimator λ̂Y associated to the sample {NY1 , . . . , NYT }.
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2. We assume that the quarterly number of losses follows a Poisson distribution
P (λQ). Calculate the maximum likelihood estimator λ̂Q associated to the sample
{NQ1 , . . . , NQ4T }.

3. What is the impact of considering a quarterly or annual basis on the computation of
the capital charge?

4. What does this result become if we consider a method of moments based on the first
moment?

5. Same question if we consider a method of moments based on the second moment.

5.4.3 Using the method of moments in operational risk models
1. Let N (t) be the number of losses for the time interval [0, t]. We note {N1, . . . , NT }

a sample of N (t) and we assume that N (t) follows a Poisson distribution P (λ). We
recall that:

ex =
∞∑
n=0

xn

n!

(a) Calculate the first moment E [N (t)].
(b) Show the following result:

E

[
m∏
i=0

(N (t)− i)
]

= λm+1

Then deduce the variance of N (t).
(c) Propose two estimators based on the method of moments.

2. Let S be the random sum:

S =
N(t)∑
i=0

Xi

where Xi ∼ LN
(
µ, σ2), Xi ⊥ Xj and N (t) ∼ P (λ).

(a) Calculate the mathematical expectation E [S].
(b) We recall that: (

n∑
i=1

xi

)2

=
n∑
i=1

x2
i +

∑
i6=j

xixj

Show that:
var (S) = λ exp

(
2µ+ 2σ2)

(c) How can we estimate µ and σ if we have already calibrated λ?

3. We assume that the annual number of losses follows a Poisson distribution P (λ). We
also assume that the individual losses are independent and follow a Pareto distribution
P (α, x−) defined by:

Pr {X ≤ x} = 1−
(
x

x−

)−α
where x ≥ x− and α > 1.
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(a) Show that the duration between two consecutive losses that are larger than ` is
an exponential distribution with parameter λxα−`−α.

(b) How can we use this result to calibrate experts’ scenarios?

5.4.4 Calculation of the Basel II required capital
We consider the simplified balance sheet of a bank, which is described below.

1. In the Excel file, we provide the price evolution of stocks A and B. The trading
portfolio consists of 10 000 shares A and 25 000 shares B. Calculate the daily historical
VaR of this portfolio by assuming that the current stock prices are equal to $105.5
and $353. Deduce the capital charge for market risk assuming that the VaR has not
fundamentally changed during the last 3 months19.

2. We consider that the credit portfolio of the bank can be summarized by 4 meta-credits
whose characteristics are the following:

Sales EAD PD LGD M
Bank $80 mn 1% 75% 1.0
Corporate $500 mn $200 mn 5% 60% 2.0
SME $30 mn $50 mn 2% 40% 4.5
Mortgage $50 mn 9% 45%
Retail $100 mn 4% 85%

Calculate the IRB capital charge for the credit risk.

3. We assume that the bank is exposed to a single operational risk. The severity dis-
tribution is a log-normal probability distribution LN (8, 4), whereas the frequency
distribution is the following discrete probability distribution:

Pr {N = 5} = 60%
Pr {N = 10} = 40%

Calculate the AMA capital charge for the operational risk.

4. Deduce the capital charge of the bank and the capital ratio knowing that the capital
of the bank is equal to $70 mn.

5.4.5 Parametric estimation of the loss severity distribution
1. We assume that the severity losses are log-logistic distributed Xi ∼ LL (α, β) where:

F (x;α, β) = (x/α)β

1 + (x/α)β

(a) Find the density function.
(b) Deduce the log-likelihood function of the sample {x1, . . . , xn}.
(c) Show that the ML estimators satisfy the following first-order conditions:

∑n
i=1 F

(
xi; α̂, β̂

)
= n/2∑n

i=1

(
2F
(
xi; α̂, β̂

)
− 1
)

ln xi = n/β̂

19The multiplication coefficient ξ is set equal to 0.5.
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(d) The sample of loss data is 2 918, 740, 3 985, 2 827, 2 839, 6 897, 7 665, 3 766, 3 107
and 3 304. Verify that α̂ = 3 430.050 and β̂ = 3.315 are the ML estimates.

(e) What does the log-likelihood function of the sample {x1, . . . , xn} become if we
assume that the losses were collected beyond a threshold H?

5.4.6 Mixed Poisson process
1. We consider the mixed poisson process where N (t) ∼ P (Λ) and Λ is a random

variable. Show that:
var (N (t)) = E [N (t)] + var (Λ)

2. Deduce that var (N (t)) ≥ E [N (t)]. Determine the probability distribution Λ such
that the equality holds. Let ϕ (n) be the following ratio:

ϕ (n) = (n+ 1) · p (n+ 1)
p (n)

Show that ϕ (n) is constant.

3. We assume that Λ ∼ G (α, β).

(a) Calculate E [N (t)] and var (N (t)).
(b) Show that N (t) has a negative binomial distribution NB (r, p). Calculate the

parameters r and p with respect to α and β.
(c) Show that ϕ (n) is an affine function.

4. We assume that Λ ∼ E (λ).

(a) Calculate E [N (t)] and var (N (t)).
(b) Show that N (t) has a geometric distribution G (p). Determine the parameter p.



Chapter 6
Liquidity Risk

Liquidity is a long-standing issue and also an elusive concept (Grossman and Miller, 1988). It
cannot be observed directly, because it measures the ease of trading an asset. More precisely,
it measures the asset’s ability to be sold as soon as possible without causing a significant
price movement. This is why it is difficult to capture liquidity in a single measure (bid-ask
spread, trading volume, etc.). Moreover, liquidity risk generally refers to two related notions:
market liquidity and funding liquidity. Market liquidity concerns assets. For instance, the
most liquid asset is cash because it can always be used easily and immediately. Many stocks
and sovereign bonds are considered fairly liquid, because they can be sold in the day. On the
contrary, private equity and real estate are less liquid assets, because it can take months to
sell them. Funding liquidity concerns asset liability mismatch due to liquidity and maturity
transformation activities. According to Drehmann and Nikolaou (2013), funding liquidity
is defined “as the ability to settle obligations with immediacy. It follows that, a bank is
illiquid if it is unable to settle obligations in time”. The concept of funding liquidity is of
course important for banks, but also for other financial entities (insurance companies, asset
managers, hedge funds, etc.).

This chapter is organized as follows. The first section is dedicated to the measurement
of asset liquidity. In the second section, we consider how funding liquidity affects the risk
of financial institutions. The last section presents the regulatory framework for managing
liquidity risk in a bank. This chapter may be viewed as an introduction of liquidity risk,
which is developed in Chapter 7, which focuses on asset liability management risk and is
complemented by Chapter 8, which is dedicated to the systemic risk, because liquidity and
systemic risks are highly connected.

6.1 Market liquidity
Sarr and Lybek (2002) propose to classify market liquidity measures into four categories:

(1) transaction cost measures, (2) volume-based measures, (3) equilibrium price-based mea-
sures, and (4) market-impact measures. The choice of one measure depends on the objective
of the liquidity measurement. The first category is useful for investors, who would like to
know the cost of selling or buying immediately a security (stocks, bonds, futures, etc.). The
second category is related to the breadth of the market and measures the trading activity
of a security. The last two categories (price-based and market-impact measures) concern
more the resilience and the efficiency of the market. The underlying idea is to understand
how trading prices can move away from fundamental prices. By construction, these last two
categories are more developed by academics whereas investors are more concerned by the
first two categories.

347
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6.1.1 Transaction cost versus volume-based measures
6.1.1.1 Bid-ask spread

The traditional liquidity measure is the bid-ask quoted spread St, which is defined by:

St = P ask
t − P bid

t

Pmid
t

where P ask
t , P bid

t and Pmid
t are the ask, bid and mid1 quotes for a given security at time t.

By construction, the bid-ask spread can only be computed in an organized exchange with
order books. Here, the ask price corresponds to the lowest price of sell orders, whereas
the bid price is the highest price of buy orders. In this context, St may be viewed as a
transaction cost measure and is the standard liquidity measure in equity markets.

TABLE 6.1: An example of a limit order book

ith limit Buy orders Sell orders
Qbid,i
t P bid,i

t Qask,i
t P ask,i

t

1 65 201 26.325 70 201 26.340
2 85 201 26.320 116 201 26.345
3 105 201 26.315 107 365 26.350
4 76 500 26.310 35 000 26.355
5 20 000 26.305 35 178 26.360

Example 60 In Table 6.1, we provide a snapshot of the limit order book of the Lyxor Euro
Stoxx 50 ETF recorded at NYSE Euronext Paris2. Qbid,i

tj and P bid,i
tj (resp. Qask,i

tj and P ask,i
tj )

indicate the quantity and the price of the buyer (resp. the seller) for the ith limit.

This limit order book is represented in Figure 6.1, where the x-axis represents the
quoted prices and the y-axis represented the buy and sell quantities. The bid and ask prices
correspond to the prices of the best limit. We have P bid

t = 26.325 and P ask
t = 26.340,

implying that the mid price is equal to:

Pmid
t = 26.325 + 26.340

2 = 26.3325

We deduce that the bid-ask spread is:

St = 26.340− 26.325
26.3325 = 5.696 bps

There are other variants of the bid-ask spread, which do not use quoted prices, but
traded prices. For instance, the effective spread is equal to:

Seτ = 2
∣∣∣∣Pτ − Pmid

t

Pmid
t

∣∣∣∣
1We have:

Pmid
t =

P ask
t + Pbid

t

2
2The corresponding date is 14:00:00 and 56, 566 micro seconds on 28 December 2012.
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FIGURE 6.1: An example of a limit order book

where τ is the trade index, Pτ is the price of the τ th trade and Pmid
τ is the midpoint of

market quote calculated at the time t of the τ th trade. In a similar way, the realized spread
uses the same formula than the effective spread, but replaces Pmid

t by the mid quote of the
security at time t+ ∆:

Srτ = 2

∣∣∣∣∣Pτ − Pmid
t+∆

Pmid
t+∆

∣∣∣∣∣
Generally, ∆ is set to five minutes. The realized spread Srτ represents the temporary com-
ponent of the effective spread (Goyenko et al., 2009). In this case, Pt+∆ may be viewed as
the equilibrium price of the security after the trade3. In particular, if the trade has a price
impact, we have Pmid

t+∆ 6= Pmid
t and Srτ 6≈ Seτ .

6.1.1.2 Trading volume

The second popular measure is the trading volume Vt, which indicates the dollar value
of the security exchanged during the period t:

Vt =
∑
τ∈t

QτPτ

3Another variant of the realized spread is the signed spread:

Srτ = 2sτ

(
Pτ − Pt+∆
Pt+∆

)
where:

sτ =
{

+1 if the trade is a buy
−1 if the trade is a sell
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where Qτ and Pτ are the τ th quantity and price traded during the period. Generally, we
consider a one-day period and use the following approximation:

Vt ≈ QtPt

where Qt is the number of securities traded during the day t and Pt is the closing price of
the security.

A related measure is the turnover which is the ratio between the trading volume and
the free float market capitalization Mt of the asset:

Tt = Vt

Mt
= Vt

NtPt

where Nt is the number of outstanding ‘floating’ shares. The asset turnover ratio indicates
how many times each share changes hands in a given period4. For instance, if the annual
turnover is two, this means that the shares have changed hands, on average, two times
during the year.

Example 61 We consider a stock, whose average daily volume Qt is equal to 1 200 shares
whereas the total number of shares Nt is equal to 500 000. We assume that the price is equal
to $13 500.

We deduce that the daily volume is:

Vt = 1 200× 13 500 = $16.2 mn

Because the market capitalization Mt is equal to $6.75 bn, the daily turnover represents
0.24%. It follows that the annualized turnover5 is about 62%.

6.1.1.3 Liquidation ratio

Another popular measure is the liquidation ratio LR (m), which measures the proportion
of a given position that can be liquidated afterm trading days. This statistic depends on the
size of the position and the liquidation policy. A simple rule is to define a maximum number
of shares that can be sold every day. The market convention is to consider a proportion of
the three-month average daily volume (ADV). This serves as a proxy to bound liquidation
costs: the higher the proportion of the ADV, the larger the trading costs. Another interesting
statistic is the liquidation time LR−1 (p), which is the inverse function of the liquidity ratio.
It indicates the number of required trading days in order to liquidate a proportion p of the
position.

Example 62 We consider again Example 61. Suppose that we have a position of $30 mn
in this stock. In order to minimize trading impacts, the liquidation policy is set to 25% of
the average daily volume.

The liquidity policy implies that we can sell 25% × 16.2 = $4.05 mn every day. We
deduce that:

LR (1) = 4.05
30 = 13.5%

LR (2) = 2× 4.05
30 = 27%

4This is why this ratio is generally expressed in an annual basis.
5We multiply the daily turnover by a factor of 260.
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Finally, we have:

LR (m) =
{
m× 13.5% if m ≤ 7
100% if m ≥ 8

The liquidation of the position requires 8 trading days.
We now consider a portfolio invested into n assets. We denote (x1, . . . , xn) the number

of shares held in the portfolio. Let Pi,t be the current price of asset i. The value of the
portfolio is equal to

∑n
i=1 xiPi,t. For each asset that composes the portfolio, we denote

x+
i the maximum number of shares for asset i that can be sold during a trading day. The

number of shares xi (m) liquidated after m trading days is defined as follows:

xi (m) = min

(xi − m−1∑
k=0

xi (k)
)+

, x+
i


with xi (0) = 0. The liquidation ratio LR (m) is then the proportion of the portfolio liqui-
dated after m trading days:

LR (m) =
∑n
i=1
∑m
k=0 xi (k) · Pi,t∑n
i=1 xi · Pi,t

TABLE 6.2: Statistics of the liquidation ratio (size = $10 bn, liquidation policy = 10% of
ADV)

Statistics SPX SX5E DAX NDX MSCI MSCI MSCI
EM INDIA EMU SC

m (in days) Liquidation ratio LR (t) in %
1 88.4 12.3 4.8 40.1 22.1 1.5 3.0
2 99.5 24.7 9.6 72.6 40.6 3.0 6.0
5 100.0 58.8 24.1 99.7 75.9 7.6 14.9

10 100.0 90.1 47.6 99.9 93.9 15.1 29.0
α (in %) Liquidation time LR−1 (α) in days

50 1 5 11 2 3 37 21
75 1 7 17 3 5 71 43
90 2 10 23 3 9 110 74
99 2 15 29 5 17 156 455

Source: Roncalli and Weisang (2015).

In Table 6.2, we report the liquidation ratio and the liquidation time for several equity
index portfolios using a size of $10 bn and assuming we can sell 10% of the ADV every
day6. The indices are the S&P 500 index (SPX), Euro Stoxx 50 index (SX5E), DAX index,
NASDAQ 100 index (NDX), MSCI EM index, MSCI INDIA index and MSCI EMU Small
Cap index. We read the results as follows: LR (1) is equal to 88.4% for the S&P 500 index
meaning that we can liquidate 88.4% (or $8.84 bn) of the portfolio on the first trading
day; LR (5) is equal to 24.1% for the DAX index meaning that we can liquidate 24.1%
of the assets after five trading days; LR−1 (75%) is equal to 43 for the MSCI EMU Small
Cap index meaning that we need 43 trading days to liquidate $7.5 bn for this portfolio.
We observe that the liquidation risk profile is different from one equity index portfolio to
another.
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TABLE 6.3: Statistics of the liquidation ratio (size = $10 bn, liquidation policy = 30% of
ADV)

Statistics SPX SX5E DAX NDX MSCI MSCI MSCI
EM INDIA EMU SC

t (in days) Liquidation ratio LR (t) in %
1 100.0 37.0 14.5 91.0 55.5 4.5 9.0
2 100.0 67.7 28.9 99.8 81.8 9.1 17.8
5 100.0 99.2 68.6 100.0 98.5 22.6 40.4

10 100.0 100.0 99.6 100.0 100.0 43.1 63.2
α (in %) Liquidation time LR−1 (α) in days

50 1 2 4 1 1 13 7
75 1 3 6 1 2 24 15
90 1 4 8 1 3 37 25
99 1 5 10 2 6 52 152

Source: Roncalli and Weisang (2015).

These figures depend on the liquidation policy and the liquidation size. For instance, if
we use an average daily volume of 30%, we obtain the results given in Table 6.3. In this case,
liquidity ratios are improved. Nevertheless, we continue to observe that all these indices do
not present the same liquidity profile. In Figure 6.2, we report the liquidation ratio for
different indices. We notice that the liquidity profile is better for the S&P 500 index for a
size of $50 bn than for the Euro Stoxx 50 index for a size of $10 bn. We also observe that
liquidating $1 bn of MSCI INDIA index is approximately equivalent to liquidating $10 bn
of Euro Stoxx 50 index. These results depend on the free-float market capitalization of each
index. For instance, the capitalization of the S&P 500 is equal to $18 tn at the end of April
2015. This contrasts with the capitalization of the MSCI EMU Small Cap, which is equal
to $448 bn.

6.1.1.4 Liquidity ordering

The bid-ask spread and the daily trading volume are easily available in financial infor-
mation systems (Bloomberg, Reuters, etc.). They represent two aspects of the liquidity. St
is an estimate of the trading cost in the case of small orders. When we consider an order of
big size, St is not valid because the order may have an impact on the price and it may also
be not possible to trade immediately. In this case, it is better to consider Vt, which gives
the average trading activity of the security. Indeed, the investor may compare the size of
his order and the depth of the market.

These two statistics may be used to compare the liquidity L of securities i and j. We
will say that the liquidity of security i is better than the liquidity of security j if security i
has a lower bid-ask spread:

Si,t ≤ Sj,t ⇒ L (i) � L (j)

or if security i has a higher trading volume:

Vi,t ≥ Vj,t ⇒ L (i) � L (j)

6For the composition of the portfolio and the ADV statistics, Roncalli and Weisang (2015) use the data
of 30 April 2015.
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FIGURE 6.2: Comparing the liquidation ratio (in %) between index fund portfolios

Source: Roncalli and Weisang (2015).

It would be wrong to think that the two measures St and Vt gives the same liquidity
ordering. For instance, Roncalli and Zheng (2015) show that it is far from being the case
in European ETF markets. In fact, liquidity is a multi-faceted concept and recovers various
dimensions. This explains that there is a multiplication of other liquidity measures.

6.1.2 Other liquidity measures
The Hui-Heubel liquidity ratio is a measure of the resilience and the depth. It combines

turnover and price impact:

H2
t = 1

Tt

(
P high
t − P low

t

P low
t

)
where P high

t and P low
t are the highest and lowest prices during the period t, and Tt is the

turnover observed for the same period. H2
t can be calculated on a daily basis or with a

higher frequency period. For example, Sarr and Lybek (2002) propose to consider a 5-day
period in order to capture medium-term price impacts.

Among price-based measures, Sarr and Lybek (2002) include the variance ratio of Has-
brouck and Schwartz (1988), also called the market efficiency coefficient (MEC), which is
the ratio between the annualized variance of long-period returns Rt,t+h (h � 1) and the
annualized variance of short-period returns Rt,t+1:

VR = var (Rt,t+h)
var (Rt,t+1)

However, this ratio may be not pertinent because it is related to the reversal alternative
risk premium or the auto-correlation trading strategy. In fact, this ratio is another measure
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of the auto-correlation of asset returns. Goyenko et al. (2009) define the price impact as the
“cost of demanding additional instantaneous liquidity”. In this case, it corresponds to the
derivative of the spread with respect to the order size:

PI = S̄e (big)− S̄e (small)
Q̄ (big)− Q̄ (small)

where S̄e (big) and Q̄ (big) (resp. S̄e (small) and Q̄ (small)) are the average of the effective
spread and the average of order size for big trades (resp. small trades). This measure is
however difficult to implement, because we need to split all the trades into big and small
orders. This is why this measure is very sensitive to the choice of the size threshold. A more
interesting and popular market-impact measure is the Amihud measure defined by:

ILLIQ = 1
nt

∑
t

|Rt,t+1|
Vt

where Rt,t+1 is the daily return, Vt is the daily trading volume and nt is the number of
days used to calculate the sum. Amihud (2002) uses this ratio to measure the relationship
between the (absolute) price slope and the order flow.

This liquidity ratio is one of the most popular academic measures with the implicit
spread of Roll (1984), who assumes that the fundamental price P ?t follows a random walk:

P ?t = P ?t−1 + εt

whereas the observed price depends on the trade direction:

Pt = P ?t + st ·
(

S
2

)
where S is the bid-ask spread and:

st =
{

+1 if the trade is a buy
−1 if the trade is a sell

We deduce that:
∆Pt = ∆st ·

(
S
2

)
+ εt

By assuming that buy and sell orders have the same probability, Roll shows that the first-
order auto-covariance of price changes is equal to:

cov (∆Pt,∆Pt−1) = cov (∆st,∆st−1) ·
(

S
2

)2

= −
(

S
2

)2

We can therefore deduce the implied spread by the following expression:

S̃ = 2
√
− cov (∆Pt,∆Pt−1)

To estimate S̃, we can use the empirical covariance of price changes or the Gibbs sampler
proposed by Hasbrouck (2009).

Remark 65 The seminal paper of Roll has been extended in several directions: asymmetric
information, serial dependence of the trades, etc7.

7See Huang and Stoll (1996, 1997) for a survey.
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6.1.3 The liquidity-adjusted CAPM
The liquidity-adjusted CAPM is an extension of the capital asset pricing model of Sharpe

(1964). This model, which has been proposed by Acharya and Pedersen (2005), analyzes
the relationship between liquidity and asset prices. It goes beyond the traditional approach,
which consists in considering a static liquidity premium that affects asset returns. In this
approach, the level of liquidity8 is the most important factor to take into account. For
instance, when we consider real assets, we generally consider that their returns must incor-
porate a risk premium. A typical example concerns private equity. However, most of the
time, when we think about the liquidity premium, we think that it is related to the level of
illiquidity of the asset, and not to the dynamics of the liquidity. However, the issue is more
complex:

“[...] there is also broad belief among users of financial liquidity – traders, in-
vestors and central bankers – that the principal challenge is not the average level
of financial liquidity... but its variability and uncertainty” (Persaud, 2003).

The liquidity-adjusted CAPM (or L-CAPM) considers a framework where both the level of
liquidity and the variability have an impact on asset prices.

We noteRi,t and Li,t the gross return and the relative (stochastic) illiquidity cost of Asset
i. At the equilibrium, Acharya and Pedersen (2005) show that “the CAPM in the imagined
frictionless economy translates into a CAPM in net returns for the original economy with
illiquidity costs”:

E [Ri,t − Li,t]− r = β̃i · (E [Rm,t − Lm,t]− r) (6.1)

where r is the return of the risk-free asset, Rm,t and Lm,t are the gross return and the
illiquidity cost of the market portfolio, and β̃i is the liquidity-adjusted beta of Asset i:

β̃i = cov (Ri,t − Li,t, Rm,t − Lm,t)
var (Rm,t − Lm,t)

Equation (6.1) shows that the net risk premium of an asset, that is the risk premium minus
the liquidity cost, is equal to its beta times the net market risk premium. However, the
beta in this formula is different than the formula in the CAPM, because the beta depends
on the liquidity of the asset and the liquidity of the market. Indeed, the liquidity-adjusted
beta can be decomposed into four betas9:

β̃i = βi + β (Li,t, Lm,t)− β (Ri,t, Lm,t)− β (Li,t, Rm,t)

where βi = β (Ri,tRm,t) is the standard market beta, β (Li,t, Lm,t) is the beta associated to
the commonality in liquidity with the market liquidity, β (Ri,t, Lm,t) is the beta associated
to the return sensitivity to market liquidity and β (Li,t, Rm,t) is the beta associated to the
liquidity sensitivity to market returns. Therefore, some assets have a low (or high) beta with

8Or more precisely the level of illiquidity.
9We have:

cov (Ri,t − Li,t, Rm,t − Lm,t) = E [(Ri,t − Li,t) · (Rm,t − Lm,t)]−
E [Ri,t − Li,t] · E [Rm,t − Lm,t]

= E [Ri,tRm,t + Li,tLm,t −Ri,tLm,t − Li,tRm,t]−
(E [Ri,t]− E [Li,t]) · (E [Rm,t]− E [Lm,t])

= cov (Ri,t, Rm,t) + cov (Li,t, Lm,t)−
cov (Ri,t, Lm,t)− cov (Li,t, Rm,t)
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respect to the market portfolio, not because their returns do not covary (or highly covary)
with the returns of the market portfolio, not because of their liquidity level, but because of
the time-variability of the liquidity and the impact of the liquidity on market returns.

Acharya and Pedersen (2005) propose to rewrite Equation (6.1) into the CAPM equation:

E [Ri,t]− r = αi + βi · (E [Rm,t]− r) (6.2)
where αi is a function of the relative liquidity of Asset i with respect to the market portfolio
and the liquidity betas:

αi =
(
E [Li,t]− β̃i · E [Lm,t]

)
+

(β (Li,t, Lm,t)− β (Ri,t, Lm,t)− β (Li,t, Rm,t)) · πm

where πm = E [RM ]− r. It follows that the asset return can be written as:

Ri,t = αi,t + βi ·Rm,t + εi,t

where εi,t ∼ N
(
0, σ̃2

i

)
and σ̃i is the specific volatility of the asset. We retrieve the classical

one-factor model, but with a time-varying alpha component. Contrary to the common wis-
dom, the alpha of the asset is not only equal to the illiquidity level. Indeed, Acharya and
Pedersen (2005) show that the level of liquidity explains 75% of the alpha, whereas 25% of
the alpha is explained by the liquidity sensitivity of the asset to market returns.

The previous model can also be written as follows:

Ri,t − r = µ (Li,t) + (R (Li,t) + βi) · (Rm,t − r) + εi,t

where µ (Li,t) is the relative liquidity level:

µ (Li,t) = E [Li,t]− β̃i · E [Lm,t]

and R (Li,t) is the aggregated liquidity risk:

R (Li,t) = β (Li,t, Lm,t)− β (Ri,t, Lm,t)− β (Li,t, Rm,t)

R (Li,t) is composed of three liquidity covariance risks, and Acharya and Pedersen (2005)
interpret each of them as follows:

1. the first covariance risk β (Li,t, Lm,t) shows that an asset that becomes illiquid when
the market becomes illiquid should have a higher risk premium; this risk is related to
the substitution effects we observe when the market becomes illiquid;

2. the second covariance risk β (Ri,t, Lm,t) indicates that assets that perform well in
times of market illiquidity should have a lower risk premium because of the solvency
constraints faced by investors;

3. the third covariance risk β (Li,t, Rm,t) means that investors accept a lower risk pre-
mium on assets that are liquid in a bear market, because they have the property to
be sold in illiquid markets.

It is obvious that these three liquidity risks are correlated and Acharya and Pedersen (2005)
estimate the following correlation figures:

β (Li,t, Lm,t) β (Ri,t, Lm,t) β (Li,t, Rm,t)
β (Li,t, Lm,t) 100%
β (Ri,t, Lm,t) −57% 100%
β (Li,t, Rm,t) −94% 73% 100%
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The Acharya-Pedersen model illustrates perfectly well some stylized facts concerning some
asset classes such as corporate bonds, small cap stocks or private equities. In particular,
it shows that liquidity has an impact on the risk premium of securities, but it has also
an impact on the price dynamics because of the liquidity risk or uncertainty. This implies
that liquidity has an impact on the systematic return component. We will see later how
this interconnectedness between asset liquidity and market liquidity is important when
regulators would like to manage the systemic risk of the financial system.

6.2 Funding liquidity
According to Nikolaou (2009), we must distinguish three liquidity types: market liquidity,

funding liquidity and central bank liquidity. Funding liquidity is the ability of banks to
meet their liabilities, whereas central bank liquidity is the ability of central banks to supply
the liquidity needed by the financial system. As noticed by Nikolaou (2009), central bank
liquidity is not an issue as long as there is a demand for the domestic currency. In this section,
we focus on funding liquidity, which is in fact the main issue of liquidity risk. Indeed, the
2008 Global Financial Crisis has demonstrated that it is the problematic linkage layer even
when central bank liquidity is infinite.

6.2.1 Asset liability mismatch
Whereas market liquidity is asset specific, funding liquidity is agent specific (Brunner-

meier and Pedersen, 2009). For instance, we can measure the market liquidity of a stock,
a bond or a futures contract. In a similar way, we can measure the funding liquidity of a
bank, an insurer or a corporate firm. We can extend these measures to a portfolio of secu-
rities or a group of entities. Therefore, we can define the global market liquidity of an asset
class, for example the liquidity of US large cap stocks or the liquidity of EUR-denominated
convertible bonds. We can also define the global funding liquidity of a financial system,
for example the liquidity of Italian banks or the liquidity of the Japanese financial system.
At first sight, funding liquidity seems to be the mirror image of market liquidity when we
consider banks instead of securities. In fact, it is a false view for several reasons. The first
reason concerns the distinction between funding liquidity and funding liquidity risk:

“We define funding liquidity as the ability to settle obligations with immediacy.
Consequently, a bank is illiquid if it is unable to settle obligations. Legally, a
bank is then in default. Given this definition we define funding liquidity risk as
the possibility that over a specific horizon the bank will become unable to settle
obligations with immediacy” (Drehmann and Nikolaou, 2013, page 2174).

In the previous section, we have seen several measures of the market liquidity, and these
measures can be used to calculate the market liquidity risk, that is the market liquidity
at some time horizon. Funding liquidity is more a binary concept and is related to credit
risk. Therefore, funding liquidity risk may be viewed as the probability that the bank
will face a funding liquidity problem in the future. The difficulty is then to make the
distinction between funding liquidity and credit risks, since their definitions are very close.
Said differently, the issue is to measure the probability of funding liquidity risk and not the
probability of default risk (Drehmann and Nikolaou, 2013).
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Drehmann and Nikolaou (2013) considers a stock-flow measure. Let Di be the indicator
function, which takes the value 0 if the bank faces no funding liquidity risk, or 1 otherwise.
We have the following relationship:

Di = 0⇔ Ot ≤ It +Mt (6.3)

where Ot are the outflows, It are the inflows and Mt is the stock of money at time t. The
general components of Ot and It are:

Ot = Lnew,t +Adue,t + IPt

and:
It = Ldue,t +Anew,t + IRt

where Lnew,t and Ldue,t are liabilities which are newly issued or due, Anew,t and Adue,t
are assets which are newly issued or due, and IPt and IRt are interest payments paid or
received by the bank. These outflows/inflows concerns 5 categories: (DP) depositors, (IB)
interbank, (AM) asset market, (OB) off-balance sheet items and (CB) central banks. The
authors define then the net liquidity demand NLDt = Ot − It − Mt as the net amount
of central bank money the bank needs to remain liquid and show that this variable must
satisfy the following inequality:

NLDt ≤ PDP
t LDP

new,t + P IB
t LIB

new,t + PAM
t Asold,t + PCB

t CBnew,t (6.4)

where P kt is the price of the category k, LDP
new,t and LIB

new,t correspond to the new liabilities
from depositors and the interbank market, Asold,t is the amount of selling assets and CBnew,t
is the new central bank money. Equation (6.4) gives the different components that the bank
can access when Ot > It +Mt.

This simple model shows that three dimensions are important when measuring the
funding liquidity risk. First, the time horizon is a key parameter. Second, the projection
of assets and liabilities is not an easy task. This is particularly true if the bank is highly
leveraged or operates a larger maturity transformation between assets and liabilities. Third,
we have to take into account spillover effects. Indeed, the bank does not know the reaction
function of the other financial agents if it faces asset/liability liquidity mismatch10.

6.2.2 Relationship between market and funding liquidity risks
Brunnermeier and Pedersen (2009) highlights the interconnectedness of market liquidity

and funding liquidity:

“Traders provide market liquidity, and their ability to do so depends on their
availability of funding. Conversely, traders’ funding, i.e., their capital and margin
requirements, depends on the assets’ market liquidity. We show that, under
certain conditions, margins are destabilizing and market liquidity and funding
liquidity are mutually reinforcing, leading to liquidity spirals” (Brunnermeier
and Pedersen, 2009, page 2201).

The model allows the authors to show that market liquidity can suddenly dry up. This
analysis has been extended by Nikolaou (2009), who includes the central bank liquidity for
analyzing the liquidity linkages. In normal times, we observe a virtuous liquidity circle that
reinforces the financial system stability (Figure 6.3). Nevertheless, the liquidity linkages can

10This problem is discussed in Chapter 8, which is dedicated to the systemic risk.
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FIGURE 6.3: The liquidity nodes of the financial system

Source: Nikolaou (2009).

be broken in bad times. It is commonly accepted that funding liquidity is the central node,
because central banks have no interest to break the linkages and market illiquidity can
only be temporary. Indeed, market illiquidity is generally associated to periods of selling
(or bear) markets. However, there is an intrinsic imbalance between supply and demand in
financial markets. Investors, financial institutions, households and corporate firms have a
common objective to buy financial assets, not to sell them, in order to finance retirement
pensions, future consumptions and economic growth. Therefore, the weak link is the funding
liquidity, because funding liquidity risks can easily create systemic risks.

The 2008 Global Financial Crisis is the typical example of a systemic risk crisis, which is
mainly due to the liquidity risk, especially the funding liquidity risk. We can represent the
different sequences of the crisis with the scheme given in Figure 6.4. The starting point was
the subprime debt crisis that has impacted banks. Therefore, it was first a credit risk crisis.
However, its strength weakened the banks, leading to a reduction of the funding liquidity. At
the same time, the banking system dramatically reduces the funding to corporate firms, asset
managers and hedge funds. In order to obtain cash, investors sold liquid assets, and more
especially stocks. The drop of stock prices affected banks because the value of collateral
portfolios has decreased. It followed a feedback loop between credit risk, liquidity risk,
market risk and collateral risk.

Remark 66 Many people compare the GFC to the dot-com crisis, certainly because the
performance of the stock market is similar. Indeed, during the dot-com crisis, the S&P 500
index experienced a maximum drawdown about 49% between March 2000 and March 2003,
whereas it was equal to 56% during the subprime crisis. However, the behavior of stocks was
different during these two periods. During the internet crisis, 55% of stocks posted a negative
performance, while 45% of stocks posted a positive performance. The dot-com crisis is then
a crisis of valuation. During the GFC, 95% of stocks posted a negative performance. In fact,
the 2008 crisis of the stock market is mainly a liquidity crisis. This explains that almost
all stocks had a negative return. This example perfectly illustrates the interconnectedness of
funding liquidity and market risks.
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FIGURE 6.4: Spillover effects during the 2008 global financial crisis

6.3 Regulation of the liquidity risk
In Basel III, the liquidity risk is managed using two layers. First, the market liquidity

issue is included in the market risk framework by considering five liquidity horizons: 10,
20, 40, 60 and 120 days. For example, the liquidity horizon for large cap equity prices is
set to 10 days whereas the liquidity horizon for credit spread volatilities is set to 120 days.
Therefore, there is a differentiation in terms of asset classes and instruments. Second, the
Basel Committee has developed two minimum standards for funding liquidity: the liquidity
coverage ratio (LCR) and the net stable funding ratio (NSFR). The objective of the LCR
is to promote short-term resilience of the bank’s liquidity risk profile, whereas the objective
of the NSFR is to promote resilience over a longer time horizon. Moreover, these tools are
completed by the leverage ratio. Indeed, although its first objective is not to manage the
funding liquidity risk, the leverage risk is an important component of the funding liquidity
risk11.

6.3.1 Liquidity coverage ratio
6.3.1.1 Definition

The liquidity coverage ratio is defined as:

LCR = HQLA
Total net cash outflows ≥ 100%

11See Section 8.1.2 on page 456.
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TABLE 6.4: Stock of HQLA
Level Description Haircut
Level 1 assets

Coins and bank notes

0%

Sovereign, central bank, PSE, and MDB assets
qualifying for 0% risk weighting
Central bank reserves
Domestic sovereign or central bank debt for
non-0% risk weighting

Level 2 assets (maximum of 40% of HQLA)
Level 2A assets

Sovereign, central bank, PSE and MDB assets

15%qualifying for 20% risk weighting
Corporate debt securities rated AA− or higher
Covered bonds rated AA− or higher

Level 2B assets (maximum of 15% of HQLA)
RMBS rated AA or higher 25%
Corporate debt securities rated between A+ 50%and BBB−
Common equity shares 50%

Source: BCBS (2013a).

where the numerator is the stock of high quality liquid assets (HQLA) in stressed conditions,
and the denominator is the total net cash outflows over the next 30 calendar days. The
underlying idea of the LCR is that the bank has sufficient liquid assets to meet its liquidity
needs for the next month.

An asset is considered to be a high quality liquid asset if it can be easily converted into
cash. Therefore, the concept of HQLA is related to asset quality and asset liquidity. Here are
the comprehensive list of characteristics used by the Basel Committee for defining HQLA:

• fundamental characteristics (low risk, ease and certainty of valuation, low correlation
with risky assets, listed on a developed and recognized exchange);

• market-related characteristics (active and sizable market, low volatility, flight to qual-
ity).

BCBS (2013a) divides the stock of HQLA into two buckets (see Table 6.4). The first bucket
(called level 1 assets) has a 0% haircut. It consists of coins and banknotes, central bank
reserves, and qualifying marketable securities from sovereigns, central banks, public sector
entities (PSE), and multilateral development banks (MDB), whose risk weight is 0% under
the Basel II SA framework for credit risk. The level 1 assets also include sovereign or
central bank debt securities issued in the domestic currency of the bank’s home country.
In the second bucket (also called level 2 assets), assets have a haircut higher than 0%. For
instance, a 15% haircut is applied to sovereign, central bank, PSE and MBD assets that
have a 20% risk weight under the Basel II SA framework for credit risk. A 15% haircut is
also valid for corporate debt securities that are rated at least AA−. Three other types of
assets are included in the second bucket (level 2B assets). They concern RMBS rated AA or
higher, corporate debt securities with a rating between A+ and BBB−, and common equity
shares that belong to a major stock index. Moreover, the HQLA portfolio must be well



362 Handbook of Financial Risk Management

diversified in order to avoid concentration (except for sovereign debt of the bank’s home
country).

We notice that level 2 assets are subject to two caps. Let xHQLA, x1 and x2 be the value
of HQLA, level 1 assets and level 2 assets. We have:

xHQLA = x1 + x2

s.t.

 x2 = x2A + x2B
x2A ≤ 0.40 · xHQLA
x2B ≤ 0.15 · xHQLA

We deduce that one trivial solution is:

x?HQLA = min
(

5
3x1, x1 + x2

)
x?1 = x1
x?2 = x?HQLA − x?1
x?2A = min (x?2, x2A)
x?2B = x?2 − x?2A

(6.5)

Example 63 We consider the following assets: (1) coins and bank notes = $200 mn, (2)
central bank reserves = $100 mn, (3) 20% risk-weighted sovereign debt securities = $200
mn, (4) AA corporate debt securities = $300 mn, (5) qualifying RMBS = $200 mn and (6)
BB+ corporate debt securities = $500 mn.

Results are given in the table below. We notice that the gross value of assets is equal to
$1.5 bn. However, level 2 assets represent 80% of this amount, implying that the 40% cap
is exceeded. Therefore, we have to perform the correction given by Equation (6.5). Finally,
the stock of HQLA is equal to $500 mn.

Assets Gross Haircut Net Capped
Value Value Value

Level 1 assets (1) + (2) 300 0% 300 300
Level 2 assets 1 200 825 200

2A (3) + (4) 500 15% 425 200
2B (5) + (6) 700 400 0

(5) 200 25% 150 0
(6) 500 50% 250 0

Total 1 500 1 125 500

Remark 67 The previous example shows that the bank may use secured funding transac-
tions (repos) to circumvent the caps on level 2 assets. This is why the LCR requires adjusting
the amount of HQLA by taking into account the unwind of repos maturing within 30 calendar
days that involve the exchange of HQLA12.

The value of total net cash outflows is defined as follows:

Total net cash outflows = Total expected cash outflows−

min
(

Total expected cash inflows,
75% of total expected cash outflows

)
12See §48 and Annex 1 in BCBS (2013a).
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TABLE 6.5: Cash outflows of the LCR
Liabilities Description Rate
Retail deposits
Demand and term deposits (less than 30 days)

Stable deposits covered by deposit insurance 3%
Stable deposits 5%
Less stable deposits 10%

Term deposits (with residual maturity greater than 30 days) 0%
Unsecured wholesale funding
Demand and term deposits (less than 30 days) provided by
small business customers

Stable deposits 5%
Less stable deposits 10%

Deposits generated by clearing, custody and cash management 25%
Portion covered by deposit insurance 5%

Cooperative banks in an institutional network 25%
Corporates, sovereigns, central banks, PSEs and MDBs 40%

Portion covered by deposit insurance 20%
Secured funding transactions
With a central bank counterparty 0%
Backed by level 1 assets 0%
Backed by level 2A assets 15%
Backed by non-level 1 or non-level 2A assets with domestic 25%sovereigns, PSEs or MDBs as a counterparty
Backed by level 2B RMBS assets 25%
Backed by other level 2B assets 50%
All other secured funding transactions 100%
Additional requirements
Margin/collateral calls ≥ 20%
ABCP, SIVs, conduits, SPVs, etc. 100%
Net derivative cash outflows 100%
Other credit/liquidity facilities ≥ 5%

Source: BCBS (2013a).

Therefore, it is the difference between cash outflows and cash inflows, but with a floor of
25% of cash outflows. Cash outflows/inflows are estimated by applying a run-off/flow-in
rate to each category of liabilities/receivables.

In Table 6.5, we report the main categories of cash outflows and their corresponding run-
off rates. These outflow rates are calibrated according to expected stability or ‘stickiness’.
Run-off rates range from 3% to 100%, depending on the nature of the funding. The less stable
funding is perceived to be, the higher the outflow rate. For example, a 3% rate is assigned
to stable retail deposits that benefit of deposit insurance (protection offered by government
or public guarantee schemes). On the contrary, the rate of deposits from corporates is equal
to 40%.

The categories of cash inflows are given in Table 6.6. Maturing secured lending transac-
tions (reverse repos and securities borrowing) have inflow rates from 0% to 100%. Amounts
receivable from retail and corporate counterparties have an inflow rate of 50%, whereas
amounts receivable from financial institutions have an inflow rate of 100%.
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TABLE 6.6: Cash inflows of the LCR
Receivables Description Rate
Maturing secured lending transactions
Backed by level 1 assets 0%
Backed by level 2A assets 15%
Backed by level 2B RMBS assets 25%
Backed by other level 2B assets 50%
Backed by non-HQLAs 100%
Other cash inflows
Credit/liquidity facilities provided to the bank 0%
Inflows to be received from retail counterparties 50%
Inflows to be received from non-financial wholesale counterparties 50%
Inflows to be received from financial institutions and 100%central banks
Net derivative receivables 100%

Source: BCBS (2013a).

Example 64 The bank has $500 mn of HQLA. Its main liabilities are: (1) retail stable
deposit = $17.8 bn ($15 bn have a government guarantee), (2) retail term deposit (with a
maturity of 6 months) = $5 bn, (3) stable deposit provided by small business customers
= $1 bn, and (4) deposit of corporates = $200 mn. In the next thirty days, the bank also
expects to receive $100 mn of loan repayments, and $10 mn due to a maturing derivative.

We first calculate the expected cash outflows for the next thirty days:

Cash outflows = 3%× 15 000 + 5%× 2 800 + 0%× 5 000 +
5%× 1 000 + 40%× 200

= $720 mn

We then estimate the cash inflows expected by the bank for the next month:

Cash inflows = 50%× 100 + 100%× 10 = $60 mn

Finally, we deduce that the liquidity coverage ratio of the bank is equal to:

LCR = 500
720− 60 = 75.76%

6.3.1.2 Monitoring tools

In addition to the LCR, the Basel Committee has defined five monitoring tools in order
to analyze the bank’s liquidity risk management:

1. Contractual maturity mismatch

2. Concentration of funding

3. Available unencumbered assets

4. LCR by significant currency

5. Market-related monitoring tools
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The contractual maturity mismatch defines “the gaps between the contractual inflows
and outflows of liquidity for defined time bands”. The Basel Committee suggests the follow-
ing time buckets: overnight, 7 days, 14 days, 1, 2, 3, 6 and 9 months, 1, 3, 5 and 5+ years.
The goal of the second metric is to identify the main sources of liquidity problems. Thus,
the concentration of funding groups three types of information:

1. funding liabilities sourced from each significant counterparty as a % of total liabilities;

2. funding liabilities sourced from each significant product/instrument as a % of total
liabilities;

3. list of asset and liability amounts by significant currency.

The third metric concerns available unencumbered assets that are marketable as collateral
in secondary markets, and available unencumbered assets that are eligible for central banks’
standing facilities. The bank must then report the amount, type and location of available
unencumbered assets that can be used as collateral assets. For the fourth metric, the bank
must calculate a ‘foreign currency LCR’ for all the significant currencies. A currency is said
to be significant if the liabilities denominated in that currency is larger than 5% of the
total liabilities. Supervisors are in charge of producing the last metric, which corresponds
to market data that can serve as warning indicators of liquidity risks (CDS spread of the
bank, trading volume in equity markets, bid/ask spreads of sovereign bonds, etc.). These
indicators can be specific to the bank, the financial sector, or a financial market.

6.3.2 Net stable funding ratio
While the LCR measures the funding liquidity risk for the next month, NSFR is designed

in order to promote resilience of the bank’s liquidity profile for the next year. Like the LCR,
NSFR is based on the asset liability approach, but it is more comprehensive than the LCR
because of the long-term horizon. In some sense, it is closer to the framework that has been
proposed by Drehmann and Nikolaou (2013).

6.3.2.1 Definition

It is defined as the amount of available stable funding (ASF) relative to the amount of
required stable funding (RSF):

NSFR = Available amount of stable funding
Required amount of stable funding ≥ 100%

The available amount of stable funding (ASF) corresponds to the regulatory capital plus
some other liabilities, whereas the required amount of stable funding (RSF) is the sum of
weighted assets and off-balance sheet exposures. We have:

ASF =
∑
i

fASF
i · Li

and:
RSF =

∑
j

fRSF
j ·Aj

where fASF
i is the ASF factor for liability i, Li is the amount of liability i, fRSF

j is the RSF
factor for asset j, and Aj is the amount of asset j.
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6.3.2.2 ASF and RSF factors

The ASF factor can take 5 values: 100%, 95%, 90%, 50% and 0%. Here are the main
components of the available amount of stable funding:

• Liabilities receiving a 100% ASF factor
This concerns (1) regulatory capital (excluding tier 2 instruments with residual ma-
turity of less than one year) and (2) other capital instruments with effective residual
maturity of one year or more.

• Liabilities receiving a 95% ASF factor
This includes (3) stable non-maturity/term deposits of retail and small business cus-
tomers (with residual maturity of less than one year).

• Liabilities receiving a 90% ASF factor
This corresponds to (4) less stable non-maturity/term deposits of retail and small
business customers (with residual maturity of less than one year).

• Liabilities receiving a 50% ASF factor
In this category, we find (5) funding provided by sovereigns, corporates, MDBs and
PSEs (with residual maturity of less than one year), (6) funding provided by central
banks and financial institutions (with residual maturity between 6 months and one
year) and (7) operational deposits.

• Liabilities receiving a 0% ASF factor
This category corresponds to (8) all the other liabilities.

The RSF factor takes values between 0% and 100%. The main components of the required
amount of stable funding are the following:

• Assets receiving a 0% RSF
This concerns (1) coins and banknotes and (2) all central bank reserves and all claims
on central banks with residual maturities of less than six months.

• Assets receiving a 5% RSF
In this category, we find (3) other unencumbered level 1 assets.

• Assets receiving a 10% RSF
This includes (4) unencumbered secured loans to financial institutions with residual
maturities of less than six months.

• Assets receiving a 15% RSF
This category if composed of (5) all other unencumbered loans to financial institutions
with residual maturities of less than six months and (6) unencumbered level 2A assets.

• Assets receiving a 50% RSF
This corresponds to (7) unencumbered level 2B assets and (8) all other assets with
residual maturity of less than one year.

• Assets receiving a 65% RSF
This concerns (9) unencumbered residential mortgages and loans (excluding loans to
financial institutions) with a residual maturity of one year or more and with a risk
weight of less than or equal to 35% under the Standardized Approach.
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• Assets receiving a 85% RSF
In this category, we have (10) cash, securities or other assets posted as initial margin
for derivative contracts and provided to contribute to the default fund of a CCP,
(11) other unencumbered performing loans (excluding loans to financial institutions)
with a residual maturity of one year or more and with a risk weight of less greater
than 35% under the Standardized Approach, (12) exchange-traded equities and (13)
physical traded commodities, including gold.

• Assets receiving a 100% RSF
This category is defined by (14) all assets that are encumbered for a period of one year
or more and (15) all other assets (non-performing loans, loans to financial institutions
with a residual maturity of one year or more, non-exchange-traded equities, etc.).

Example 65 We assume that the bank has the following simplified balance sheet:

Assets Amount Liabilities Amount
Loans Residential 150 Deposits Stable 100

Corporate 60 Less stable 150
Level 1A 70 Short-term borrowing 50

2B 40 Capital 20

We deduce that:

ASF = 95%× 100 + 90%× 150 + 50%× 50 + 100%× 20 = 275

and:
RSF = 85%× 150 + 85%× 60 + 5%× 70 + 50%× 40 = 202

The NSFR is then equal to:
NSFR = 275

202 = 136%

6.3.3 Leverage ratio
As said previously, the leverage ratio completes the framework of market and liquidity

risks. It is defined as the capital measure divided by the exposure measure. Since January
2018, this ratio must be below 3%. The capital measure corresponds to the tier 1 capital,
while the exposure measure is composed of four main exposures: on-balance sheet exposures,
derivative exposures, securities financing transaction (SFT) exposures and off-balance sheet
items. The big issue is the definition of derivative exposures, because we can adopt either a
notional or a mark-to-market approach. Finally, the Basel Committee has decided to define
them as the sum of replacement cost and potential future exposure, meaning that derivative
exposures correspond to a CCR exposure measure.

Remark 68 We could have discussed the leverage risk ratio in other chapters, in particular
when considering systemic risk and shadow banking system. In fact, liquidity, leverage and
systemic risks are so connected that it is difficult to distinguish them.
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Chapter 7
Asset Liability Management Risk

Asset liability management (ALM) corresponds to the processes that address the mismatch
risk between assets and liabilities. These methods concern financial institutions, which are
mainly defined by a balance sheet. For example, this is the case of pension funds and
insurance companies. In this chapter, we focus on ALM risks in banks, and more precisely
ALM risks of the banking book. Previously, we have already seen some risks that impact
the banking book such as credit or operational risk. In what follows, we consider the four
specific ALM risks: liquidity risk1, interest rate risk, option risk and currency risk.

Generally, ALM risks are little taught in university faculties because they are less known
by academics. In fact, asset liability management is a mix of actuarial science, accounting
and statistical modeling, and seems at first sight less mathematical than risk management.
Another difference is that the ALM function is generally within the finance department
and not within the risk management department. This is because ALM implies to take
decisions that are not purely related to risk management considerations, but also concerns
commercial choices and business models.

7.1 General principles of the banking book risk management
Before presenting the tools to manage the ALM risks, we define the outlines of the

asset and liability management. In particular, we show why ALM risks are so specific if we
compare them to market and credit risks. In fact, asset and liability management has two
components. The first component is well-identified and corresponds to the risk measurement
of ALM operations. The second component is much more vague, because it concerns both
risk management and business development. Indeed, banking business is mainly a financial
intermediation business, since banks typically tend to borrow short term and lend long
term. The mismatch between assets and liabilities is then inherent to banking activities.
Similarly, the balance sheet of a bank and its income statement are highly related, implying
that future income may be explained by the current balance sheet. The debate on whether
the ALM department is a profit center summarizes this duality between risk and business
management.

1Liquidity risk was the subject of the previous chapter. However, we have discussed this topic from a
risk management point of view by focusing on the regulatory ratios (LCR and NSFR). In this chapter, we
tackle the issue of liquidity risk from an ALM perspective.

369
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7.1.1 Definition
7.1.1.1 Balance sheet and income statement

The ALM core function is to measure the asset liability mismatch of the balance sheet
of the bank. In Table 7.1, we report the 2018 balance sheet of FDIC-insured commercial
banks and savings institutions as provided by FDIC (2019). It concerns 5 406 financial
institutions in the US. We notice that the total assets and liabilities are equal to $17.9
tn. The most important items are loans and leases, investment securities and cash & due
from depository institutions on the asset side, deposits and equity capital on the liability

TABLE 7.1: Assets and liabilities of FDIC-insured commercial banks and savings institu-
tions (Amounts in $ bn)

Total Assets 17 943 Total liabilities and capital 17 943

  Loans secured by real estate 4 888   Deposits 13 866

    1-4 Family residential mortgages 2 119     Foreign office deposits 1 253

    Nonfarm nonresidential 1 446     Domestic office deposits 12 613

    Construction and development 350       Interest-bearing deposits 9 477

    Home equity lines 376       Noninterest-bearing deposits 3 136

    Multifamily residential real estate 430       Estimated insured deposits 7 483

    Farmland 105       Time deposits 1 971

    Real estate loans in foreign offices 62       Brokered deposits 1 071

  Commercial & industrial loans 2 165   Federal funds purchased & repos 240

  Loans to individuals 1 743   FHLB advances 571

    Credit cards 903   Other borrowed money 557

    Other loans to individuals 839   Subordinated debt 69

        Auto loans 455   Trading account liabilities 236

  Farm loans 82   Other liabilities 381

  Loans to depository institutions 84   Total liabilities 15 921

  Loans to foreign gov. & official inst. 11   Total equity capital 2 023

  Obligations of states in the U.S. 188     Total bank equity capital  2 019

  Other loans 862       Perpetual preferred stock 9

  Lease financing receivables 133       Common stock 43

  Gross total loans and leases 10 155       Surplus 1 277

    Less: Unearned income 2       Undivided profits 759

  Total loans and leases 10 152       Other comprehensive income -68

    Less: Reserve for losses 125         Net unrealized P&L on AFS 0

  Net loans and leases 10 028

  Securities 3 723

    Available for sale (fair value) 2 590

    Held to maturity (amortized cost) 1 129

    U.S. Treasury securities 549

    Mortgage-backed securities 2 187

    State and municipal securities 330

    Equity securities 3

  Cash & due from depos. instit. 1 694

  Fed.  funds sold and reverse repos 622

  Bank premises and fixed assets 130

  Other real estate owned 7

  Trading account assets 572

  Intangible assets 399

    Goodwill 334

  Other Assets 769

Source: Federal Deposit Insurance Corporation (2019), www.fdic.gov/bank/analytical/qbp.

http://www.fdic.gov/
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side. Table 7.2 shows a simplified version of the balance sheet. The bank collects retail and
corporate deposits and lends money to households and firms.

TABLE 7.2: A simplified balance sheet
Assets Liabilities
Cash Due to central banks
Loans and leases Deposits
Mortgages Deposit accounts
Consumer credit Savings
Credit cards Term deposits

Interbank loans Interbank funding
Investment securities Short-term debt
Sovereign bonds Subordinated debt
Corporate bonds Reserves

Other assets Equity capital

Some deposits have a fixed maturity (e.g. a certificate of deposit), while others have an
undefined maturity. This is for example the case of demand deposits or current accounts.
These liabilities are then called non-maturity deposits (NMD), and include transaction
deposits, NOW (negotiable order of withdrawal) accounts, money market deposit accounts
and savings deposits. Term deposits (also known as time deposits or certificates of deposit)
are deposits with a fixed maturity, implying that the customer cannot withdraw his funds
before the term ends. Generally, the bank considers that the core deposits correspond to
deposits of the retail customers and are a stable source of its funding. On the asset side,
the bank proposes credit, loans and leases, and holds securities and other assets such as
real estate, intangible assets2 and goodwill3. In Chapter 3 on page 125, we have seen that
loans concern both individuals, corporates and sovereigns. We generally distinguish loans
secured by real estate, consumer loans, commercial and industrial loans. Leases correspond
to contract agreements, where the bank purchases the asset on behalf of the customer, and
the customer uses the asset in return and pays to the bank a periodic lease payment for
the duration of the agreement4. Investment securities include repos, sovereign bonds, asset-
backed securities, debt instruments and equity securities. We reiterate that the balance sheet
does not concern off-balance sheet items. Indeed, the risk of credit lines (e.g. commitments,
standby facilities or letters of credit) is measured by the credit risk5, while derivatives
(swaps, forwards, futures and options) are mainly managed within the market risk and the
counterparty credit risk.

Another difference between assets and liabilities is that they are not ‘priced’ at the
same interest rate since the primary business of the bank is to capture the interest rate
spread between its assets and its liabilities. The bank receives income from the loans and
its investment portfolio, whereas the expenses of the bank concern the interest it pays
on deposits and its debt, and the staff and operating costs. In Table 7.3, we report the
2018 income statement of FDIC-insured commercial banks and savings institutions. We
can simplify the computation of this income statement and obtain the simplified version

2Intangible assets are non-physical assets that have a multi-period useful life such as servicing rights or
customer lists. They are also intellectual assets (patents, copyrights, softwares, etc).

3Goodwill is the excess of the purchase price over the fair market value of the net assets acquired. The
difference can be explained because of the brand name, good customer relations, etc.

4At the end of the contract, the customer may have the option to buy the asset.
5In this case, the difficult task is to estimate the exposure at default and the corresponding CCF param-

eter.
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TABLE 7.3: Annual income and expense of FDIC-insured commercial banks and savings
institutions (Amounts in $ mn)

Total interest income 660 988

  Domestic office loans 492 201

  Foreign office loans 21 965

  Lease financing receivables 5 192

  Balances due from depository institutions 24 954

  Securities 92 908

  Trading accounts 11 025

  Federal funds sold 8 347

  Other interest income 4 397

Total interest expense 119 799

  Domestic office deposits 74 781

  Foreign office deposits 8 877

  Federal funds purchased 4 108

  Trading liabilities and other borrowed money 28 629

  Subordinated notes and debentures 2 780

Net interest income 541 189

Provision for loan and lease losses 49 998

Total noninterest income 266 165

  Fiduciary activities 37 525

  Service charges on deposit accounts 35 745

  Trading account gains and fees 26 755

    Interest rate exposures 7 148

    Foreign exchange exposures 12 666

    Equity security and index exposures 4 750

    Commodity and other exposures 1 299

    Credit exposures 367

  Investment banking, advisory, brokerage

   and underwriting fees and commissions 12 522

  Venture capital revenue 60

  Net servicing fees 10 680

  Net securitization income 230

  Insurance commission fees and income 4 574

  Net gains (losses) on sales of loans 12 593

  Net gains (losses) on sales of other real estate owned -99

  Net gains (losses) on sales of other assets (except securities) 1 644

  Other noninterest income 123 938

Total noninterest expense 459 322

  Salaries and employee benefits 217 654

  Premises and equipment expense 45 667

  Other noninterest expense 190 944

    Amortization expense and goodwill impairment losses 5 058

Securities gains (losses) 328

Income (loss) before income taxes and extraordinary items 298 362

Applicable income taxes 61 058

Extraordinary gains (losses), net -267

Net charge-offs 47 479

Cash dividends 164 704

Retained earnings 72 045

Net operating income 237 059

Source: Federal Deposit Insurance Corporation (2019), www.fdic.gov/bank/analytical/qbp.

http://www.fdic.gov/
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given in Table 7.4. Net interest income corresponds to the income coming from interest
rates, whereas non-interest income is mainly generated by service fees and commissions.
The income statement depends of course on the balance sheet items, but also on off-balance
sheet items. Generally, loans, leases and investment securities are called the earning assets,
whereas deposits are known as interest bearing liabilities.

TABLE 7.4: A simplified income statement
Interest income

− Interest expenses
= Net interest income
+ Non-interest income
= Gross income
− Operating expenses
= Net income
− Provisions
= Earnings before tax
− Income tax
= Profit after tax

7.1.1.2 Accounting standards

We understand that the goal of ALM is to control the risk of the balance sheet in order to
manage and secure the future income of the bank. However, the ALM policy is constrained
by accounting standards since the bank must comply with some important rules that dis-
tinguish banking and trading books. Accounting systems differ from one country to another
country, but we generally distinguish four main systems: US GAAP6, Japanese combined
system7, Chinese accounting standards and International Financial Reporting Standards
(or IFRS). IFRS are standards issued by the IFRS Foundation and the International Ac-
counting Standards Board (IASB) to provide a global accounting system for business affairs
and capital markets. In March 2019, there were 144 jurisdictions that required the use of
IFRS Standards for publicly listed companies and 12 jurisdictions that permitted its use.
IFRS is then the world’s most widely used framework. For example, it is implemented in
European Union, Australia, Middle East, Russia, South Africa, etc. Since January 2018,
IFRS 9 has replaced IAS 39 that was considered excessively complicated and inappropriate.

Financial instruments IAS 39 required financial assets to be classified in the four fol-
lowing categories:

• financial assets at fair value through profit and loss (FVTPL);

• available-for-sale financial assets (AFS);

• loans and receivables (L&R);

• held-to-maturity investments (HTM).

6GAAP stands for Generally Accepted Accounting Principles.
7Companies may choose one of the four accepted financial reporting frameworks: Japanese GAAP (which

is the most widespread system), IFRS standards, Japan’s modified international standards (JMIS) and US
GAAP.
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The FVTPL category had two subcategories. The first category (designated) included any
financial asset that was designated on initial recognition as one to be measured at fair
value with fair value changes in profit and loss. The second category (held-for-trading or
HFT) included financial assets that were held for trading. Depending on the category, the
bank measured the financial asset using the fair value approach8 (AFS and FVTPL) or the
amortized cost approach (L&R and HTM). In IFRS 9, the financial assets are divided into
two categories:

• amortized cost (AC);

• fair value (FV).

For FV assets, we distinguish fair value through profit and loss (FVTPL) and fair value
through other comprehensive income (FVOCI). Category changes between AC, FVTPL
and FVOCI are recognized when the asset is derecognized or reclassified. In fact, the clas-
sification of an asset depends on two tests: the business model (BM) test and the solely
payments of principal and interest (SPPI) test. In the BM test, the question is to know “if
the objective of the bank is to hold the financial asset to collect the contractual cash flows”
or not. In the SPPI test, the question is rather to understand if “the contractual terms of the
financial asset give rise on specified dates to cash flows that are solely payments of principal
and interest on the principal amount outstanding”. It is obvious that the classification of
an asset affects the ALM policy because it impacts differently the income statement.

On the liability side, there is little difference between IAS 39 and IFRS 9. All equity
investments are measured at fair value, HFT financial liabilities are measured at FVTPL
and all other financial liabilities are measured at amortized cost if the fair value option is
applied.

Remark 69 The main revision of IFRS 9 concerns impairment of financial assets since
it establishes new models of expected credit loss for receivables and loans. This implies that
banks can calculate loss provisioning as soon as the loan is entered the banking book.

Hedging instruments Hedge accounting is an option and not an obligation. It considers
that some financial assets are not held for generating P&L, but are used in order to offset
a given risk. This implies that the hedging instrument is fully related to the hedged item.
IAS 39 and IFRS 9 recognize three hedging strategies:

• a fair value hedge (FVH) is a hedge of the exposure to changes in fair value of a
recognized asset or liability;

• a cash flow hedge (CFH) is a hedge of the exposure to variability in cash flows that
is attributable to a particular risk;

• a net investment hedge (NIH) concerns currency risk hedging.

In the case of FVH, fair value of both the hedging instrument and the hedged item are
recognized in profit and loss. In the case of CFH or NIH, the effective portion of the gain
or loss on the hedging instrument is recognized in equity (other comprehensive income9 or
OCI), while the ineffective portion of the gain or loss on the hedging instrument is recognized
in profit and loss.

8In the AFS case, gains and losses impact the equity capital and then the balance sheet, whereas gains
and losses of FVTPL assets directly concerns the income statement.

9See Table 7.1 on page 370.
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7.1.1.3 Role and importance of the ALCO

Remark 69 shows that IFRS 9 participates to the convergence of risk, finance and ac-
counting that we recently observe. In fact, ALM is at the junction of these three concepts.
This is why we could discuss how to organize the ALM function. Traditionally, it is located
in the finance department because the ALM committee (ALCO) is in charge of both risk
management and income management. In particular, it must define the funds transfer pric-
ing (FTP) policy. Indeed, resources concerning interest and liquidity risks are transferred
from business lines to the ALM portfolio. The ALCO and the ALM unit is in charge to
manage the risks of this portfolio, and allocate the P&L across business lines:

“A major purpose of internal prices is to determine the P&L of the business
lines. Transfer prices are internal prices of funds charged to business units or
compensating cheap resources such as deposits. [...] Transfer pricing systems
are notably designed for the banking book, for compensating resources collected
from depositors and for charging funds used for lending. Internal prices also
serve for exchanging funds between units with deficits of funds and units with
excesses of funds. As they are used for calculating the P&L of a business line,
they perform income allocation across business lines” (Bessis, 2015, pages 109-
110).

Funding
Excess

Funding
Deficit

Funding
Price

Funding
Cost

Business
Line A ALM

Business
Line B

Market

FIGURE 7.1: Internal and external funding transfer

This means that business lines with a funding excess will provide the liquidity to business
lines with a funding deficit. For example, Figure 7.1 shows the relationships between the
ALM unit and two business lines A and B. In this case, the business line Amust be rewarded
and receives the funding price, whereas the business B pays the funding cost. Internal funds
transfer system avoids that business lines A and B directly go to the market. However,
the ALM unit has access to the market for both lending the funding liquidity excess or
borrowing the funding liquidity deficit of the bank. At first sight, we can assume that the
internal funding price is equal to the external funding price and the internal funding cost is
equal to the external funding cost. In this case, the ALM unit captures the bid/ask spread
of the funding liquidity. In the real life, it is not possible and it is not necessarily desirable.
Indeed, we reiterate that the goal of a bank is to perform liquidity transformation. This
means that the liquidity excess of the business line A does not match necessarily the liquidity
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deficit of the business line B. Second, the role of the ALM is also to be sure that business
lines can pilot their commercial development. In this situation, it is important that internal
funding prices and costs are less volatile than external funding prices and costs in order to
better stabilize commercial margins. Since the funds transfer pricing policy is decided by
the ALCO, we notice that the role of ALM cannot be reduced to a risk management issue.
Even if the risk transfer is intentionally rational and fair, meaning that internal prices are
related to market prices, the ALM remains a business issue because the assets and liabilities
are generally not tradable and there are not always real market prices for these items. For
example, what is the price of a $100 deposit? It depends on the behavior of the customer,
but also on the risk appetite of the bank. What is the margin of a $100 loan? It is not
the spread between the loan interest rate and the market interest rate, because there is no
perfect matching between the two interest rates. In this case, the margin will depend on
the risk management policy. This duality between income generation and risk management
is the specificity of asset liability management. Therefore, the role of the ALCO is essential
for a bank, because it impacts the risk management of its balance sheet, but also the income
generated by its banking book.

7.1.2 Liquidity risk
In this section, we define the concept of liquidity gap, which is the main tool for mea-

suring the ALM liquidity risk. In particular, we make the distinction between static and
dynamic liquidity gap when we consider the new production and future projections. In order
to calculate liquidity gaps, we also need to understand asset and liability amortization, and
liquidity cash flow schedules. Finally, we present liquidity hedging tools, more precisely the
standard instruments for managing the ALM liquidity risk.

7.1.2.1 Definition of the liquidity gap

Basel III uses two liquidity ratios (LCR and NSFR), which are related to the ALM
liquidity risk. More generally, financial institutions (banks, insurance companies, pension
funds and asset managers) manage funding risks by considering funding ratios or funding
gaps. The general expression of a funding ratio is:

FR (t) = A (t)
L (t) (7.1)

where A (t) is the value of assets and L (t) is the value of liabilities at time t, while the
funding gap is defined as the difference between asset value and liability value:

FG (t) = A (t)− L (t) (7.2)

If FR (t) > 1 or FG (t) > 0, the financial institution does not need funding because the
selling of the assets covers the repayment of the liabilities. Equations (7.1) and (7.2) corre-
spond to the bankruptcy or the liquidation point of view: if we stop the activity, are there
enough assets to meet the liability requirements of the financial institution? Another point
of view is to consider that the case A (t) > L (t) requires financing the gap A (t) − L (t),
implying that the financial institution has to raise liability funding to match the assets.
From that point of view, Equations (7.1) and (7.2) becomes10:

LR (t) = L (t)
A (t) (7.3)

10We use the letter L (liquidity) instead of F (funding) in order to make the difference between the two
definitions.
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and:
LG (t) = L (t)−A (t) (7.4)

In what follows, we consider the liquidity gap LG (t) instead of the funding gap FG (t),
meaning that a positive (resp. negative) gap corresponds to a liquidity excess (resp. liquidity
deficit).

Example 66 We consider a simplified balance sheet with few items. The assets A (t) are
composed of loans that are linearly amortized in a monthly basis during the next year. Their
values are equal to 120. The liabilities L (t) are composed of three short-term in fine debt
instruments, and the capital. The corresponding debt notional is respectively equal to 65, 10
and 5 whereas the associated remaining maturity is equal to two, seven and twelve months.
The amount of capital is stable for the next twelve months and is equal to 40.

In Table 7.5, we have reported the asset and liability values A (t) and L (t). Since the
loans are linearly amortized in a monthly basis, A (t) is equal to 110 after one month, 100
after two months, etc. The value of the first debt instrument remains 65 for the first and
second months, and is then equal to zero because the maturity has expired. It follows that
the value of the total debt is a piecewise constant function. It is equal to 80 until two months,
15 between three and seven months and 5 after. We can then calculate the liquidity gap. At
the initial date, it is equal to zero by definition. At time t = 1, we deduce that LG (1) = +10
because we have A (1) = 110 and L (1) = 120.

TABLE 7.5: Computation of the liquidity gap
Period 0 1 2 3 4 5 6 7 8 9 10 11 12
Loans 120 110 100 90 80 70 60 50 40 30 20 10 0
Assets 120 110 100 90 80 70 60 50 40 30 20 10 0
Debt #1 65 65 65
Debt #2 10 10 10 10 10 10 10 10
Debt #3 5 5 5 5 5 5 5 5 5 5 5 5 5
Debt (total) 80 80 80 15 15 15 15 15 5 5 5 5 5
Equity 40 40 40 40 40 40 40 40 40 40 40 40 40
Liabilities 120 120 120 55 55 55 55 55 45 45 45 45 45
LG (t) 0 10 20 −35 −25 −15 −5 5 5 15 25 35 45

The time profile of the liquidity gap is given in Figure 7.2. We notice that it is positive
at the beginning, implying that the bank has an excess of liquidity funding in the short-run.
Then, we observe that the liquidity gap is negative and the bank needs liquidity funding.
From the seventh month, the liquidity gap becomes again positive. At the end, the liquidity
gap is always positive since assets and liabilities are fully amortized, implying that the
balance sheet is only composed of the capital.

7.1.2.2 Asset and liability amortization

In order to calculate liquidity gaps, we need to understand the amortization of assets
and liabilities, in particular the amortization of loans, mortgages, bonds and other debt
instruments. The general rules applied to debt payment are the following:

• The annuity amount A (t) at time t is composed of the interest payment I (t) and the
principal payment P (t):

A (t) = I (t) + P (t)
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FIGURE 7.2: An example of liquidity gap

This implies that the principal payment at time t is equal to the annuity A (t) minus
the interest payment I (t):

P (t) = A (t)− I (t)

It corresponds to the principal or the capital which is amortized at time t.

• The interest payment at time t is equal to the interest rate i (t) times the outstand-
ing principal balance (or the remaining principal) at the end of the previous period
N (t− 1):

I (t) = i (t)N (t− 1)

• The outstanding principal balance N (t) is the remaining amount due. It is equal
to the previous outstanding principal balance N (t− 1) minus the principal payment
P (t):

N (t) = N (t− 1)− P (t) (7.5)

At the initial date t = 0, the outstanding principal balance is equal to the notional
of the debt instrument. At the maturity t = n, we must verify that the remaining
amount due is equal to zero.

• The outstanding principal balance N (t) is equal to the present value C (t) of forward
annuity amounts:

N (t) = C (t)

We can distinguish different types of debt instruments. For instance, we can assume that the
capital is linearly amortized meaning that the principal payment P (t) is constant over time
(constant amortization debt). We can also assume that the annuity amount A (t) is constant
during the life of the debt instrument (constant payment debt). In this case, the principal
payment P (t) is an increasing function with respect to the time t. Another amortization
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scheme corresponds to the case where the notional is fully repaid at the time of maturity
(bullet repayment debt). This is for example the case of a zero-coupon bond.

Let us consider the case where the interest rate i (t) is constant. For the constant amor-
tization debt, we have:

P (t) = 1
n
N0

where n is the number of periods and N0 is the notional of the mortgage. The cumulative
principal payment Q (t) is equal to:

Q (t) =
∑
s≤t

P (s) = t

n
N0

We deduce that the outstanding principal balance N (t) verifies:

N (t) = N0 −Q (t) =
(

1− t

n

)
N0

We also have I (t) = iC (t− 1) where C (t− 1) = N (t− 1) and:

A (t) = I (t) + P (t) =
(

1
n

+ i

(
1− t− 1

n

))
N0

In Exercise 7.4.1 on page 449, we derive the formulas of the constant payment debt. The
constant annuity is equal to:

A (t) = A = i

1− (1 + i)−n
N0

It is composed of the interest payment:

I (t) =
(

1− 1
(1 + i)n−t+1

)
A

and the principal payment:
P (t) = 1

(1 + i)n−t+1A

Moreover, we show that the outstanding principal balance N (t) verifies:

N (t) =
(

1− (1 + i)−(n−t)

i

)
A

Finally, in the case of the bullet repayment debt, we have I (t) = iN0, P (t) = 1 {t = n}·N0,
A (t) = I (t) + P (t) and N (t) = 1 {t 6= n} ·N0.

Example 67 We consider a 10-year mortgage, whose notional is equal to $100. The annual
interest rate i is equal to 5%, and we assume annual principal payments.

Results are given in Tables 7.6, 7.7 and 7.8. For each payment structure, we have reported
the value of the remaining capital C (t− 1) at the beginning of the period, the annuity paid
at time t, the split between the interest payment I (t) and the principal payment P (t), the
cumulative principal payment Q (t). When calculating liquidity gaps, the most important
quantity is the outstanding principal balance N (t) given in the last column, because it
corresponds to the amortization of the debt.
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TABLE 7.6: Repayment schedule of the constant amortization mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 15.00 5.00 10.00 10.00 90.00
2 90.00 14.50 4.50 10.00 20.00 80.00
3 80.00 14.00 4.00 10.00 30.00 70.00
4 70.00 13.50 3.50 10.00 40.00 60.00
5 60.00 13.00 3.00 10.00 50.00 50.00
6 50.00 12.50 2.50 10.00 60.00 40.00
7 40.00 12.00 2.00 10.00 70.00 30.00
8 30.00 11.50 1.50 10.00 80.00 20.00
9 20.00 11.00 1.00 10.00 90.00 10.00

10 10.00 10.50 0.50 10.00 100.00 0.00

TABLE 7.7: Repayment schedule of the constant payment mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 12.95 5.00 7.95 7.95 92.05
2 92.05 12.95 4.60 8.35 16.30 83.70
3 83.70 12.95 4.19 8.77 25.06 74.94
4 74.94 12.95 3.75 9.20 34.27 65.73
5 65.73 12.95 3.29 9.66 43.93 56.07
6 56.07 12.95 2.80 10.15 54.08 45.92
7 45.92 12.95 2.30 10.65 64.73 35.27
8 35.27 12.95 1.76 11.19 75.92 24.08
9 24.08 12.95 1.20 11.75 87.67 12.33

10 12.33 12.95 0.62 12.33 100.00 0.00

TABLE 7.8: Repayment schedule of the bullet repayment mortgage
t C (t− 1) A (t) I (t) P (t) Q (t) N (t)
1 100.00 5.00 5.00 0.00 0.00 100.00
2 100.00 5.00 5.00 0.00 0.00 100.00
3 100.00 5.00 5.00 0.00 0.00 100.00
4 100.00 5.00 5.00 0.00 0.00 100.00
5 100.00 5.00 5.00 0.00 0.00 100.00
6 100.00 5.00 5.00 0.00 0.00 100.00
7 100.00 5.00 5.00 0.00 0.00 100.00
8 100.00 5.00 5.00 0.00 0.00 100.00
9 100.00 5.00 5.00 0.00 0.00 100.00

10 100.00 105.00 5.00 100.00 100.00 0.00
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Previously, we have assumed that the payment type is annual, but we can consider other
periods for the amortization schedule. The most common frequencies are monthly, quarterly,
semi-annually and annually11. Let i be the annual interest rate and p the frequency or the
number of compounding periods per year. The consistency principle of the accumulation
factor implies the following identity:

(1 + i) =
(

1 + i(p)

p

)p
where i(p) is the nominal interest rate expressed in a yearly basis. For example, if the
nominal interest rate i(monthly) is equal to 12%, the borrower pays a monthly interest rate
of 1%, which corresponds to an annual interest rate of 12.6825%.

Remark 70 The interest rate i is also called the annual equivalent rate (AER) or the
effective annual rate (EAR).

Example 68 We consider a 30-year mortgage, whose notional is equal to $100. The annual
interest rate i is equal to 5%, and we assume monthly principal payments.

This example is a variant of the previous example, since the maturity is higher and
equal to 30 years, and the payment schedule is monthly. This implies that the number n
of periods is equal to 360 months and the monthly interest rate is equal to 5%/12 or 41.7
bps. In Figure 7.3, we show the amortization schedule of the mortgage for the three cases:
constant (or linear12) amortization, constant payment or annuity and bullet repayment. We
notice that the constant annuity case is located between the constant amortization and the
bullet repayment. We have also reported the constant annuity case when the interest rate
is equal to 10%. We notice that we obtain the following ordering:

i1 ≥ i2 ⇒ N (t | i1) ≥ N (t | i2)

where N (t) (i) is the outstanding principal balance given the interest rate i. In fact, constant
annuity and constant amortization coincide when the interest rate goes to zero whereas
constant annuity and bullet repayment coincide when the interest rate goes to infinity.

Example 69 We consider the following simplified balance sheet:

Assets Liabilities
Items Notional Rate Mat. Items Notional Rate Mat.

Loan #1 100 5% 10 Debt #1 120 5% 10
Loan #2 50 8% 16 Debt #2 80 3% 5
Loan #3 40 3% 8 Debt #3 70 4% 10
Loan #4 110 2% 7 Capital #4 30

The balance sheet is composed of four asset items and four liability items. Asset items
correspond to different loans, whose remaining maturity is respectively equal to 10, 16, 8
and 7 years. Liabilities contain three debt instruments and the capital, which is not amortized
by definition. All the debt instruments are subject to monthly principal payments.

In Figure 7.4, we have calculated the liquidity gap for different amortization schedule:
constant payment, constant annuity and bullet repayment at maturity. We notice that
constant payment and constant annuity give similar amortization schedule. This is not the

11Monthly is certainly the most used frequency for debt instruments.
12The two terms constant and linear can be used interchangeably.
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FIGURE 7.3: Amortization schedule of the 30-year mortgage

FIGURE 7.4: Impact of the amortization schedule on the liquidity gap
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TABLE 7.9: Computation of the liquidity gap (mixed schedule)

t
Assets Liabilities LGt#1 #2 #3 #4 At #1 #2 #3 #4 Lt

1 99.4 49.9 39.6 110 298.8 119.2 78.7 70 30 297.9 −0.92
2 98.7 49.7 39.2 110 297.6 118.5 77.3 70 30 295.8 −1.83
3 98.1 49.6 38.8 110 296.4 117.7 76.0 70 30 293.7 −2.75
4 97.4 49.5 38.3 110 295.2 116.9 74.7 70 30 291.6 −3.66
5 96.8 49.3 37.9 110 294.0 116.1 73.3 70 30 289.4 −4.58
6 96.1 49.2 37.5 110 292.8 115.3 72.0 70 30 287.3 −5.49
7 95.4 49.1 37.1 110 291.6 114.5 70.7 70 30 285.2 −6.41
8 94.8 48.9 36.7 110 290.4 113.7 69.3 70 30 283.1 −7.32
9 94.1 48.8 36.3 110 289.2 112.9 68.0 70 30 280.9 −8.24

10 93.4 48.7 35.8 110 287.9 112.1 66.7 70 30 278.8 −9.15
11 92.8 48.5 35.4 110 286.7 111.3 65.3 70 30 276.7 −10.06
12 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
0 100.0 50.0 40.0 110 300.0 120.0 80.0 70 30 300.0 0.00
1 92.1 48.4 35.0 110 285.5 110.5 64.0 70 30 274.5 −10.97
2 83.8 46.7 30.0 110 270.4 100.5 48.0 70 30 248.5 −21.90
3 75.0 44.8 25.0 110 254.8 90.1 32.0 70 30 222.1 −32.76
4 65.9 42.7 20.0 110 238.6 79.0 16.0 70 30 195.0 −43.55
5 56.2 40.5 15.0 110 221.7 67.4 70 30 167.4 −54.27
6 46.1 38.1 10.0 110 204.2 55.3 70 30 155.3 −48.91
7 35.4 35.5 5.0 75.9 42.5 70 30 142.5 66.56
8 24.2 32.7 56.9 29.0 70 30 129.0 72.12
9 12.4 29.7 42.1 14.9 70 30 114.9 72.81

10 26.4 26.4 30 30.0 3.62
11 22.8 22.8 30 30.0 7.19
12 18.9 18.9 30 30.0 11.06
13 14.8 14.8 30 30.0 15.24
14 10.2 10.2 30 30.0 19.77
15 5.3 5.3 30 30.0 24.68
16 0.0 30 30.0 30.00

case of bullet repayment. In the fourth panel, we consider a more realistic situation where
we have both constant principal (loan #3 and debt #2), constant annuity (loan #1, loan
#2 and debt #1) and bullet repayment (loan #4 and debt #2). Computation details for
this last mixed schedule are given in Table 7.9. The top panel presents the liquidity gap
LG (t) of the first twelve months while the bottom panel corresponds to the annual schedule.
The top panel is very important since it corresponds to the first year, which is the standard
horizon used by the ALCO for measuring liquidity requirements. We see that the bank will
face a liquidity deficit during the first year.

The previous analysis does not take into account two important phenomena. The first
one concerns customer behaviorial options such as prepayment decisions. We note N c (t)
the conventional outstanding principal balance that takes into account the prepayment risk.
We have:

N c (t) = N (t) · 1 {τ > t}

where N (t) is the theoretical outstanding principal balance and τ is the prepayment time
of the debt instrument. The prepayment time in ALM modeling is equivalent to the survival
or default time that we have seen in credit risk modeling. Then τ is a random variable,
which is described by its survival function S (t). Let p (t) be the probability that the debt
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instrument has not been repaid at time t. We have:

p (t) = E [1 {τ > t}] = S (t)

By construction, N c (t) is also random. Therefore, we can calculate its mathematical ex-
pectation, and we have N̄ c (t) = E [N c (t)] = p (t) · N (t) For example, if we assume that
τ ∼ E (λ) where λ is the prepayment intensity, we obtain N̄ c (t) = e−λt ·N (t). By definition,
we always have N c (t) ≤ N (t) and N̄ c (t) ≤ N (t).

In Figure 7.5, we consider the constant payment mortgage given in Example 68 on page
381. The first panel shows the theoretical or contractual outstanding principal balance. In
the second and third panels, we consider that there is a prepayment at time τ = 10 and
τ = 20. This conventional schedule coincides with the contractual schedule, but is equal
to zero once the prepayment time occurs. Finally, the fourth panel presents the conven-
tional amortization schedule N̄ c (t) when the prepayment time is exponentially distributed.
When λ is equal to zero, we retrieve the previous contractual schedule N (t). Otherwise,
the mortgage amortization is quicker.

FIGURE 7.5: Conventional amortization schedule with prepayment risk

The second important phenomenon that impacts amortization schedule is the new pro-
duction of assets and liabilities. If we consider a balance sheet item, its outstanding amount
at time t is equal to the outstanding amount at time t− 1 minus the amortization between
t and t− 1 plus the new production at time t:

N (t) = N (t− 1)−AM (t) + NP (t) (7.6)

This relationship is illustrated in Figure 7.6 and can be considered as an accounting identity
(Demey et al., 2003). In the case where there is no prepayment, the amortization AM (t)
is exactly equal to the principal payment P (t) and we retrieve Equation (7.5) except the
term NP (t). However, there is a big difference between Equations (7.6) and (7.5). The first
one describes the amortization of a debt instrument, for example a loan or a mortgage. The
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FIGURE 7.6: Impact of the new production on the outstanding amount

Source: Demey et al. (2003).

second one describes the amortization of a balance sheet item, that is the aggregation of
several debt instruments. The new production NP (t) corresponds to the financial transac-
tions that appear in the balance sheet between t and t − 1. They concern the new credit
lines, customer loans, mortgages, deposits, etc. that have been traded by the bank during
the last period [t− 1, t]. The introduction of the new production leads to the concept of
dynamic liquidity gap, in contrast to the static liquidity gap.

Remark 71 As we will see in the next section, dynamic liquidity analysis is then more
complex since the function NP (t) is not always known and depends on many parameters.
Said differently, NP (t) is more a random variable. However, it is more convenient to treat
NP (t) as a deterministic function than a stochastic function in order to obtain closed-form
formula and not to use Monte Carlo methods13.

7.1.2.3 Dynamic analysis

According to BCBS (2016d) and EBA (2018a), we must distinguish three types of anal-
ysis:

• Run-off balance sheet
A balance sheet where existing non-trading book positions amortize and are not re-
placed by any new business.

13Equation (7.6) can also be written as follows:

NP (t) = N (t)− (N (t− 1)−AM (t))

Written in this form, this equation indicates how to calculate the new production. In particular, this rela-
tionship can be used to define an estimator of NP (t).
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• Constant balance sheet
A balance sheet in which the total size and composition are maintained by replacing
maturing or repricing cash flows with new cash flows that have identical features.

• Dynamic balance sheet
A balance sheet incorporating future business expectations, adjusted for the relevant
scenario in a consistent manner.

The run-off balance sheet analysis has been exposed in the previous section. The constant
or dynamic balance sheet analysis assumes that we include the new production when cal-
culating the liquidity gap. For the constant analysis, this task is relatively easy since we
consider a like-for-like replacement of assets and liabilities. The dynamic analysis is more
difficult to implement because it highly depends “on key variables and assumptions that
are extremely difficult to project with accuracy over an extended period and can potentially
hide certain key underlying risk exposures” (BCBS, 2016d, page 8).

Stock-flow analysis According to Demey et al. (2003), the non-static analysis requires
a mathematical framework in order to distinguish stock and flow streams. We follow these
authors, and more particularly we present the tools introduced in Chapter 1 of their book.
We note NP (t) the new production at time t and NP (t, u) the part of this production14
that is always reported in the balance sheet at time u ≥ t. The amortization function S (t, u)
is defined by the following equation:

NP (t, u) = NP (t) · S (t, u)

The amortization function is in fact a survival function, implying that the following prop-
erties hold: S (t, t) = 1, S (t,∞) = 0 and S (t, u) is a decreasing function with respect to
u. The amortization function is homogeneous if we have S (t, u) = S (u− t) for all u ≥ t.
Otherwise, amortization function is non-homogeneous and may depend on the information
It:u between t and u. In this case, we can write S (t, u) = S (t, u; It:u) where It:u may con-
tain the trajectory of interest rates, the history of prepayment times, etc. We define the
amortization rate as the hazard rate associated to the survival function S (t, u):

λ (t, u) = −∂ ln S (t, u)
∂ u

In management, we generally make the distinction between stock and flow streams,
but we know that the stock at time t is the sum of past flows. In the case of ALM, the
outstanding amount plays the role of stock while the new production corresponds to a flow.
Therefore, the outstanding amount at time t is the sum of past productions that are always
present in the balance sheet at time t:

N (t) =
∫ ∞

0
NP (t− s, t) ds

If follows that:

N (t) =
∫ ∞

0
NP (t− s) S (t− s, t) ds

=
∫ t

−∞
NP (s) S (s, t) ds (7.7)

14We have NP (t) = NP (t, t) and NP (t,∞) = 0.
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TABLE 7.10: Relationship between the new production and the outstanding amount
s NP (s) S (s, 7) NP (s, 7) S (s, 10) NP (s, 10) S (s, 12) NP (s, 12)
1 110 0.301 33.13 0.165 18.18 0.111 12.19
2 125 0.368 45.98 0.202 25.24 0.135 16.92
3 95 0.449 42.69 0.247 23.43 0.165 15.70
4 75 0.549 41.16 0.301 22.59 0.202 15.14
5 137 0.670 91.83 0.368 50.40 0.247 33.78
6 125 0.819 102.34 0.449 56.17 0.301 37.65
7 115 1.000 115.00 0.549 63.11 0.368 42.31
8 152 0.670 101.89 0.449 68.30
9 147 0.819 120.35 0.549 80.68

10 159 1.000 159.00 0.670 106.58
11 152 0.819 124.45
12 167 1.000 167.00
N (t) 472.14 640.36 720.69

In the discrete-time analysis, the previous relationship becomes:

N (t) =
∞∑
s=0

NP (t− s, t)

=
t∑

s=−∞
NP (s) · S (s, t)

The outstanding amount N (t) at time t is then the sum of each past production NP (s)
times its amortization function S (s, t). In Table 7.10, we provide an example of calculating
the outstanding amount using the previous convolution method. In the second column,
we report the production of each year s. We assume that the amortization function is
homogeneous and is an exponential distribution with an intensity λ equal to 20%. The
third and fourth columns give the values of the amortization function and the production
that is present in the balance sheet at time t = 7. We obtain N (7) = 472.14. The four last
columns correspond to the cases t = 10 and t = 12.

Demey et al. (2003) introduce the concept of stock amortization. We recall that the
amortization function S (t, u) indicates the proportion of $1 entering in the balance sheet at
time t that remains present at time u ≥ t. Similarly, the stock amortization function S? (t, u)
measures the proportion of $1 of outstanding amount at time t that remains present at time
u ≥ t. In order to obtain an analytical and tractable function S? (t, u), we must assume that
the new production is equal to zero after time t. This corresponds to the run-off balance
sheet analysis. Demey et al. (2003) show that the non-amortized outstanding amount is
equal to:

N (t, u) =
∫ t

−∞
NP (s) S (s, u) ds

where t is the current time and u is the future date. For instance, N (5, 10) indicates the
outstanding amount that is present in the balance sheet at time t = 5 and will remain in
the balance sheet five years after. It follows that:

N (t, u) = N (t) · S? (t, u)
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and we deduce that:

S? (t, u) = N (t, u)
N (t)

=
∫ t
−∞NP (s) S (s, u) ds∫ t
−∞NP (s) S (s, t) ds

Dynamics of the outstanding amount Using Equation (7.7), we obtain15:

dN (t)
dt = −

∫ t

−∞
NP (s) f (s, t) ds+ NP (t) (7.8)

where f (t, u) = −∂uS (t, u) is the density function of the amortization. This is the
continuous-time version of the amortization schedule given by Equation (7.6):

N (t)−N (t− 1) = −AM (t) + NP (t)

where:
AM (t) =

∫ t

−∞
NP (s) f (s, t) ds

As already said, we notice the central role of the new production when building a dynamic
gap analysis. It is obvious that the new production depends on several parameters, for
example the commercial policy of the bank, the competitive environment, etc.

Estimation of the dynamic liquidity gap We can then define the dynamic liquidity
gap at time t for a future date u ≥ t as follows16:

LG (t, u) =
∑

k∈Liabilities

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds
)
−

∑
k∈Assets

(
Nk (t, u) +

∫ u

t

NPk (s) Sk (s, u) ds
)

where k represents a balance sheet item. This is the difference between the liability outstand-
ing amount and the asset outstanding amount. For a given item k, the dynamic outstanding
amount is composed of the outstanding amount Nk (t, u) that will be non-amortized at time
u plus the new production between t and u that will be in the balance sheet at time u.
The difficulty is then to estimate the new production and the amortization function. As
said previously, the new production generally depends on the business strategy of the bank.

15We have:

d
(∫ t

−∞
NP (s) S (s, t) ds

)
= NP (t) S (t, t) dt+

∫ t

−∞
NP (s)

∂ S (s, t)
∂ t

ds

= NP (t) dt−
∫ t

−∞
NP (s)

(
−
∂ S (s, t)
∂ t

)
ds

16In the case of the run-off balance sheet, we set NPk (s) = 0 and we obtain the following formula:

LG (t, u) =
∑

k∈Liabilities

Nk (t, u)−
∑

k∈Assets

Nk (t, u)
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Concerning the amortization function, we can calibrate Sk (t, u) using a sample of new pro-
ductions if we assume that the amortization function is homogenous: Sk (t, u) = Sk (u− t).
It follows that:

Ŝk (u− t) =
∑
j∈k NPj (t, u)∑
j∈k NPj (t)

Moreover, we can show that Ŝk (u− t) is a convergent estimator and its asymptotic distri-
bution is given by:

Ŝk (u− t)− Sk (u− t)→ N (0, H · Sk (u− t) · (1− Sk (u− t)))

where H is the Herfindahl index associated to the sample of new productions17.

Remark 72 This result can be deduced from the empirical estimation theory. Let S (t) be
the survival function of the survival time τ . The empirical survival function of the weighted
sample {(wj , τj) , j = 1, . . . , n} is equal to:

Ŝ (t) =
∑n
j=1 wj ·Dj∑n
j=1 wj

where Dj = 1 (τj > t) is a Bernoulli random variable with parameter p = S (t). If we
assume that the sample observations are independent, we deduce that:

var
(
Ŝ (t)

)
=
∑n
j=1 w

2
j · var (Dj)(∑n
j=1 wj

)2 =
n∑
j=1

w2
j(∑n

j′=1 wj′
)2 · S (t) · (1− S (t))

Example 70 We consider a sample of five loans that belong to the same balance sheet item.
Below, we have reported the value taken by NPj (t, u):

u− t 0 1 2 3 4 5 6 7 8 9 10 11
#1 100 90 80 70 60 50 40 30 20 10 5 0
#2 70 65 55 40 20 10 5 0
#3 100 95 85 80 60 40 20 10 0
#4 50 47 44 40 37 33 27 17 10 7 0
#5 20 18 16 14 10 8 5 3 0

In Figure 7.7, we have estimated the amortization function Ŝ (u− t). We have also
computed the variance of the estimator and reported the 95% confidence interval18.

Liquidity duration Another important tool to measure the mismatch between assets and
liabilities is to calculate the liquidity duration, which is defined as the average time of the
amortization of the new production NP (t). In a discrete-time analysis, the amortization
value between two consecutive dates is equal to NP (t, u) − NP (t, u+ 1). Therefore, the
liquidity duration is the weighted average life (WAL) of the principal repayments:

D (t) =
∑∞
u=t (NP (t, u)−NP (t, u+ 1)) · (u− t)∑∞

u=t (NP (t, u)−NP (t, u+ 1))

17We have H =
∑

j∈k w
2
j where:

wj =
NPj (t)∑
j′∈k NPj′ (t)

18We have assumed that the sample is composed of 100 loans or 20 copies of the five previous loans.
Otherwise, the confidence interval is too large because the sample size is small.
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FIGURE 7.7: Estimation of the amortization function Ŝ (u− t)

Since we have:

NP (t, u)−NP (t, u+ 1) = −NP (t) · (S (t, u+ 1)− S (t, u))

and19:
∞∑
u=t

(NP (t, u)−NP (t, u+ 1)) = −NP (t) ·
∞∑
u=t

(S (t, u+ 1)− S (t, u))

= NP (t)

we obtain the following formula:

D (t) = −
∞∑
u=t

(S (t, u+ 1)− S (t, u)) · (u− t)

In the continuous-time analysis, the liquidity duration is equal to:

D (t) = −
∫ ∞
t

∂ S (t, u)
∂ u

(u− t) du

=
∫ ∞
t

(u− t) f (t, u) du

where f (t, u) is the density function associated to the survival function S (t, u).

Remark 73 If we consider the stock approach of the liquidity duration, we have:

D? (t) =
∫ ∞
t

(u− t) f? (t, u) du

19Because we have S (t, t) = 1 and S (t,∞) = 0.
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where f? (t, u) is the density function associated to the survival function S? (t, u):

f? (t, u) = −∂ S? (t, u)
∂ u

=
∫ t
−∞NP (s) f (s, u) ds∫ t
−∞NP (s) S (s, t) ds

Some examples We consider the three main amortization schemes: bullet repayment,
constant (or linear) amortization and exponential amortization. In Exercise 7.4.3 on page
450, we have calculated the survival functions S (t, u) and S? (t, u), the liquidity duration
D (t) and D? (t) and the outstanding dynamics dN (t) where m is the debt maturity and λ
is the exponential parameter. Their expression is reported below in Table 7.11.

TABLE 7.11: Amortization function and liquidity duration of the three amortization
schemes

Amortization S (t, u) D (t)
Bullet 1 {t ≤ u < t+m} m

Constant 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
m

2
Exponential e−λ(u−t) 1

λ
Amortization S? (t, u) D? (t)

Bullet 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
m

2

Constant 1 {t ≤ u < t+m} ·
(

1− u− t
m

)2
m

3
Exponential e−λ(u−t) 1

λ
Amortization dN (t)

Bullet dN (t) = (NP (t)−NP (t−m)) dt

Constant dN (t) =
(

NP (t)− 1
m

∫ t

t−m
NP (s) ds

)
dt

Exponential dN (t) = (NP (t)− λN (t)) dt

We have represented these amortization functions S (t, u) and S? (t, u) in Figure 7.8.
The maturity m is equal to 10 years and the exponential parameter λ is set to 30%. Besides
the three previous amortization schemes, we also consider the constant payment mortgage
(CPM), whose survival functions are equal to20:

S (t, u) = 1 {t ≤ u < t+m} · 1− e−i(t+m−u)

1− e−im

and:
S? (t, u) = i (t+m− u) + e−i(t+m−u) − 1

im+ e−im − 1
20These expressions are derived in Exercise 7.4.3 on page 450.
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where i is the interest rate and m is the debt maturity. The CPM amortization scheme
corresponds to the bottom/right panel21 in Figure 7.8.

FIGURE 7.8: Amortization functions S (t, u) and S? (t, u)

Remark 74 We notice the convex profile of the constant and exponential amortization
schemes, whereas the profile is concave for the CPM amortization scheme. Moreover, when
the interest rate i goes to zero, the CPM profile corresponds to the constant profile.

7.1.2.4 Liquidity hedging

When we face a risk that is not acceptable, we generally hedge it. In the case of the
liquidity, the concept of hedging is unclear. Indeed, at first sight, it seems that there are
no liquidity forwards, swaps or options in the market. On the other hand, liquidity hedging
seems to be trivial. Indeed, the bank can lend to other market participants when having an
excess of funding, or the bank can borrow when having a deficit of funding. For that, it may
use the interbank market or the bond market. Nevertheless, there is generally an uncertainty
about the liquidity gap, because the amortization schedule and the new production are not
known for sure. This is why banks must generally adopt a conservative approach. For
instance, they must not lend (or buy bonds) too much. In a similar way, they must not
borrow too short. The liquidity gap analysis is particularly important in order to split the
decision between daily, weekly, monthly and quarterly adjustments. Let us assume that the
bank anticipates a liquidity deficit of $10 mn for the next three months. It can borrow exactly
$10 mn for three months. One month later, the bank has finally an excess of liquidity. It is
obvious that the previous lending is not optimal because the bank must pay a three-month
interest rate while it could have paid a one-month interest rate.

The previous example shows that the management of the liquidity consists in managing
interbank and bond operations. It is obvious that the funding program depends on the

21The interest rate i is set to 5%.
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liquidity gap but also on the risk appetite of the bank. Some banks prefer to run a long-
term liquidity program, others prefer to manage the liquidity on a shorter-term basis. The
ALCO decisions may have therefore a big impact on the risk profile of the bank. The 2008
Global Financial Crisis has demonstrated that liquidity management is key during periods
of stress. For instance, a bank, which has a structural liquidity excess, may stop to lend to
the other participants in order to keep this liquidity for itself, while a bank, which has a
structural liquidity need, may issue long-term debt in order to reduce day-to-day funding
requirements. It is clear that ALCO decisions are beyond the scope of risk management and
fall within strategic and business issues.

7.1.3 Interest rate risk in the banking book
The ALM of interest rate risk is extensively developed in the next section. However,

we give here the broad lines, notably the regulation framework, which has been elaborated
by the Basel Committee in April 2016 (BCBS, 2016d) and which is known as IRRBB
(or interest rate risk in the banking book). IRRBB can be seen as the revision of the 2004
publication (BCBS, 2004b), but not solely. Indeed, this 2016 publication is relatively precise
in terms of risk framework and defines a standardized framework, which was not the case in
2004. In particular, capital requirements are more closely supervised than previously, even
if IRRBB continues to be part of the Basel capital framework’s Pillar 2.

7.1.3.1 Introduction on IRRBB

Definition of IRRBB According to BCBS (2016d), “IRRBB refers to the current or
prospective risk to the bank’ capital and earnings arising from adverse movements in interest
rates that affect the bank’s banking book positions. When interest rates change, the present
value and timing of future cash flows change. This in turn changes the underlying value of a
bank’s assets, liabilities and off-balance sheet items and hence its economic value. Changes
in interest rates also affect a bank’s earnings by altering interest rate-sensitive income and
expenses, affecting its net interest income”. We notice that the Basel Committee considers
both economic value (EV) and earnings-based risk measures. EV measures reflect changes
in the net present value of the balance sheet resulting from IRRBB, whereas earnings-based
measures reflect changes in the expected future profitability of the bank. Since EV measures
are generally used by supervisors22 and earnings-based measures are more widely used by
commercial banks23, the Basel Committee thinks that the bank must manage these two
risks because they capture two different time horizons. Economic value is calculated over
the remaining life of debt instruments, implying a run-off balance sheet assumption. The
earnings-based measure is calculated for a given time horizon, typically the next 12 month
period. In this case, a constant or dynamic balance sheet assumption is more appropriate.

Categories of IRR For the Basel Committee, there are three main sources of interest
rate risk: gap risk, basis risk and option risk. Gap risk refers to the mismatch risk arising
from the term structure of banking book instruments. It includes repricing risk and yield
curve risk. Repricing risk corresponds to timing differences in the maturity or the risk of
changes in interest rates between assets and liabilities. For example, if the bank funds a
long-term fixed-rate loan with a short-term floating-rate deposit, the future income may
decrease if interest rates increases. Therefore, repricing risk has two components. The first
one is the maturity difference between assets and liabilities. The second one is the change in

22Because they are more adapted for comparing banks.
23Because banks want to manage the volatility of earnings.
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floating interest rates. Yield curve risk refers to non-parallel changes in the term structure
of interest rates. A typical example concerns flattening, when short-term interest rates rise
faster than long-term interest rates.

Basis risk occurs when changes in interest rates impact differently financial instruments
with similar repricing tenors, because they are priced using different interest rate indices.
Therefore, basis risk corresponds to the correlation risk of interest rate indices with the
same maturity. For example, the one-month Libor rate is not perfectly correlated to the
one-month Treasury rate. Thus, there is a basis risk when a one-month Treasury-based asset
is funded with a one-month Libor-based liability, because the margin can change from one
month to another month.

Option risk arises from option derivative positions or when the level or the timing of
cash flows may change due to embedded options. A typical example is the prepayment
risk. The Basel Committee distinguishes automatic option risk and behavioral option risk.
Automatic options concern caps, floors, swaptions and other interest rate derivatives that
are located in the banking book, while behavioral option risk includes fixed rate loans
subject to prepayment risk, fixed rate loan commitments, term deposits subject to early
redemption risk and non-maturity deposits (or NMDs).

Risk measures The economic value of a series of cash flows CF = {CF (tk) , tk ≥ t} is
the present value of these cash flows:

EV = PVt (CF)

= E

∑
tk≥t

CF (tk) · e−
∫ tk
t

r(s) ds


=

∑
tk≥t

CF (tk) ·B (t, tk)

where Bt (tk) is the discount factor (e.g. the zero-coupon bond) for the maturity date tk. To
calculate the economic value of the banking book, we slot all notional repricing cash flows
of assets and liabilities into a set of time buckets. Then, we calculate the net cash flows,
which are equal to CF (tk) = CFA (tk)−CFL (tk) where CFA (tk) and CFL (tk) are the cash
flows of assets and liabilities for the time bucket tk. Finally, the economic value is given by:

EV =
∑
tk≥t

CF (tk) ·B (t, tk)

=
∑
tk≥t

CFA (tk) ·B (t, tk)−
∑
tk≥t

CFL (tk) ·B (t, tk)

= EVA−EVL

It is equal to the present value of assets minus the present value of liabilities. By construc-
tion, the computation of EV depends on the yield curve. We introduce the notation s in
order to take into account a stress scenario of the yield curve. Then, we define the EV
change as the difference between the EV for the base scenario and the EV for the given
scenario s:

∆ EVs = EV0−EVs

=
∑
tk≥t

CF0 (tk) ·B0 (t, tk)−
∑
tk≥t

CFs (tk) ·Bs (t, tk)
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FIGURE 7.9: Relationship between A (t), L? (t) and E (t)

In this equation, the base scenario is denoted by 0 and corresponds to the current term
structure of interest rates. The stress scenario s of the yield curve impacts the discount
factors, but also the cash flows that depend on the future interest rates. ∆ EVs > 0 indicates
then a loss if the stress scenario s occurs. The Basel Committee defines the concept of
economic value of equity (EVE or EVE) as a specific form of EV where equity is excluded
from the cash flows. We recall that the value of assets is equal to the value of liabilities at the
current time t. If we distinguish pure liabilities L? (t) from the bank equity capital E (t), we
obtain the balance sheet given in Figure 7.9. Since there is a perfect match between assets
and liabilities, the value of the capital is equal to24 E (t) = A (t)− L? (t). It follows that:

EVE = EVA−EVL?

We can then define ∆ EVEs as the loss ∆ EVs where we have excluded the equity from
the computation of the cash flows. Said differently, ∆ EVEs is the capital loss if the stress
scenario s occurs.

Remark 75 Changes in economic value can also be measured with the PV01 metric or
the economic value-at-risk (EVaR). PV01 is calculated by assuming a single basis point
change in interest rates. EVaR is the value-at-risk measure applied to the economic value
of the banking book. Like the VaR, it requires specifying the holding period and the confi-
dence level. The Basel Committee motivates the choice of EVE instead of PV01 and EVaR,
because they would like to measure the impact of losses on the capital in a stress testing
framework. In particular, PV01 ignores basis risks whereas EVaR is designed for normal
market circumstances.

Earnings-based measures are computed using the net interest income (NII), which is the
difference between the interest payments on assets and the interest payments of liabilities.
Said differently, NII is the difference between interest rate revenues received by the bank
and interest rate costs paid by the bank. For a given scenario s, we define the change in net
interest income as follows:

∆ NIIs = NII0−NIIs
Like for the risk measure ∆ EVEs, ∆ NIIs > 0 indicates a loss if the stress scenario s occurs.

24We have:

A (t) = L (t)
= L? (t) + E (t)
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Finally, the economic value and earnings-based risk measures are equal to the maximum
of losses by considering the different scenarios:

R (EVE) = max
s

(∆ EVEs, 0)

and:
R (NII) = max

s
(∆ NIIs, 0)

Since IRRBB is part of the second pillar, there are no minimum capital requirements K.
Nevertheless, the Basel Committee imposes that R (EVE) must be lower than 15% of the
bank’s tier 1 capital.

7.1.3.2 Interest rate risk principles

The Basel Committee defines nine IRR principles for banks and three IRR principles
for supervisors. The first and second principles recall that banks must specifically manage
IRRBB (and also CSRBB25) and have a governing body that oversights IRRBB. The third
and fourth principles explain that the risk appetite of the bank for IRRBB must be defined
with respect to both economic value and earnings-based risk measures arising from interest
rate shocks and stress scenarios. The objective is to measure the change in the net present
value of the banking book and the future profitability. To compute ∆ EVE, banks must
consider a run-off balance sheet assumption, whereas they must use a constant or dynamic
balance sheet and a rolling 12-month period for computing ∆ NII. For that, they have to
consider multiple interest rate scenarios, for example historical and hypothetical scenarios.
Besides these internal scenarios, six external scenarios are defined by the Basel Committee26:
(1) parallel shock up; (2) parallel shock down; (3) steepener shock (short rates down and
long rates up); (4) flattener shock (short rates up and long rates down); (5) short rates
shock up; and (6) short rates shock down. The fifth principle deals with behaviorial and
modeling assumptions, in particular embedded optionalities. The last three principles deals
with risk management and model governance process, the disclosure of the information and
the capital adequacy policy.

The role of supervisors is strengthened. They should collect on a regular basis sufficient
information from the bank to assess its IRRBB exposure. This concerns modeling assump-
tions, interest rate and option exposures, yield curve parameters, statistical methodologies,
etc. An important task is also the identification of outlier banks. The outlier/materiality
test compares the bank’s maximum ∆ EVE (or R (EVE)) with 15% of its tier 1 capital. If
this threshold is exceeded, supervisors must require mitigation actions, hedging programs
and/or additional capital.

7.1.3.3 The standardized approach

Overview of the standardized framework There are five steps for measuring the
bank’s IRRBB:

1. The first step consists in allocating the interest rate sensitivities of the banking book
to three categories:

(a) amenable to standardization27;
(b) less amenable to standardization28;
(c) not amenable to standardization29.

25Credit spread risk in the banking book.
26These scenarios are described in the next paragraph on page 397.
27The Basel Committee distinguish two main categories: fixed rate positions and floating rate positions.
28They concern explicit automatic interest rate options.
29This category is composed of NMDs, fixed rate loans subject to prepayment risk and term deposits

subject to early redemption risk.
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2. Then, the bank must slot cash flows (assets, liabilities and off-balance sheet items) into
19 predefined time buckets30: overnight (O/N), O/N–1M, 1M–3M, 3M–6M, 6M–9M,
9M–1Y, 1Y–18M, 1.5Y–2Y, 2Y–3Y, 3Y–4Y, 4Y–5Y, 5Y–6Y, 6Y–7Y, 7Y–8Y, 8Y–9Y,
9Y–10Y, 10Y–15Y, 15Y–20Y, 20Y+. This concerns positions amenable to standard-
ization. For positions less amenable to standardization, they are excluded from this
step. For positions with embedded automatic interest rate options, the optionality is
ignored.

3. The bank determines ∆ EVEs,c for each interest rate scenario s and each currency c.

4. In the fourth step, the bank calculates the total measure for automatic interest rate
option risk KAOs,c.

5. Finally, the bank calculates the EVE risk measure for each interest rate shock s:

R (EVEs) = max
(∑

c

(∆ EVEs,c + KAOs,c)+ ; 0
)

The standardized EVE risk measure is the maximum loss across all the interest rate
shock scenarios:

R (EVE) = max
s
R (EVEs)

The supervisory interest rate shock scenarios The six stress scenarios are based on
three shock sizes that the Basel Committee has calibrated using the period 2010 – 2015:
the parallel shock size S0, the short shock size S1 and the long shock size S2. In the table
below, we report their values for some currencies31:

Shock size USD/CAD/SEK EUR/HKD GBP JPY EM
S0 (parallel) 200 200 250 100 400
S1 (short) 300 250 300 100 500
S2 (long) 150 100 150 100 300

where EM is composed of ARS, BRL, INR, MXN, RUB, TRY and ZAR. Given S0, S1 and
S2, we calculate the following generic shocks for a given maturity t:

Parallel shock Short rates shock Long rates shock
∆R(parallel) (t) ∆R(short) (t) ∆R(long) (t)

Up +S0 +S1 · e−t/τ +S2 ·
(
1− e−t/τ

)
Down −S0 −S1 · e−t/τ −S2 ·

(
1− e−t/τ

)
where τ is equal to four years. Finally, the five standardized interest rate shock scenarios
are defined as follows:

1. Parallel shock up:
∆R(parallel) (t) = +S0

30The buckets are indexed by k from 1 to 19. For each bucket, the midpoint is used for defining the
corresponding maturity tk. We have t1 = 0.0028, t2 = 0.0417, t3 = 0.1667, t4 = 0.375, t5 = 0.625, . . . ,
t17 = 12.5, t18 = 17.5 and t19 = 25.

31The values for a more comprehensive list of currencies are given in BCBS (2016d) on page 44.
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2. Parallel shock down:
∆R(parallel) (t) = −S0

3. Steepener shock (short rates down and long rates up):

∆R(steepnener) (t) = 0.90 ·
∣∣∣∆R(long) (t)

∣∣∣− 0.65 ·
∣∣∣∆R(short) (t)

∣∣∣
4. Flattener shock (short rates up and long rates down):

∆R(flattener) (t) = 0.80 ·
∣∣∣∆R(short) (t)

∣∣∣− 0.60 ·
∣∣∣∆R(long) (t)

∣∣∣
5. Short rates shock up:

∆R(short) (t) = +S1 · e−t/τ

6. Short rates shock down:
∆R(short) (t) = −S1 · e−t/τ

Example 71 We assume that S0 = 100 bps, S1 = 150 bps and S2 = 200 bps. We would
like to calculate the standardized shocks for the one-year maturity.

The parallel shock up is equal to +100 bps, while the parallel shock down is equal to
−100 bps. For the short rates shock, we obtain:

∆R(short) (t) = 150× e−1/4 = 116.82 bps

for the up scenario and −116.82 bps for the down scenario. Since we have
∣∣∆R(short) (t)

∣∣ =
116.82 and

∣∣∆R(long) (t)
∣∣ = 44.24, the steepener shock is equal to:

∆R(steepnener) (t) = 0.90× 44.24− 0.65× 116.82 = −36.12 bps

For the flattener shock, we have:

∆R(flattener) (t) = 0.80× 116.82− 0.60× 44.24 = 66.91 bps

In Figure 7.10, we have represented the six interest rate shocks ∆R (t) for the set of param-
eters (S0 = 100,S1 = 150,S2 = 200).

In Figure 7.11, we consider the yield curve generated by the Nelson-Siegel model32 with
the following parameters θ1 = 8%, θ2 = −7%, θ3 = 6% and θ4 = 10. Then, we apply the
standardized interest rate shocks by considering EUR and EM currencies. We verify that
the parallel shock moves uniformly the yield curve, the steepener shock increases the slope
of the yield curve, the flattener shock reduces the spread between long and short interest
rates, and the short rates shock has no impact on the long maturities after 10 years. We
also notice that the deformation of the yield curve is more important for EM currencies
than for the EUR currency.

Treatment of NMDs NMDs are segmented into three categories: retail transactional,
retail non-transactional and wholesale Then, the bank must estimate the stable and non-
stable part of each category33. Finally, the stable part of NMDs must be split between core
and non-core deposits. However, the Basel Committee imposes a cap ω+ on the proportion
of core deposits (see Table 7.12). For instance, core deposits cannot exceed 70% of the retail
non-transactional stable deposits. The time bucket for non-core deposits is set to overnight
(or the first time bucket), meaning that the corresponding time bucket midpoint is equal
to t1 = 0.0028. For core deposits, the bank determines the appropriate cash flow slotting,
but the average maturity cannot exceed the cap t+, which is given in Table 7.12.

32We recall that it is defined in Footnote 8 on page 131.
33This estimation must be based on the historical data of the last 10 years.
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FIGURE 7.10: Interest rate shocks (in bps)

FIGURE 7.11: Stressed yield curve (in %)
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TABLE 7.12: Cap on core deposits and maximum average maturity
Category Cap ω+ Cap t+
Retail transactional 90% 5.0
Retail non-transactional 70% 4.5
Wholesale 50% 4.0

Behavioral options of retail customers This category mainly concerns fixed rate loans
because of the prepayment risk, and fixed-term deposits because of the early redemption
risk. The Basel Committee proposes to use a two-step procedure. First, the bank determine
the baseline estimate of each category given the current yield curve. Then, the baseline
estimate is multiplied according to the standardized interest rate scenarios. In the case
of fixed rate loans subject to prepayment risk, the bank establishes the different homoge-
nous prepayment categories. For each category, the bank estimates the baseline conditional
prepayment rate CPR0 and calculates the stressed conditional prepayment rate as follows:

CPRs = min (1, γs · CPR0)

where γs is the multiplier for the scenario s. The coefficient γs takes two values:

• γs = 0.8 for the scenarios 1, 3 and 5 (parallel up, steepener and short rates up);

• γs = 1.2 for the scenarios 2, 4 and 6 (parallel down, flattener and short rates down).

The cash flow for the time bucket tk is the sum of two components:

CFs (tk) = CF1
s (tk) + CF2

s (tk)

where CF1
s (tk) refers to the scheduled interest and principal repayment (without prepay-

ment) and CF2
s (tk) refers to the prepayment cash flow:

CF2
s (tk) = CPRs ·Ns (tk−1)

where Ns (tk−1) is the notional outstanding at time bucket tk−1 calculated with the stress
scenario s.

The methodology for term deposits subject to early redemption risk is similar to the one
of the fixed rate loans subject to prepayment risk. First, the bank estimates the baseline
term deposit redemption ratio TDRR0 for each homogeneous portfolio. Second, the stressed
term deposit redemption ratio is equal to:

TDRRs = min (1, γs · TDRR0)

where γs is the multiplier for the scenario s. The coefficient γs takes two values:

• γs = 1.2 for the scenarios 1, 4 and 5 (parallel up, flattener and short rates up);

• γs = 0.8 for the scenarios 2, 3 and 6 (parallel down, steepener and short rates down).

Third, the term deposits which are expected to be redeemed early are slotted into the
overnight time bucket, implying that the corresponding cash flows are given by:

CFs (t1) = TDRRs ·N0

where N0 is the outstanding amount of term deposits.
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Remark 76 Fixed rate loans subject to prepayment risk and term deposits subject to early
redemption risk follow the same methodology, but with two main differences. The first one
concerns the impact of the stress scenario on the stress ratios CPRs and TDRRs. In the case
of prepayment risk, the conditional prepayment rate generally increases when interest rates
are falling and decreases when interest rates are rising. This is why we have CPRs > CPR0
for the scenarios where interest rates or the slope of the yield curve decrease (scenarios
1, 3 and 5). In the case of early redemption risk, the term deposit redemption ratio mainly
depends on the short term interest rates. In particular, the ratio TDRRs must increase when
short rates increase, because this creates an incentive to negotiate a term deposit contract
with a higher interest rate.

Automatic interest rate options The computation of the automatic interest rate op-
tion risk KAOs is given by:

KAOs =
∑
i∈S

∆ FVAOs,i−
∑
i∈B

∆ FVAOs,i

where:

• i ∈ S denotes an automatic interest rate option which is sold by the bank;

• i ∈ B denotes an automatic interest rate option which is bought by the bank;

• FVAO0,i is the fair value of the automatic option i given the current yield curve and
the current implied volatility surface;

• FVAOs,i is the fair value of the automatic option i given the stressed yield curve and
a relative increase in the implied volatility of 25%;

• ∆ FVAOs,i is the change in the fair value of the option:

∆ FVAOs,i = FVAOs,i−FVAO0,i

An example We consider a simplified USD-denominated balance sheet. The assets are
composed of loans with the following cash flow slotting:

Instruments Loans Loans Loans
Maturity 1Y 5Y 13Y
Cash flows 200 700 200

The loans are then slotted into three main buckets (short-term, medium-term and long-term
loans). The average maturity is respectively equal to one-year, five-year and thirteen-year.
The liabilities are composed of retail deposit accounts, term deposits, debt and tier-one
equity capital. The cash flow slotting is given below:

Instruments Non-core Term Core Debt Equity
deposits deposits deposits ST LT capital

Maturity O/N 7M 3Y 4Y 8Y
Cash flows 100 50 450 100 100 200

The non-maturity deposits are split into non-core and core deposits. The maturity of non-
core deposits is assumed to be overnight (O/N), whereas the estimated maturity of core
deposits is around three years. We also have two debt instruments: one with a remaining
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TABLE 7.13: Economic value of the assets
Bucket tk CF0 (tk) R0 (tk) EV0 (tk)

6 0.875 200 1.55% 197.31
11 4.50 700 3.37% 601.53
17 12.50 100 5.71% 48.98

EV0 847.82

TABLE 7.14: Economic value of the pure liabilities
Bucket tk CF0 (tk) R0 (tk) EV0 (tk)

1 0.0028 100 1.00% 100.00
5 0.625 50 1.39% 49.57
9 2.50 450 2.44% 423.35

10 3.50 100 2.93% 90.26
14 7.50 100 4.46% 71.56

EV0 734.73

maturity of four years and another one with a remaining maturity of eight years. The term
deposits are slotted in a single bucket corresponding to a seven-month maturity.

We assume that the current yield curve is given by the Nelson-Siegel model with θ1 = 8%,
θ2 = −7%, θ3 = 6% and θ4 = 10. In Table 7.13, we have reported the current economic value
of the assets. It is respectively equal to 197.31, 601.53 and 48.98 for the three buckets and
847.82 for the total of assets. We have done the same exercise for the pure liabilities (Table
7.14). We obtain an economic value equal to 734.73. We deduce that the current economic
value of equity is EVE0 = 847.82− 734.73 = 113.09. Since the balance sheet is expressed in
USD, we use the USD shocks for the interest rates scenarios: S0 = 200 bps, S1 = 300 bps and
S2 = 150 bps. In Table 7.15, we have reported the stressed values of interest rates Rs (tk) and
economic value EVs (tk) for every bucket of the balance sheet. By computing the stressed
economic value of assets and pure liabilities, we deduce the stressed economic value of equity.
For instance, in the case of the first stress scenario, we have EVE1 = 781.79−697.39 = 84.41.
It follows that the economic value of equity will be reduced if the standardized parallel shock
up occurs: ∆ EVE1 = 113.10−84.41 = 28.69. We observe that the economic value of equity
decreases for scenarios 1, 3 and 5, and increases for scenarios 2, 4 and 6. Finally, we deduce
that the risk measure R (EVE) = maxs (∆ EVEs, 0) = 28.69 represents 14.3% of the equity.
This puts under the threshold 15% of the materiality test.

7.1.4 Other ALM risks
Even if liquidity and interest rate risks are the main ALM risks, there are other risks

that impact the banking book of the balance sheet, in particular currency risk and credit
spread risk.

7.1.4.1 Currency risk

We recall that the standardized approach for implementing IRRBB considers each
currency separately. Indeed, the risk measures ∆ EVEs,c and KAOs,c are calculated
for each interest rate scenario s and each currency c. Then, the aggregated value∑
c (∆ EVEs,c + KAOs,c)+ is calculated across the different currencies and the maximum is

selected for the global risk measure of the bank.
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TABLE 7.15: Stressed economic value of equity
Bucket s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Assets
Rs (t6) 3.55% −0.45% 0.24% 3.30% 3.96% −0.87%
Rs (t11) 5.37% 1.37% 3.65% 3.54% 4.34% 2.40%
Rs (t17) 7.71% 3.71% 6.92% 4.96% 5.84% 5.58%
EVs (t6) 193.89 200.80 199.57 194.31 193.20 201.52
EVs (t11) 549.76 658.18 594.03 596.91 575.74 628.48
EVs (t17) 38.15 62.89 42.13 53.83 48.18 49.79

EVs 781.79 921.87 835.74 845.05 817.11 879.79
Pure liabilities

Rs (t1) 3.00% −1.00% −0.95% 3.40% 4.00% −2.00%
Rs (t5) 3.39% −0.61% −0.08% 3.32% 3.96% −1.17%
Rs (t9) 4.44% 0.44% 2.03% 3.31% 4.05% 0.84%
Rs (t10) 4.93% 0.93% 2.90% 3.40% 4.18% 1.68%
Rs (t14) 6.46% 2.46% 5.31% 4.07% 4.92% 4.00%
EVs (t1) 99.99 100.00 100.00 99.99 99.99 100.01
EVs (t5) 48.95 50.19 50.02 48.97 48.78 50.37
EVs (t9) 402.70 445.05 427.77 414.27 406.69 440.69
EVs (t10) 84.16 96.80 90.34 88.77 86.39 94.30
EVs (t14) 61.59 83.14 67.17 73.70 69.13 74.07

EVs 697.39 775.18 735.31 725.71 710.98 759.43
Equity

EVEs 84.41 146.68 100.43 119.34 106.13 120.37
∆ EVEs 28.69 −33.58 12.67 −6.24 6.97 −7.27

One of the issues concerns currency hedging. Generally, it is done by rolling reverse
FX forward contracts, implying that the hedging cost is approximatively equal to i? − i,
where i is the domestic interest rate and i? is the foreign interest rate. This relationship
comes from the covered interest rate parity (CIP). We deduce that the hedging cost can
be large when i? � i. This has been particularly true for European and Japanese banks,
because these regions have experienced some periods of low interest rates. The question
of full hedging, partial hedging or no hedging has then been readdressed after the 2008
Global Financial Crisis. Most of banks continue to fully hedge the banking book including
the equity capital, but it is not obvious that it is optimal. Another issue has concerned the
access to dollar funding of non-US banks. Traditionally, “their branches and subsidiaries
in the United States were a major source of dollar funding, but the role of these affiliates
has declined” (Aldasoro and Ehlers, 2018, page 15). Today, we notice that a lot of non-US
banks issue many USD-denominated debt instruments in order to access dollar funding34.
Banks must now manage a complex multi-currency balance sheet, implying that currency
management has become an important topic in ALM.

7.1.4.2 Credit spread risk

According to BCBS (2016d), credit spread risk in the banking book (CSRBB) is driven
“by changes in market perception about the credit quality of groups of different credit-risky
instruments, either because of changes to expected default levels or because of changes to

34See for instance annual reports of European and Japanese banks.



404 Handbook of Financial Risk Management

market liquidity”. In Figure 7.12, we have reproduced the scheme provided by the Basel
Committee in order to distinguish IRRBB and CSRBB. Therefore, CSRBB can be seen
as the ALM spread risk of credit-risky instruments which is not explained by IRRBB and
idiosyncratic credit risk. However, the definition provided by the Basel Committee is too
broad, and does not avoid double counting with credit and jump-to-default risk35. At of
the date of the publication of this book, the debate on CSRBB is far from finished, even if
CSRBB must be monitored and assessed since 2018.

e.g. consumer loans e.g. corporate loans
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FIGURE 7.12: Components of interest rates

Source: BCBS (2016d, page 34).

7.2 Interest rate risk
In this section, we focus on the ALM tools that are related to the interest rate risk in the

banking book. We first introduce the concept of duration gap and show how it is related
to the economic value risk of the banking book. Then, we present the different ways to
calculate earnings-at-risk (EaR) measures and focus more particularly on the net interest
income sensitivity and the interest rate hedging strategies. The third part is dedicated to
funds transfer pricing, whose objective is to centralize all interest rate risks, to manage
them and to allocate profit between the different business units. Finally, we present an
econometric model for simulating and evaluating interest rate scenarios.

35See for example the position of the European Banking Federation (EBF): www.ebf.eu/regulation-su
pervision/credit-spread-risk-in-the-banking-book-ebf-position.

http://www.ebf.eu/
http://www.ebf.eu/


Asset Liability Management Risk 405

7.2.1 Duration gap analysis
In this section, we focus on the duration gap analysis, which is an approximation of the

repricing gap analysis we have previously presented. The idea is to obtain an estimation of
∆ EVE. Although this approach is only valid in the case of parallel interest rate shocks36,
it is an interesting method because we obtain closed-form formulas. In the case of non-
parallel interest rate scenarios or if we want to obtain more accurate results, it is better to
implement the repricing gap analysis, which consists in computing the stressed economic
value of assets and liabilities in order to deduce the impact on the economic value of equity.

7.2.1.1 Relationship between Macaulay duration and modified duration

We consider a financial asset, whose price is given by the present value of cash flows:

V =
∑
tk≥t

B (t, tk) · CF (tk)

where CF (tk) is the cash flow at time tk and B (t, tk) is the associated discount factor. The
Macaulay duration D is the weighted average of the cash flow maturities:

D =
∑
tk≥t

w (t, tk) · (tk − t)

where w (t, tk) is the weight associated to the cash flow at time tk:

w (t, tk) = B (t, tk) · CF (tk)
V

In the case of a zero-coupon bond whose maturity date is T , the Macaulay duration is equal
to the remaining maturity T − t.

Let us define the yield to maturity y as the solution of the following equation:

V =
∑
tk≥t

CF (tk)(
1 + y

)(tk−t)
We have:

∂ V

∂ y =
∑
tk≥t

− (tk − t) ·
(
1 + y

)−(tk−t)−1 · CF (tk)

= − D(
1 + y

) · V
= −D · V

where D is the modified duration:
D = D

1 + y
We deduce that the modified duration is the price sensitivity measure:

D = 1
V
· ∂ V
∂ y = −∂ lnV

∂ y

36The duration gap analysis can be viewed as the first-order approximation of the repricing gap analysis.
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If the yield to maturity is low, we have D ≈ D. Since the Macaulay duration is easier to
interpret, the modified duration is more relevant to understand the impact of an interest
rate stress scenario. Indeed, we have:

∆V ≈ −D · V ·∆y

Nevertheless, we can use the following alternative formula to evaluate the impact of an
interest rate parallel shift:

∆V ≈ −D · V ·
∆y

1 + y

Remark 77 Using a continuous-time framework, the yield to maturity is defined as the
root of the following equation:

V =
∑
tk≥t

e−y(tk−t) · CF (tk)

We deduce that:

∂ V

∂ y =
∑
tk≥t

− (tk − t) · e−y(tk−t) · CF (tk)

= −D · V

It follows that the modified duration D is defined as the Macaulay duration D in continuous-
time modeling.

Example 72 We consider the following cash flows stream {tk,CF (tk)}:

tk 1 4 7 11
CF (tk) 200 500 200 100

The current zero-coupon interest rates are: R (1) = 2%, R (4) = 3%, R (7) = 4%, and
R (11) = 5%.

If we consider the discrete-time modeling framework, we obtain V = 850.77, y = 3.61%,
D = 4.427 and D = 4.273. A parallel shock of +1% decreases the economic value since
we obtain V (R+ ∆R) = 816.69. It follows that ∆V = −34.38. Using the duration-based
approximation, we have37:

∆V ≈ −D · V ·∆R
= −4.273× 850.77× 1%
= −36.35

In the case of the continuous-time modeling framework, the results become V = 848.35,
y = 3.61% and D = D = 4.422. If we consider a parallel shock of +1%, the exact value of
∆V is equal to −35.37, whereas the approximated value is equal to −37.51. In Table 7.16, we
also report the results for a parallel shock of −1%. Moreover, we indicate the case where we
stress the yield to maturity and not the yield curve. Because V

(
y + ∆R

)
6= V (R+ ∆R),

we observe a small difference between the approximation and the true value of ∆V .

37This approximation is based on the assumption that the yield curve is flat. However, numerical experi-
ments show that it is also valid when the term structure of interest rates is increasing or decreasing.
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TABLE 7.16: Impact of a parallel shift of the yield curve
Discrete-time Continuous-time

∆R +1% −1% +1% −1%
V (R+ ∆R) 816.69 887.52 812.78 886.09
∆V −34.38 36.75 −35.57 37.74
V
(
y + ∆R

)
815.64 888.42 811.94 887.02

∆V −35.13 37.64 −36.41 38.67
Approximation −36.35 36.35 −37.51 37.51

Remark 78 From a theoretical point of view, duration analysis is valid under the assump-
tion that the term structure of interest rates is flat and the change in interest rates is a
parallel shift. This framework can be extended by considering the convexity:

C = 1
V
· ∂

2 V

∂ y2

In this case, we obtain the following second-order approximation:

∆V ≈ −D · V ·∆y + 1
2C · V ·

(
∆y
)2

7.2.1.2 Relationship between the duration gap and the equity duration

Let Vj and Dj be the market value and the Macaulay duration associated to the jth

cash flow stream. Then, the market value of a portfolio that is composed of m cash flow
streams is equal to the sum of individual market values:

V =
m∑
j=1

Vj

while the duration of the portfolio is the average of individual durations:

D =
m∑
j=1

wj · Dj

where:
wj = Vj

V

This result is obtained by considering a common yield to maturity.
We recall that E (t) = A (t)−L? (t) and EVE = EVA−EVL? . Using the previous result,

we deduce that the duration of equity is equal to:

DE = EVA

EVA−EVL?
· DA −

EVL?

EVA−EVL?
· DL?

= EVA

EVA−EVL?
· DGap (7.9)

where the duration gap (also called DGAP) is defined as the difference between the duration
of assets and the duration of pure liabilities scaled by the ratio EVL? /EVA:

DGap = DA −
EVL?

EVA
· DL? (7.10)



408 Handbook of Financial Risk Management

Another expression of the equity duration is:

DE = EVA

EVE
· DGap = LA/E ·

DGap
LE/A

(7.11)

We notice that the equity duration is equal to the duration gap multiplied by the leverage
ratio, where LA/E is the ratio between the economic value of assets and the economic value
of equity.

By definition of the modified duration, we have38:

∆ EVE = ∆ EVE

≈ −DE · EVE ·∆y

= −DE · EVE ·
∆y

1 + y

Using Equation (7.11), we deduce that:

∆ EVE ≈ −DGap · EVA ·
∆y

1 + y (7.12)

Formulas (7.10) and (7.12) are well-known and are presented in many handbooks of risk
management (Crouhy et al., 2013; Bessis, 2015).

7.2.1.3 An illustration

We consider the following balance sheet:

Assets Vj Dj Liabilities Vj Dj
Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 30 1.7
Securities 15 3.8 Equity capital 10
Total 100 Total 100

We have EVA = 100, EVL? = 90 and EVE = 10. We deduce that the leverage is equal to:

LA/E = EVA

EVE
= 100

10 = 10

The duration of assets is equal to:

DA = 5
100 × 0 + 40

100 × 1.5 + 40
100 × 6.0 + 15

100 × 3.8 = 3.57 years

For the pure liabilities, we obtain:

DL? = 40
90 × 3.2 + 20

90 × 0.8 + 30
90 × 1.7 = 2.17 years

It follows that the duration gap is equal to:

DGap = 3.57− 90
100 × 2.17 = 1.62 years

38We recall that EVE is an alternative expression for designating EVE .
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while the value DE of the equity duration is 16.20 years. Since DGap is equal to 1.62 years,
the average duration of assets exceeds the average duration of liabilities. This is generally
the normal situation because of the bank’s liquidity transformation (borrowing short and
lending long). In the table below, we have reported the impact of an interest rate shift on
the economic value of equity when the yield to maturity is equal to 3%:

∆y −2% −1% +1% +2%
∆ EVE 3.15 1.57 −1.57 −3.15
∆ EVE
EVE 31.46% 15.73% −15.73% −31.46%

Since the duration gap is positive, the economic value of equity decreases when interest
rates increase, because assets will fall more than liabilities. For instance, an interest rate
rise of 1% induces a negative variation of 1.57 in EVE. This impact is large and represents
a relative variation of −15.73%.

7.2.1.4 Immunization of the balance sheet

In order to reduce the sensitivity of the bank balance sheet to interest rate changes, we
have to reduce the value of |∆ EVE|. Using Equation (7.12), this is equivalent to control
the value of the duration gap. In particular, a full immunization implies that:

∆ EVE = 0 ⇔ DGap = 0

⇔ DA −
EVL?

EVA
· DL? = 0 (7.13)

If we consider the normal situation where the duration gap is positive, we have three solu-
tions:

1. we can reduce the duration of assets;

2. we can increase the relative weight of the liabilities with respect to the assets;

3. we can increase the duration of liabilities.

Generally, it takes time to implement the first two solutions. For instance, reducing the
duration of assets implies redefining the business model by reducing the average maturity
of loans. It can be done by decreasing the part of mortgages and increasing the part of
short-term loans (e.g. consumer credit or credit cards). In fact, the third solution is the
easiest way to immunize the bank balance sheet to interest rate changes. For example, the
bank can issue a long-term debt instrument. Therefore, hedging the balance sheet involves
managing the borrowing program of the bank.

Let us consider the previous example. We found DA = 3.57 and EVL?

EVA
= 90

100 . It follows
that the optimal value of the liability duration must be equal to 3.97 years:

DGap = 0⇔ DL? = 100
90 × 3.57 = 3.97 years

We assume that the bank issues a 10-year zero-coupon bond by reducing its current debt
amount. The notional of the zero-coupon bond must then satisfy this equation:

40
90 × 3.2 + 20

90 × 0.8 + 30−N
90 × 1.7 + N

90 × 10 = 3.97

or:
N = 3.97× 90− (40× 3.2 + 20× 0.8 + 30× 1.7)

10− 1.7 = 19.52
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TABLE 7.17: Bank balance sheet after immunization of the duration gap
Assets Vj Dj Liabilities Vj Dj
Cash 5 0.0 Deposits 40 3.2
Loans 40 1.5 CDs 20 0.8

Mortgages 40 6.0 Debt 10.48 1.7
Securities 15 3.8 Zero-coupon bond 19.52 10.0

Equity capital 10 0.0
Total 100 Total 100

After immunization, the duration of equity is equal to zero and we obtain the balance sheet
given in Table 7.17.

Remark 79 The duration gap analysis covers the gap risk, which is the first-order source
of interest rate risk. It is not adapted for measuring basis and option risks. For these two
risks, we need to use the repricing analysis.

7.2.2 Earnings-at-risk
Earnings-at-risk assesses potential future losses due to a change in interest rates over

a specified period. Several measures of earnings can be used: accounting earnings, interest
margins, commercial margins, etc. For interest rate scenarios, we can use predefined39,
historical or Monte Carlo scenarios. Once earnings distributions are obtained, we can analyze
the results for each scenario, derive the most severe scenarios, compute a value-at-risk, etc.
In this section, we first focus on the income gap analysis, which is the equivalent of the
duration gap analysis when analyzing interest rate income risks. Then we present the tools
for calculating the net interest income (NII). Finally, we consider hedging strategies in the
context where both ∆ EVE and NII risk measures are managed.

7.2.2.1 Income gap analysis

Definition of the gap Since ∆ EVE measures the price risk of the balance sheet, ∆ NII
measures the earnings risk of the income statement. It refers to the risk of changes in the
interest rates on assets and liabilities from the point of view of the net income. Indeed, if
interest rates change, this induces a gap (or repricing) risk because the bank will have to
reinvest assets and refinance liabilities at a different interest rate level in the future. The gap
is defined as the difference between rate sensitive assets (RSA) and rate sensitive liabilities
(RSL):

GAP (t, u) = RSA (t, u)− RSL (t, u) (7.14)

where t is the current date and u is the time horizon of the gap40. While ∆ EVE considers
all the cash flows, ∆ NII is generally calculated using a short-term time horizon, for example
the next quarter or the next year. Therefore, rate sensitive assets/liabilities correspond to
assets/liabilities that will mature or reprice before the time horizon of the gap. This is why
the interest rate gap risk is also called the repricing risk or the reset risk.

In order to calculate the interest rate gap, the bank must decide which items are rate
sensitive. This includes two main categories. The first one corresponds to items that mature

39Such as the six scenarios of the standardized IRRBB approach.
40This means that h = u− t is the maturity of the gap.
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before the time horizon t + h, whereas the second one corresponds to floating rate instru-
ments. For example, consider the following balance sheet expressed in millions of dollars:

Assets Amount Liabilities Amount
Loans Deposits
Less than 1 year 200 Non-maturity deposits 150
1 to 2 years 100 Money market deposits 250
Greater than 2 years 100 Term deposits

Mortgages Fixed rate 250
Fixed rate 100 Variable rate 100
Variable rate 350 Borrowings

Securities Less than 1 year 50
Fixed rate 50 Greater than 1 year 100

Physical assets 100 Capital 100
Total 1000 Total 1000

If the time horizon of the gap is set to one year, the rate sensitive assets are loans with
maturities of less than one year (200) and variable rate mortgages (350), while the rate
sensitive liabilities are money market deposits (250), variable rate term deposits (100) and
borrowings with maturities of less than one year (50). Therefore, we can split the balance
sheet between rate sensitive, fixed rate and non-earning assets:

Assets Amount Liabilities Amount
Rate sensitive 550 Rate sensitive 400
Fixed rate 350 Fixed rate 600
Non-earning 100 Non-earning 100

We deduce that the one-year gap is equal to $150 million:

GAP (t, t+ 1) = 550− 400 = 150

Approximation of ∆ NII We consider the following definition of the net interest income:

NII (t, u) = RSA (t, u) ·RRSA (t, u) + NRSA (t, u) ·RNRSA (t, u)−
RSL (t, u) ·RRSL (t, u)−NRSL (t, u) ·RNRSL (t, u)

where RNSA and RNSL denote assets and liabilities that are not rate sensitive and RC (t, u)
is the average interest rate for the category C and the maturity date u. We have:

∆ NII (t, u) = NII (t+ h, u+ h)−NII (t, u)

By considering a static gap41, we deduce that:

∆ NII (t, u) = RSA (t, u) · (RRSA (t+ h, u+ h)−RRSA (t, u)) +
NRSA (t, u) · (RNRSA (t+ h, u+ h)−RNRSA (t, u))−
RSL (t, u) · (RRSL (t+ h, u+ h)−RRSL (t, u))−
NRSL (t, u) · (RNRSL (t+ h, u+ h)−RNRSL (t, u))

Since interest income and interest expense do not change for fixed rate assets and liabilities
between t and t + h — RNRSA (t+ h, u+ h) = RNRSA (t, u) and RNRSL (t+ h, u+ h) −
RNRSL (t, u), we have:

∆ NII (t, u) = RSA (t, u) ·∆RRSA (t, u)− RSL (t, u) ·∆RRSL (t, u)

41This means that RSA (t+ h, u+ h) = RSA (t, u), NRSA (t+ h, u+ h) = NRSA (t, u),
RSL (t+ h, u+ h) = RSL (t, u) and NRSL (t+ h, u+ h) = NRSL (t, u) where h = u− t.
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By assuming that the impact of interest rate changes is the same for rate sensitive assets
and liabilities, we finally obtain:

∆ NII (t, u) ≈ GAP (t, u) ·∆R (7.15)

where ∆R is the parallel shock of interest rates. Income gap analysis is then described by
Equations (7.14) and (7.15).

For instance, if we consider the previous example, the one-year gap is equal to $150
million and we have the following impact on the income:

∆R −2% −1% 0% +1% +2%
∆ NII −$3 mn −$1.5 mn 0 +$1.5 mn +$3 mn

If interest rates rise by 2%, the bank expects that its income increases by $3 million. On
the contrary, the loss can be equal to $3 million if interest rates fall by 2%.

Remark 80 The previous analysis is valid for a given maturity h = u − t. For example,
∆ NII (t, t+ 0.25) measures the impact for the next three months while ∆ NII (t, t+ 1) mea-
sures the impact for the next year. It is common to consider the change in income for a
given time period [u1, u2[ where u1 = t+ h1 and u2 = t+ h2. We notice that:

∆ NII (t, u1, u2) = ∆ NII (t, u2)−∆ NII (t, u1)
= (GAP (t, u2)−GAP (t, u1)) ·∆R
= GAP (t, u1, u2) ·∆R
= (RSA (t, u1, u2)− RSL (t, u1, u2)) ·∆R

where GAP (t, u1, u2), RSA (t, u1, u2) and RSL (t, u1, u2) are respectively the static gap, rate
sensitive assets and rate sensitive liabilities for the period [u1, u2[.

7.2.2.2 Net interest income

Definition We recall that the net interest income of the bank is the difference between
interest rate revenues of its assets and interest rate expenses of its liabilities:

NII (t, u) =
∑

i∈Assets
Ni (t, u) ·Ri (t, u)−

∑
j∈Liabilities

Nj (t, u) ·Rj (t, u) (7.16)

where NII (t, u) is the net interest income at time t for the maturity date u, Ni (t, u) is the
notional outstanding at time u for the instrument i and Ri (t, u) is the associated interest
rate. This formula is similar to the approximated equation presented above, but it is based
on a full repricing model. However, this formula is static and assumes a run-off balance
sheet. In order to be more realistic, we can assume a dynamic balance sheet. However, the
computation of the net interest income is then more complex because it requires modeling
the liquidity gap and also behavioral options.

An example We consider a simplified balance sheet with the following asset and liability
positions:

• The asset position is made up of two bullet loans A and B, whose remaining maturity
is respectively equal to 18 months and 2 years. The outstanding notional of each loan
is equal to 500. Moreover, we assume that the interest rate is equal to 6% for the first
loan and 5% for the second loan.
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TABLE 7.18: Interest income schedule and liquidity gap
u− t 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Loan A 7.50 7.50 7.50 7.50 7.50 7.50
Loan B 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25

IR revenues 13.25 13.25 13.25 13.25 13.25 13.25 6.25 6.25
Debt C 6.00 6.00 6.00 6.00
Equity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IR expenses 6.00 6.00 6.00 6.00 0.00 0.00 0.00 0.00
NII (t, u) 7.25 7.25 7.25 7.25 13.25 13.25 6.25 6.25
LG (t, u) 0 0 0 0 −800 −800 −300 −300

• The liability position is made up of a bullet debt instrument C, whose remaining
maturity is 1 year and outstanding notional is 800. We assume that the interest rate
is equal to 3%.

• The equity capital is equal to 200.

To calculate the net interest income, we calculate the interest rate revenues and costs. By
assuming a quarterly pricing, the quarterly income of the instruments are:

IA = 1
4 × 6%× 500 = 7.50

IB = 1
4 × 5%× 500 = 6.25

IC = 1
4 × 3%× 800 = 6.00

We obtain the interest income schedule given in Table 7.18. However, calculating the net
interest income as the simple difference between interest rate revenues and expenses ignores
the fact that the balance sheet is unbalanced. In the last row in Table 7.18, we have reported
the liquidity gap. At time u = t + 1.25, the value of the liabilities is equal to 200 because
the borrowing has matured. It follows that the liquidity gap is equal to −800. At time
u = t + 1.75, the loan A will mature. In this case, the liabilities is made up of the equity
capital whereas the assets is made up of the loan B. We deduce that the liquidity gap is
equal to 200− 500 = −300.

TABLE 7.19: Balance sheet under the constraint of a zero liquidity gap
u− t 1.25 1.50 1.75 2.00

Approach #1 Debt D 500 500
Debt E 300 300 300 300

Approach #2 Loan F 500 500
Debt G 800 800 800 800

At this stage, we can explore several approaches to model the net interest income, and
impose a zero liquidity gap. In the first approach, the bank borrows 500 for the period
[t+ 1, t+ 1.50] and 300 for the period [t+ 1, t+ 2]. This corresponds to debt instruments
D and E in Table 7.19. We note R̃L (t, u) the interest rate for these new liabilities. We
notice that R̃L (t, u) is a random variable at time t, because it will be known at time t+ 1.
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We have:

NII (t, u) = 13.25− 1
4 × 800× R̃L (t, u)

= 13.25− 1
4 × 800×

(
R̃L (t, u)− 3%

)
− 1

4 × 800× 3%

= 7.25− 200×
(
R̃L (t, u)− 3%

)
for u = t+ 0.25 and u = t+ 0.5, and:

NII (t, u) = 6.25− 1
4 × 300× R̃L (t, u) = 4.00− 75×

(
R̃L (t, u)− 3%

)
for u = t+ 1.75 and u = t+ 2.0.

The drawback of the previous approach is that the size of the balance sheet has been
dramatically reduced for the two last dates. This situation is not realistic, because it assumes
that the assets are not replaced by the new production. This is why it is better to consider
that Loan A is rolled into Loan F , and the debt instrument C is replaced by the debt
instrument G (see Table 7.19). In this case, we obtain:

NII (t, u) = 6.25 + 1
4 × 500× R̃A (t, u)− 1

4 × 800× R̃L (t, u)

= 6.25 + 1
4 × 500×

(
R̃A (t, u)− 6%

)
+ 1

4 × 500× 6%−
1
4 × 800×

(
R̃L (t, u)− 3%

)
− 1

4 × 800× 3%

= 7.25 + 1
4 × 500×

(
R̃A (t, u)− 6%

)
− 1

4 × 800×
(
R̃L (t, u)− 3%

)
If we note ∆RL = R̃L (t, u) − 3% and ∆RA = R̃A (t, u) − 6%, we obtain the following
figures42:

∆RA −2% −1% 0% +1% +2% −2% −2% −1.5%
∆RL −2% −1% 0% +1% +2% 0% −1% 0.0%
t+ 1.00 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25
t+ 1.25 11.25 9.25 7.25 5.25 3.25 7.25 9.25 7.25
t+ 1.50 11.25 9.25 7.25 5.25 3.25 7.25 9.25 7.25
t+ 1.75 8.75 8.00 7.25 6.50 5.75 4.75 6.75 4.13
t+ 2.00 8.75 8.00 7.25 6.50 5.75 4.75 6.75 4.13

The case ∆RL = ∆RA is equivalent to use the income gap analysis. However, this approach
is simple and approximative. It does not take into account the maturity of the instruments
and the dynamics of the yield curve. Let us consider a period of falling interest rates. We
assume that the yield of assets is equal to the short interest rate plus 2% on average while
the cost of liabilities is generally equal to the short interest rate plus 1%. On average, the
bank captures a net interest margin (NIM) of 1%. This means that the market interest rate
was equal to 5% for Loan A, 4% for Loan B and 2% for Debt C. We can then think that
Loan A has been issued a long time ago whereas Debt C is more recent. If the interest
rate environment stays at 2%, we have R̃A (t, u) = 4% and R̃L (t, u) = 3%, which implies
that ∆RA = 4% − 6% = −2% and ∆RL = 3% − 3% = 0%. We obtain the results given
in the seventh column. We can also explore other interest rate scenarios or other business

42We have NII (t, t+ 1) = 7.25, NII (t, t+ 1.25) = NII (t, t+ 1.5) = 7.25 − 200 × ∆RL and
NII (t, t+ 1.75) = NII (t, t+ 2) = 7.25 + 125×∆RA − 200×∆RL.
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scenarios. For instance, the bank may be safer than before, meaning that the spread paid to
the market is lower (eight column) or the bank may have an aggressive loan issuing model,
implying that the interest rate margin is reduced (ninth column).

Remark 81 The previous analysis gives the impression that the net interest income is
known for u < t+ 1.5 and stochastic after. In fact, this is not true. Indeed, we notice that
the interest rates of Loans A and B are equal to 6% and 5% whereas the current interest
rates are around 2%. Therefore, we can anticipate that the bank will be subject to prepayment
issues. Our analysis does not take into account the behavior of clients and the impact of
embedded options in the net interest income43.

Mathematical formulation We reiterate that the net interest income is equal to:

NII (t, u) =
∑

i∈Assets
Ni (t, u) ·Ri (t, u)−

∑
j∈Liabilities

Nj (t, u) ·Rj (t, u)

If we consider a future date t′ > t, we have:

NII (t′, u) =
∑

i∈Assets
Ni (t′, u) ·Ri (t′, u)−

∑
j∈Liabilities

Nj (t′, u) ·Rj (t′, u)−

 ∑
i∈Assets

Ni (t′, u)−
∑

j∈Liabilities

Nj (t′, u)

 ·R (t′, u)

The future NII requires the projection of the new production and the forecasting of asset
and liability rates (or customer rates). The third term represents the liquidity gap that
must be financed or placed44. In what follows, we assume that the future liquidity gap is
equal to zero in order to obtain tractable formulas.

Since we have the identity ∆ NII (t′, u) = GAP (t′, u) ·∆R, we deduce that:

GAP (t′, u) = ∆ NII (t′, u)
∆R

=
∑

i∈Assets
Ni (t′, u) ·

(
∆Ri (t′, u)

∆R − 1
)
−

∑
j∈Liabilities

Nj (t′, u) ·
(

∆Rj (t′, u)
∆R − 1

)

If we consider a continuous-time analysis where u = t′ + dt, we obtain:

GAP (t′, u) =
∑

i∈Assets
Ni (t′, u) ·

(
∂ Ri (t′, u)

∂ R
− 1
)
−

∑
j∈Liabilities

Nj (t′, u) ·
(
∂ Rj (t′, u)

∂ R
− 1
)

where R represents the market interest rate45. Demey et al. (2003) consider two opposite
situations corresponding to two categories of asset/liability rates:

43This issue is analyzed in the third section of this chapter on page 427.
44The borrowing/lending interest rate is denoted by R (t′, u).
45We recall that the gap analysis assumes a flat yield curve.
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C1 The asset/liability rates are deterministic and independent from market interest rates:

∂ Ri (t′, u)
∂ R

= ∂ Rj (t′, u)
∂ R

= 0

This category corresponds to contractual rates that are generally fixed.

C2 The asset/liability rates depend on market interest rates:{
Ri (t′, u) = R+mA

Rj (t′, u) = R+mL

where mA and mL are the commercial margins for assets and liabilities. It follows
that:

∂ Ri (t′, u)
∂ R

= ∂ Rj (t′, u)
∂ R

= 1

This category generally concerns floating rates that are based on a market reference
rate plus a spread.

We deduce that the gap is the difference between liabilities and assets that belong to the
first category C1:

GAP (t′, u) =
∑

j∈Liabilities
j∈C1

Nj (t′, u)−
∑

i∈Assets
i∈C1

Ni (t′, u)

Modeling customer rates Until now, we have used the variable R for defining the
general level of interest rates and ∆R for defining a parallel shock on the yield curve.
However, this definition is not sufficiently precise to understand the real nature of R. In
fact, the study of client rates is essential to understand which interest rate is important for
calculating earnings-at-risk measures. In what follows, we introduce the notation R (t) =
R (t, t+ dt) and R (u) = R (u, u+ du). The current date or the agreement date is denoted
by t while u > t is a future date.

We have already distinguished fixed rates and floating (or variable) rates. By definition, a
fixed rate must be known and constant when the agreement is signed between the customer
and the bank:

R (u) = R? = R (t)

On the contrary, the customer rate is variable if:

Pr
{
R̃ (u) = R (t)

}
< 1

In this case, the customer rate is a random variable at time t and depends on a reference
rate, which is generally a market rate. Mathematically, we can write:

R̃ (u) = R (t) · 1 {u < τ}+ R̃ (τ) · 1 {u ≥ τ}
= R? · 1 {u < τ}+ R̃ (τ) · 1 {u ≥ τ} (7.17)

where τ is the time at which the customer rate will change. τ is also called the next repricing
date. For some products, τ is known while it may be stochastic in some situations46. If R̃ (τ)
is a function of a market rate, we can write:

R̃ (τ) = f (τ, r (τ))

46When the repricing date is known, it is also called the reset date.
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We use the notation r (τ), because the market rate is generally a short-term interest rate.
If we assume a linear relationship (noted HLinear), we have:

R̃ (τ) = ρ · r (τ) + m̃ (7.18)

where ρ is the correlation between the customer rate and the market rate and m̃ is related
to the commercial margin47. This is the simplest way for modeling R̃ (τ), but there are some
situations where the relationship is more complex. For example, Demey et al. (2003) study
the case where the customer rate has a cap:

R̃ (τ) = r (τ) · 1
{
r (τ) < r+}+ r+ · 1

{
r (τ) ≥ r+}+ m̃

where r+ + m̃ is the cap.
Another challenge for modeling R̃ (u) is the case where the next repricing date τ is

unknown. We generally assume that τ is exponentially distributed with parameter λ. If we
consider the linear relationship (7.18), it follows that the expected customer rate is:

R (u) = E
[
R̃ (u)

]
= R? · e−λ(u−t) + (ρ · r (u) + m̃) ·

(
1− e−λ(u−t)

)
(7.19)

Sometimes, the relationship between the customer rate and the market rate is not instan-
taneous. For instance, Demey et al. (2003) consider the case where the customer rate is an
average of the market rate over a window period h. Therefore, Equation (7.19) becomes48:

R (u) = R? · e−λ(u−t) + λ

∫ u

u−h
(ρ · r (s) + m̃) · e−λ(s−t) ds

Let us go back to the problem of determining the parallel shock ∆R. Using Equation
(7.17),we have:

∆R = R̃ (u)−R (t)

=
{

0 if u < τ
R̃ (τ)−R? otherwise

Under the assumption HLinear, we deduce that:

∆R = R̃ (τ)−R? = ρ ·∆r (7.20)

where ∆r = r (τ) − r (t) is the shock on the market rate. We notice that modeling the
net interest income variation requires determining ρ and ∆r. In the case where ρ = 0,
we retrieve the previous result that ∆ NII is not sensitive to fixed rate items. Otherwise,
Equation (7.20) shows that interest rate gaps must be conducted on a contract by contract
basis or at least for each reference rate:

“Floating-rate interest gaps can be defined for all floating-rate references (1-
month Libor, 1-year Libor, etc.). These floating-rate gaps are not fungible: they
cannot be aggregated unless assuming a parallel shift of all rates” (Bessis, 2015,
page 47).

47The commercial margin is equal to:

m = R̃ (τ)− r (τ)
= m̃− (1− ρ) r (τ)

When the correlation is equal to one, m̃ is equal to the commercial margin, otherwise it is greater.
48We assume that u− h ≥ t.
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Indeed, two contracts may have two different correlations with the same reference rate, and
two contracts may have two different reference rates.

Equation (7.20) is valid only if we assume that the next repricing date is known. If τ is
stochastic, Demey et al. (2003) obtain the following formula:

∆R (u) = E
[(
R̃ (u)−R (t)

)
· 1 {u ≥ τ}

]
= ρ ·∆r · Pr {τ ≤ u}

We conclude that the sensitivity of the customer rate to the market rate is equal to:

ρ (t, u) = ∆R (u)
∆r = ρ · Pr {τ ≤ u}

It depends on two parameters: the correlation ρ between the two rates and the probability
distribution of the repricing date τ . If τ follows an exponential distribution with parameter
λ, we have ρ (t, u) = ρ

(
1− e−λ(u−t)). We verify that ρ (t, u) ≤ ρ. The upper limit case

ρ (t, u) = ρ is reached in the deterministic case (no random repricing), whereas the function
ρ (t, u) is equal to zero if ρ is equal to zero (no correlation). By definition of the exponential
distribution, the average time between two repricing dates is equal to 1/λ. In Figure 7.13,
we have reported the function ρ (t, u) for three values of the correlation : 0%, 50% and 100%.
We show how λ impacts the sensitivity ρ (t, u) and therefore ∆ NII. This last parameter is
particularly important when we consider embedded options and customer behavior49. For
instance, λ = 0.1 implies that the contract is repriced every ten years on average (top/left
panel). It is obvious that the sensitivity is lower for this contract than for a contract that
is repriced every 2 years (top/right panel).

FIGURE 7.13: Sensitivity of the customer rate with respect to the market rate

49See Section 7.3 on page 427.
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7.2.2.3 Hedging strategies

The question of hedging is not an easy task. There is no one optimal solution, but several
answers. Moreover, this problem will be even more complicated when we will integrate the
behavioral and embedded options.

To hedge or not to hedge Since the net interest income is sensitive to interest rate
changes, it is important to define a hedging policy and to understand how it may impact
the income statement of the bank. Let us define the hedged net interest income as the sum
of the net interest income and the hedge P&L:

NIIH (t, u) = NII (t, u) +H (t, u)

In order to obtain a tractable formula of the hedge P&L H (t, u), we consider a forward rate
agreement (FRA), which is an exchange contract between the future interest rate r (u) at
the pricing date u and the current forward rate f (t, u) at the maturity date u. The hedge
P&L is then:

H (t, u) = NH (t, u) · (f (t, u)− r (u))

where NH (t, u) is the notional of the hedging strategy. We deduce that:

∆ NIIH (t, u) = ∆ NII (t, u) + ∆H (t, u)
= GAP (t, u) ·∆R (u)−NH (t, u) ·∆r (u)
= (GAP (t, u) · ρ (t, u)−NH (t, u)) ·∆r (u)

because we have ∆R (u) = ρ (t, u) ·∆r (u). The hedged NII is equal to zero if the notional
of the hedge is equal to the product of the interest rate gap and the sensitivity ρ (t, u):

∆ NIIH (t, u) = 0⇔ NH (t, u) = GAP (t, u) · ρ (t, u)

In this case, we obtain:

NIIH (t, u)−NII (t, u) = GAP (t, u) · ρ (t, u) · (f (t, u)− r (u))

We can draw several conclusions from the above mathematical framework:

• When the correlation between the customer rate and the market rate is equal to one,
the notional of the hedge is exactly equal to the interest rate gap. Otherwise, it is
lower.

• When the interest rate gap is closed, the bank does not need to hedge the net interest
income.

• If the bank hedges the net interest income, the difference NIIH (t, u) − NII (t, u) is
positive if the gap and the difference between f (t, u) and r (u) have the same sign.
For example, if the gap is positive, a decrease of interest rates is not favorable. This
implies that the hedged NII is greater than the non-hedged NII only if the forward
rate f (t, u) is greater than the future market rate r (u). This situation is equivalent
to anticipate that the forward rate is overestimated.

We conclude that hedging the interest rate gap is not systematic and depends on the
expectations of the bank. It is extremely rare that the bank fully hedges the net interest
income. The other extreme situation where the NII is fully exposed to interest rate changes
is also not very common. Generally, the bank prefers to consider a partial hedging. Moreover,
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we reiterate that the previous analysis is based on numerous assumptions50. Therefore, it is
useless to compute a precise hedging strategy because of these approximations. This is why
banks prefer to put in place macro hedging strategies with a limited number of instruments.

Hedging instruments In order to hedge the interest rate gap, the bank uses interest
rate derivatives. They may be classified into two categories: those that hedge linear interest
rate risks and those that hedge non-linear interest rate risks. The first category is made
up of interest rate swaps (IRS) and forward rate agreements (FRA), while the second
category concerns options such as caps, floors and swaptions. An IRS is a swap where two
counterparties exchange a fixed rate against a floating rate or two floating rates. This is the
hedging instrument which is certainly the most used in asset and liability management. The
fixed rate is calibrated such that the initial value of the swap is equal to zero, meaning that
the cost of entering into an IRS is low. This explains the popularity of IRS among ALM
managers. However, these hedging instruments only concern linear changes in interest rates
like the FRA instruments. In general, the ALM manager doesn’t close fully all the interest
rate gaps because this is not the purpose of a macro hedging strategy. In practice, two or
three maturities are sufficient to highly reduce the risk.

Remark 82 In order to hedge non-linear risks (slope of the yield curve, embedded options,
etc.), the bank may use options. However, they are more expensive than IRS and are much
less used by banks. One of the difficulties is the high degree of uncertainty around customer
behavioral modeling.

7.2.3 Simulation approach
We present here a general top-down econometric-based simulation framework in order

to model the dynamics of the outstanding amount for the different items of the balance
sheet. The underlying idea is that these items respond differently to key economic and
market variables. The focus is then to model the earnings-at-risk profile of these items.
The different profiles can also be aggregated in order to understand the income risk of each
business line of the bank.

The framework is based on the cointegration theory and error correction models51. It is
made up of two econometric models. We first begin by modeling the economic and market
variables x (t) = (x1 (t) , . . . , xm (t)) with a VECM:

Φx (L) ∆x (t) = Πxx (t− 1) + εx (t) (7.21)

where Φ (L) = Im − Φ1L − . . . − ΦpLp is the lag polynomial and εx (t) ∼ N (0,Σx). By
definition, Equation (7.21) is valid if we have verified that each component of x (t) is inte-
grated of order one. The choice of the number p of lags is important. Generally, we consider
a monthly econometric model, where the variables x (t) are the economic growth g (t), the
inflation rate π (t), the short-term market rate r (t), the long-term interest rate R (t), etc.
In practice, p = 3 is used in order to have quarterly relationship between economic and
market variables. The goal of this first econometric models is to simulate joint scenarios Sx
of the economy and the market. Each scenario is represented by the current values of x (t)
and the future paths of x (t+ h):

Sx = {x (t+ h) = (x1 (t+ h) , . . . , xm (t+ h)) , h = 0, 1, 2, . . .} (7.22)

50They concern the sensitivity to markets rates, the behavior of customers, the new production, the
interest rate shocks, etc.

51They are developed in Section 10.2.3 on page 655.



Asset Liability Management Risk 421

These scenarios do not necessarily correspond to extreme shocks, but they model the prob-
ability distribution of all future outcomes.

The second step consists in relating the growth of the outstanding amount yi (t) of item
i to the variables x (t). For instance, let us assume that:

yi (t) = yi (t− 1) + 0.7× g (t)− 0.3× π (t)

This means that an economic growth of 1% implies that the outstanding amount of item i
will increase by 70 bps, while the inflation has a negative impact on yi (t). The first idea is
then to consider an ARX (q) model:

yi (t) =
q∑

k=1
φi,kyi (t− k) +

m∑
j=1

βi,jxj (t) + εx (t)

However, this type of model has two drawbacks. It assumes that the current value of yi (t)
is related to the current value of xj (t) and there are no substitution effects between the
different items of the balance sheet. This is why it is better to consider again a VECM
approach with exogenous variables:

Φy (L) ∆y (t) = Πyy (t− 1) +B1x (t) +B2∆x (t) + εy (t) (7.23)

where y (t) = (y1 (t) , . . . , yn (t)) and εy (t) ∼ N (0,Σy). In this case, the current value of
yi (t) is related to the current value of x (t), the monthly variation ∆x (t) and the growth of
the outstanding amount of the other items. Generally, the number q of lags is less than p.
Indeed, the goal of the model (7.23) is to include short-term substitution effects between the
different items whereas long-term substitution effects are more explained by the dynamics
of economic and market variables.

Once the model (7.23) is estimated, we can simulate the future values of the outstanding
amount for the different items with respect to the scenario Sx of the exogenous variables:

Sy | Sx = {y (t+ h) = (y1 (t+ h) , . . . , yn (t+ h)) , h = 0, 1, 2, . . .}

This framework allows going beyond the static gap analysis of interest rates, because the
outstanding amounts are stochastic. For example, Figure 7.14 shows an earnings-at-risk
analysis of the net interest income for the next six months. For each month, we report the
median of NII and the 90% confidence interval.

Remark 83 The previous framework can be used for assessing a given scenario, for exam-
ple a parallel shock of interest rates. By construction, it will not give the same result than
the income gap analysis, because this latter does not take into account the feedback effects
of interest rates on the outstanding amount.

7.2.4 Funds transfer pricing
According to Bessis (2015), the main objective of funds transfer pricing systems is to

exchange funds and determine the profit allocation between business units. This means that
all liquidity and interest rate risks are transferred to the ALM unit, which is in charge of
managing them. Business units can then lend or borrow funding at a given internal price.
This price is called the funds transfer price or the internal transfer rate, and is denoted by
FTP. For example, the FTP charges interests to the business unit for client loans, whereas
the FTP compensates the business unit for raising deposits. This implies that the balance
sheet of the different business units is immunized to changes of market rates, and the internal
transfer rates determine the net interest income of each business unit.
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FIGURE 7.14: Earnings-at-risk analysis

7.2.4.1 Net interest and commercial margins

The net interest margin (NIM) is equal to the net interest income divided by the amount
of assets:

NIM (t, u) =
∑
i∈AssetsNi (t, u) ·Ri (t, u)−

∑
j∈LiabilitiesNj (t, u) ·Rj (t, u)∑

i∈AssetsNi (t, u)

Let RA (t, u) and RL (t, u) be the interest earning assets and interest bearing liabilities (or
asset and liability amounts that are sensitive to interest rates). Another expression of the
NIM is:

NIM (t, u) = RA (t, u) ·RRA (t, u)− RL (t, u) ·RRL (t, u)
RA (t, u)

where RRA and RRL represent the weighted average interest rate of interest earning assets
and interest bearing liabilities. The net interest margin differs from the net interest spread
(NIS), which is the difference between interest earning rates and interest bearing rates:

NIS (t, u) =
∑
i∈AssetsNi (t, u) ·Ri (t, u)∑

i∈AssetsNi (t, u) −
∑
j∈LiabilitiesNj (t, u) ·Rj (t, u)∑

j∈LiabilitiesNj (t, u)
= RRA (t, u)−RRL (t, u)

Example 73 We consider the following interest earning and bearing items:

Assets Ni (t, u) Ri (t, u) Liabilities Nj (t, u) Rj (t, u)
Loans 100 5% Deposits 100 0.5%

Mortgages 100 4% Debts 60 2.5%

The interest income is equal to 100 × 5% + 100 × 4% = 9 and the interest expense is
100× 0.5% + 60× 2.5% = 2. We deduce that the net interest income is equal to 9− 2 = 7.
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Moreover, we obtain52 RA (t, u) = 200, RRA (t, u) = 4.5%, RL (t, u) = 160 and RRL (t, u) =
1.25%. We deduce that:

NIM (t, u) = 200× 4.5%− 160× 1.25%
200 = 7

200 = 3.5%

and:
NIS (t, u) = 4.5%− 1.25% = 3.25%

The net interest margin and spread are expressed in percent. NIM is the profitability ratio
of the assets whereas NIS is the interest rate spread captured by the bank.

Remark 84 In Figure 7.15, we have reported the average net interest margin in % for all
US banks from 1984 to 2019. The average NIM was equal to 3.36% at the end of the first
quarter of 2019. During the last 15 years, the average value is equal to 3.78%, the maximum
4.91% has been reached during Q1 1994 whereas the minimum 2.95% was observed in Q1
2015.

FIGURE 7.15: Evolution of the net interest margin in the US

Source: Federal Financial Institutions Examination Council (US), Net Interest Margin for all US
Banks [USNIM], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/USNIM, July 9, 2019.

52We have:
RRA (t, u) =

100× 5% + 100× 4%
100 + 100

= 4.5%

and:
RRL (t, u) =

100× 0.5% + 60× 2.5%
100 + 60

= 1.25%

https://fred.stlouisfed.org/
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Let us now see how to calculate the commercial margin rate. A first idea is to approxi-
mate it by the net interest margin or the net interest spread. However, these quantities are
calculated at the global level of the bank, not at the level of a business unit and even less
at the level of a product. Let us consider an asset i. From a theoretical point of view, the
commercial margin rate is the spread between the client rate of this asset Ri (t, u) and the
corresponding market rate r (t, u):

mi (t, u) = Ri (t, u)− r (t, u)

Here, we assume that Ri (t, u) and r (t, u) have the same maturity u. If we consider a liability
j, we obtain a similar formula:

mj (t, u) = r (t, u)−Rj (t, u)

In this framework, we assume that the business unit borrows at the market rate r (t, u)
in order to finance the asset i or lends to the market at the same rate r (t, u). A positive
commercial margin rate implies that Ri (t, u) > r (t, u) and r (t, u) > Rj (t, u). In the case
where we can perfectly match the asset i with the liability j, the commercial margin rate
is the net interest spread:

m (t, u) = mi (t, u) +mj (t, u)
= Ri (t, u)−Rj (t, u)

As already said, a funds transfer pricing system is equivalent to interpose the ALM unit be-
tween the business unit and the market. In the case of assets, we decompose the commercial
margin rate of the bank as follows:

mi (t, u) = Ri (t, u)− r (t, u)
= (Ri (t, u)− FTPi (t, u))︸ ︷︷ ︸

m
(c)
i

(t,u)

+ (FTPi (t, u)− r (t, u))︸ ︷︷ ︸
m

(t)
i

(t,u)

where m(c)
i (t, u) and m(t)

i (t, u) are the commercial margin rate of the business unit and the
transformation margin rate of the ALM unit. For liabilities, we also have:

mj (t, u) = m
(c)
j (t, u) +m

(t)
j (t, u)

= (FTPj (t, u)−Rj (t, u)) + (r (t, u)− FTPj (t, u))

The goal of FTP is then to lock the commercial margin rate m(c)
i (t, u) (or mj (t, u)) over

the lifetime of the product contract.
Let us consider Example 73. The FTP for the loans and the mortgages is equal to 3%,

while the FTP for deposits is equal to 1.5% and the FTP for debts is equal to 2.5%. If we
assume that the market rate is equal to 2.5%, we obtain the following results:

Assets m
(c)
i (t, u) m

(t)
i (t, u) Liabilities m

(c)
j (t, u) m

(t)
j (t, u)

Loans 2% 0.5% Deposits 1.0% 1.0%
Mortgages 1% 0.5% Debts 0.0% 0.0%

It follows that the commercial margin of the bank is equal to:

M (c) = 100× 2% + 100× 1% + 100× 1% + 60× 0%
= 4
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For the transformation margin, we have:

M (t) = 100× 0.5% + 100× 0.5% + 100× 1.0% + 60× 0%
= 2.0

We don’t have M (c) +M (t) = NII because assets and liabilities are not compensated:

NII−
(
M (c) +M (t)

)
= (RA (t, u)− RL (t, u)) · r (t, u)

= 40× 2.5%
= 1

In fact, in a funds transfer pricing system, the balance sheet issue is the problem of the ALM
unit. It is also interesting to notice that we can now calculate the commercial margin of each
product: M (c)

Loans = 2, M (c)
Mortgages = 1 and M (c)

Deposits = 1. We can then aggregate them by
business units. For example, if the business unit is responsible for loans and deposits, its
commercial margin is equal to 3.

7.2.4.2 Computing the internal transfer rates

Since the business unit knows the internal prices of funding, the commercial margin
rates are locked and the commercial margin has a smooth profile. The business unit can
then focus on its main objective, which is selling products and not losing time in managing
interest rate and liquidity risks. However, in order to do correctly its job, the internal prices
must be fair. The determination of FTPs is then crucial because it has a direct impact on
the net income of the business unit. A system of arbitrary or wrong prices can lead to a false
analysis of the income allocation, where some business units appear to be highly profitable
when the exact opposite is true. The consequence is then a wrong allocation of resources
and capital.

The reference rate If we consider the transformation margin rate, we have m(t)
i (t, u) =

FTPi (t, u) − r (t, u). The internal prices are fair if the corresponding mark-to-market is
equal to zero on average, because the goal of FTP is to smooth the net interest income of
each business unit and to allocate efficiently the net interest income between the different
business units. For a contract with a bullet maturity, this implies that:

FTPi (t, u) = E [r (t, u)]

The transformation margin can then be interpreted as an interest rate swap53 receiving a
fixed leg FTPi (t, u) and paying a floating leg r (t, u). It follows that the funds transfer price
is equal to the market swap rate at the initial date t with the same maturity than the asset
item i (Demey et al., 2003).

In practice, it is impossible to have funds transfer prices that depend on the initial
date and the maturity of each contract. Let us first assume that the bank uses the short
market rate r (u) for determining the funds transfer prices and considers globally the new
production NP (t) instead of the different individual contracts. The mark-to-market of the
transformation margin satisfies then the following equation:

Et
[∫ ∞

t

B (t, u) NP (t) S (t, u) (FTP (t, u)− r (u)) du
]

= 0

53In the case of liabilities, the transformation margin is an interest rate swap paying the fixed leg
FTPi (t, u) and receiving the floating leg r (t, u).
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As noticed by Demey et al. (2003), we need another constraint to determine explicitly the
internal transfer rate, because the previous equation is not sufficient. For instance, if we
assume that the internal transfer rate is constant over the lifetime of the new production
— FTP (t, u) = FTP (t), we obtain:

FTP (t, u) =
Et
[∫∞
t
B (t, u) S (t, u) r (u) du

]
Et
[∫∞
t
B (t, u) S (t, u) du

]
The drawback of this approach is that the commercial margin is not locked, and the business
unit is exposed to the interest rate risk. On the contrary, we can assume that the commercial
margin rate of the business unit is constant:

R (u)− FTP (t, u) = m

Demey et al. (2003) show that54:

FTP (t, u) = R (u) +
Et
[∫∞
t
B (t, u) S (t, u) (r (u)−R (u)) du

]
Et
[∫∞
t
B (t, u) S (t, u) du

]
The term structure of funds transfer prices According to Bessis (2015), there are
two main approaches for designing a funds transfer pricing system: cash netting and central
cash pool systems. In the first case, the business unit transfers to the ALM unit only the net
cash balance, meaning that the internal transfer rates apply only to a fraction of asset and
liability items. This system presents a major drawback, because business units are exposed
to interest rate and liquidity risks. On the contrary, all funding and investment items are
transferred into the ALM book in the second approach. In this case, all items have their
own internal transfer rate. In order to reduce the complexity of the FTP system, assets
and liabilities are generally classified into homogeneous pools in terms of maturity, credit,
etc. In this approach, each pool has its own FTP. For example, the reference rate of long
maturity pools is a long-term market rate while the reference rate of short maturity pools
is a short-term market rate. In Figure 7.16, we have represented the term structure of the
FTPs. Previously, we have seen that the reference rate is the market swap rate, meaning
that the reference curve is the IRS curve. In practice, the FTP curve will differ from the
IRS curve for several reasons. For instance, the reference curve can be adjusted by adding a
credit spread in order to reflect the credit-worthiness of the bank, a bid-ask spread in order
to distinguish assets and liabilities, a behavior-based spread because of prepayment and
embedded options, and a liquidity spread. Therefore, we can decompose the funds transfer
price as follows:

FTP (t, u) = FTPIR (t, u) + FTPLiquidity (t, u) + FTPOther (t, u)

where FTPIR (t, u) is the interest rate component, FTPIR (t, u) is the liquidity component
and FTPOther (t, u) corresponds to the other components. The FTP curve can then be
different than the IRS curve for the reasons presented above. But it can also be different
because of business or ALM decisions. For instance, if the bank would like to increase its
mortgage market share, it can reduce the client rate Ri (t, u) meaning that the commercial

54Using this formulation, we can show the following results:
• for a loan with a fixed rate, the funds transfer price is exactly the swap rate with the same maturity

than the loan and the same amortization scheme than the new production;
• if the client rate R (u) is equal to the short-term market rate r (u), the funds transfer price FTP (t, u)

is also equal to r (u).
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margin m
(c)
i (t, u) decreases, or it can maintain the commercial margin by reducing the

internal transfer rate FTPi (t, u). Another example concerns the investment maturity of
retail deposits. Each time this maturity is revisited, it has a big impact on the retail business
unit because a shorter maturity will reduce the internal transfer price and a longer maturity
will increase the internal transfer price. Therefore, the FTP of deposits highly impacts the
profitability of the retail business unit.

FIGURE 7.16: The term structure of FTP rates

7.3 Behavioral options
In this section, we focus on three behavioral options that make it difficult to calculate

liquidity and interest rate risks. They have been clearly identified by the BCBS (2016d)
and concern non-maturity deposits, prepayment risk and redemption (or early termination)
issues. For NMDs, the challenge is to model the deposit volume and the associated implicit
duration. For the two other risks, the goal is to calculate prepayment rates and redemption
ratios on a yearly basis.

7.3.1 Non-maturity deposits
Let us assume that the deposit balance of the client A is equal to $500. In this case,

we can assume that the duration of this deposit is equal to zero day, because the client
could withdraw her deposit volume today. Let us now consider 1 000 clients, whose deposit
balance is equal to $500. On average, we observe that the probability to withdraw $500 at
once is equal to 50%. The total amount that may be withdrawn today is then between $0
and $500 000. However, it is absurd to think that the duration of deposits is equal to zero,
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because the probability that $500 000 are withdrawn is less than 10−300%! Since we have
Pr {S > 275000} < 0.1%, we can decide that 55% of the deposit balance has a duration
of zero day, 24.75% has a duration of one day, 11.14% has a duration of two days, etc. It
follows that the duration of deposits depends on the average behavior of customers and the
number of account holders, but many other parameters may have an impact on non-maturity
deposits. From a contractual point of view, deposits have a very short-term duration. From
a statistical point of view, we notice that a part of these deposits are in fact very stable
because of the law of large numbers.

NMDs are certainly the balance sheet item that is the most difficult to model. There
are multiple reasons. The first reason is the non-specification of a maturity in the contract.
The second reason is that NMDs are the most liquid instruments and their transaction
costs are equal to zero, implying that subscriptions and redemptions are very frequent.
This explains that the volume of deposits is the most volatile among the different banking
products at the individual level. Another reason is the large number of embedded options
that creates significant gamma and vega option risks (Blöchlinger, 2015). Finally, the volume
of NMDs is very sensitive to the monetary policy (Bank of Japan, 2014), because NMDs
are part of the M1 money supply, but also of the M2 money supply. Indeed, NMDs is
made up of demand deposits (including overnight deposits and checkable accounts) and
savings accounts. M1 captures demand deposits (and also currency in circulation) while
M2 − M1 is an approximation of savings accounts. In what follows, we do not make a
distinction between NMDs, but it is obvious that the bank must distinguish demand deposits
and savings accounts in practice. Generally, academics model behavioral options related to
NMDs by analyzing substitution effects between NMDs and term deposits. In the real life,
demand-side substitution is more complex since it also concerns the cross-effects between
demand deposits and savings accounts.

7.3.1.1 Static and dynamic modeling

In the case of non-maturity deposits, it is impossible to make the distinction between
the entry dates. This means that the stock amortization function S? (t, u) must be equal to
the amortization function S (t, u) of the new production. This implies that the hazard rate
λ (t, u) of the amortization function S (t, u) does not depend on the entry date t:

λ (t, u) = λ (u)

Indeed, we have by definition:

S (t, u) = exp
(
−
∫ u

t

λ (s) ds
)

and we verify that55:

S? (t, u) =
∫ t
−∞NP (s)S (s, u) ds∫ t
−∞NP (s)S (s, t) ds

= S (t, u)

According to Demey et al. (2003), the concept of new production has no meaning. Then,
we must focus on the modeling of the current volume of NMDs, which is given by Equation

55This result is based on the following computation:∫ t
−∞ NP (s) e−

∫ u
s
λ(v) dv ds∫ t

−∞ NP (s) e−
∫ t
s
λ(v) dv ds

=

∫ t
−∞ NP (s) e−

(∫ t
s
λ(v) dv+

∫ u
t
λ(v) dv

)
ds∫ t

−∞ NP (s) e−
∫ t
s
λ(v) dv ds

= e
−
∫ u
t
λ(v) dv
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(7.7) on page 386:

N (t) =
∫ t

−∞
NP (s) S (s, t) ds

It follows that:

dN (t)
dt = NP (t) S (t, t)−

∫ t

−∞
NP (s) f (s, t) ds

= NP (t)− λ (t)
∫ t

−∞
NP (s) S (s, t) ds

or:
dN (t) = (NP (t)− λ (t)N (t)) dt (7.24)

Therefore, the variation of N (t) is the difference between deposit inflows NP (t) and deposit
outflows λ (t)N (t). In the case where the new production and the hazard rate are constant
– NP (t) = NP and λ (t) = λ, we obtain56 N (t) = N∞ + (N0 −N∞) e−λ(t−t0) where
N0 = N (t0) is the current value and N∞ = λ−1 NP is the long-term value of N (t). In this
case, Equation (7.24) becomes:

dN (t) = λ (N∞ −N (t)) dt (7.25)

We recognize the deterministic part of the Ornstein-Uhlenbeck process:

dN (t) = λ (N∞ −N (t)) dt+ σ dW (t) (7.26)

where W (t) is a Brownian motion. In this case, the solution is given by57:

N (t) = N0e
−λ(t−t0) +N∞

(
1− e−λ(t−t0)

)
+ σ

∫ t

t0

e−λ(t−s) dW (s) (7.27)

The estimation of the parameters (λ,N∞, σ) can be done using the generalized method of
moments (GMM) or the method of maximum likelihood (ML). In this case, we can show
that:

N (t) | N (s) = Ns ∼ N
(
µ(s,t), σ

2
(s,t)

)
where:

µ(s,t) = Nse
−λ(t−s) +N∞

(
1− e−λ(t−s)

)
and:

σ2
(s,t) = σ2

(
1− e−2λ(t−s)

2λ

)
Example 74 We consider a deposit account with the following characteristics: N∞ =
$1 000, λ = 10 and σ = $1 000.

The frequency λ means that the average duration of the deposit balance is equal to
1/λ. In our case, we find 1/10 = 0.1 years or 1.2 months. The new production is NP =
λN∞ = $10 000 . This new production can be interpreted as the annual income of the client

56The solution of Equation (7.24) is given by:

N (t)−
NP
λ

=
(
N0 −

NP
λ

)
e−λ(t−t0)

57See Appendix A.3.8.2 on page 1075.
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that is funded the deposit account. In Figure 7.17, the top panel represents the expected
value µ(0,t) of the deposit balance by considering different current values N0, the top left
panel corresponds to the density function58 f(s,t) (x) of N (t) given that N (s) = Ns and
the bottom panel shows three simulations of the stochastic process N (t).

FIGURE 7.17: Statistics of the deposit amount N (t)

Another extension of Model (7.25) is to make the distinction between stable and non-
stable deposits. Let g be the growth rate of deposits. The total amount of deposits D (t) is
given by:

D (t) = eg(t−s)
nt∑
i=1

Ni (t)

where nt is the number of deposit accounts and Ni (t) is the deposit balance of the ith
deposit account. It follows that:

D (t) = eg(t−s)
nt∑
i=1

N∞,i + eg(t−s)
nt∑
i=1

(Ns,i −N∞,i) e−λi(t−s) +

eg(t−s)
nt∑
i=1

σi

√
1− e−2λi(t−s)

2λi
εi (t)

where εi (t) ∼ N (0, 1). By considering a representative agent, we can replace the previous
equation by the following expression:

D (t) = D∞e
g(t−s) + (Ds −D∞) e(g−λ)(t−s) + ε (t) (7.28)

58We have:

f(s,t) (x) =
1

σ (s, t)
√

2π
exp

(
−

1
2

(
x− µ(s,t)

σ(s,t)

)2
)
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where D∞ =
∑nt
i=1N∞,i, Ds =

∑nt
i=1Ns,i, λ−1 is the weighted average duration of deposits

and ε (t) is the stochastic part. Demey et al. (2003) notice that we can decompose D (t)
into two terms:

D (t) = Dlong (s, t) +Dshort (s, t)
where Dlong (s, t) = D∞e

g(t−s) and Dshort (s, t) = (Ds −D∞) e(g−λ)(t−s) +ε (t). This break-
down seems appealing at first sight, but it presents a major drawback. Indeed, the short
component Dshort (s, t) may be negative. In practice, it is better to consider the following
equation:

D (t) = ϕD∞e
g(t−s)︸ ︷︷ ︸

Dstable(s,t)

+ (Ds −D∞) e(g−λ)(t−s) + ε (t) + (1− ϕ)D∞eg(t−s)︸ ︷︷ ︸
Dnon−stable(s,t)

where Dstable (s, t) corresponds to the amount of stable deposits and Dnon−stable (s, t) =
D (t)−Dstable (s, t) is the non-stable deposit amount. At time t = s, we verify that59:

D (t) = Dstable +Dnon−stable (t)

The estimation of stable deposits is a two-step process. First, we estimate D∞ by using the
ML method. Second, we estimate the fraction ϕ < 1 of the long-run amount of deposits
that can be considered as stable. Generally, we calibrate the parameter ϕ such that ϕN∞
is the quantile of D (t) at a given confidence level (e.g. 90% or 95%).

In Figure 7.18, we assume that the deposit amount D (t) follows an Ornstein-Uhlenbeck
process with parameters D∞ = $1 bn, λ = 5 and σ = $200 mn. In the top/right panel,
we have reported the Dlong/Dshort breakdown. We verify that the short component may
be negative, meaning the long component cannot be considered as a stable part. This is
not the case with the Dstable/Dnon−stable breakdown given in the bottom panels. The big
issue is of course the estimation of the parameter ϕ. One idea might be to calibrate ϕ such
that Pr {D (t) ≤ ϕD∞} = 1 − α given the confidence level α. If we consider the Ornstein-
Uhlenbeck dynamics, we obtain the following formula:

ϕ = 1− σΦ−1 (1− α)
D∞
√

2λ

In our example, this ratio is respectively equal to 85.3%, 89.6% and 91.9% when α takes
the value 99%, 95% and 90%.

Remark 85 We recall that the Basel Committee makes the distinction between stable and
core deposits. It is assumed that the interest rate elasticity of NMDs is less than one. Core
deposits are the proportion of stable deposits, whose pass through sensitivity is particularly
low, meaning they are “unlikely to reprice even under significant changes in interest rate
environment” (BCBS, 2016d, page 26).

7.3.1.2 Behavioral modeling

If we assume that the growth rate g is equal to zero, the linearization of Equation (7.28)
corresponds to the Euler approximation of the Ornstein-Uhlenbeck process:

D (t) ≈ D (s) + λ (D∞ −D (s)) + ε (t) (7.29)

59The previous results are based on the dynamic analysis between time s and t. If we prefer to adopt a
static analysis, the amount of non-stable deposits must be defined as follows:

Dnon−stable (t) = D (t)− ϕD∞
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FIGURE 7.18: Stable and non-stable deposits

Here, D (t) is the value of the non-maturity account balance or deposit volume. A similar
expression is obtained by considering the individual deposit amount N (t) instead of D (t).
In what follows, we use the same notation D (t) for defining aggregated and individual
deposit balances. Let us come back to the general case: dD (t) = (NP (t)− λ (t)D (t)) dt.
By assuming that the new production is a function of the current balance, we have NP (t) =
g (t,X (t))D (t) where g (t,X (t)) depends on a set of explanatory variables X (t). If follows
that d lnD (t) = (g (t,X (t))− λ (t)) dt and:

lnD (t) ≈ lnD (s) + g (s,X (s))− λ (s) (7.30)

Modeling the behavior of the client and introducing embedded options can be done by
combining Equations (7.29) and (7.30):

lnD (t) = lnD (s) + λ (lnD∞ − lnD (s)) + g (t,X (t)) + ε (t)

In this case, the main issue is to specify g (t,X (t)) and the explanatory variables that
impact the dynamics of the deposit volume. Most of the time, g (t,X (t)) depends on two
variables: the deposit rate i (t) and the market rate r (t). In what follows, we present several
models that have been proposed for modeling either D (t) or i (t) or both. The two pioneer
models are the deposit balance model of Selvaggio (1996) and the deposit rate model of
Hutchison and Pennacchi (1996).

The Hutchison-Pennacchi-Selvaggio framework In Selvaggio (1996), the deposit
rate i (t) is exogenous and the bank account holder modifies his current deposit balance
D (t) to target a level D? (t), which is defined as follows:

lnD? (t) = β0 + β1 ln i (t) + β2 lnY (t)

where Y (t) is the income of the account holder. The rational of this model is the following.
In practice, the bank account holder targets a minimum positive balance in order to meet
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his current liquidity and consumption needs, which are a function of his income Y (t). For
example, we can assume that the client with a monthly income of $10 000 targets a larger
amount than the client with a monthly income of $1 000. Moreover, we can assume that the
target balance depends on the deposit rate i (t). The elasticity coefficient must be positive,
meaning that the client has a high incentive to transfer his money into a term deposit
account if the deposit rate is low. At time t, the account holder can face two situations.
If Dt−1 < D?

t , he will certainly increase his deposit volume in order to increase his cash
liquidity. If Dt−1 > D?

t , he will certainly transfer a part of his deposit balance into his
term account. Therefore, the behavior of the bank account holder can be represented by a
mean-reverting AR(1) process:

lnD (t)− lnD (t− 1) = (1− φ) (lnD? (t)− lnD (t− 1)) + ε (t) (7.31)

where ε (t) ∼ N
(
0, σ2) is a white noise process and φ ≤ 1 is the mean-reverting parameter.

It follows that:

lnD (t) = φ lnD (t− 1) + (1− φ) lnD? (t) + ε (t)
= φ lnD (t− 1) + β′0 + β′1 ln i (t) + β′2 lnY (t) + ε (t) (7.32)

where β′k = (1− φ)βk. Let d (t) = lnD (t) be the logarithm of the deposit volume. The
model of Selvaggio (1996) is then a ARX(1) process:

d (t) = φd (t− 1) + (1− φ) d? (t) + ε (t) (7.33)

where d? (t) = lnD? (t) is the exogenous variable.
In practice, the bank does not know the value θ = (φ, β0, β1, β2, σ) of the parameters.

Moreover, these parameters are customer-specific and are different from one customer to
another. The bank can then estimate the vector θ for a given customer if it had a sufficient
history. For instance, we consider that a two-year dataset of monthly observations or a
ten-year dataset of quarterly observations is generally sufficient to estimate five parameters.
However, the variables i (t) and Y (t) rarely change, meaning that it is impossible to estimate
θ for a given customer. Instead of using a time-series analysis, banks prefer then to consider
a cross-section/panel analysis. Because Model (7.33) is linear, we can aggregate the behavior
of the different customers. The average behavior of a customer is given by Equation (7.32)
where the parameters φ, β0, β1, β2 and σ are equal to the mean of the customer parameters.
This approach has the advantage to be more robust in terms of statistical inference. Indeed,
the regression is performed using a large number of observations (number of customers ×
number of time periods).

In the previous model, the deposit interest rate is given and observed at each time
period. Hutchison and Pennacchi (1996) propose a model for fixing the optimal value of
i (t). They assume that the bank maximizes its profit:

i? (t) = arg max Π (t)

where the profit Π (t) is equal to the revenue minus the cost:

Π (t) = r (t) ·D (t)− (i (t) + c (t)) ·D (t)

In this expression, r (t) is the market interest rate and c (t) is the cost of issuing deposits.
By assuming that D (t) is an increasing function of i (t), the first-order condition is:

(r (t)− (i (t) + c (t))) · ∂ D (t)
∂ i (t) −D (t) = 0
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We deduce that:

i? (t) = r (t)− c (t)−
(
∂ D (t)
∂ i (t)

)−1
D (t)

= r (t)−
(
c (t) +

(
∂ d (t)
∂ i (t)

)−1
)

= r (t)− s (t) (7.34)

The deposit interest rate is then equal to the market interest rate r (t) minus a spread60
s (t). Equations (7.32) and (7.34) are the backbone of various non-maturity deposit models.

The IRS framework Using arbitrage theory, Jarrow and van Deventer (1998) show that
the deposit rate must be lower than the market rate61 – i (t) ≤ r (t), and the current market
value of deposits is the net present value of the cash flow stream D (t):

V (0) = E

[ ∞∑
t=0

B (0, t+ 1) (r (t)− i (t))D (t)
]

(7.35)

where B (0, t) is the discount factor. Jarrow and van Deventer (1998) interpret V (0) as an
exotic interest rate swap, where the bank receives the market rate and pays the deposit rate.
Since the present value of the deposit liability of the bank is equal to L (0) = D (0)−V (0),
the hedging strategy consists in “investing D (0) dollars in the shortest term bond B (0, 1)
and shorting the exotic interest rate swap represented by V (0)” (Jarrow and van Deventer,
1998, page 257). The complete computation of the hedging portfolio requires specifying i (t)
andD (t). For example, Jarrow and van Deventer (1998) consider the following specification:

lnD (t) = lnD (t− 1) + β0 + β1r (t) + β2 (r (t)− r (t− 1)) + β3t (7.36)

and:
i (t) = i (t) + β′0 + β′1r (t) + β′2 (r (t)− r (t− 1)) (7.37)

The deposit balance and the deposit rate are linear in the market rate r (t) and the variation
of the market rate ∆r (t). The authors also add a trend in Equation (7.36) in order to take
into account macroeconomic variables that are not included in the model.

The previous model is fully tractable in continuous-time. Beyond these analytical for-
mulas, the main interest of the Jarrow-van Deventer model is to show that the modeling of
non-maturity deposits is related to the modeling of interest rate swaps. Another important
contribution of this model is the introduction of the replicating portfolio. Indeed, it is com-
mon to break down deposits into stable and non-stable deposits, and stable deposits into
core and non-core deposits. The idea is then to replicate the core deposits with a hedging
portfolio with four maturities (3, 5, 7 and 10 years). In this case, the funds transfer pricing
of non-maturity deposits is made up of four internal transfer rates corresponding to the
maturity pillars of the replicating portfolio.

60We notice that the spread s (t) is the sum of the cost c (t) and the Lerner index η (t), where η (t) = 1/e (t)
and e (t) is the interest rate elasticity of the demand.

61This inequality is obtained by assuming no arbitrage opportunities for individuals and market seg-
mentation. In particular, Jarrow and van Deventer (1998) consider that the competition among banks is
imperfect because of entry and mobility barriers to the banking industry.
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Asymmetric adjustment models O’Brien (2001) introduces an asymmetric adjustment
of the deposit rate:

∆i (t) = α (t) · (̂ı (t)− i (t− 1)) + η (t)

where ı̂ (t) is the conditional equilibrium deposit rate and:

α (t) = α+ · 1 {ı̂ (t) > i (t− 1)}+ α− · 1 {ı̂ (t) < i (t− 1)}

If ı̂t > i (t− 1), we obtain ∆i (t) = α+ · (̂ı (t)− i (t− 1)) + η (t), otherwise we have ∆i (t) =
α− · (̂ı (t)− i (t− 1)) + η (t). The distinction between α+ and α− can be justified by the
asymmetric behavior of banks and the rigidity of deposit rates. In particular, O’Brien (2001)
suggests that α− > α+, implying that banks adjust more easily the deposit rate when the
market rate decreases than when it increases. In this model, the deposit balance is a function
of the spread r (t)− i (t):

lnD (t) = β0 + β1 lnD (t− 1) + β2 (r (t)− i (t)) + β3 lnY (t) + ε (t)

Moreover, O’Brien (2001) assumes that the conditional equilibrium deposit rate is a linear
function of the market rate:

ı̂ (t) = γ0 + γ1 · r (t)

In the previous model, the asymmetric adjustment explicitly concerns the deposit in-
terest rate i (t) and implicitly impacts the deposit balance D (t) because of the spread
r (t)− i (t). Frachot (2001) considers an extension of the Selvaggio model by adding a cor-
rection term that depends on the market interest rate r (t) and a threshold:

lnD (t)− lnD (t− 1) = (1− φ) (lnD? (t)− lnDt−1) + δc (r (t) , r?) (7.38)

where δc (r (t) , r?) = δ ·1 {r (t) ≤ r?} and r? is the interest rate floor. When market interest
rates are too low and below r?, the bank account holder does not make the distinction
between deposit and term balances, and we have:

δc (r (t) , r?) =
{
δ if r (t) ≤ r?
0 otherwise

Contrary to the Selvaggio model, the average behavior is not given by Equation (7.38) be-
cause of the non-linearity pattern. Let f be the probability density function of the threshold
r? among the different customers of the bank. On average, we have:

E [δc (r (t) , r?)] =
∫ ∞

0
δ · 1 {r (t) ≤ x} · f (x) dx

= δ · (1− F (r (t)))

The average behavior is then given by the following equation:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δ (1− F (r (t)))

where d (t) = lnD (t) and d? (t) = lnD? (t). For example, if we assume that the distribution
of r? is uniform on the range [0; r?max], we obtain f (x) = 1/r?max and F (x) = min (x/r?max, 1).
We deduce that:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δ

(
1−min

(
r (t)
r?max

, 1
))

= (1− φ) (d? (t)− d (t− 1)) + δ
max (r?max − r (t) , 0)

r?max
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In the case where r? ∼ N
(
µ?, σ

2
?

)
, we obtain:

d (t)− d (t− 1) = (1− φ) (d? (t)− d (t− 1)) + δΦ
(
µ? − r (t)

σ?

)

Another asymmetric model was proposed by OTS (2001):

d (t) = d (t− 1) + ∆ ln
(
β0 + β1 arctan

(
β2 + β3

i (t)
r (t)

)
+ β4i (t)

)
+ ε (t)

where ∆ corresponds to the frequency. The ‘Net Portfolio Value Model’ published by the
Office of Thrift Supervision62 is a comprehensive report that contains dozens of models in
order to implement risk management and ALM policies. For instance, Chapter 6 describes
the methodologies for modeling liabilities and Section 6.D is dedicated to demand deposits.
These models were very popular in the US in the 1990s. In 2011, the Office of the Comptroller
of the Currency (OCC) provided the following parameters for the monthly model63 of
transaction accounts: β0 = 0.773, β1 = −0.065, β2 = −5.959, β3 = 0.997 and β4 = 1
bp. In the case of money market accounts, the parameters were β0 = 0.643, β1 = −0.069,
β2 = −6.284, β3 = 2.011 and β4 = 1 bp.

FIGURE 7.19: Impact of the market rate on the growth rate of deposits

In Figure 7.19, we compare the growth rate g (t) of deposits for the different asymmetric
models. For the O’Brien model, the growth rate is equal to g (t) = β2 (r (t)− i (t)). In the
case of the Frachot model, the market rate has only a positive impact because δc (r (t) , r?) ≥
0. This is why we consider an extended version where the correction term is equal to

62The mission of OTS is to “supervise savings associations and their holding companies in order to
maintain their safety and soundness and compliance with consumer laws and to encourage a competitive
industry that meets America’s financial services needs”.

63We have ∆ = 1/12.
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δc (r (t) , r?)− δ−. The growth rate is then g (t) = δ (1− F (r (t)))− δ−. Finally, the growth
rate of the OTS model is equal to g (t) = ln

(
β0 + β1 arctan

(
β2 + β3

i(t)
r(t)

)
+ β4i (t)

)
. Using

several value of the deposit rate i (t), we measure the impact of the market rate r (t) on
the growth rate g (t) using the following parameters: β2 = −4 (O’Brien model), δ = 30%,
µ? = 5%, σ? = 1% and δ− = 10% (Frachot model), and β0 = 1.02, β1 = 0.2, β2 = −7,
β3 = 5 and β4 = 0 (OTS model). The O’Brien model is linear while the Frachot model is
non-linear. However, the Frachot model does not depend on the level of the deposit rate
i (t). The OTS model combines non-linear effects and the dependence on the deposit rate.

Remark 86 These different models have been extended in order to take into account other
explanatory variables such that the CDS of the bank, the inflation rate, the deposit rate
competition, lagged effects, etc. We can then use standard econometric and time-series tools
for estimating the unknown parameters.

7.3.2 Prepayment risk
A prepayment is the settlement of a debt or the partial repayment of its outstanding

amount before its maturity date. It is an important risk for the ALM of a bank, because
it highly impacts the net interest income and the efficiency of the hedging portfolio. For
example, suppose that the bank has financed a 10-year mortgage paying 5% through a
10-year bond paying 4%. The margin on this mortgage is equal to 1%. Five years later,
the borrower prepays the mortgage because of a fall in interest rates. In this case, the
bank receives the cash of the mortgage refund whereas it continues to pay a coupon of 4%.
Certainly, the cash will yield a lower return than previously, implying that the margin is
reduced and may become negative.

Prepayment risk shares some common features with default risk. Indeed, the prepayment
time can be seen as a stopping time exactly like the default time for credit risk. Prepayment
and default are then the two actions that may terminate the loan contract. This is why
they have been studied together in some research. However, they also present some strong
differences. In the case of the default risk, the income of the bank is reduced because both
interest and capital payments are shut down. In the case of the prepayment risk, the bank
recovers the capital completely, but no longer receives the interest due. Moreover, while
default risk increases when the economic environment is bad or interest rates are high,
prepayment risk is more pronounced in a period of falling interest rates.

In the 1980s, prepayment has been extensively studied in the case of RMBS. The big
issue was to develop a pricing model for GNMA64 mortgage-backed pass-through securities
(Dunn and McConnell, 1981; Brennan and Schwartz, 1985; Schwartz and Torous, 1989).
In these approaches, the prepayment option is assimilated to an American call option and
the objective of the borrower is to exercise the option when it has the largest value65
(Schwartz and Torous, 1992). However, Deng et al. (2000) show that “there exists significant
heterogeneity among mortgage borrowers and ignoring this heterogeneity results in serious
errors in estimating the prepayment behavior of homeowners”. Therefore, it is extremely
difficult to model the prepayment behavior, because it is not always a rational decision
and many factors affect prepayment decisions (Keys et al., 2016; Chernov et al., 2017).
This microeconomic approach is challenged by a macroeconomic approach, whose goal is to
model the prepayment rate at the portfolio level and not the prepayment time at the loan
level.

64The Government National Mortgage Association (GNMA or Ginnie Mae) has already been presented
on page 139.

65This implies that the call option is in the money.
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In what follows, we focus on mortgage loans, because it is the main component of pre-
payment risk. However, the analysis can be extended to other loans, for example consumer
credit, student loans and leasing contracts. The case of student loans is very interesting
since students are looking forward to repay their loan as soon as possible once they have
found a job and make enough money.

7.3.2.1 Factors of prepayment

Following Hayre et al. (2000), prepayments are caused by two main factors: refinancing
and housing turnover. Let i0 be the original interest rate of the mortgage or the loan. We
note i (t) the interest rate of the same mortgage if the household would finance it at time
t. It is clear that the prepayment time τ depends on the interest rate differential, and
we can assume that the prepayment probability is an increasing function of the difference
∆i (t) = i0 − i (t):

P (t) = Pr {τ ≤ t} = ϑ (i0 − i (t))

where ∂xϑ (x) > 0. For instance, if the original mortgage interest rate is equal to 10% and
the current mortgage interest rate is equal to 0%, nobody benefits from keeping the original
mortgage, and it is preferable to fully refinance the mortgage. This situation is particularly
true in a period of falling interest rates. The real life example provided by Keys et al. (2016)
demonstrates the strong implication that a prepayment may have on household budgeting:

“A household with a 30-year fixed-rate mortgage of $200 000 at an interest
rate of 6.0% that refinances when rates fall to 4.5% (approximately the average
rate decrease between 2008 and 2010 in the US) saves more than $60 000 in
interest payments over the life of the loan, even after accounting for refinance
transaction costs. Further, when mortgage rates reached all-time lows in late
2012, with rates of roughly 3.35% prevailing for three straight months, this
household with a contract rate of 6.5% would save roughly $130 000 over the life
of the loan by refinancing” (Keys et al., 2016, pages 482-483).

As already said, the prepayment value is the premium of an American call option, mean-
ing that we can derive the optimal option exercise. In this case, the prepayment strategy
can be viewed as an arbitrage strategy between the market interest rate and the cost of
refinancing. In practice, we observe that the prepayment probability P (t) depends on other
factors: loan type, loan age, loan balance, monthly coupon (Elie et al., 2002). For example, it
is widely accepted that the prepayment probability is an increasing function of the monthly
coupon.

The second factor for explaining prepayments is housing turnover. In this case, the
prepayment decision is not motivated by refinancing, but it is explained by the home sale due
to life events. For instance, marriage, divorce, death, children leaving home or changing jobs
explain a large part of prepayment rates. Another reason is the housing market dynamics,
in particular home prices that have an impact on housing turnover. These different factors
explain that we also observe prepayments even when interest rates increase. For example, the
upgrading housing decision (i.e. enhancing the capacity or improving the quality of housing)
is generally explained by the birth of a new child, an inheritance or a salary increase.

Remark 87 In addition to these two main factors, we also observe that some borrowers
choose to reduce their debt even if it is not an optimal decision. When they have some
financial saving, which may be explained by an inheritance for example, they proceed to
partial prepayments.
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7.3.2.2 Structural models

As with the credit risk, there are two families of prepayment models. The objective of
structural models is to explain the prepayment time τ of a borrower while reduced-form
models are interested in the prepayment rate of a loan portfolio.

Value of the American option The objective is to find the optimal value τ such that
the borrower minimizes the paid cash flows or maximizes the prepayment option. Let us
consider a mortgage, whose maturity is equal to T . In continuous-time, the risk-neutral
value of cash flows is equal to66:

V (t) = inf
τ≤T

EQ
[∫ τ

t

m (u) e−
∫ u
t
r(s) ds du+ e

−
∫ τ
t
r(s) ds

M (τ ) | Ft
]

(7.39)

where m (t) and M (t) are the coupon and the mark-to-market value of the mortgage at
time t. The first term that makes up V (t) is the discounted value of the interest paid until
the prepayment time τ whereas the second term is the discounted value of the mortgage
value at the prepayment time τ . Equation (7.39) is a generalization of the net present value
of a mortgage in continuous-time67. The computation of the optimal stopping time can be
done in a Hamilton-Jacobi-Bellman (HJB) framework. We introduce the state variable Xt,
which follows a diffusion process:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)

We note V (t,X) the value of V (t) when X (t) is equal to X. In the absence of prepayment,
we deduce that the value of V (t,X) satisfies the following Cauchy problem68:{

−∂tV (t,X) + r (t)V (t,X) = AtV (t,X) +m (t)
V (T,X) = M (T )

where At is the infinitesimal generator of the diffusion process:

AtV (t,X) = 1
2σ

2 (t,X) ∂
2 V (t,X)
∂ X2 + µ (t,X) ∂

2 V (t,X)
∂ x2

The prepayment event changes the previous problem since we must verify that the value
V (t,X) is lower than the mortgage valueM (t) minus the refinancing cost C (t). The option
problem is then equivalent to solve the HJB equation or the variational inequality:

min (LtV (t,X) , V (t,X) + C (t)−M (t)) = 0

where:
LtV (t,X) = AtV (t,X) +m (t) + ∂tV (t,X)− r (t)V (t,X)

This model can be extended to the case where there are several state variables or there is
no maturity (perpetual mortgage).

66r (t) is the discount rate.
67The net present value is equal to:

V (t) = EQ
[∫ T

t

m (u) e−
∫ u
t
r(s) ds du+ e

−
∫ T
t
r(s) ds

N (T ) | Ft

]
where N (T ) is the outstanding amount at the maturity.

68We use the Feynmac-Kac representation given on page 1070.
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The Agarwal-Driscoll-Laibson model There are several possible specifications de-
pending on the choice of the state variables, the dynamics of interest rates, etc. For exam-
ple, using a similar framework than previously, Agarwal et al. (2013) propose the following
optimal refinancing rule:

i0 − i (t) ≥ δ? = 1
ψ

(
φ+W

(
−e−φ

))
(7.40)

whereW (x) is the LambertW function69, ψ = σ−1
√

2 (r + λ) and φ = 1+ψ (r + λ) (C/M).
The parameters are the real discount rate r, the rate λ of exogenous mortgage prepayment,
the volatility σ of the mortgage rate i (t), the refinancing cost C and the remaining mortgage
value M . Equation (7.40) has been obtained by solving the HJB equation and assuming
that dX (t) = σ dW (t) and X (t) = i (t)− i0.

Using the numerical values r = 5%, λ = 10%, σ = 2%, and C/M = 1%, δ? is equal to 110
bps. This means that the borrower has to prepay his mortgage if the mortgage rate falls by
at least 110 bps. In Table 7.20, we consider the impact of one parameter by considering the
other parameters unchanged. First, we assume that the cost function is C = 2000+1%×M ,
meaning that there is a fixed cost of $2 000. It follows that δ? is a decreasing function of the
mortgage value M , because fixed costs penalize low mortgage values. We also verify that δ?
is an increasing function of r, σ and λ. In particular, the parameter σ has a big influence,
because it indicates if the mortgage rate is volatile or not. In the case of a high volatility,
it may be optimal that the borrower is waiting that i (t) highly decreases. This is why the
HJB equation finds a high value of δ?.

TABLE 7.20: Optimal refinancing rule δ?

M (in KUSD) δ? r δ? σ δ? λ δ?

10 612 1% 101 1% 79 2% 89
100 198 2% 103 2% 110 5% 98
250 150 5% 110 3% 133 10% 110
500 131 8% 116 5% 171 15% 120

1 000 121 10% 120 10% 239 20% 128

7.3.2.3 Reduced-form models

Rate, coupon or maturity incentive? The previous approach can only be applied to
the refinancing decision, but it cannot deal with all types of prepayment. Moreover, there is
no guarantee that the right decision variable is the difference i0 − i (t) between the current
mortgage rate and the initial mortgage rate. For instance, i0 − i (t) = 1% implies a high
impact for a 20-year remaining maturity, but has a small effect when the maturity is less
than one year. A better decision variable is the coupon or annuity paid by the borrower. In
the case of a constant payment mortgage, we recall that the annuity is equal to:

A (i, n) = i

1− (1 + i)−n
N0

where N0 is the notional of the mortgage, i is the mortgage rate and n is the number of
periods. If the mortgage rate drops from i0 to i (t), the absolute difference of the annuity is
equal to DA (i0, i (t)) = A (i0, n)−A (i (t) , n), whereas the relative difference of the annuity

69The Lambert W function is related to Shannon’s entropy and satisfies W (x) eW (x) = x.
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is given by:

DR (i0, i (t)) = DA (i0, i (t))
A (i0, n)

= 1−
(

1− (1 + i0)−n

1− (1 + i (t))−n

)
i (t)
i0

where n is the remaining number of periods. In a similar way, the relative cumulative
difference C (i0, i (t)) is equal to:

C (i0, i (t)) =
∑n
t=1 DA (i0, i (t))

N0

= n

(
i0

1− (1 + i0)−n
− i (t)

1− (1 + i (t))−n

)
Finally, another interesting measure is the minimum number of periods N (i0, i (t)) such
that the new annuity is greater than or equal to the initial annuity:

N (i0, i (t)) = {x ∈ N : A (i (t) , x) ≥ A (i (t) , n) , A (i (t) , x+ 1) < A (i (t) , n)}

whereN (i0, i (t)) measures the maturity reduction of the loan by assuming that the borrower
continues to pay the same annuity.

TABLE 7.21: Impact of a new mortgage rate (100 KUSD, 5%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 1 061
4.5 1 036 24 291 2.3 2.9 9.67
4.0 1 012 48 578 4.5 5.8 9.42
3.5 989 72 862 6.8 8.6 9.17
3.0 966 95 1 141 9.0 11.4 8.92
2.5 943 118 1 415 11.1 14.2 8.75
2.0 920 141 1 686 13.2 16.9 8.50
1.5 898 163 1 953 15.3 19.5 8.33
1.0 876 185 2 215 17.4 22.2 8.17
0.5 855 206 2 474 19.4 24.7 8.00

Let us illustrate the impact of a new rate i (t) on an existing mortgage. We assume
that the current outstanding amount is equal to $100 000 and the amortization scheme is
monthly. In Table 7.21, we show how the monthly annuity changes if the original rate is 5%
and the remaining maturity is ten years. If the borrower refinances the mortgage at 2%, the
monthly annuity is reduced by $141, which represents 13.2% of the current monthly coupon.
His total gain is then equal to 16.9% of the outstanding amount. If the borrower prefers
to reduce the maturity and takes the annuity constant, he will gain 18 months. In Tables
7.22 and 7.23, we compute the same statistics when the remaining maturity is twenty years
or the original rate is 10%. Banks have already experienced this kind of situation these
last 30 years. For example, we report the average rate of 30-year and 15-year fixed rate
mortgages in the US in Figure 7.20. We also calculate the differential rate between the
30-year mortgage rate lagged 15 years and the 15-year mortgage rate. We notice that this
refinancing opportunity has reached 10% and more in the 1990s, and was above 3% most
of the times these last 25 years. Of course, this situation is exceptional and explained by 30
years of falling interest rates.
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TABLE 7.22: Impact of a new mortgage rate (100 KUSD, 5%, 20-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)

5.0 660
4.5 633 27 328 4.1 6.6 18.67
4.0 606 54 648 8.2 13.0 17.58
3.5 580 80 960 12.1 19.2 16.67
3.0 555 105 1 264 16.0 25.3 15.83
2.5 530 130 1 561 19.7 31.2 15.17
2.0 506 154 1 849 23.3 37.0 14.50
1.5 483 177 2 129 26.9 42.6 14.00
1.0 460 200 2 401 30.3 48.0 13.50
0.5 438 222 2 664 33.6 53.3 13.00

TABLE 7.23: Impact of a new mortgage rate (100 KUSD, 10%, 10-year)

i A DA (in $) DR C N
(in %) (in $) Monthly Annually (in %) (in %) (in years)
10.0 1 322
9.0 1 267 55 657 4.1 6.6 9.33
8.0 1 213 108 1 299 8.2 13.0 8.75
7.0 1 161 160 1 925 12.1 19.3 8.33
6.0 1 110 211 2 536 16.0 25.4 7.92
5.0 1 061 261 3 130 19.7 31.3 7.58
4.0 1 012 309 3 709 23.3 37.1 7.25
3.0 966 356 4 271 26.9 42.7 6.92
2.0 920 401 4 816 30.4 48.2 6.67
1.0 876 445 5 346 33.7 53.5 6.50

Survival function with prepayment risk Previously, we have defined the amortiza-
tion function S (t, u) as the fraction of the new production at time t that still remains in
the balance sheet at time u ≥ t: NP (t, u) = NP (t) S (t, u). We have seen that S (t, u) cor-
responds to a survival function. Therefore, we can use the property that the product of ns
survival functions is a survival function, meaning that we can decompose S (t, u) as follows:

S (t, u) =
ns∏
j=1

Sj (t, u)

This implies that the hazard rate is an additive function:

λ (t, u) =
ns∑
j=1

λj (t, u)

because we have:

e
−
∫ u
t
λ(t,s) ds =

ns∏
j=1

e
−
∫ u
t
λj(t,s) ds = e

−
∫ u
t

(∑ns

j=1
λj(t,s)

)
ds

If we apply this result to prepayment, we have:

S (t, u) = Sc (t, u) · Sp (t, u)
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FIGURE 7.20: Evolution of 30-year and 15-year mortgage rates in the US

Source: Freddie Mac, 30Y/15Y Fixed Rate Mortgage Average in the United States
[MORTGAGE30US/15US], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/MORTGAGE30US, July 24, 2019.

where Sc (t, u) is the traditional amortization function (or the contract-based survival func-
tion) and Sp (t, u) is the prepayment-based survival function.

Example 75 We consider a constant amortization mortgage (CAM) and assume that the
prepayment-based hazard rate is constant and equal to λp.

In Exercise 7.4.3 on page 450, we show that the survival function is equal to:

Sc (t, u) = 1 {t ≤ u ≤ t+m} · 1− e−i(t+m−u)

1− e−im

It follows that:

λc (t, u) = −∂ ln Sc (t, u)
∂ u

=
∂ ln

(
1− e−im

)
∂ u

−
∂ ln

(
1− e−i(t+m−u))

∂ u

= ie−i(t+m−u)

1− e−i(t+m−u)

= i

ei(t+m−u) − 1
Finally, we deduce that:

λ (t, u) = 1 {t ≤ u ≤ t+m} ·
(

i

ei(t+m−u) − 1
+ λp

)

https://fred.stlouisfed.org/
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In Figure 7.21, we report the survival function S (t, u) and the hazard rate λ (t, u) of a 30-year
mortgage at 5%. We also compare the amortization function S (t, u) obtained in continuous-
time with the function calculated when we assume that the coupon is paid monthly. We
notice that the continuous-time model is a good approximation of the discrete-time model.

FIGURE 7.21: Survival function in the case of prepayment

Specification of the hazard function It is unrealistic to assume that the hazard func-
tion λp (t, u) is constant because we do not make the distinction between economic and
structural prepayments. In fact, it is better to decompose Sp (t, u) into the product of two
survival functions:

Sp (t, u) = Srefinancing (t, u) · Sturnover (t, u)

where Srefinancing (t, u) corresponds to economic prepayments due to refinancing decisions
and Sturnover (t, u) corresponds to structural prepayments because of housing turnover. In
this case, we can assume that λturnover (t, u) is constant and corresponds to the housing
turnover rate. The specification of λrefinancing (t, u) is more complicated since it depends on
several factors. For instance, Elie et al. (2002) show that λrefinancing (t, u) depends on the
loan characteristics (type, age and balance), the cost of refinancing and the market rates.
Moreover, they observe a seasonality in prepayment rates, which differs with respect to the
loan type (monthly, quarterly or semi-annually).

As for deposit balances, the ‘Net Portfolio Value Model’ published by the Office of Thrift
Supervision (2001) gives very precise formulas for measuring prepayment. They assume that
the prepayment rate is made up of three factors:

λp (t, u) = λage (u− t) · λseasonality (u) · λrate (u)

where λage measures the impact of the loan age, λseasonality corresponds to the seasonality
factor and λrate represents the influence of market rates. The first two components are
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specified as follows:

λage (age) =
{

0.4 · age if age ≤ 2.5
1 if age ≥ 2.5

and:
λseasonality (u) = 1 + 0.20× sin

(
1.571×

(
12 + month (u)− 3

3

)
− 1
)

where age = u − t is the loan age and month (u) is the month of the date u. We notice
that λage is equal to zero for a new mortgage – u− t = 0, increases linearly with mortgage
age and remains constant after 30 months or 2.5 years. The refinancing factor of the OTS
model has the following expression:

λrate (u) = β0 + β1 arctan
(
β2 ·

(
β3 −

i0
i (u− 0.25)

))
where i (u− 0.25) is the mortgage refinancing rate (lagged three months). In Figure 7.22,
we represent the three components70 while Figure 7.23 provides an example of the survival
function Sp (t, u) where the mortgage rate drops from 5% to 1% after 6 years. The season-
ality component has a small impact on the survival function because it is smoothed when
computing the cumulative hazard function. On the contrary, the age and rate components
change the prepayment speed.

FIGURE 7.22: Components of the OTC model

70For the specification of λrate, we use the default values of OTS (2001, Equation 5.A.7): β0 = 0.2406,
β1 = −0.1389, β2 = 5.952, and β4 = 1.049. We also assume that i0 = 5%.
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FIGURE 7.23: An example of survival function Sp (t, u) with a mortgage rate drop

7.3.2.4 Statistical measure of prepayment

In fact, the OTC model doesn’t use the concept of hazard rate, but defines the constant
prepayment rate CPR, which is the annualized rate of the single monthly mortality:

SMM = prepayments during the month
outstanding amount at the beginning of the month

The CPR and the SMM are then related by the following equation:

CPR = (1− (1− SMM))12

In IRRBB, the CPR is also known as the conditional prepayment rate. It measures prepay-
ments as a percentage of the current outstanding balance for the next year. By definition,
it is related to the hazard function as follows:

CPR (u, t) = Pr {u < τ ≤ u+ 1 | τ ≥ u}

= Sp (t, u)− Sp (t, u+ 1)
Sp (t, u)

= 1− exp
(
−
∫ u+1

u

λp (t, s) ds
)

If λp (t, s) is constant and equal to λp, we can approximate the CPR by the hazard rate λp
because we have CPR (u, t) ≈ 1− e−λp ≈ λp.

We use the prepayment monitoring report published by the Federal Housing Finance
Agency (FHFA). From 2008 to 2018, the CPR for 30-year mortgages varies between 5%
to 35% in the US. The lowest value is reached at the end of 2008. This shows clearly that
prepayments depend on the economic cycle. During a crisis, the number of defaults increases
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while the number of prepayments decreases. This implies that there is a negative correlation
between default and prepayment rates. However, there is a high heterogeneity depending
on the coupon rate and the issuance date as shown in Table 7.24. We generally observe
that the CPR increases with the coupon rate. For example, in June 2018, the CPR is 7%
greater for a 30-year mortgage issued between 2012 and 2016 with a 4.5% coupon than
with a 3% coupon. We also verify the ramp effect because the prepayment rate is not of
the same magnitude before and after January 2017, which corresponds to the 30-month age
after which the prepayment rate can be assumed to be constant. This is why the CPR is
only 5.3% and 12.8% for mortgages issued in 2018 and 2017 while it is equal to 17.4% for
mortgages issued in 2016 when the coupon rate is 4.5%.

TABLE 7.24: Conditional prepayment rates in June 2018 by coupon rate and issuance
date

Year 2012 2013 2014 2015 2016 2017 2018
Coupon = 3% 9.6% 10.2% 10.9% 10.0% 8.7% 5.3% 3.1%
Coupon = 4.5% 16.1% 15.8% 16.6% 17.9% 17.4% 12.8% 5.3%

Difference 6.5% 5.6% 5.7% 8.0% 8.7% 7.6% 2.2%

Source: RiskSpan dataset, FHFA (2018) and author’s calculations.

7.3.3 Redemption risk
7.3.3.1 The funding risk of term deposits

A term deposit, also known as time deposit or certificate of deposit (CD), is a fixed-term
cash investment. The client deposits a minimum sum of money into a banking account in
exchange for a fixed rate over a specified period. A term deposit is then defined by three
variables: the deposit or CD rate i (t), the maturity period m and the minimum balance
D−. For example, the minimum deposit is generally $1 000 in the US, and the typical
maturities are 1M, 3M, 6M, 1Y, 2Y and 3Y. In some banks, the deposit rate may depends
on the deposit amount71. Term deposits are an important source of bank funding with
demand deposits and savings accounts. However, they differ from non-maturity deposits
because they have a fixed maturity, their rates are higher and they may be redeemed with
a penalty. When buying a term deposit, the investor can withdraw their funds only after
the term ends. This is why CD rates are generally greater than NMD rates, because term
deposits are a most stable funding resource for banks. Moreover, CD rates are generally
more sensitive to market interest rates than NMD rates, because a term deposit is more
an investment product while a demand deposit is more a transaction account. Under some
conditions, the investor may withdraw his term deposit before the maturity date if he pays
early redemption costs and fees, which generally correspond to a reduction of the deposit
rate. For example, i (t) may be reduced by 80% if the remaining maturity is greater than
50% of the CD maturity and 30% if the remaining maturity is less than 20% of the CD
maturity.

According to Gilkeson et al. (1999), early time deposit withdrawals may be motivated
by two reasons. As for prepayments, the first reason is economic. If market interest rates
rise, the investor may have a financial incentive to close his old term deposit and reinvest his

71For example, Chase defines six CD rates for a given maturity and considers the following bands:
below $10K, $10K – $25K, $25K – $50K, $50K – $100K, $100K – $250K and $250+ (source:
https://www.chase.com/personal/savings/bank-cd).

https://www.chase.com/
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money into a new term deposit. In this case, the investor is sensitive to the rate differential
i (t) − i0 where i0 is the original CD rate and i (t) is the current CD rate. In this case,
early withdrawal risk can be viewed as the opposite of prepayment risk. Indeed, while
the economic reason of prepayment risk is a fall of interest rates, the economic reason of
redemption risk is a rise of interest rates. Since both risks imply a negative impact on the
net interest income, the impact on the liquidity risk is different: the bank receives cash in
case of a prepayment, while the funding of the bank is reduced in case of redemption. The
second reason is related to negative liquidity shocks of depositors. For example, the client
may need to get his money back because of life events: job loss, divorce, revenue decline,
etc. In this case, redemption risk is explained by idiosyncratic liquidity shocks that are
independent and can be measured by a structural constant rate. But redemption risk can
also be explained by systemic liquidity shocks. For example, economic crises increase the
likelihood of early withdrawals. In this case, we cannot assume that the redemption rate is
constant because it depends on the economic cycle.

7.3.3.2 Modeling the early withdrawal risk

Redemption risk can be measured using the same approach we have used for prepayment
risk. This is particularly true for the economic component and the idiosyncratic liquidity
component. The systemic component of negative liquidity shocks requires a more appro-
priate analysis and makes the modeling more challenging. Another difficulty with the early
withdrawal risk is the scarcity of academic models, professional publications and data. To
our knowledge, there are only five academic publications on this topic and only three articles
that give empirical results72: Cline and Brooks (2004), Gilkeson et al. (1999) and Gilkeson
et al. (2000).

The redemption-based survival function of time deposits can be decomposed as:

Sr (t, u) = Seconomic (t, u) · Sliquidity (t, u)

where Seconomic (t, u) is the amortization function related to reinvestment financial incentives
and Sliquidity (t, u) is the amortization function due to negative liquidity shocks.

Let us first focus on economic withdrawals. We note t the current date, m the maturity
of the time deposit and N0 the initial investment at time 0. In the absence of redemption,
the value of the time deposit at the maturity is equal to V0 = N0 (1 + i0)m. If we assume
that τ is the withdrawal time, the value of the investment for τ = t becomes:

Vr (t) = N0 · (1 + (1− ϕ (t)) i0)t · (1 + i (t))m−t − C (t)

where ϕ (t) is the penalty parameter applied to interest paid and C (t) is the break fee.
For example, if we specify ϕ (t) = 1 − t/m, ϕ (t) is a linear decreasing function between73
ϕ (0) = 100% and ϕ (m) = 0%. C (t) may be a flat fee (e.g. C (t) = $1 000) or C (t) may be
a proportional fee: C (t) = c (t) ·N0. The rational investor redeems the term deposit if the
refinancing incentive is positive:

RI (t) = Vr (t)− V0

N0
> 0

In the case where C (t) = c (t)N0, we obtain the following equivalent condition:

i (t) > i? (t) =
(

(1 + i0)m + c (t)
(1 + (1− ϕ (t)) i0)t

)1/(m−t)

− 1

72The two other theoretical publications are Stanhouse and Stock (2004), and Gao et al. (2018).
73ϕ (t) = 100% if the redemption occurs at the beginning of the contract and ϕ (m) = 0% when the term

deposit matures.
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An example of this refinancing incentive rule is given in Figure 7.24. This corresponds to
a three-year term deposit whose rate is equal to 2%. The penalty applied to interest paid
is given by ϕ (t) = 1− t/m. We show the impact of the fee c (t) on i? (t). We observe that
the investor has no interest to wait if the interest rate rise is sufficient. Therefore, there
is an arbitrage between the current rate i (t) and the original rate i0. We deduce that the
hazard function takes the following form: λeconomic (t, u) = g (i (u)− i0) or λeconomic (t, u) =
g (r (u)− i0) where g is a function to estimate. For instance, Gilkeson et al. (1999) consider a
logistic regression model and explain withdrawal rates by the refinancing incentive variable.

FIGURE 7.24: Refinancing incentive rule of term deposits

For early withdrawals due to negative liquidity shocks, we can decompose the hazard
function into two effects:

λliquidity (t, u) = λstructural + λcyclical (u)

where λstructural is the structural rate of redemption and λcyclical (u) is the liquidity compo-
nent due to the economic cycle. A simple way to model λcyclical (u) is to consider a linear
function of the GDP growth.

7.4 Exercises
7.4.1 Constant amortization of a loan

We consider a loan that is repaid by annual payments. We assume that the notional of
the loan is equal to N0, the maturity of the loan is n and i is the annual interest rate. We
note N (t) the outstanding amount, I (t) the interest payment, P (t) the principal payment
at time t and C (t) the present value.
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1. Let C0 be the present value of an annuity A that is paid annually during n years.
Calculate C0 as a function of A, n and i.

2. Determine the constant annuity A of the loan and the corresponding annuity rate
a(n).

3. Calculate I (1) and P (1). Show that the outstanding amount N (1) is equal to the
present value C (1) of the constant annuity A for the last n− 1 years.

4. Calculate the general formula of N (t), I (t) and P (t).

7.4.2 Computation of the amortization functions S (t, u) and S? (t, u)
In what follows, we consider a debt instrument, whose remaining maturity is equal to

m. We note t the current date and T = t+m the maturity date.

1. We consider a bullet repayment debt. Define its amortization function S (t, u). Calcu-
late the survival function S? (t, u) of the stock. Show that:

S? (t, u) = 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
in the case where the new production is constant. Comment on this result.

2. Same question if we consider a debt instrument, whose amortization rate is constant.

3. Same question if we assume74 that the amortization function is exponential with
parameter λ.

4. Find the expression of D? (t) when the new production is constant.

5. Calculate the durations D (t) and D? (t) for the three previous cases.

6. Calculate the corresponding dynamics dN (t).

7.4.3 Continuous-time analysis of the constant amortization mortgage
(CAM)

We consider a constant amortization mortgage, whose maturity is equal to m. We note
i the interest rate and A the constant annuity.

1. Let N0 be the amount of the mortgage at time t = 0. Write the equation of dN (t).
Show that the annuity is equal to:

A = i ·N0

1− e−im

Deduce that the outstanding balance at time t is given by:

N (t) = 1 {t < m} ·N0 ·
1− e−i(m−t)

1− e−im

2. Find the expression of S (t, u) and S? (t, u).

3. Calculate the liquidity duration D (t).
74By definition of the exponential amortization, we have m = +∞.
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7.4.4 Valuation of non-maturity deposits
This exercise is based on the model of De Jong and Wielhouwer (2003), which is an

application of the continuous-time framework of Jarrow and van Deventer (1998). The
framework below has been used by de Jong and Wielhouwer to model variable rate savings
accounts. However, it is valid for all types of non-maturity deposits (demand deposits and
savings accounts). For instance, Jarrow and van Deventer originally develop the approach
for all types of demand deposits75.

1. Let D (t) be the amount of savings accounts. We note r (t) and i (t) the market rate
and the interest rate paid to account holders. We define the current market value of
liabilities as follows:

L0 = E
[∫ ∞

0
e−r(t)t (i (t)D (t)− ∂tD (t)) dt

]
Explain the expression of L0, in particular the two components i (t)D (t) and ∂tD (t).

2. By considering that the short rate r (t) is constant, demonstrate that:

L0 = D0 + E
[∫ ∞

0
e−r(t)t (i (t)− r (t))D (t) dt

]
3. Calculate the current mark-to-market V0 of savings accounts. How do you interpret
V0?

4. Let us assume that the margin m (t) = r (t) − i (t) is constant and equal to m0, and
D (t) is at the steady state D∞. Show that:

V0 = m0 · r−1
∞ ·D∞

where r∞ is a parameter to determine.

5. For the specification of the deposit rate i (t) and the deposit balance D (t), De Jong
and Wielhouwer (2003) propose the following dynamics:

di (t) = (α+ β (r (t)− i (t))) dt

and:
dD (t) = γ (D∞ −D (t)) dt− δ (r (t)− i (t)) dt

where α, β ≥ 0, γ ≥ 0 and δ ≥ 0 are four parameters. What is the rationale of these
equations? Find the general expression of i (t) and D (t).

6. In the sequel, the market rate r (t) is assumed to be constant and equal to r0. Deduce
the value of i (t) and D (t).

7. Calculate the net asset value V0 and deduce its sensitivity with respect to the market
rate r0 when α = 0.

8. Find the general expression of the sensitivity of V0 with respect to the market rate r0
when α 6= 0. Deduce the duration DD of the deposits.

75Janosi et al. (1999) provide an empirical analysis of the Jarrow-van Deventer model for negotiable
orders of withdrawal accounts (NOW), passbook accounts, statement accounts and demand deposit accounts
(DDAs), whereas Kalkbrener and Willing (2004) consider an application to savings accounts. Generally,
these different accounts differ with respect to the specification of interest paid i (t) and the dynamics of the
deposit amount D (t).
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9. We consider a numerical application of the De Jong-Wielhouwer model with the fol-
lowing parameters: r0 = 10%, i0 = 5%, D0 = 100, D∞ = 150, β = 0.5, γ = 0.7
and δ = 0.5. Make a graph to represent the relationship between the time t and the
deposit rate i (t) when α is equal to −1%, 0 and 1%. Why is it natural to consider
that α < 0? We now assume that α = −1%. Draw the dynamics of D (t). What are
the most important parameters that impact D (t)? What is the issue if we calculate
the duration of the deposits with respect to r0 when α is equal to zero? Make a graph
to represent the relationship between the market rate r0 and the duration when α is
equal to −50 bps, −1% and −2%.

7.4.5 Impact of prepayment on the amortization scheme of the CAM
This is a continuation of Exercise 7.4.3 on page 450. We recall that the outstanding

balance at time t is given by:

N (t) = 1 {t < m} ·N0 ·
1− e−i(m−t)

1− e−im

1. Find the dynamics dN (t).

2. We note Ñ (t) the modified outstanding balance that takes into account the prepay-
ment risk. Let λp (t) be the prepayment rate at time t. Write the dynamics of Ñ (t).

3. Show that Ñ (t) = N (t)·Sp (t) where Sp (t) is the prepayment-based survival function.

4. Calculate the liquidity duration D̃ (t) associated to the outstanding balance Ñ (t)
when the hazard rate of prepayments is constant and equal to λp.



Chapter 8
Systemic Risk and Shadow Banking System

The financial crisis of 2008 is above all a crisis of the financial system as a whole. This is
why it is called the Global Financial Crisis (GFC) and is different than the previous crises
(the Great Depression in the 1930s, the Japan crisis in the early 1990s, the Black Monday of
1987, the 1997 Asian financial crisis, etc.). It is a superposition of the 2007 subprime crisis,
affecting primarily the mortgage and credit derivative markets, and a liquidity funding
crisis following the demise of Lehman Brothers, which affected the credit market and more
broadly the shadow banking system. This crisis was not limited to the banking system, but
has affected the different actors of the financial sector, in particular insurance companies,
asset managers and of course investors. As we have seen in the previous chapters, this led to
a strengthening of financial regulation, and not only on the banking sector. The purpose of
new regulations in banks, insurance, asset management, pension funds and organization of
the financial market is primarily to improve the rules of each sector, but also to reduce the
overall systemic risk of the financial sector. In this context, systemic risk is now certainly
the biggest concern of financial regulators and the Financial Stability Board (FSB) was
created in April 2009 especially to monitor the stability of the global financial system and
to manage the systemic risk1. It rapidly became clear that the identification of the systemic
risk is a hard task and can only be conducted in a gradual manner. This is why some
policy responses are not yet finalized, in particular with the emergence of a shadow banking
system, whose borders are not well defined.

8.1 Defining systemic risk
The Financial Stability Board defines systemic events in broad terms:
“Systemic event is the disruption to the flow of financial services that is (i)
caused by an impairment of all or parts of the financial system and (ii) has
the potential to have serious negative consequences on the real economy” (FSB,
2009, page 6).

1The FSB is the successor to the Financial Stability Forum (FSF), which was founded in 1999 by the
G7 Finance Ministers and Central Bank Governors. With an expanded membership to the G20 countries,
the mandate of the FSB has been reinforced with the creation of three Standing Committees:
• the Standing Committee on Assessment of Vulnerabilities (SCAV), which is the FSB’s main mecha-

nism for identifying and assessing risks;
• the Standing Committee on Supervisory and Regulatory Cooperation (SRC), which is charged with

undertaking further supervisory analysis and framing a regulatory or supervisory policy response to
a material vulnerability identified by SCAV;

• the Standing Committee on Standards Implementation (SCSI), which is responsible for monitoring
the implementation of agreed FSB policy initiatives and international standards.

Like the Basel Committee on Banking Supervision, the secretariat to the Financial Stability Board is hosted
by the Bank for International Settlements and located in Basel.
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This definition focuses on three important points. Firstly, systemic events are associated
with negative externalities and moral hazard risk, meaning that every financial institution’s
incentive is to manage its own risk/return trade-off but not necessarily the implications of
its risk on the global financial system. Secondly, a systemic event can cause the impairment
of the financial system. Lastly, it implies significant spillovers to the real economy and
negative effects on economic welfare.

It is clear that the previous definition may appear too large, but also too restrictive. It
may be too large, because it is not precise and many events can be classified as systemic
events. It is also too restrictive, because it is difficult to identify the event that lies at the
origin of the systemic risk. Most of the times, it is caused by the combination of several
events. As noted by Zigrand (2014), systemic risk often refers to exogenous shocks, whereas
it can also be generated by endogenous shocks:

“Systemic risk comprises the risk to the proper functioning of the system as well
as the risk created by the system” (Zigrand, 2014, page 3).

In fact, there are numerous definitions of systemic risk because it is a multifaceted concept.

8.1.1 Systemic risk, systematic risk and idiosyncratic risk
In financial theory, systemic and idiosyncratic risks are generally opposed. Systemic

risk refers to the system whereas idiosyncratic risk refers to an entity of the system. For
instance, the banking system may collapse, because many banks may be affected by a severe
common risk factor and may default at the same time. In economics, we generally make the
assumption that idiosyncratic and common risk factors are independent. However, there
exist some situations where idiosyncratic risk may affect the system itself. It is the case
of large institutions, for example the default of big banks. In this situation, systemic risk
refers to the propagation of a single bank distressed risk to the other banks.

Let us consider one of the most famous models in finance, which is the capital asset
pricing model (CAPM) developed by William Sharpe in 1964. Under some assumptions, he
showed that the expected return of asset i is related to the expected return of the market
portfolio in the following way:

E [Ri,t]− r = βi · (E [Rm,t]− r) (8.1)

where Ri,t and Rm,t are the asset and market returns, r is the risk-free rate and the coeffi-
cient βi is the beta of the asset i with respect to the market portfolio:

βi = cov (Ri,t, Rm,t)
σ2 (Rm,t)

Contrary to idiosyncratic risks, systematic risk Rm,t cannot be diversified, and investors
are compensated for taking this risk. This means that the market risk premium is positive
(E [Rm,t] − r > 0) whereas the expected return of idiosyncratic risk is equal to zero. By
definition, the idiosyncratic risk of asset i is equal to:

εi,t = (Ri,t − r)− βi · (E [Rm,t]− r)

with E [εi,t] = 0. As explained above, this idiosyncratic risk is not rewarded because it can
be hedged (or diversified). In this framework, we obtain the one-factor model given by the
following equation:

Ri,t = αi + βi ·Rm,t + εi (8.2)
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where αi = (1− βi) r and εi,t = εi,t−βi ·(Rm,t − E [Rm,t]) is a white noise process2. Because
εi,t is a new parametrization of the idiosyncratic risk, it is easy to show that this specific
factor is independent from the common factor Rm,t and the other specific factors εj,t. If
we assume that asset returns are normally distributed, we have Rm,t ∼ N

(
E [Rm,t] , σ2

m,t

)
and:  ε1,t

...
εn,t

 ∼ N (0,diag
(
σ̃2

1 , . . . , σ̃
2
n

))

In the capital asset pricing model, it is obvious that the risk of the system (R1, . . . , Rn)
is due to the common risk factor also called the systematic risk factor. Indeed, a stress S
can only be transmitted to the system by a shock on Rm:

S (Rm) =⇒ S (R1, . . . , Rn)

This is the traditional form of systemic risk. In the CAPM, idiosyncratic risks are not a
source of systemic risk:

S (εi) 6=⇒ S (R1, . . . , Rn)

because the specific risk εi only affects one component of the system, and not all the
components.

In practice, systemic risk can also occur because of an idiosyncratic shock. In this case,
we distinguish two different transmission channels:

1. The first channel is the impact of a specific stress on the systematic risk factor:

S (εi) =⇒ S (Rm) =⇒ S (R1, . . . , Rn)

This transmission channel implies that the assumption εi ⊥ Rm is not valid.

2. The second channel is the impact of a specific stress on the other specific risk factors:

S (εi) =⇒ S (ε1, . . . , εn) =⇒ S (R1, . . . , Rn)

This transmission channel implies that the assumption εi ⊥ εj is not valid.

Traditional financial models (CAPM, APT) fail to capture these two channels, because they
neglect some characteristics of systemic factors: the feedback dynamic of specific risks, the
possibility of multiple equilibria and the network density.

The distinction between systematic and idiosyncratic shocks is done by De Bandt and
Hartmann (2000). However, as noted by Hansen (2012), systematic risks are aggregate risks
that cannot be avoided. A clear example is the equity risk premium. In this case, systematic
risks are normal and inherent to financial markets and there is no reason to think that we
can prevent them. In the systemic risk literature, common or systematic risks reflect another
reality. They are abnormal and are viewed as a consequence of simultaneous adverse shocks
that affect a large number of system components (De Bandt and Hartmann, 2000). In
this case, the goal of supervisory policy is to prevent them, or at least to mitigate them.
In practice, it is however difficult to make the distinction between these two concepts of
systematic risk. In what follows, we will use the term systematic market risk for normal
shocks, even if they are severe and we now reserve the term systematic risk for abnormal
shocks.

2εi,t is a new form of the idiosyncratic risk.
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8.1.2 Sources of systemic risk
De Bandt and Hartmann (2000) explained that shocks and propagation mechanisms are

the two main elements to characterize systemic risk. If we consider our previous analysis,
the shock corresponds to the initial stress S whereas the propagation mechanism indicates
the transmission channel =⇒ of this initial shock. It is then useful to classify the several
sources of systemic risk depending on the nature of the (systematic) shock or the type of
propagation3.

8.1.2.1 Systematic shocks

Benoit et al. (2017) list four main systematic shocks: asset-price bubble risk, correlation
risk, leverage risk and tail risk. In what follows, we give their characteristics and some exam-
ples. However, even if these risks recover different concepts, they are also highly connected
and the boundaries between them are blurred.

Asset-price (or speculative) bubble corresponds to a situation where prices of an as-
set class rise so sharply that they strongly deviate from their fundamental values4. The
formation of asset bubbles implies that many financial institutions (banks, insurers, asset
managers and asset owners) are exposed to the asset class, because they are momentum
investors. They prefer to ride the bubble and take advantage of the situation, because being
a contrarian investor is a risky strategy5. In this context, the probability of crash occurring
increases with investors’ belief that “they can sell the asset at an even higher price in the
future” (Brunnermeier and Oehmke, 2013). Examples of speculative bubbles are Japanese
asset bubble in the 1980s, the dot.com bubble between 1997 and 2000 and the United States
housing bubble before 2007.

Correlation risk means that financial institutions may invest in the same assets at the
same time. They are several reasons to this phenomenon. Herd behavior is an important
phenomenon in finance (Grinblatt et al., 1995; Wermers, 1999; Acharya and Yorulmazer,
2008) . It corresponds to the tendency for mimicking the actions of others. According to
Devenow and Welch (1996), “such herding typically arises either from direct payoff external-
ities (negative externalities in bank runs; positive externalities in the generation of trading
liquidity or in information acquisition), principal-agent problems (based on managerial de-
sire to protect or signal reputation), or informational learning (cascades)”. Another reason
that explains correlated investments is the regulation, which may have a high impact on the
investment behavior of financial institutions. Examples include the liquidity coverage ratio,
national regulations of pension funds, Solvency II, etc. Finally, a third reason is the search
of diversification or yield. Indeed, we generally notice a strong enthusiasm at the same time
for an asset class which is is considered as an investment that helps to diversify portfolios
or improve their return.

In periods of expansion, we observe an increase of leverage risk, because financial institu-
tions want to benefit from the good times of the business cycle. As the expansion proceeds,
investors becomes then more optimistic and the appetite for risky investments and leverage
develops6. However, a high leverage is an issue in a stressed period, because of the drop
of asset prices. Theoretically, the stressed loss S cannot be greater than the inverse of the

3Concerning idiosyncratic risks, they are several sources of stress, but they can all be summarized by
the default of one system’s component.

4A bubble can be measured by the price-to-earnings (or P/E) ratio, which is equal to the current share
price divided by the earnings per share. For instance, stocks of the technology sector had an average price-
to-earnings ratio larger than 100 in March 2000.

5It is extremely difficult for a financial institution to miss the trend from a short-term business perspective
and to see the other financial institutions be successful.

6This is known as the Minsky’s financial instability hypothesis.
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financial institution’s leverage ratio LR in order to maintain its safety:

S ≤ 1
LR

For instance, in the case where LR is equal to 5, the financial institution defaults if the loss is
greater than 20%. In practice, the stress tolerance depends also on the liquidity constraints.
It is then easier to leverage a portfolio in a period of expansion than to deleverage it in a
period of crisis, where we generally face liquidity problems. Geanakoplos (2010) explained
the downward spiral created by leverage by the amplification mechanism due to the demand
of collateral assets7. Indeed, decline in asset prices results in asset sales of leveraged investors
because of margin call requirements and asset sales results in decline in asset prices. Leverage
induces then non-linear and threshold effects that can create systemic risk. The failure of
LTCM is a good illustration of leverage risk (Jorion, 2000).

FIGURE 8.1: Illustration of tail risk

The concept of tail risk suggests that the decline in one asset class is abnormal with
respect to the normal risk. This means that the probability to observe a tail event is very
small. Generally, the normal risk is measured by the volatility. For instance, an order of
magnitude is 20% for the long-term volatility of the equity asset class. The probability to
observe an annual drop in equities larger than 40% is equal to 2.3%. An equity market crash
can therefore not be assimilated to a tail event. By contrast, an asset class whose volatility is
equal to 2.5% will experience a tail risk if the prices are 20% lower than before. In this case,
the decrease represents eight times the annual volatility. In Figure 8.1, we have reported
these two examples of normal and abnormal risks. When the ratio between the drawdown8
and the volatility is high (e.g. larger than 4), this generally indicates the occurrence of a
tail risk. The issue with tail risks is that they are rarely observed and financial institutions

7see Section 4.3 on page 293.
8It is equal to the maximum loss expressed in percent.
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tend to underestimate them. Acharya et al. (2010) even suggested that tail risk investments
are sought by financial institutions. Such examples are carry or short volatility strategies.
For instance, investing in relatively high credit-quality bonds is typically a tail risk strategy.
The rationale is to carry the default risk, to capture the spread and to hope that the default
will never happen. However, the credit crisis in 2007-2008 showed that very low probability
events may occur in financial markets.

The distinction between the four systematic risks is rather artificial and theoretical. In
practice, they are highly related. For instance, leverage risk is connected to tail risk. Thus,
the carry strategy is generally implemented using leverage. Tail risk is related to bubble risk,
which can be partially explained by the correlation risk. In fact, it is extremely difficult to
identify a single cause, which defines the zero point of the systemic crisis. Sources of systemic
risk are correlated, even between an idiosyncratic event and systematic risks.

8.1.2.2 Propagation mechanisms

As noted by De Bandt and Hartmann (2000), transmission channels of systemic risk
are certainly the main element to understand how a systemic crisis happen in an econ-
omy. Indeed, propagation mechanisms are more important than the initial (systematic or
idiosyncratic) shock, because most of shocks do not produce systemic crisis if they are not
spread to the real economy. Among the diversity of propagation mechanisms, academics
and regulators have identified three major transmission channels: networks effects, liquidity
channel and critical function failure.

Network effects stem from the interconnectedness of financial institutions and can be
seen as the system-wide counterpart of an institution’s counterparty risk. Network effect is
a general term describing the transmission of a systemic shock from one particular entity
and market to several entities or markets. In the case of LTCM, systemic risk stemmed
from the interconnection between LTCM and the banking system combined with the high
leverage strategy pursued by the hedge fund. This created an over sized exposure for the
banking system to counterparty credit risk from one single entity. Hence, LTCM’s idiosyn-
cratic risk was transferred to the entire financial system and became a source of systemic
risk. The early and influential work of Allen and Gale (2000) showed that this source of
financial contagion is highly contingent on the network’s structure and the size of the shock.
Their model also suggests that a fully connected network might be more resilient than an
incomplete network, contradicting the idea that systemic risk increases with average inter-
connectedness. However, interconnectedness of an individual entity is central to the notion
of “being systemically important”. In the banking industry, balance sheet contagion is an
important source of systemic risk and is linked to the counterparty credit risk. The com-
plexity of the banking network can create domino effects and feedback loops, because the
failure of one bank is a signal on the health of the other banks. This informational con-
tagion is crucial to understand the freeze of the interbank market during the 2008 GFC.
Informational contagion is also an important factor of bank runs (Diamond and Dybvig,
1983) . However, network effects are not limited to the banking system. Thus, the subprime
crisis showed that they concern the different actors of financial system. It was the case with
insurance companies9 and asset managers. In this last case, money market funds (MMF)
were notably impacted, forcing some unprecedented measures as the temporary guarantee
of money market funds against losses by the US Treasury:

“Following the bankruptcy of Lehman Brothers in 2008, a well-known fund – the
Reserve Primary Fund – suffered a run due to its holdings of Lehman’s commer-
cial paper. This run quickly spread to other funds, triggering investors’ redemp-

9The most famous example is the AIG’s bailout by the US government in late 2008.
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tions of more than USD 300 billion within a few days of Lehman’s bankruptcy.
Its consequences appeared so dire to financial stability that the U.S. government
decided to intervene by providing unlimited deposit insurance to all money mar-
ket fund deposits. The intervention was successful in stopping the run but it
transferred the entire risk of the USD 3 trillion money market fund industry to
the government” (Kacperczyk and Schnabl, 2013).

Liquidity is another important propagation mechanism of systemic risk. For instance,
the global financial crisis can be seen as the superposition of the subprime crisis, affecting
primarily the mortgage and credit derivative markets and by extension the global banking
system, and a liquidity funding crisis following the demise of Lehman Brothers, which
affected interbank markets and more broadly the shadow banking system. In this particular
case, the liquidity channel caused more stress than the initial systematic event of subprime
credit. As shown previously, the concept of liquidity is multi-faceted and recovers various
dimensions10 that are highly connected. In this context, liquidity dry-up events are difficult
to predict or anticipate, because they can happen suddenly. This is particularly true for
the market liquidity with the recent flash crash/rally events11. Brunnermeier and Pedersen
(2009) demonstrated that a demand shock can create a flight-to-quality environment in
which liquidity and loss spirals can arise simply due to funding requirements on speculators
such as margin calls and repo haircuts. In some instances, a liquidity dry-up event resulting
from a flight-to-quality environment can result in runs, fire sales, and asset liquidations in
general transforming the market into a contagion mechanism. This is particularly true if
the market size of the early players affected by the shock is large enough to induce a large
increase in price pressure. The likelihood and stringency of these spirals is exacerbated by
high leverage ratios.

Besides network effects and liquidity-based amplification mechanisms, the third identi-
fied transmission channel for systemic risk relates to the specific function a financial institu-
tion may come to play in a specific market, either because of its size relative to the market
or because of its ownership of a specific skill which makes its services essential to the func-
tioning of that market. De Bandt and Hartmann (2000) identified payment and settlement
systems as the main critical function that can generate systemic risk. The development of
central counterparties, which is promoted by the recent financial regulation, is a response to
mitigate network and counterparty credit risks, but also to strengthen the critical function
of clearing systems. Other examples of critical services concern the entire investment chain
from the asset manager to the asset owner, for instance securities lending intermediation
chains or custody services.

8.1.3 Supervisory policy responses
The strength of the Global Financial Crisis led to massive government interventions

around the world to prop up failing financial institutions, seen as ‘too big too fail’. Public
concern about the negative externalities of such interventions called pressingly for structural
reforms to prevent whenever possible future similar events. The crisis further brought to
light, among other key factors, the failure of regulation to keep up with the complexity of
the activities of global financial institutions. In particular, calls for prudential reforms were
made around the world to create mechanisms to monitor, prevent and resolve the liquidation

10We recall that the main dimensions are market/funding liquidity, idiosyncratic/systematic liquidity,
domestic/global liquidity and inside/outside liquidity (see Chapter 6 on page 347).

11Examples are the flash crash of 6 May 2010 (US stock markets), the flash rally of 15 October 2014 (US
Treasury bonds), the Swiss Franc move of 15 January 2015 (removal of CHF pleg to EUR) and the market
dislocation of 24 August 2015 (stock markets and US ETFs).
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of financial institutions without the need for government intervention. Consequently, a vast
program of financial and institutional reforms was undertaken around the world.

8.1.3.1 A new financial regulatory structure

As explained in the introduction of this chapter, the Financial Stability Board is an
international oversight institution created in April 2009 to monitor the stability of the
global financial system, and not only the activities of banking and insurance industries12.
Indeed, the 2008 GFC also highlighted the increasing reliance of large institutions on the
shadow banking system. This refers to the broad range of short-term financing products and
activities performed by non-bank actors in the financial markets and therefore historically
not subject to the same regulatory supervision as banking activities. This explained that
the FSB has also the mandate to oversee the systemic risk induced by shadow banking
entities13. Besides the analysis of the financial system, the main task of the FSB is the
identification of systemically important financial institutions (SIFI). FSB (2010) defines
them as institutions whose “distress or disorderly failure, because of their size, complexity
and systemic interconnectedness, would cause significant disruption to the wider financial
system and economic activity”. It distinguishes between three types of SIFIs:

1. G-SIBs correspond to global systemically important banks;

2. G-SIIs designate global systemically important insurers;

3. the third category is defined with respect to the two previous ones; it incorporates
other SIFIs than banks and insurers (non-bank non-insurer global systemically im-
portant financial institutions or NBNI G-SIFIs).

Every year since 2013, the FSB publishes the list of G-SIFIs. In Tables 8.1 and 8.2, we
report the 2018 list of G-SIBs and 2016 list of G-SIIs14. At this time, NBNI G-SIFIs are
not identified, because the assessment methodology is not achieved15.

TABLE 8.1: List of global systemically important banks (November 2018)
Agricultural Bank of China Bank of America Bank of China
Bank of New York Mellon Barclays BNP Paribas
China Construction Bank Citigroup Credit Suisse
Deutsche Bank Goldman Sachs Crédit Agricole
BPCE HSBC ICBC
ING Bank JPMorgan Chase Mitsubishi UFJ FG
Mizuho FG Morgan Stanley Royal Bank of Canada
Santander Société Générale Standard Chartered
State Street Sumitomo Mitsui FG UBS
UniCredit Wells Fargo

Source: FSB (2018b), 2018 List of Global Systemically Important Banks.

12For these two financial sectors, the FSB collaborates with the Basel Committee on Banking Supervision
and the International Association of Insurance Supervisors (IAIS).

13In this last case, the FSB relies on the works of the International Organization of Securities Commissions
(IOSCO).

14The list has not been updated since 2016 because FSB and IAIS are in discussion for considering a new
framework for the assessment and mitigation of systemic risk in the insurance sector.

15See the discussion on page 466.
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TABLE 8.2: List of global systemically important insurers (November 2016)

Aegon Allianz AIG
Aviva AXA MetLife
Ping An Group Prudential Financial Prudential plc

Source: FSB (2016), 2016 List of Global Systemically Important Insurers.

Systemic risk is also monitored at the regional level with the European Systemic Risk
Board (ESRB) for the European Union and the Financial Stability Oversight Council
(FSOC) for the United States. The ESRB was established on 16 December 2010 and is
part of the European System of Financial Supervision (ESFS), the purpose of which is to
ensure supervision of the EU financial system16. As established under the Dodd-Frank re-
form in July 2010, the FSOC is composed of the Secretary of the Treasury, the Chairman
of the Federal Reserve and members of US supervision bodies (CFTC, FDIC, OCC, SEC,
etc.).

The global financial crisis had also an impact on the banking supervision structure, in
particular in the US and Europe. Since 2010, this is the Federal Reserve Board which is in
charge to directly supervise large banks and any firm designated as systemically important
by the FSOC (Murphy, 2015). The other banks continue to be supervised by the Federal
Deposit Insurance Corporation (FDIC) and the Office of the Comptroller of the Currency
(OCC). In Europe, each bank was supervised by its national regulators until the establish-
ment of the Single Supervisory Mechanism (SSM). Starting from 4 November 2014, large
European banks are directly supervised by the European Central Bank (ECB), while na-
tional supervisors are in a supporting role. This concerns about 120 significant banks and
represent 80% of banking assets in the euro area. For each bank supervised by the ECB,
a joint supervisory team (JST) is designated. Its main task is to perform the Supervisory
Review and Evaluation Process (SREP), propose the supervisory examination programme,
implement the approved supervisory decisions and ensure coordination with the on-site in-
spection teams and liaise with the national supervisors. Public awareness of the systemic
risk has also led some countries to reform national supervision structures. For instance in
the United Kingdom, the Financial Services Authority (FSA) is replaced in April 2013 by
three new supervisory bodies: the Financial Policy Committee (FPC), which is responsible
for macro-prudential regulation, the Prudential Regulation Authority (PRA), which is re-
sponsible for micro-prudential regulation of financial institutions and the Financial Conduct
Authority (FCA), which is responsible for markets regulation.

Remark 88 The 2008 Global Financial Crisis has also impacted other financial sectors
than the banking sector, but not to the same degree. Nevertheless, the powers of existing
authorities have been expanded in asset management and markets regulation (ESMA, SEC,
CFTC). In 2010, the European Insurance and Occupational Pensions Authority (EIOPA)
was established in order to ensure a general supervision at the level of the European Union.

8.1.3.2 A myriad of new standards

Reforms of the financial regulatory framework were also attempted around the world in
order to protect the consumers. Thus, the Dodd-Frank Wall Street Reform and Consumer

16Besides the ESRB, the ESFS comprises the European Banking Authority (EBA), the European In-
surance and Occupational Pensions Authority (EIOPA), the European Securities and Markets Authority
(ESMA) and the Joint Committee of the European Supervisory Authorities.
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Protection Act was signed into law in the US in July 2010. It is the largest financial regula-
tion overhaul since 1930. Besides the reform of the US financial regulatory structure, it also
concerns investment advisers, hedge funds, insurance, central counterparties, credit rating
agencies, derivatives, consumer financial protection, mortgages, etc. One of the most famous
propositions is the Volcker rule, which prohibits a bank from engaging in proprietary trading
and from owning hedge funds and private equity funds. Another controversial proposition
is the Lincoln amendment (or swaps push-out rule), which would prohibit federal assistance
to swaps entities.

In Europe, directives on the regulation of markets in financial instruments (MiFID 1 and
2) from 2007 to 2014 as well as regulations on packaged retail and insurance-based invest-
ment products (PRIIPS) with the introduction of the key information document (KID) in
2014 came to reinforce the regulation and transparency of financial markets and the protec-
tion of investors. European Market Infrastructure Regulation (EMIR) is another important
European Union regulation, whose aim is to increase the stability of the OTC derivative
markets. It introduces reporting obligation for OTC derivatives (trade repositories), clearing
obligation for eligible OTC derivatives, independent valuation of OTC derivatives, common
rules for central counterparties and post-trading supervisory.

However, the most important reforms concern the banking sector. Many standards of
the Basel III Accord are directly related to systemic risk. Capital requirements have been
increased to strengthen the safety of banks. The leverage ratio introduces constraints to
limit the leverage of banks. The aim of liquidity ratios (LCR and NSFR) is to reduce the
liquidity mismatch of banks. Stress testing programs have been highly developed. Another
important measure is the designation of systemically important banks17, which are subject
to a capital surcharge ranging from 1% to 3.5%. All these micro-prudential approaches tend
to mitigate idiosyncratic factors. However, common factors are also present in the Basel
III Accord. Indeed, the Basel Committee has introduced a countercyclical capital buffer
in order to increase the capital of banks during excessive credit growth and to limit the
impact of common factors on the systemic risk. Another important change is the careful
consideration of counterparty credit risk. This includes of course the 1.25 factor to calculate
the default correlation ρ (PD) in the IRB approach18, but also the CVA capital charge. The
promotion of CCPs since 2010 is also another example to limit network effects and reduce
the direct interconnectedness between banks. Last but not least, the stressed ES of the
Basel III Accord had a strong impact on the capital requirements for market risk.

Remark 89 Another important reform concerns resolution plans, which describe the
banks’s strategy for rapid resolution if its financial situation were to deteriorate or if it
were to default. In Europe, the Bank Recovery and Resolution Directive (BRRD) applies
in all banks and large investment firms since January 2015. In the United States, the or-
derly liquidation authority (OLA) of the Dodd-Frank Act provides a theoretical framework
for bank resolution19. In Japan, a new resolution regime became effective in March 2014
and ensures that a defaulted bank will be resolved via a bridge bank, where certain assets
and liabilities are transferred. More recently, the FSB achieves TLAC standard for global
systemically important banks. All these initiatives seek to build a framework to resolve a
bank failure without public intervention.

17It concerns both global (G-SIB) and domestic (D-SIB) systemically important banks.
18See Footnote 70 on page 184.
19Bank resolution plans can be found at the following web page: www.federalreserve.gov/bankinforeg

/resolution-plans.htm.

http://www.federalreserve.gov/
http://www.federalreserve.gov/
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8.2 Systemic risk measurement
They are generally two ways of identify SIFIs. The first one is proposed by supervisors

and considers firm-specific information that are linked to the systemic risk, such as the size
or the leverage. The second approach has been extensively used by academics and considers
market information to measure the impact of the firm-specific default on the entire system.

8.2.1 The supervisory approach
In what follows, we distinguish between the three categories defined by the FSB: banks,

insurers and non-bank non-insurer financial institutions.

8.2.1.1 The G-SIB assessment methodology

In order to measure the systemic risk of a bank, BCBS (2014g) considers 12 indicators
across five large categories. For each indicator, the score of the bank (expressed in basis
points) is equal to the bank’s indicator value divided by the corresponding sample total20:

Indicator Score = Bank Indicator
Sample Total × 104

The indicator scores are then averaged to define the category scores and the final score.
The scoring system is summarized in Table 8.3. Each category has a weight of 20% and
represents one dimension of systemic risk. The size effect (too big too fail) corresponds to
the first category, but is also present in all other categories. Network effects are reflected in
category 2 (interconnectedness) and category 4 (complexity). The third category measures
the degree of critical functions, while the cross-jurisdictional activity tends to identify global
banks.

TABLE 8.3: Scoring system of G-SIBs
Category Indicator Weight

1 Size 1 Total exposures 1/5

2
2 Intra-financial system assets 1/15

Interconnectedness 3 Intra-financial system liabilities 1/15
4 Securities outstanding 1/15

3

5 Payment activity 1/15
Substitutability/financial 6 Assets under custody 1/15
institution infrastructure 7 Underwritten transactions in 1/15debt and equity markets

4 Complexity
8 Notional amount of OTC derivatives 1/15
9 Trading and AFS securities 1/15
10 Level 3 assets 1/15

5 Cross-jurisdictional activity 11 Cross-jurisdictional claims 1/10
12 Cross-jurisdictional liabilities 1/10

An example of the score computation is given in Table 8.4. It concerns the G-SIB score
of BNP Paribas in 2014. Using these figures, the size score is equal to:

Score = 2 032
66 313 = 3.06%

20The sample consists of the largest 75 banks defined by the Basel III leverage ratio exposure measure.
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TABLE 8.4: An example of calculating the G-SIB score

Category Indicator
Indicator 

value
(1)

Sample 

total
(1)

Indicator 

score
(2)

Category 

score
(2)

Size Total exposures 2,032 66,313 306 306

Intra-financial system assets 205 7,718 266

Intra-financial system liabilities 435 7,831 556

Securities outstanding 314 10,836 290

Payment activity 49,557 1,850,755 268

Assets under custody 4,181 100,012 418

Underwritten transactions in debt and 

equity markets
189 4,487 422

Notional amount of OTC derivatives 39,104 639,988 611

Trading and AFS securities 185 3,311 559

Level 3 assets 21 595 346

Cross-jurisdictional claims 877 15,801 555

Cross-jurisdictional liabilities 584 14,094 414

Final score 407
(1)

The figures are expressed in billion of EUR.
(2)

The figures are expressed in bps.

Cross-jurisdictional activity 485

Interconnectedness 370

Substitutability/financial 

insitution infrastructure
369

Complexity 505

Source: BCBS (2014), G-SIB Framework: Denominators; BNP Paribas (2014), Disclosure for
G-SIBs indicators as of 31 December 2013.

The interconnectedness score is an average of three indicator scores. We obtain:

Score = 1
3

(
205

7 718 + 435
7 831 + 314

10 836

)
= 2.656% + 5.555% + 2.898%

3
= 3.70%

The final score is an average of the five category scores:

Score = 1
5 (3.06% + 3.70% + 3.69% + 5.05% + 4.85%)

= 4.07%

Depending on the score value, the bank is then assigned to a specific bucket, which is used
to calculate its specific higher loss absorbency (HLA) requirement. The thresholds used to
define the buckets are:

1. 130-229 for Bucket 1 (+1.0% CET1);

2. 230-329 for Bucket 2 (+1.5% CET1);

3. 330-429 for Bucket 3 (+2.0% CET1);

4. 430-529 for Bucket 4 (+2.5% CET1);

5. and 530-629 for Bucket 5 (+3.5% CET1).

For instance, the G-SIB score of BNP Paribas was 407 bps. This implies that BNP Paribas
belonged to Bucket 3 and the additional buffer was 2% common equity tier 1 at the end of
2014.
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In November 2018, the FSB has published the updated list of G-SIBs and the required
level of additional loss absorbency. There are no banks in Bucket 5. The most G-SIB is
JPMorgan Chase, which is assigned to Bucket 4 (2.5% of HLA requirement). It is followed
by Citigroup, Deutsche Bank and HSBC (Bucket 3 and 2.0% of HLA requirement). Bucket 2
is composed of 8 banks (Bank of America, Bank of China, Barclays, BNP Paribas, Goldman
Sachs, ICBC, Mitsubishi UFJ FG and Wells Fargo). The 17 remaining banks given in Table
8.1 on page 460 form Bucket 1. The situation has changed since the first publication in
November 2011. Generally, the number of G-SIBs is between 28 and 30 banks. Depending
on the year, the list may include BBVA, ING, Nordea and Royal Bank of Scotland. Since
2011, we observe that the number of banks in Buckets 4 and 3 generally decreases, while
the number of banks in Bucket 2 increases. For instance, in November 2015, Buckets 4 and
3 were composed of two banks (HSBC and JPMorgan Chase) and four banks (Barclays,
BNP Paribas, Citigroup and Deutsche Bank).

Remark 90 The FSB and the BCBS consider a relative measure of the systemic risk. They
first select the universe of the 75 largest banks and then defines a G-SIB as a bank which
has a total score which is higher than the average score21. This procedure ensures that there
are always systemic banks. Indeed, if the scores are normally distributed, the number of
systemic banks is half the number of banks in the universe. This explains that the number
of G-SIBs is around 30.

Roncalli and Weisang (2015) reported the average rank correlation (in %) between the
five categories for the G-SIBs as of end 2013:

100.0
84.6 100.0
77.7 63.3 100.0
91.5 94.5 70.1 100.0
91.4 90.6 84.2 95.2 100.0


We notice the high correlation coefficients22 between the first (size), second (interconnect-
edness), fourth (complexity) and fifth categories (cross-jurisdictional activity). This is not
surprising that G-SIBs are the largest banks in the world. In fact, the high correlation be-
tween the five measures masks the multifaceted reality of systemic risk. This is explained
by the homogeneous nature of global systemically important banks in terms of their busi-
ness model. Indeed, almost all these financial institutions are universal banks mixing both
commercial and investment banking.

Besides the HLA requirement, the FSB in consultation with the BCBS has published in
November 2015 its proposed minimum standard for ‘total loss absorbing capacity’ (TLAC).
According to FSB (2015d), “the TLAC standard has been designed so that failing G-SIBs
will have sufficient loss-absorbing and recapitalization capacity available in resolution for
authorities to implement an orderly resolution that minimizes impacts on financial stability,
maintains the continuity of critical functions, and avoids exposing public funds to loss”. In
this context, TLAC requirements would be between 8% to 12%. This means that the total
capital would be between 18% and 25% of RWA for G-SIBs23 as indicated in Figure 8.2.

Remark 91 Recently, the scoring system has slightly changed with the addition of a trading
volume indicator in the third category. The other categories and weights remain unchanged

21It is equal to 104/75 ≈ 133.
22The highest correlation is between Category 4 and Category 5 (95.2%) whereas the lowest correlation

is between Category 2 and Category 3 (63.3%).
23Using Table 1.5 on page 21, we deduce that the total capital is equal to 6% of tier 1 plus 2% of tier 2

plus 2.5% of conservation buffer (CB) plus 1%− 3.5% of systemic buffer (HLA) plus 8%− 12% of TLAC.
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4.5%
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1− 3.5%

8− 12%

18− 25%

FIGURE 8.2: Impact of the TLAC on capital requirements

except the indicators underwritten transactions in debt and equity markets and trading vol-
ume, whose weight is equal to 1/30 (BCBS, 2018).

8.2.1.2 Identification of G-SIIs

In the case of insurers, the International Association of Insurance Supervisors (IAIS)
has developed an approach similar to the Basel Committee to measure global systemically
important insurers (or G-SIIs). The final score is an average of five category scores: size,
interconnectedness, substitutability, non-traditional and non-insurance (NTNI) activities
and global activity. Contrary to the G-SIB scoring system, the G-SII scoring system does
not use an equal weight between the category scores. Thus, a 5% weight is applied to
size, substitutability and global activity, whereas interconnectedness and NTNI activities
represent respectively 40% and 45% of weighting. In fact, the score highly depends on the
banking activities (derivatives trading, short term funding, guarantees, etc.) of the insurance
company24.

8.2.1.3 Extension to NBNI SIFIs

In March 2015, the FSB published a second consultation document, which proposed
a methodology for the identification of NBNI SIFIs. The concerned financial sectors were
finance companies, market intermediaries, asset managers and their funds. The scoring
system was an imitation of the G-SIFI scoring system with the same five categories. As
noted by Roncalli and Weisang (2015), this scoring system was not satisfying, because it
failed to capture the most important systemic risk of these financial institutions, which is
the liquidity risk. Indeed, a large amount of redemptions may create fire sales and affect
the liquidity of the underlying market. This liquidity mainly depends on the asset class. For
instance, we do not face the same risk when investing in an equity fund and in a bond fund.
Finally, the FSB has decided to postpone the assessment framework for NBNI G-SIFIs and
to work specifically on financial stability risks from asset management activities.

24See IAIS (2013a) on page 20.
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8.2.2 The academic approach
Academics propose various methods to measure the systemic risk. Even if they are

heterogenous, most of them share a common pattern. They are generally based on publicly
market data25. Among these different approaches, three prominent measures are particularly
popular: the marginal expected shortfall, the delta conditional value-at-risk (∆ CoVaR) and
the systemic risk measure (SRISK).

Remark 92 In what follows, we define the different systemic risk measures and derive their
expression in the Gaussian case. Non-Gaussian and non-parametric estimation methods are
presented in Chapters 10 and 11.

8.2.2.1 Marginal expected shortfall

This measure has been proposed by Acharya et al. (2017). Let wi and Li be the exposure
of the system to institution i and the corresponding normalized random loss. We note
w = (w1, . . . , wn) the vector of exposures. The loss of the system is equal to:

L (w) =
n∑
i=1

wi · Li

We recall that the expected shortfall ESα (w) with a confidence level α is the expected loss
conditional that the loss is greater than the value-at-risk VaRα (w):

ESα (w) = E [L | L ≥ VaRα (w)]

The marginal expected shortfall of institution i is then equal to:

MESi = ∂ ESα (w)
∂ wi

= E [Li | L ≥ VaRα (w)] (8.3)

In the Gaussian case (L1, . . . , Ln) ∼ N (µ,Σ), we have found that26:

MESi = µi +
φ
(
Φ−1 (α)

)
(1− α)

√
w>Σw

· (Σw)i

Another expression of MES is then:

MESi = µi + βi (w) · (ESα (w)− E (L)) (8.4)

where βi (w) is the beta of the institution loss with respect to the total loss:

βi (w) = cov (L,Li)
σ2 (L) =

(Σw)i
w>Σw

Acharya et al. (2017) approximated the MES measure as the expected value of the stock
return Ri when the return of the market portfolio Rm is below the 5% quantile:

MESi = −E
[
Ri | Rm ≤ F−1 (5%)

]
where F is the cumulative distribution function of the market return Rm. We have:

MESi = − 1
card (T)

∑
t∈T

Ri,t

25The reason is that academics do not have access to regulatory or private data.
26See Equation (2.18) on page 107.
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where T represents the set of trading days, which corresponds to the 5% worst days for
the market return. Another way of implementing the MES measure is to specify the com-
ponents of the system and the confidence level α for defining the conditional expectation.
For instance, the system can be defined as the set of the largest banks and wi is the size of
Bank i (measured by the market capitalization or the total amount of assets).

Example 76 We consider a system composed of 3 banks. The total assets managed by these
banks are respectively equal to $139, $75 and $81 bn. We assume that the annual normalized
losses are Gaussian. Their means are equal to zero whereas their standard deviations are set
equal to 10%, 12% and 15%. Moreover, the correlations are given by the following matrix:

C =

 100%
75% 100%
82% 85% 100%


By considering a 95% confidence level, the value-at-risk of the system is equal to $53.86

bn. Using the analytical results given in Section 2.3 on page 104, we deduce that the
systemic expected shortfall ES95% of the entire system reaches the amount of $67.55 bn.
Finally, we calculate the MES and obtain the values reported in Table 8.5. The MES is
expressed in %. This means that if the total assets managed by the first bank increases by
$1 bn, the systemic expected shortfall will increase by $0.19 bn. In the fourth column of the
table, we have indicated the risk contribution RCi, which is the product of the size wi and
the marginal expected shortfall MESi. This quantity is also called the systemic expected
shortfall of institution i:

SESi = RCi = wi ·MESi
We have also reported the beta coefficient βi (w) (expressed in bps). Because we have
µi = 0, we verify that the marginal expected shortfall is equal to the beta times the systemic
expected shortfall.

TABLE 8.5: Risk decomposition of the 95% systemic expected shortfall

Bank wi MESi SESi βi (w)
βi (w?)(in $ bn) (in %) (in $ bn) (in bps)

1 139 19.28 26.80 28.55 0.84
2 75 22.49 16.87 33.29 0.98
3 81 29.48 23.88 43.64 1.29

ESα (w) 67.55

The marginal expected shortfall can be used to rank the relative systemic risk of a set
of financial institutions. For instance, in the previous example, this is the third bank that
is the most risky according to the MES. However, the first bank, which has the lowest
MES value, has the highest systemic expected shortfall, because its size is larger than the
two other banks. This is why we must not confuse the relative (or marginal) risk and the
absolute risk.

The marginal expected shortfall has been criticized because it measures the systematic
risk of a financial institution, and not necessarily its systemic risk. In Table 8.5, we give the
traditional beta coefficient βi (w?), which is calculated with respect to the relative weights
w?i = wi/

∑n
j=1 wj . As already shown in Equation (8.4), ranking the financial institutions

by their MES is equivalent to rank them by their beta coefficients. In practice, we can
nevertheless observe some minor differences because stock returns are not exactly Gaussian.
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8.2.2.2 Delta conditional value-at-risk

Adrian and Brunnermeier (2016) define the CoVaR as the value-at-risk of the system
conditional on some event Ei of institution i:

Pr {L (w) ≥ CoVaRi (Ei)} = α

Adrian and Brunnermeier determine the risk contribution of institution i as the difference
between the CoVaR conditional on the institution being in distressed situation and the
CoVaR conditional on the institution being in normal situation:

∆ CoVaRi = CoVaRi (Di = 1)− CoVaRi (Di = 0)

where Di indicates if the bank is in distressed situation or not. Adrian and Brunnermeier
use the value-at-risk to characterize the distress situation:

Di = 1⇔ Li = VaRα (Li)

whereas the normal situation corresponds to the case when the loss of institution i is equal
to its median27:

Di = 0⇔ Li = m (Li)
Finally, we obtain:

∆ CoVaRi = CoVaRi (Li = VaRα (Li))− CoVaRi (Li = m (Li)) (8.5)

In the Gaussian case and using the previous notations, we have:(
Li

L (w)

)
∼ N

((
µi
w>µ

)
,

(
σ2
i (Σw)i

(Σw)i w>Σw

))
We deduce that28:

L (w) | Li = `i ∼ N
(
µ (`i) , σ2 (`i)

)
where:

µ (`i) = w>µ+ (`i − µi)
σ2
i

· (Σw)i

and:

σ2 (`i) = w>Σw −
(Σw)2

i

σ2
i

It follows that:

CoVaRi (Li = `) = µ (`i) + Φ−1 (α)σ (`i)

= w>µ+ (`i − µi)
σ2
i

(Σw)i + Φ−1 (α)

√
w>Σw −

(Σw)2
i

σ2
i

Because VaRα (Li) = µi + Φ−1 (α)σi and m (Li) = E (Li) = µi, we obtain:

∆ CoVaRi = CoVaRi

(
Li = µi + Φ−1 (α)σi

)
− CoVaRi (Li = µi)

= Φ−1 (α) ·
(Σw)i
σi

= Φ−1 (α) ·
n∑
j=1

wjρi,jσj

27In this case, we have m (Li) = VaR50% (Li).
28We use results of the conditional expectation given in Appendix A.2.2.4 on page 1062.
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where ρi,j is the correlation between banks i and j. Another expression of ∆ CoVaRi is:

∆ CoVaRi = Φ−1 (α) · σ2 (L) · βi (w)
σi

(8.6)

The Gaussian case highlights different properties of the CoVaR measure:

• If the losses are independent meaning that ρi,j = 0, the Delta CoVaR is the unexpected
loss, which is the difference between the nominal value-at-risk and the nominal median
(or expected) loss:

∆ CoVaRi = Φ−1 (α) · wi · σi
= wi · (VaRα (Li)−m (Li))
= wi ·ULα (Li)

• If the losses are perfectly dependent meaning that ρi,j = 1, the Delta CoVaR is the
sum of the unexpected losses over all financial institutions:

∆ CoVaRi = Φ−1 (α) ·
n∑
j=1

wjσj

=
n∑
j=1

wj ·ULα (Lj)

In this case, the Delta CoVaR measure does not depend on the financial institution.

• The sum of all Delta CoVaRs is a weighted average of the unexpected losses:
n∑
i=1

∆ CoVaRi = Φ−1 (α) ·
n∑
i=1

n∑
j=1

wjρi,jσj

= Φ−1 (α) ·
n∑
j=1

wjσj

n∑
i=1

ρi,j

= n
n∑
j=1

ρ̄j · wj ·ULα (Lj)

where ρ̄j is the average correlation between institution j and the other institutions
(including itself). This quantity has no financial interpretation and is not a coherent
risk measure satisfying the Euler allocation principle.

Remark 93 In practice, losses are approximated by stock returns. Empirical results show
that MES and CoVaR measures may give different rankings. This can be easily explained
in the Gaussian case. Indeed, measuring systemic risk with MES is equivalent to analyze
the beta of each financial institution whereas the CoVaR approach consists of ranking them
by their beta divided by their volatility. If the beta coefficients are very close, the CoVaR
ranking will be highly sensitive to the volatility of the financial institution’s stock.

We consider Example 76 and report in Table 8.6 the calculation of the 95% CoVaR
measure. If Bank 1 suffers a loss larger than its 95% value-at-risk ($22.86 bn), it induces a
Delta CoVaR of $50.35 bn. This systemic loss includes the initial loss of Bank 1, but also
additional losses of the other banks due to their interconnectedness. We notice that CoVaR
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and MES produce the same ranking for this example. However, if we define the systemic
risk as the additional loss on the other components of the system29, we find that the stress
on Bank 2 induces the largest loss on the other banks30.

TABLE 8.6: Calculation of the 95% CoVaR measure

Bank wi VaRα (Li) CoVaRi (E) ∆ CoVaRi

(in $ bn) (in %) (in $ bn) Di = 1 Di = 0 (in $ bn)
1 139 16.45 22.86 69.48 19.13 50.35
2 75 19.74 14.80 71.44 22.50 48.94
3 81 24.67 19.98 67.69 16.37 51.32

The dependence function between financial institutions is very important when calcu-
lating the CoVaR measure. For instance, we consider again Example 76 with a constant
correlation matrix C3 (ρ). In Figure 8.3, we represent the relationship between ∆ CoVaRi

and the uniform correlation ρ. When losses are independent, we obtain the value-at-risk of
each bank. When losses are comonotonic, ∆ CoVaRi is the sum of the VaRs. Because losses
are perfectly correlated, a stress on one bank is entirely transmitted to the other banks.

FIGURE 8.3: Impact of the uniform correlation on ∆ CoVaRi

8.2.2.3 Systemic risk measure

Another popular risk measure is the systemic risk measure (SRISK) proposed by Acharya
et al. (2012), which is a new form of the systemic expected shortfall of Acharya et al. (2017)
and which was originally developed by Brownlees and Engle (2016) in 2010. Using a stylized

29This additional loss is equal to CoVaRi−wi ·VaRα (Li).
30The additional loss (expressed in $ bn) is equal to 27.49 for Bank 1, 34.13 for Bank 2 and 31.33 for

Bank 3.
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balance sheet, the capital shortfall CSi,t of institution i at time t is the difference between
the required capital Ki,t and the market value of equity Vi,t:

CSi,t = Ki,t − Vi,t

We assume that Ki,t is equal to k · Ai,t where Ai,t is the asset value and k is the capital
ratio (typically 8% in Basel II). We also have Ai,t = Di,t + Vi,t where Di,t represents the
debt value31. We deduce that:

CSi,t = k · (Di,t + Vi,t)− Vi,t
= k ·Di,t − (1− k) · Vi,t

We define the capital shortfall of the system as the total amount of capital shortfall CSi,t:

CSt =
n∑
i=1

CSi,t

Acharya et al. (2012) define the amount of systemic risk as the expected value of the capital
shortfall conditionally to a systemic stress S:

SRISKt = E [CSt+1|S]

= E

[
n∑
i=1

CSi,t+1

∣∣∣∣∣ S
]

=
n∑
i=1

k · E [Di,t+1|S]− (1− k) · E [Vi,t+1|S]

They also assume that E [Di,t+1|S] ≈ Di,t and:

E [Vi,t+1|S] = (1−MESi,t) · Vi,t

where MESi,t is the marginal expected shortfall conditionally to the systemic risk S. By
using the leverage ratio LRi,t defined as the asset value divided by the market value of
equity:

LRi,t = Ai,t
Vi,t

= 1 + Di,t

Vi,t
,

they finally obtain the following expression of the systemic risk32:

SRISKt =
n∑
i=1

(k · (LRi,t − 1)− (1− k) · (1−MESi,t)) · Vi,t

We notice that the systemic risk can be decomposed as the sum of the risk contributions
SRISKi,t. We have:

SRISKi,t = ϑi,t · Vi,t (8.7)

with:
ϑi,t = k · LRi,t + (1− k) ·MESi,t−1 (8.8)

In these two formulas, k and MESi,t are expressed in % while SRISKi,t and Vi,t are measured
in $. SRISKi,t is then a linear function of the market capitalization Vi,t, which is a proxy
of the capital in this model. The scaling factor ϑi,t depends on 4 parameters:

31Here, we assume that the bank capital is equal to the market value, which is not the case in practice.
32We have Di,t = (LRi,t − 1) · Vi,t.
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1. k is the capital ratio. In the model, we have Ki,t = k ·Ai,t whereas the capital Ki,t is
equal to kRWAi,t in Basel Accords. Under some assumptions, k can be set equal to
8% in the Basel I or Basel II framework. For Basel III and Basel IV, we must use a
higher value, especially for SIFIs.

2. LRi,t is the leverage ratio of institution i. The higher the leverage ratio, the higher
the systemic risk.

3. The systemic risk is an increasing function of the marginal expected shortfall. Because
we have MESi,t ∈ [0, 1], we deduce that:

(k · LRi,t − 1) · Vi,t ≤ SRISKi,t ≤ k · (LRi,t − 1) · Vi,t

A high value of the MES decreases the market value of equity, and then the absorbency
capacity of systemic losses.

4. The marginal expected shortfall depends on the stress scenario. In the different pub-
lications on the SRISK measure, the stress S generally corresponds to a 40% drop of
the equity market:

MESi,t = −E [Ri,t+1 | Rm,t+1 ≤ −40%]

Example 77 We consider a universe of 4 banks, whose characteristics are given in the
table below33:

Bank Vi,t LRi,t µi σi ρi,m
1 57 23 0% 25% 70%
2 65 28 0% 24% 75%
3 91 13 0% 22% 68%
4 120 20 0% 20% 65%

We assume that the expected return µm and the volatility σm of the equity market are equal
to 0% and 17%.

Using the conditional expectation formula, we have:

E [Ri,t+1 | Rm,t+1 = S] = µi + ρi,m ·
(S− µm)
σm

· σi

We can then calculate the marginal expected shortfall and deduce the scaling factor and
the systemic risk contribution thanks to Equations (8.7) and (8.8). Results are given in
Table 8.7. In this example, the main contributor is bank 2 because of its high leverage ratio
followed by bank 4 because of its high market capitalization. In Table 8.8, we show how the
SRISK measure changes with respect to the stress S.

According to Acharya et al. (2012), the most important SIFIs in the United States
were Bank of America, JPMorgan Chase, Citigroup and Goldman Sachs in 2012. They also
noticed that four insurance companies were also in the top 10 (MetLife, Prudential Financial,
AIG and Hertford Financial). Engle et al. (2015) conducted the same exercise on European
institutions with the same methodology. They found that the five most important SIFIs in
Europe were Deutsche Bank, Crédit Agricole, Barclays, Royal Bank of Scotland and BNP
Paribas. Curiously, HSBC was only ranked at the 15th place and the first insurance company
AXA was 16th. This ranking system is updated in a daily basis by the Volatility Institute at

33The market capitalization Vi,t is expressed in $ bn.
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TABLE 8.7: Calculation of the SRISK measure (S = −40%)

Bank MESi,t ϑi,t
SRISKi,t

(in %) (in $ bn) (in %)
1 41.18 1.22 69.47 22.11
2 42.35 1.63 105.93 33.70
3 35.20 0.36 33.11 10.54
4 30.59 0.88 105.77 33.65

TABLE 8.8: Impact of the stress S on SRISK

Bank S = −20% S = −40% S = −60%
(in $ bn) (in %) (in $ bn) (in %) (in $ bn) (in %)

1 58.7 22.6 69.5 22.1 80.3 21.7
2 93.3 36.0 105.9 33.7 118.6 32.1
3 18.4 7.1 33.1 10.5 47.8 13.0
4 88.9 34.3 105.8 33.7 122.7 33.2

New York University34. In Tables 8.9, 8.10 and 8.11, we report the 10 largest systemic risk
contributions by region at the end of November 2015. The ranking within a region seems
to be coherent, but the difference in the magnitude of SRISK between American, European
and Asian financial institutions is an issue.

Remark 94 The main drawback of the model is that SRISKi,t is very sensitive to the
market capitalization with two effects. The direct effect (SRISKi,t = ϑi,t · Vi,t) implies that
the systemic risk is reduced when the equity market is stressed, whereas the indirect effect
due to the leverage ratio increases the systemic risk. When we analyze simultaneous the two
effects, the first effect is greater. However, we generally observe an increase of the SRISK,
because the marginal expected shortfall is much higher in crisis periods.

8.2.2.4 Network measures

The previous approaches can help to name systemically important financial institutions.
However, they cannot help to understand if there is or not a systemic risk. For instance,
size is not always the right metric for measuring the systemic risk. If we consider the hedge
fund industry, the three most famous bankruptcies are LTCM in 1998 ($4.6 bn), Amaranth
in 2006 ($6.5 bn) and Madoff in 2008 ($65 bn). Even if the loss was very large, the Madoff
collapse could not produce a systemic risk, because it was a Ponzi scheme, meaning that
Madoff assets were not connected to the market. So there were no feedback and spillover
effects. In a similar way, the collapse of Amaranth had no impact on the market, except for
natural gas futures contracts. Therefore, Amaranth was mainly connected to the market via
CCPs. The case of LTCM is completely different, because LCTM was highly leveraged and
connected to banks because of interest rate swaps. These three examples show that size is
not always a good indicator of systemic risk and interconnectedness is a key parameter for
understanding systemic risk. Another issue concerns the sequence of a systemic crisis. In
the previous approaches, the origin of a systemic risk is a stress, but there are some events
that cannot be explained by such models. This is generally the case of flash crashes, for
example the US Stock Market flash crash of 6 May 2010, the US treasury flash crash of

34The internet web page is vlab.stern.nyu.edu.

http://vlab.stern.nyu.edu
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TABLE 8.9: Systemic risk contributions in America (2015-11-27)

Rank institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 Bank of America 49.7 10.75 2.75 11.42
2 Citigroup 44.0 9.52 3.23 10.83
3 JPMorgan Chase 42.6 9.22 3.09 9.74
4 Prudential Financial 37.6 8.13 3.07 19.64
5 MetLife 33.9 7.33 2.85 15.40
6 Morgan Stanley 28.6 6.20 3.50 12.60
7 Banco do Brasil 24.1 5.22 4.00 29.45
8 Goldman Sachs 20.3 4.38 3.21 10.51
9 Manulife Financial 20.1 4.36 3.43 15.04

10 Power Corp of Canada 16.2 3.50 2.82 26.81

Source: Volatility Institute (2015), vlab.stern.nyu.edu.

TABLE 8.10: Systemic risk contributions in Europe (2015-11-27)

Rank institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 BNP Paribas 94.1 8.63 3.42 33.41
2 Crédit Agricole 88.1 8.09 4.22 59.34
3 Barclays 86.3 7.92 4.31 36.60
4 Deutsche Bank 86.1 7.90 4.32 53.61
5 Société Générale 61.3 5.63 3.85 38.74
6 Royal Bank of Scotland 39.5 3.63 3.15 24.23
7 Banco Santander 38.3 3.51 3.79 18.57
8 HSBC 34.5 3.16 2.49 15.96
9 UniCredit 33.1 3.04 3.58 27.21

10 London Stock Exchange 31.3 2.87 2.90 52.67

Source: Volatility Institute (2015), vlab.stern.nyu.edu.

TABLE 8.11: Systemic risk contributions in Asia (2015-11-27)

Rank institution SRISKi,t MESi,t LRi,t(in $ bn) (in %) (in %)
1 Mitsubishi UFJ FG 121.5 9.45 2.41 24.80
2 China Construction Bank 117.3 9.12 2.61 17.01
3 Bank of China 94.5 7.35 2.53 15.21
4 Mizuho FG 93.7 7.29 2.10 31.84
5 Agricultural Bank of China 92.0 7.16 0.66 19.20
6 Sumitomo Mitsui FG 85.7 6.67 2.71 26.99
7 ICBC 58.4 4.54 0.84 13.80
8 Bank of Communications 45.0 3.50 2.47 16.89
9 Industrial Bank 29.4 2.29 1.38 17.94

10 National Australia Bank 27.4 2.13 3.27 13.48

Source: Volatility Institute (2015), vlab.stern.nyu.edu.

http://vlab.stern.nyu.edu
http://vlab.stern.nyu.edu
http://vlab.stern.nyu.edu
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15 October 2014 and the US ETF flash crash of 24 August 2015. These three events have
been extensively studied by US regulators (FRB, SEC and CFTC). However, they never
found the original cause of these crashes. In fact, such systemic risk events are generally
explained by a network risk: small events can propagate in a very dense network in order
to produce a large risk because of spillover effects.

Billio et al. (2012) and Cont et al. (2013) introduce network analysis in order to study
the systemic risk of a financial system. In this case, the nodes of the network correspond
to financial institutions. Their goal is to measure the connectivity and the centrality of
each node in the network. For instance, Figure 8.4 represents the network structure of
the Brazilian banking system estimated by Cont et al. (2013). The idea is to estimate the
contribution of each node to the loss of the system. In this case, the risk contribution depends
on the centrality of the node and the density of the network. In particular, they conclude
that their results “emphasize the contribution of heterogeneity in network structure and
concentration of counterparty exposures to a given institution in explaining its systemic
importance”. The method proposed by Billio et al. (2012) is different since it considers
Granger-causality networks. However, the two approaches pursue the same goal, which is
to propose a measure of connectedness.

FIGURE 8.4: Network structure of the Brazilian banking system

Source: Cont et al. (2013).

Acemoglu et al. (2015) have studied the impact of the complexity on the interbank
market. They showed that network density can enhance financial stability when (external)
shocks are small. But when external shocks are large, a complete network35 is more risky
that a sparse network. This result does not depend on the size of financial institutions.

35It corresponds to a network where a financial institution is connected to all the other financial institu-
tions.
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These different results illustrate that the systemic risk cannot be reduced to the balance
sheet size of financial institutions, but also depends on the connectedness or the density of
the network36. This is why network risks can be an important component of the systemic
risk.
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FIGURE 8.5: A completely connected network
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FIGURE 8.6: A sparse network

36Figures 8.5 and 8.6 show two examples of networks. The first one is a completely connected network,
while the second figure corresponds to a sparse network.
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8.3 Shadow banking system
This section on the shadow banking has been included in this chapter together with

systemic risk because they are highly connected.

8.3.1 Definition
The shadow banking system (SBS) can be defined as financial entities or activities

involved in credit intermediation outside the regular banking system (FSB, 2011; IMF,
2014b). This non-bank credit intermediation complements banking credit, but is not subject
to the same regulatory framework. Another important difference is that “shadow banks are
financial intermediaries that conduct maturity, credit, and liquidity transformation without
access to central bank liquidity or public sector credit guarantees” (Pozsar et al., 2013).
In this context, shadow banks can raise similar systemic risk issues than regular banks in
terms of liquidity, leverage and asset liability mismatch risks.

However, the main characteristic of shadow banking risk is certainly the high intercon-
nectedness within shadow banks and with the banking system. If we describe the shadow
banking system in terms of financial entities, it includes finance companies, broker-dealers
and asset managers, whose activities are essential for the functioning of the banking system.
If we focus on instruments, the shadow banking corresponds to short-term debt securities
that are critical for banks’ funding. In particular, this concerns money and repo markets.
These linkages between the two systems can then create spillover risks, because stress in
the shadow banking system may be transmitted to the rest of the financial system (IMF,
2014b). For instance, run risk in shadow banking is certainly the main source of spillover
effects and the highest concern of systemic risk. The case of money market funds (MMF)
during the 2008 GFC is a good example of the participation of the shadow banking to sys-
temic risk. This dramatic episode also highlights agency and moral hazard problems. Credit
risk transfer using asset-backed commercial paper (ABCP) and structured investment vehi-
cles (SIV) is not always transparent for investors of money market funds. This opacity risk
increases redemption risk during periods of stress (IMF, 2014b). This led the Federal Re-
serve to introduce the ABCP money market mutual fund liquidity facility (AMLF) between
September 2008 and February 2010 in order to support MMFs.

Concepts of shadow banking and NBNI SIFI are very close. To date, the focus was more
on financial entities that can be assimilated to shadow banks or systemic institutions. More
recently, we observe a refocusing on instruments and activities. These two approaches go
together when measuring the shadow banking system.

8.3.2 Measuring the shadow banking
FSB (2015e) defines two measures of the shadow banking system. The broad measure

considers all assets of non-bank financial institutions, while the narrow measure only con-
siders the assets that are part of the credit intermediation chain.

8.3.2.1 The broad (or MUNFI) measure

The broad measure corresponds to the amount of financial assets held by insurance com-
panies, pension funds and other financial intermediaries (OFI). OFIs comprise all financial
institutions that are not central banks (CB), banks, insurance companies (IC), pension funds
(PF), public financial institutions (PFI) or financial auxiliaries (FA). This broad measure
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is also called the MUNFI37 measure of assets. Table 8.12 shows the amount of assets man-
aged by financial institutions and listed in the 2017 monitoring exercise38. Assets rose from
$127.8 tn in 2002 to $339.9 tn in 2016. This growth is explained by an increase in all finan-
cial sectors. In 2016, the MUNFI measure is equal to $159.3 tn representing 46.9% of the
total assets with the following repartition: $29.1 tn for insurance companies (18.2%), $31.0
tn for pension funds (19.4%) and $99.2 tn for other financial intermediaries (62.3%). The
MUNFI measure is then larger than banks’ assets, which are equal to $137.8 tn in 2016.

TABLE 8.12: Assets of financial institutions (in $ tn)

Year CB Banks PFI IC PF OFI FA Total MUNFI
2002 4.7 52.6 11.2 14.9 11.9 32.4 0.2 127.8 59.2 46.3%
2003 5.5 62.2 12.0 19.3 13.8 39.9 0.3 152.9 73.0 47.7%
2004 6.4 73.1 12.1 22.6 15.3 46.3 0.3 176.0 84.2 47.8%
2005 6.8 76.9 11.9 21.4 16.5 49.9 0.2 183.7 87.8 47.8%
2006 7.7 89.5 11.9 25.3 18.3 60.6 0.3 213.6 104.2 48.8%
2007 10.1 110.7 13.0 29.8 19.8 73.4 0.3 257.1 123.0 47.8%
2008 14.5 123.3 14.2 21.2 19.4 65.8 0.4 258.9 106.5 41.1%
2009 15.1 124.1 14.6 23.7 21.9 70.6 0.6 270.6 116.2 43.0%
2010 16.7 129.8 14.8 25.4 24.4 74.8 0.6 286.5 124.6 43.5%
2011 20.3 139.2 15.0 26.2 25.4 75.7 0.7 302.5 127.3 42.1%
2012 22.4 143.5 15.0 27.9 27.4 83.2 0.8 320.1 138.4 43.3%
2013 23.0 142.0 14.7 28.6 28.9 90.9 0.8 328.9 148.4 45.1%
2014 23.2 138.9 14.7 28.8 29.6 94.9 0.8 330.9 153.3 46.3%
2015 23.6 133.5 15.1 28.2 29.6 94.3 0.7 325.0 152.0 46.8%
2016 26.2 137.8 16.0 29.1 31.0 99.2 0.7 339.9 159.3 46.9%

Source: FSB (2018a) and author’s calculations.

Financial assets managed by OFIs are under the scrutiny of the FSB, which has adopted
the following classification: money market funds (MMF), hedge funds (HF), other invest-
ment funds39 (IF), real estate investment trusts and real estate funds (REIT), trust compa-
nies (TC), finance companies (FC), broker-dealers (BD), structured finance vehicles (SFV),
central counterparties (CCP) and captive financial institutions and money lenders40 (CFI).
Table 8.13 gives the repartition of assets by categories. We can now decompose the amount
of $99.2 tn assets reached in 2016 by category of OFIs. 38.1% of these assets concern other
investment funds (equity funds, fixed income funds and multi-asset funds). Broker-dealers
is an important category of OFIs as they represent 8.8% of assets. It is followed by money
market funds (5.1%) and structured finance vehicles (4.5%). We notice that the asset man-
agement industry (money market funds, hedge funds, other investments funds and real
estate investment companies) represents around 50% of OFIs’ assets. The smallest category
concerns central counterparties, whose assets are equal to $404 bn in 2016.

The broad measure suffers from one major shortcoming, because it is an entity-based
measure and not an asset-based measure. It then includes both shadow banking assets
and other assets. This is particularly true for equity assets, which are not shadow banking

37MUNFI is the acronym of ‘monitoring universe of non-bank financial intermediation’.
38This exercise covers 29 countries, including for instance BRICS, Japan, the Euro area, the United States

and the United Kingdom.
39They correspond to equity funds, fixed income funds and multi-asset funds.
40They are institutional units that provide financial services, e.g. holding companies used to channel

financial flows between group entities or treasury management companies.
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TABLE 8.13: Assets of OFIs (in $ tn)
Year MMF HF IF REIT TC FC BD SFV CCP CFI Other
2002 3.2 0.0 5.6 0.2 0.0 2.3 3.2 2.3 0.0 2.0 13.6
2003 3.3 0.0 7.5 0.2 0.0 2.7 3.8 2.7 0.0 2.3 17.3
2004 3.4 0.0 8.9 0.4 0.0 2.9 4.6 3.3 0.0 2.7 20.3
2005 3.4 0.0 10.0 0.5 0.0 2.8 5.0 4.2 0.0 3.5 20.6
2006 4.0 0.0 12.6 0.6 0.1 2.9 5.7 5.1 0.0 3.8 26.0
2007 5.1 0.5 16.2 0.6 0.1 3.0 6.5 6.5 0.0 4.4 30.4
2008 6.0 0.6 17.0 0.6 0.3 3.2 9.3 6.4 0.1 4.2 18.1
2009 5.5 0.6 21.9 0.7 0.5 3.6 7.9 9.0 0.5 4.3 16.0
2010 4.8 0.8 25.0 0.8 0.7 3.8 8.7 7.6 0.5 4.6 17.5
2011 4.5 1.5 24.3 1.0 1.0 3.9 9.1 6.7 0.5 4.4 18.9
2012 4.4 2.5 28.8 1.3 1.5 3.5 9.3 6.2 0.5 4.6 20.5
2013 4.5 2.9 33.5 1.4 2.2 3.3 9.1 5.7 0.4 4.7 23.1
2014 4.7 3.5 35.3 1.5 2.7 3.4 9.6 5.1 0.4 4.5 24.1
2015 5.1 3.5 35.1 1.5 2.9 3.4 8.7 4.7 0.4 4.5 24.5
2016 5.0 3.7 37.8 1.6 3.4 3.4 8.7 4.5 0.4 5.1 25.7

Source: FSB (2018a) and author’s calculations.

TABLE 8.14: Wholesale funding
Banks OFIs

2011 2016 2011 2016

Funding
(% of balance sheet)

Repo 5.82% 5.52% 6.99% 4.14%
ST wholesale 4.74% 5.01% 2.91% 4.04%
LT wholesale 6.94% 7.03% 9.10% 6.45%

Repo
(in $ tn)

Assets 3.33 4.16 3.05 4.01
Liabilities 4.58 4.72 2.92 3.19

Net position −0.60 −0.58 0.14 0.83

assets41. In this context, the FSB has developed more relevant measures. In Figure 8.7, we
have reported the credit assets calculated by the FSB. In 2016, the credit intermediation
by banks was equal to $92 tn. At the same time, credit assets by insurance companies
and pension funds (ICPF) were equal to $22 tn, whereas the credit intermediation by OFIs
peaked at $38 tn. The FSB proposes a sub-decomposition of these credit assets by reporting
the lending assets (loans and receivables). The difference between credit and lending assets
is essentially composed of investments in debt securities. This decomposition is shown in
Figure 8.7. We notice that loans are the main component of banks’ credit assets (76%),
whereas they represent a small part of the credit intermediation by ICPFs (9%). For OFIs,
loans explain 40% of credit assets, but we observe differences between OFIs’ sectors. Finance
companies and broker-dealers are the main contributors of lending by OFIs.

Remark 95 Since 2016, the FSB also monitors the funding liquidity, in particular whole-
sale funding instruments including repurchase agreements (repo). Some figures are given in
Table 8.14. Together, short-term wholesale funding and repos represent 10.5% and 8.1% of
the balance sheet of banks and OFIs. We also notice that OFIs are net providers of cash
from repos to the financial system, whereas banks are net recipients of cash through repos.

41This concerns for instance equity mutual funds and long/short equity hedge funds.
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FIGURE 8.7: Credit assets (in $ tn)

Source: FSB (2018a) and author’s calculations.

8.3.2.2 The narrow measure

Since 2015, the FSB produces a more relevant measure of the shadow banking system,
which is called the narrow measure. The narrow measure is based on the classification of the
shadow banking system by economic functions given in Table 8.15. Each of these economic
functions involves a shadow banking activity, such as non-bank credit intermediation and/or
liquidity/maturity transformation and/or leverage. Moreover, an entity may be classified
into two or more economic functions.

The first economic function is related to redemption risks and concerns forced liquida-
tions in an hostile environment. For instance, the lack of liquidity of some fixed income
instruments implies a premium for the first investors who unwind their positions on money
market and bond funds. In this case, one can observe a run on such funds exactly like a
bank run because investors lose confidence in such products and do not want to be the
last to move. Run risk can then be transmitted to the entire asset class. This risk mainly
concerns collective investment vehicles, whose underlying assets face liquidity issues (fixed
income, real estate). The second and fourth economic functions concern lending and credit
that are conducted outside of the banking system. The third economic function is related
to market intermediation on short-term funding. This includes securities broking services
for market making activities and prime brokerage services to hedge funds. Finally, the last
economic function corresponds to credit securitization.

The FSB uses these five economic functions in order to calculate the narrow measure
defined in Figure 8.8. They consider that pension funds and insurance companies are not
participating to the narrow shadow banking system except credit insurance companies.
Nevertheless, this last category represents less than $200 bn, implying that the narrow
measure principally concerns OFIs. Each OFI is classified or not among the five economic
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TABLE 8.15: Classification of the shadow banking system by economic functions
Economic Definition Typical entity typesFunction

EF1
Management of collective in-
vestment vehicles with features
that are susceptible to runs

Fixed-income funds, mixed
funds, credit hedge funds,
real estate funds

EF2 Loan provision that is depen-
dent on short-term funding

Finance companies, leas-
ing, factoring and consumer
credit companies

EF3

Intermediation of market ac-
tivities that is dependent on
short-term funding or on se-
cured funding of client assets

Broker-dealers, securities
finance companies

EF4 Facilitation of credit creation
Credit insurance compa-
nies, financial guarantors,
monolines

EF5
Securitization-based credit in-
termediation and funding of fi-
nancial entities

Securitization vehicles,
structured finance vehicles,
asset-backed vehicles

Source: FSB (2018a).

functions by the FSB. For instance, equity funds, closed-end funds without leverage and
equity REITs are excluded from the shadow banking estimate. Finally, the FSB also removes
entities that are subsidiaries of a banking group and consolidated at the group level for
prudential purposes42.

TABLE 8.16: Size of the narrow shadow banking (in $ tn)

Year 2010 2011 2012 2013 2014 2015 2016
Banks 129.8 139.2 143.5 142.0 138.9 133.5 137.8
OFIs 74.8 75.7 83.2 90.9 94.9 94.3 99.2
Shadow banking 28.4 30.2 32.9 35.6 39.0 42.0 45.2

Source: FSB (2018a) and author’s calculation.

In Table 8.16, we report the size of the narrow shadow banking and compare it with assets
of banks and OFIs. The narrow measure represents 46% of total assets managed by OFIs.
These shadow banking assets are located in developed countries, in particular in the United
States, Japan, Germany, United Kingdom, Canada and France (see Figure 8.9). We also
notice the weight of China (16%) and the importance of three locations: Cayman Islands,
Luxembourg and Ireland. These countries are generally used as the domicile of complex
mutual funds and alternative investment funds. If we analyze the assets with respect to
economic functions, EF1 represents 71.6% of the assets followed by EF5 (9.6%) and EF3
(8.4%), meaning that the shadow banking system involves in the first instance money market
and credit funds that are exposed to run risks, securitization vehicles and broker-dealer
activities. However, these figures are very different from one country to another country.

42This category represents almost 15% of OFIs’ assets.
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FSB (2018a) provides also network measures between the banking system and OFIs. For
that, it estimates the aggregate balance sheet bilateral exposure between the two sectors by
considering netting exposures within banking groups that are prudentially consolidated:

• assets of banks to OFIs includes loans to institutions, fixed income securities, reverse
repos and investments in money market funds and other investment funds;

• liabilities of banks to OFIs consists of uninsured bank deposits (e.g. certificates of
deposit, notes and commercial paper), reverse repos and other short-term debt in-
struments.

Banki OFIs

R(credit)
Banki

Bank’s credit risk

Bank’s funding risk
R(funding)

Banki

Banks OFIj

R(credit)
OFIj

OFI’s funding risk

OFI’s credit risk
R(credit)

OFIj

FIGURE 8.10: Interconnectedness between banks and OFIs

Linkages between banks and OFIs are represented in Figure 8.10. These linkages measure
the interconnectedness between a set i ∈ I of banks and a set j ∈ J of OFIs. Let ABanki and
AOFIj be the total amount of assets managed by bank i and OFI j. We note ABanki→OFIj and
LBanki→OFIj the assets and liabilities of bank i to OFI j, and AOFIj→Banki and LOFIj→Banki
the assets and liabilities of OFI j to bank i. By construction, we have ABanki→OFIj =
LOFIj→Banki and LBanki→OFIj = AOFIj→Banki . In the bottom panel, we have represented
the linkage from the bank’s perspective. In this case, the credit and funding risks of bank i
are equal to:

R(credit)
Banki = ABanki→OFIs

ABanki

and:
R(funding)

Banki = LBanki→OFIs

ABanki

where the aggregate measures are equal to ABanki→OFIs =
∑
j∈J ABanki→OFIj and

LBanki→OFIs =
∑
j∈J LBanki→OFIj . In the same way, we can calculate the interconnect-

edness from the OFI’s viewpoint as shown in the top panel. As above, we define the credit
and funding risks of OFI j in the following way:

R(credit)
OFIj =

AOFIj→Banks

AOFIj
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and:
R(funding)

OFIj =
LOFIj→Banks

AOFIj

where AOFIj→Banks =
∑
i∈I AOFIj→Banki and LOFIj→Banks =

∑
i∈I LOFIj→Banki . Using

the Shadow Banking Monitoring Dataset 2017, FSB (2018a) finds the following average
interconnectedness ratios:

Ratio R(credit)
Banks R(funding)

Banks R(credit)
OFIs R(funding)

OFIs
2008 6.8% 6.7% 9.5% 9.8%
2016 5.6% 5.4% 6.3% 6.7%

This means that 5.4% of bank’s funding depends on the shadow banking system, while the
credit risk of banks to OFIs is equal to 5.6% of bank’s assets. We also notice that 6.7% of
OFIs’ assets are provided by banks, while investments of banks into OFIs reaches 6.3%. It is
interesting to compare these figures with those during or before the 2008 Global Financial
Crisis. We observe that the interconnectedness between banks and OFIs has decreased. For
example, the OFI use of funding from banks was 9.8%, while the bank use of funding from
OFIs was 6.7%. These figures give an overview of the linkages between banking and OFI
sectors. In practice, the interconnectedness is stronger because these ratios are calculated
by netting exposures within banking groups. It is obvious that linkages are higher in these
entities.

8.3.3 Regulatory developments of shadow banking
The road map for regulating shadow banking, which is presented in FSB (2013), focuses

on four key principles:

• measurement and analysis of the shadow banking;

• mitigation of interconnectedness risk between banks and shadow banking entities;

• reduction of the run risk posed by money market funds;

• and improvement of transparency in securitization and more generally in complex
shadow banking activities.

8.3.3.1 Data gaps

As seen in the previous section, analyzing the shadow banking system is a big challenge,
because it is extremely difficult to measure it. In order to address this issue, FSB and
IMF are in charge of the implementation of the G-20 data gaps initiative (DGI). DGI
is not specific to shadow banking, but is a more ambitious program for monitoring the
systemic risk of the global financial system43. However, it is obvious that shadow banking
begins to be an important component of DGI. This concerns in particular short-term debt
instruments, bonds, securitization and repo markets. Trade repositories, which collect data
at the transaction level, complete regulatory reporting to understand shadow banking. They
already exist for some OTC instruments in EU and US, but they will certainly be expanded
to other markets (e.g. collateralized transactions). Simultaneously, supervisory authorities
have strengthened regulatory reporting processes. However, the level of transparency in the
shadow banking had still not reach this in banks. Some shadow banking sectors, in particular
asset management and pension funds, should then expect new reporting requirements.

43For instance, DGI concerns financial soundness indicators (FSI), CDS and securities statistics, banking
statistics, public sector debt, real estate prices, etc.
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8.3.3.2 Mitigation of interconnectedness risk

BCBS (2013c) has introduced new capital requirements for banks’ equity investments
in funds that are held in the banking book. They concern investment funds, mutual funds,
hedge funds and private equity funds. The framework includes three methods to calculate
the capital charge: the fall-back approach (FBA), the mandate-based approach (MBA) and
the look-through approach (LTA). In this latter approach, the bank determines the risk-
weighted assets of the underlying exposures of the fund. This approach is less conservative
than the two others, but requires the full transparency on the portfolio holdings. Under
the fall-back approach, the risk weight is equal to 1 250% whatever the risk of the fund.
According to the BCBS (2013c), the hierarchy in terms of risk sensitivity between the three
approaches was introduced to promote “due diligence by banks and transparent reporting
by the funds in which they invest”. This framework had a significant impact on investment
policy of banks and has reduced investments in equity funds and hedge funds.

BCBS (2014c) has developed new standards for measuring and controlling large expo-
sures to single counterparties. This concerns different levels of aggregation from the legal
entity to consolidated groups. The large exposures framework is applicable to all interna-
tional banks, and implies that the exposure of a bank to a consolidated group must be
lower than 25% of the bank capital. This figure is reduced to 15% for systemic banks. This
framework penalizes then banking groups, which have shadow banking activities (insurance,
asset management, brokerage, etc.).

8.3.3.3 Money market funds

Money market funds are under the scrutiny of regulatory authorities since the September
2008 run in the United States. The International Organization of Securities Commissions
(2012a) recalled that the systemic risk of these funds is explained by three factors:

1. the illusory perception that MMFs don’t have market and credit risks and benefit
from capital protection;

2. the first mover advantage, which is pervasive during periods of market distress;

3. and the discrepancy between the published NAV and the asset value.

In order to mitigate these risks, IOSCO (2012a) proposed several recommendations con-
cerning the management of MMFs. In particular, they should be explicitly defined, the
investment universe should be restricted to high quality money market and low-duration
fixed income instruments, and they should be priced with the fair value approach. Moreover,
MMFs that maintain a stable NAV (e.g. 1$ per share) should be converted into floating NAV.

In September 2015, the IOSCO reviewed the implementation progress made by 31 ju-
risdictions in adopting regulation and policies of MMFs. In particular, this review concerns
the five largest jurisdictions (US, Ireland, China, France and Luxembourg), which together
account for 90% of global assets under management in MMFs. At that time, only the US
reported having final implementation measures in all recommendations, while China and
Europe were in the process of finalizing relevant reforms. In July 2014, the US Securities
and Exchange Commission adopted final rules for the reform of MMFs. In particular, insti-
tutional MMFs will be required to trade at floating NAV. Moreover, all MMFs may impose
liquidity fees and redemption gates during periods of stress. In China, the significant growth
of the MMF market has forced the Chinese regulator to introduce a number of policy mea-
sures in February 2016. This concerns accounting and valuation methods, redefinition of
the investment universe, liquidity management and responsibilities of fund managers. In
Europe, new rules are applied since July 2017. They distinguish three categories of MMFs:
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variable NAV, public debt CNAV and low volatility NAV. These new rules include liquidity
management (liquidity fees and redemption gates), prohibit the use of sponsor support and
redefine the universe of eligible assets.

8.3.3.4 Complex shadow banking activities

We give here some supervisory initiatives related to some shadow banking activities. In
2011, the European Union has adopted the Alternative Investment Fund Managers Directive
(AIFMD), which complements the UCITS directive for asset managers and applies to hedge
fund managers, private equity fund managers and real estate fund managers. In particular, it
imposes reporting requirements and defines the AIFM passport. In a similar way to MMFs,
IOSCO (2012b) published recommendations to improve incentive alignments in securitiza-
tion, in particular by including issuer risk retention. According to IMF (2014a), Nomura
and Daiwa, which are the two largest securities brokerage in Japan, are now subject to Basel
III capital requirements and bank-like prudential supervision. New regulation proposals on
securities financing transactions (SFT) have been done by the European Commission. They
concern reporting, transparency and collateral reuse of SFT activities (repo market, secu-
rities lending). These few examples show that the regulation of the shadow banking is in
progress and non-bank financial institutions should expect to be better controlled in the
future.
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Chapter 9
Model Risk of Exotic Derivatives

In Chapter 2, we have seen that options and derivative instruments present non-linear risks
that are more difficult to assess and measure than for a long-only portfolio of stocks or
bonds. Moreover, those financial instruments are traded in OTC markets, meaning that
their market value is not known with certainty. These issues imply that the current value is
a mark-to-model price and the risk factors depend on the pricing model and the underlying
assumptions. The pricing problem is then at the core of the risk management of derivative
instruments. However, risk management of such financial products cannot be reduced to a
pricing problem. Indeed, the main difficulty lies in managing dynamically the hedging of the
option in order to ensure that the replication cost is equal to the option price. In this case,
the real challenge is the model risk and concerns three levels: the model risk of pricing the
option, the model risk of hedging the option and the discrepancy risk between the pricing
model and the hedging model. Therefore, this chapter cannot be just a catalogue of pricing
models, but focuses more on pricing errors and hedging uncertainties.

9.1 Basics of option pricing
In this section, we present the basic models that are used for pricing derivatives instru-

ments: the Black-Scholes model, the Vasicek model and the HJM model. While the first one
is general and valid for all asset classes, the last two models concern interest rate derivatives.

9.1.1 The Black-Scholes model
9.1.1.1 The general framework

Black and Scholes (1973) assume that the dynamics of the asset price S (t) is given by
a geometric Brownian motion:{

dS (t) = µS (t) dt+ σS (t) dW (t)
S (t0) = S0

(9.1)

where S0 is the current price, µ is the drift, σ is the volatility of the diffusion and W (t)
is a standard Brownian motion. We consider a contingent claim that pays f (S (T )) at the
maturity T of the derivative contract. For example, if we consider an European option with
strike K, we have f (S (T )) = (S (T )−K)+.

Under some conditions, we can show that this contingent claim may be replicated by a
hedging portfolio, which is composed of the asset and a risk-free asset, whose instantaneous
return is equal to r (t). The price V of the contingent claim is then equal to the cost of
the hedging portfolio. In this case, Black and Scholes show that it is the solution of the
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following backward equation:{ 1
2σ

2S2∂2
SV (t, S) + (µ− λ (t)σ)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T ))

This equation is called the fundamental pricing equation. The function λ (t) is interpreted
as the risk price of the Wiener process W (t). For an asset whose cost-of-carry is equal to
b (t), we have:

λ (t) = µ− b (t)
σ

The previous equation then becomes:{ 1
2σ

2S2∂2
SV (t, S) + b (t)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T )) (9.2)

The current price of the derivatives contract is obtained by solving this partial differential
equation (PDE) and to take V (t0, S0).

A way to obtain the solution is to apply the Girsanov theorem1 to the SDE (9.1) with
g (t) = −λ (t). It follows that:{

dS (t) = b (t)S (t) dt+ σS (t) dWQ (t)
S (t0) = S0

(9.3)

where WQ (t) is a Brownian motion under the probability Q defined by:

dQ
dP = exp

(
−
∫ t

0 λ (s) dW (s)− 1
2
∫ t

0 λ
2 (s) ds

)
We may then apply the Feynman-Kac formula2 with h (t, x) = r (t) and g (t, x) = 0 to
obtain the martingale solution3:

V0 = EQ
[
e
−
∫ T

0
r(t) dt

f (S (T ))
∣∣∣∣F0

]
(9.4)

Remark 96 Q is called the risk-neutral probability (or martingale) measure, because the
option price V0 is the expected discounted value of the payoff4.

9.1.1.2 Application to European options

We consider an European call option whose payoff at maturity is equal to:

C (T ) = (S (T )−K)+

We assume that the interest rate r (t) and the cost-of-carry parameter b (t) are constant.
Then we obtain:

C0 = EQ
[
e
−
∫ T

0
r dt (S (T )−K)+

∣∣∣∣F0

]
= e−rTE

[(
S0e

(b− 1
2σ

2)T+σWQ(T ) −K
)+
]

= e−rT
∫∞
−d2

(
S0e

(b− 1
2σ

2)T+σ
√
Tx −K

)
φ (x) dx

= S0e
(b−r)TΦ (d1)−Ke−rTΦ (d2) (9.5)

1See Appendix A.3.5 on page 1072.
2See Appendix A.3.4 on page 1070.
3We assume that the current date t0 is equal to 0.
4See Exercise 9.4.1 on page 593 for more details.
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where:

d1 = 1
σ
√
T

(
ln S0

K
+ bT

)
+ 1

2σ
√
T

d2 = d1 − σ
√
T

Let us now consider an European put option with the following payoff:

P (T ) = (K − S (T ))+

We have:

C (T )−P (T ) = (S (T )−K)+ − (K − S (T ))+

= S (T )−K

We deduce that:

C0 −P0 = EQ
[
e
−
∫ T

0
r dt (S (T )−K)

∣∣∣∣F0

]
= EQ [e−rTS (T )

∣∣F0
]
−Ke−rT

= S0e
(b−r)T −Ke−rT

This equation is known as the put-call parity. It follows that:

P0 = C0 − S0e
(b−r)T +Ke−rT

= −S0e
(b−r)TΦ (−d1) +Ke−rTΦ (−d2) (9.6)

Remark 97 Equations (9.5) and (9.6) are the famous Black-Scholes formulas. Generally,
they are presented with b = r, that is for physical assets not paying dividends. The cost-of-
carry concept is explained in the next paragraphs.

We consider a call option on an asset, whose cost-of-carry is equal to 5%. We also assume
that the interest rate is equal to 5%. Figure 9.1 represents the option premium with respect
to the current value S0 of the asset. We notice that the price of the call option increases
with the current price S0, the volatility σ and the maturity T . In Figure 9.2, we report the
option premium of the put option. In both cases, it may be interesting to decompose the
option premium into two components:

• The intrinsic value is the value of exercising the option now:

IV (t) = f (S0)

For instance, the intrinsic value of the call option is equal to (S0 −K)+. If the intrinsic
value is positive, the option is said in-the-money (ITM). If the intrinsic value is equal
to zero, the option is at-the-money (ATM) or out-of-the-money (OTM).

• The time value is the difference between the option premium and the intrinsic value:

TV (t) = V (t0, S0)− IV (t)

This quantity is always positive and is related to the risk that the intrinsic value will
increase with the time-to-maturity.
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FIGURE 9.1: Price of the call option

FIGURE 9.2: Price of the put option
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9.1.1.3 Principle of dynamic hedging

Self-financing strategy We consider n assets that do not pay dividends or coupons
during the period [0, T ] and we assume that the price vector S (t) follows a diffusion process.
For asset i, we have then:

Si (t) = Si (0) +
∫ t

0
µi (u) du+

∫ t

0
σi (u) dWi (u)

We set up a trading portfolio (φ1 (t) , . . . , φn (t)) invested in the assets (S1 (t) , . . . , Sn (t)).
We note X (t) the value of this portfolio:

X (t) =
n∑
i=1

φi (t)Si (t)

We say that the portfolio is self-financing if the following conditions hold:{
dX (t)−

∑n
i=1 φi (t) dSi (t) = 0

X (0) = 0

The first condition means that all trades are financed by selling or buying assets in the
portfolio, whereas the second condition implies that we don’t need money to set up the
initial portfolio. This implies that:

X (t) = X0 +
n∑
i=1

∫ t

0
φi (u) dSi (u)

=
n∑
i=1

φi (0)Si (0) +
n∑
i=1

∫ t

0
φi (u) dSi (u)

In the Black-Scholes model, we consider a stock that does not pay dividends or coupons
during the period [0, T ] and we assume that its price process S (t) follows a geometric
Brownian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)
We also assume the existence of a risk-free asset B (t) that satisfies:

dB (t) = rB (t) dt

We set up a trading portfolio (φ (t) , ψ (t)) invested in the stock S (t) and the risk-free asset
B (t). We note V (t) the value of this portfolio:

V (t) = φ (t)S (t) + ψ (t)B (t)

We now form a strategy X (t) in which we are long the call option C (t, S (t)) and short the
trading portfolio V (t):

X (t) = C (t, S (t))− V (t)
= C (t, S (t))− φ (t)S (t)− ψ (t)B (t)

Using Itô’s lemma, we have:

dX (t) = ∂SC (t, S (t)) dS (t) +(
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))
)

dt−

φ (t) dS (t)− ψ (t) dB (t)
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By assuming that φ (t) = ∂SC (t, S (t)), we obtain:

dX (t) =
(
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))− rψ (t)B (t)
)

dt

X (t) is self-financing if dX (t) = 0 or:

ψ (t) =
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))

rB (t)

We deduce that:

C (t, S (t)) = φ (t)S (t) + ψ (t)B (t)
= ∂SC (t, S (t))S (t) +

∂tC (t, S (t)) + 1
2σ

2S2 (t) ∂2
SC (t, S (t))

rB (t) B (t)

This implies that C (t, S (t)) satisfies the following PDE:

1
2σ

2S2∂2
SC (t, S) + rS∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

Since X (t) is self-financing (X (t) = 0), we also deduce that the trading portfolio V (t) is
the replicating portfolio of the call option:

V (t) = φ (t)S (t) + ψ (t)B (t)
= C (t, S (t))−X (t)
= C (t, S (t))

If we define the replicating cost as follows:

C (t) =
∫ t

0
φ (u) dS (u) +

∫ t

0
ψ (u) dB (u)

=
∫ t

0
(µS (u)φ (u) + rB (u)ψ (u)) du+

∫ T

0
σS (u)φ (u) dW (u)

we have:

C (t) =
∫ t

0
µS (u) ∂SC (u, S (u)) du+

∫ T

0
σS (u) ∂SC (u, S (u)) dW (u)∫ t

0

(
∂tC (u, S (u)) + 1

2σ
2S2 (u) ∂2

SC (u, S (u))
)

du

=
∫ t

0
dC (u, S (u))

= C (t, S (t))− C (0, S0)

We verify that the replicating cost is exactly equal to the P&L of the long exposure on the
call option.
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Cost-of-carry When the stock does not pay dividends, the cost-of-carry parameter b is
equal to the interest rate r. Let us now consider a stock that pays a continuous dividend
yield δ, the self-financing portfolio is:

X (t) = C (t, S (t))− φ (t)S (t)− ψ (t)B (t)

We deduce that the change in the value of this portfolio is:

dX (t) = dC (t, S (t))− φ (t) dS (t)− ψ (t) dB (t)− φ (t) · δ · S (t) dt︸ ︷︷ ︸
dividend

Using the same rationale than previously, we obtain φ (t) = ∂SC (t, S (t)) and:

ψ (t) =
∂tC (t, S (t)) + 1

2σ
2S2 (t) ∂2

SC (t, S (t))− δS (t) ∂SC (t, S (t))

rB (t)

Finally, we obtain the following PDE:

1
2σ

2S2∂2
SC (t, S) + (r − δ)S∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

The cost-of-carry parameter b is now equal to r − δ. It is the percentage cost required
to carry the asset. Generally, the cost is equal to the interest rate r, but a continuous
dividend reduces this cost. In the case of futures or forward contracts, the cost-of-carry is
equal to zero. Indeed, the price of such contracts already incorporates the cost-of-carry of
the underlying asset. For currency options, the cost-of-carry is the difference between the
domestic interest rate r and the foreign interest rate r?.

TABLE 9.1: Impact of the dividend on the option premium
Put option Call option

S0 / δ 0.00 0.02 0.05 0.07 0.00 0.02 0.05 0.07
90 1.28 1.44 1.73 1.94 13.50 12.67 11.48 10.72

100 4.42 4.83 5.50 5.97 6.89 6.31 5.50 5.00
110 10.19 10.87 11.91 12.63 2.91 2.59 2.16 1.90

In order to illustrate the impact of the cost-of-carry, we have calculated the option
premium in Table 9.1 with the following parameters: K = 100, r = 5% and a six-month
maturity. In the case of the put option, the price increases with the dividend yield δ whereas
it decreases in the case of the call option. In order to understand these figures, we have to
come back to the definition of the replicating portfolio. A call option is replicated using a
portfolio that is long on the asset. This implies that the replicating portfolio benefits from
the dividends paid by the asset. The self-financing property of the strategy induces that we
have to borrow less money. This is why the premium of the call option is lower when the
asset pays a dividend. For the put option, this is the contrary. The replicating portfolio is
short on the asset. Therefore, it does not receive the dividends, but pays them.

Remark 98 The value of dividends is an example of model risk. Indeed, future dividends
are uncertain, meaning that there is a risk of undervaluation of the option premium. In
the case of a call option, the risk is to use expected dividends that are higher than realized
values. In the case of put option, the risk is to use low dividends.
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Delta hedging The Black-Scholes model assumes that the replicating portfolio is rebal-
anced continuously. In practice, it is rebalanced at some fixed dates ti:

0 = t0 < t1 < · · · < tn = T

At the initial date, we have:

X (t0) = C (t0, S (t0))− V (t0) = 0

where:
V (t0) = φ (t0) · S (t0) + ψ (t0) ·B (t0)

Because we have φ (t0) = ∆ (t0) and X (t0) = 0, we deduce that5:

ψ (t0) = C (t0, S (t0))−∆ (t0)S (t0)

At time t1, the value of the replicating portfolio is then equal to:

V (t1) = ∆ (t0)S (t1) + (C (t0, S (t0))−∆ (t0)S (t0)) · (1 + r (t0) (t1 − t0)) (9.7)

It follows that:
X (t1) = C (t1, S (t1))− V (t1)

Therefore, we are note sure that X (t1) = 0 because it is not possible to hedge the jump
S (t1)− S (t0). We rebalance the portfolio and we have:

V (t1) = φ (t1) · S (t1) + ψ (t1) ·B (t1)

We deduce that:
φ (t1) = ∆ (t1)

and:
ψ (t1) = V (t1)−∆ (t1)S (t1)

At time t2, the value of the replicating portfolio is equal to:

V (t2) = ∆ (t1)S (t2) + (V (t1)−∆ (t1)S (t1)) · (1 + r (t1) (t2 − t1)) (9.8)

Equation (9.8) differs from Equation (9.7) because we don’t have V (t1) = C (t1, S (t1)).
More generally, we have:

X (ti) = C (ti, S (ti))− V (ti)

and:

V (ti) = ∆ (ti−1)S (ti)︸ ︷︷ ︸
VS(ti)

+ (V (ti−1)−∆ (ti−1)S (ti−1)) · (1 + r (ti−1) (ti − ti−1))︸ ︷︷ ︸
VB(ti)

where VS (ti) is the component due to the delta exposure on the asset and VB (ti) is the
component due to the cash exposure on the risk-free bond. We notice that:

VS (ti) = ∆ (ti−1) · S (ti)
= ∆ (ti−1) · S (ti−1) · (1 +RS (ti−1; ti))

5Without any loss of generality, we take the convention that B (ti) = 1.
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and:

VB (ti) = (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 + r (ti−1) · (ti − ti−1))
= (V (ti−1)−∆ (ti−1) · S (ti−1)) · (1 +RB (ti−1; ti))

where RS (ti−1; ti) and RB (ti−1; ti) are the asset and bond returns between ti−1 and ti. At
the maturity, we obtain:

X (T ) = X (tn)
= (S (T )−K)+ − V (tn)

Π (T ) = −X (T ) is the P&L of the delta hedging strategy. To measure its efficiency, we
consider the ratio π defined as follows:

π = Π (T )
C (t0, S (t0))

Example 78 We consider the replication of 100 ATM call options. The current price of the
asset is 100 and the maturity of the option is 20 weeks. We consider the following parameter:
b = r = 5% and σ = 20%. We rebalance the replicating portfolio every week.

Since the maturity T is equal to 20/52 and the strike K is equal to 100, the current value
C (t0, S (t0)) of the call option is equal to $5.90. The replicating portfolio is rebalanced at
times ti:

ti = i

52
In Table 9.2, we have reported a simulated path of the underlying asset. We have S (t0) =
100, S (t1) = 95.63, S (t2) = 95.67, etc. At the maturity date, the price of the underlying
asset is equal to 101.83. In the Black-Scholes model, the delta is equal to:

∆ (t) = e(b−r)(T−t)Φ (d1)

where:
d1 = 1

σ
√
T − t

(
ln S (t)

K
+ b (T − t)

)
+ σ
√
T − t

At each rebalancing date ti−1, we compute the delta ∆ (ti−1) with respect to the price
S (ti−1) and the remaining maturity T − ti−1. We can then deduce the values of VS (ti),
VB (ti) and V (ti). We can also calculate the new value C (ti, S (ti)) of the call option and
compare it with V (ti) in order to define X (ti) and Π (ti) = −X (ti). We obtain Π (T ) =
−29.76, implying that:

π = −29.76
100× 5.90 = −5.04%

In this case, the delta hedging strategy has produced a negative P&L. If we consider another
path of the underlying asset, we can also obtain a positive P&L (see Table 9.3).

We now assume that S (t) is generated by the risk-neutral SDE:

dS (t) = rS (t) dt+ σS (t) dWQ (t)

We estimate the probability density function of π by simulating 10 000 trajectories of the
asset price and calculating the final P&L of the delta hedging strategy. We consider the
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TABLE 9.2: An example of delta hedging strategy (negative P&L)

i ti S (ti) ∆ (ti−1) VS (ti) VB (ti) V (ti) C (ti, S (ti)) X (ti) Π (ti)
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 95.63 58.59 5603.15 −5273.36 329.79 350.22 20.43 −20.43
2 0.04 95.67 43.72 4182.80 −3854.96 327.84 336.15 8.31 −8.31
3 0.06 94.18 43.24 4072.36 −3812.62 259.75 260.57 0.82 −0.82
4 0.08 92.73 37.29 3457.72 −3255.16 202.55 196.22 −6.33 6.33
5 0.10 96.59 31.34 3027.23 −2706.31 320.93 326.47 5.54 −5.54
6 0.12 101.68 44.63 4537.99 −3993.73 544.26 582.71 38.45 −38.45
7 0.13 101.41 63.39 6428.19 −5906.72 521.47 545.64 24.17 −24.17
8 0.15 100.22 62.36 6249.97 −5808.29 441.68 453.62 11.94 −11.94
9 0.17 99.32 57.57 5718.25 −5333.51 384.74 382.58 −2.16 2.16

10 0.19 101.64 53.46 5433.52 −4929.49 504.03 495.99 −8.04 8.04
11 0.21 101.81 63.27 6441.30 −5932.22 509.08 483.87 −25.21 25.21
12 0.23 102.62 64.10 6578.19 −6022.97 555.22 513.53 −41.69 41.69
13 0.25 107.56 67.97 7311.26 −6426.42 884.84 876.68 −8.16 8.16
14 0.27 102.05 86.90 8867.94 −8470.05 397.89 424.07 26.18 −26.18
15 0.29 100.88 66.19 6677.01 −6362.67 314.34 321.76 7.41 −7.41
16 0.31 106.90 59.86 6399.37 −5730.15 669.21 756.02 86.80 −86.80
17 0.33 107.66 90.32 9723.75 −8994.54 729.22 806.47 77.25 −77.25
18 0.35 101.79 94.74 9643.97 −9480.00 163.96 276.24 112.27 −112.27
19 0.37 101.76 69.88 7111.04 −6955.85 155.19 228.08 72.89 −72.89
20 0.38 101.83 75.10 7647.28 −7494.04 153.24 183.00 29.76 −29.76

TABLE 9.3: An example of delta hedging strategy (positive P&L)

i ti S (ti) ∆ (ti−1) VS (ti) VB (ti) V (ti) C (ti, S (ti)) X (ti) Π (ti)
0 0.00 100.00 0.00 0.00 590.90 590.90 590.90 0.00 0.00
1 0.02 98.50 58.59 5771.31 −5273.36 497.95 489.70 −8.25 8.25
2 0.04 97.00 53.45 5184.51 −4771.31 413.19 396.75 −16.44 16.44
3 0.06 95.47 47.89 4571.99 −4236.14 335.85 311.62 −24.24 24.24
4 0.08 98.17 41.87 4110.19 −3664.81 445.38 419.94 −25.44 25.44
5 0.10 100.48 51.10 5134.88 −4575.85 559.03 528.68 −30.35 30.35
6 0.12 102.92 59.19 6092.33 −5394.04 698.28 664.00 −34.29 34.29
7 0.13 105.50 67.69 7140.94 −6274.05 866.89 829.99 −36.90 36.90
8 0.15 101.81 76.13 7750.53 −7171.44 579.09 550.21 −28.88 28.88
9 0.17 100.65 63.86 6427.97 −5928.66 499.31 457.48 −41.83 41.83

10 0.19 98.86 59.15 5847.59 −5459.40 388.19 337.04 −51.15 51.15
11 0.21 99.26 50.91 5053.11 −4649.03 404.09 335.31 −68.78 68.78
12 0.23 101.78 52.25 5317.65 −4786.50 531.15 458.03 −73.12 73.12
13 0.25 99.28 64.14 6367.78 −6002.74 365.03 288.19 −76.84 76.84
14 0.27 99.19 51.19 5077.96 −4722.07 355.89 257.52 −98.36 98.36
15 0.29 95.53 49.97 4773.36 −4604.77 168.59 92.40 −76.18 76.18
16 0.31 98.02 26.47 2594.85 −2362.61 232.23 148.05 −84.19 84.19
17 0.33 97.03 39.61 3843.35 −3653.84 189.51 83.97 −105.54 105.54
18 0.35 96.64 29.34 2835.17 −2659.65 175.51 44.51 −131.01 131.01
19 0.37 95.01 21.11 2005.37 −1866.05 139.32 3.75 −135.56 135.56
20 0.38 93.67 3.62 338.73 −204.45 134.27 0.00 −134.27 134.27



Model Risk of Exotic Derivatives 501

previous example, but the maturity is now fixed at 130 trading days6. Figure 9.3 repre-
sents the density function for different fixed rebalancing frequencies7. We notice that π is
approximately a Gaussian random variable, which is centered around 0. However, the vari-
ance depends on the rebalancing frequency. In Figure 9.4, we have reported the relationship
between the hedging efficiency σ (π) and the rebalancing frequency. We confirm that we can
perfectly replicate the option with a continuous rebalancing.

FIGURE 9.3: Probability density function of the hedging ratio π

Let us now understand how the hedging ratio is impacted by the dynamics of the un-
derlying asset. We consider again the previous example and simulate one trajectory (see the
first panel in Figure 9.5). We hedge the call option every half an hour. At the maturity, the
hedging ratio is equal to 1.8%. The maximum is reached at time t = 0.466 and is equal to
3.5%. We now introduce a jump at time t = 0.25. This jump induces a large negative P&L
for the trader, whatever the sign of the jump (see the second and third panels in Figure
9.5). If we introduce a jump later at time t = 0.40, the cost depends on the magnitude
and the sign of the jump (Figure 9.6). A positive jump has no impact on the cost of the
replicating portfolio, whereas a negative jump has an impact only if the jump is very large.
To understand these results, we have to analyze the delta coefficient. At time t = 0.40, the
option is in-the-money and the delta is close to 1. This implies that a positive jump has
low impact on the delta hedging, because the delta is bounded by one. If there is a negative
jump, the impact is also limited because the delta is lowly reduced. However, in the case of
a high negative jump, the impact may be important because the delta can be dramatically
reduced. We also observe the same results when the option is highly out-of-the-money and
the delta is close to zero. In this case, a negative jump has no impact, because it decreases

6We assume that a year corresponds to 260 trading days. This implies that the maturity of the option
is exactly one-half year.

7We note ti − ti−1 = dt.
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FIGURE 9.4: Relationship between the hedging efficiency σ (π) and the hedging frequency

the delta but the delta is bounded by zero. Conversely, a positive jump may have an impact
if the magnitude is enough sufficiently large to increase the delta.

In the case of liquid markets with low transaction costs, a delta neutral hedging may be
efficiently implemented in a high frequency basis (daily or intra-day rebalancing). This is
not the case of less liquid markets. Moreover, we observe an asymmetry between call and
put options. The delta of call options is positive, implying that the replicating portfolio is
long on the asset. For put option, the delta is negative and the replicating portfolio is short
on the asset. We know that it is easier to implement a long position than a short position.
Sometimes, it is even impossible to be short. For instance, this explains that there exist call
options on mutual funds, but not put options on mutual funds. We understand that model
risk of derivatives does not only concern the right values of model parameters. In fact,
model risk also concerns the hedging management of the option including the feasibility
and efficiency of the delta hedging strategy. A famous example is the difference between a
put option on S&P 500 index and Eurostoxx 50 index. We know that the returns of the
Eurostoxx 50 index present more discontinuous patterns than those of the S&P 500 index.
The reason is that European markets react more strongly to American markets than the
opposite. This explains that the difference between the closing price and the opening price
is more higher in European markets than in American markets. Therefore, a put option on
the Eurostoxx 50 index contains an additional premium compared to a put option on the
S&P 500 index in order to take into account these stylized facts.

Greek sensitivities We have seen that the delta of the call option is defined by:

∆ (t) = ∂ C (t, S (t))
∂ S (t)
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FIGURE 9.5: Impact of a jump on the hedging ratio π (t)

FIGURE 9.6: Impact of a jump on the hedging ratio π (t)
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We have then:

C (t+ dt, S (t+ h))− C (t, S (t)) ≈∆ (t) · (S (t+ dt)− S (t))

This Taylor expansion can be extended to other orders and other parameters. For instance,
the delta-gamma-theta approximation is:

C (t+ dt, S (t+ h))− C (t, S (t)) ≈ ∆ (t) · (S (t+ dt)− S (t)) +
1
2Γ (t) · (S (t+ dt)− S (t))2 +

Θ (t) · ((t+ dt)− t)

where the gamma is the second-order derivative of the call option price with respect to the
underlying asset price:

Γ (t) = ∂2 C (t, S (t))
∂ S (t)2 = ∂∆ (t)

∂ S (t)

and the theta is the derivative of the call option price with respect to the time:

Θ (t) = ∂ C (t, S (t))
∂ t

= −∂ C (t, S (t))
∂ T

A positive theta coefficient implies that the option value increases if nothing changes, in
particular the price of the underlying asset. By construction, the theta is related to the
time value of the option. This is why the theta is generally low for options with a short
maturity. In fact, understanding theta effects is complicated, because the theta coefficient
is not monotonic in any of the parameters (underlying price, volatility and maturity). We
recall that the option price satisfies the PDE:

1
2σ

2S2Γ + bS∆ + Θ− rC = 0

We deduce that the theta of the option can be calculated as follows:

Θ = rC − 1
2σ

2S2Γ− bS∆

This equation shows that the different coefficients are highly related.

Example 79 We consider a call option, whose strike K is equal to 100. The risk-free rate
and the cost-of-carry parameter are equal to 5%. For the volatility coefficient, we consider
two cases: (a) σ = 20% and (b) σ = 50%.

In Figure 9.7, we have reported the option delta for different values of the asset price
S0 and different values of the maturity T . We have ∆ (t) ∈ [0, 1]. The delta is close to
zero when the asset price is far below the option strike, whereas it is close to one when
the option is highly in-the-money. We also notice that the coefficient ∆ is an increasing
function of the price of the underlying asset. The relationship between the option delta and
the maturity parameter is not monotonous and depends whether the option is in-the-money
or out-of-the-money. In a similar way, the impact of the volatility is not obvious, and may
be different if the option maturity is long or short.

Figure 9.8 represents the option gamma8. It is close to zero when the current price of
the underlying asset is far from the option strike. In this case, the option trader does not

8See Exercise 2.4.7 on page 121 for the analytical expression of the different sensitivity coefficients of the
call option.
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FIGURE 9.7: Delta coefficient of the call option

FIGURE 9.8: Gamma coefficient of the call option



506 Handbook of Financial Risk Management

need to revise its delta exposure frequently. The gamma coefficient is maximum in the at-
the-money region or when the delta is close to 50%. In this situation, the delta can highly
vary and the trader must rebalance the replicating portfolio more frequently in order to
reduce the residual risk.

Let us assume a delta neutral hedging portfolio. The trader can face four configurations
of residual risk given by the following table:

Γ
− +

Θ − X
+ X

The configuration (Γ < 0,Θ < 0) is not realistic, because the trader will not accept to build
a portfolio, whose P&L is almost surely negative. The configuration (Γ > 0,Θ > 0) is also
not realistic, because it would mean that the P&L is always positive whatever the market.
Therefore, two main configurations are interesting:

(a) a negative gamma exposure with a positive theta;

(b) a positive gamma exposure with a negative theta.

We have represented these two cases in Figure 9.9, and we notice that they lead to different
P&L profiles9:

(a) If the gamma is negative, the best situation is obtained when the asset price does not
move. Any changes in the asset price reduce the P&L, which can be negative if the
gamma effect is more important than the theta effect. We also notice that the gain is
bounded and the loss is unbounded in this configuration.

(b) If the theta is negative, the loss is bounded and maximum when the asset price does
not move. Any changes in the asset price increase the P&L because the gamma is
positive. In this configuration, the gain is unbounded.

In order to understand these P&L profiles, we have represented the gamma and theta effects
in Figure 9.10 for the case (b). The portfolio is long on a call option and short on the delta
neutral hedging strategy. The parameters are the following: S0 = 98, K = 100, σ = 10%,
b = 5%, r = 5% and T = 0.25. The value of the option is equal to 1.601 and we have
∆ (t0) = 44.87%. In the first panel in Figure 9.10, we have reported the option price (solid
curve) and the delta hedging strategy (dashed line) at the current date t0 when the asset
price moves. The area between the two curves represents the gamma effect. We notice that
it is positive. For instance, we have Γ (t0) = 11.55%. We do not rebalance the portfolio
until time t = t0 + dt where dt = 0.15. The dashed curve indicates the value of the option
price10 at the date t. The area between C (t, S (t)) (dashed curve) and C (t0, S (t)) (solid
curve) represents the theta effect. We notice that it is negative11. In the second panel, we
have reported the resulting P&L. This is the difference between the first area (positive
gamma effect) and the second area (negative theta effect). We retrieve the results given in
the second panel in Figure 9.9.

9We have also indicated the case (a’) where the gamma is equal to zero. In this case, we obtain a gamma
neutral hedging portfolio and it is not necessary to adjust frequently the hedging portfolio.

10We use the same parameters, except that the maturity is now equal to 0.10.
11We have Θ (t0, S0) = −7.09.
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FIGURE 9.9: P&L of the delta neutral hedging portfolio

FIGURE 9.10: Illustration of the configuration (Γ > 0,Θ < 0)
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9.1.1.4 The implied volatility

Definition In the Black-Scholes formula, all the parameters are objective except the
volatility σ. To calibrate this parameter, we can use a historical estimate σ̂. However, the
option prices computed with the historical volatility σ̂ do not fit the option prices observed
in the market. In practice, we use the Black-Scholes formula to deduce the implied volatility
that gives the market prices:

fBS (S0,K, σimplied, T, b, r) = V (T,K)

where fBS is the Black-scholes formula and V (T,K) is the market price of the option, whose
maturity date is T and whose strike is K. By convention, the implied volatility is denoted
by Σ, and is a function of the parameters12 T and K:

σimplied = Σ (T,K)

Example 80 We consider a call option, whose maturity is one year. The current price of
the underlying asset is normalized and is equal to 100. Moreover, the risk-free rate and the
cost-of-carry parameter are equal to 5%. Below, we report the market price of European call
options of three assets for several strikes:

K 90 95 98 100 101 102 105 110
C1 (T,K) 16.70 13.35 11.55 10.45 9.93 9.42 8.02 6.04
C2 (T,K) 18.50 14.50 12.00 10.45 9.60 9.00 7.50 5.70
C3 (T,K) 18.00 14.00 11.80 10.45 9.90 9.50 8.40 7.40

TABLE 9.4: Implied volatility Σ (T,K)

K 90 95 98 100 101 102 105 110
Σ1 (T,K) 20.00 20.01 19.99 20.0 20.01 19.99 20.00 20.00
Σ2 (T,K) 26.18 23.41 21.24 20.0 19.14 18.90 18.69 19.14
Σ3 (T,K) 24.53 21.95 20.68 20.0 19.93 20.20 20.95 23.43

For each asset and each strike, we calculate Σ (T,K) and report the results in Table 9.4
and Figure 9.11. For the first set C1 of options, the implied volatility is constant. In the
case of the options C2, the implied volatility is decreasing with respect to the strike K. In
the third case, the implied volatility is decreasing for in-the-money options and increasing
for out-of-the-money options.

Remark 99 When the curve of implied volatility is decreasing and increasing, the curve is
called a volatility smile. When the curve of implied volatility is just decreasing, it is called a
volatility skew. If we consider the maturity dimension, the term structure of implied volatility
is known as the volatility surface.

Relationship between the implied volatility and the risk-neutral density Bree-
den and Litzenberger (1978) showed that volatility smile and risk-neutral density are related.
Let Ct (T,K, ) be the market price of the European call option at time t, whose maturity is

12Σ (T,K) also depends on the other parameters S0, b and r, but they are fixed values at the current
date t0.
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FIGURE 9.11: Volatility smile

T and strike is K. We have:

Ct (T,K) = EQ
[
e
−
∫ T
t
r ds (S (T )−K)+

∣∣∣∣Ft]
= e−r(T−t)

∫ ∞
−∞

(S −K)+
qt (T, S) dS

= e−r(T−t)
∫ ∞
K

(S −K) qt (T, S) dS

where qt (T, S) is the risk-neutral probability density function of S (T ) at time t. By defini-
tion, the risk-neutral cumulative distribution function Qt (T, S) is equal to13:

Qt (T, S) =
∫ S

−∞
qt (T, x) dx

We deduce that:

∂ Ct (T,K)
∂ K

= −e−r(T−t)
∫ ∞
K

qt (T, S) dS

= −e−r(T−t) (1−Qt (T,K))

and:
∂2 Ct (T,K)

∂ K2 = e−r(T−t)qt (T,K)

13We use the notations Qt (T, S) and qt (T, S) instead of Q (S) and q (S) because they will be convenient
when considering the local volatility model.
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It follows that the risk-neutral cumulative distribution function is related to the first deriva-
tive of the call option price:

Qt (T,K) = Pr {S (T ) ≤ K | Ft}
= 1 + er(T−t) · ∂KCt (T,K)

We note Σt (T,K) the volatility surface and C?t (T,K,Σ) the Black-Scholes formula. It
follows that:

Qt (T,K) = 1 + er(T−t) · ∂KC?t (T,K,Σt (T,K)) +
er(T−t) · ∂ΣC?t (T,K,Σt (T,K)) · ∂KΣt (T,K)

where:
∂KC?t (T,K,Σ) = −e−r(T−t) · Φ (d2)

and:
∂ΣC?t (T,K,Σ) = S (t) · e(b−r)(T−t) ·

√
T − t · φ

(
d2 + Σ

√
T − t

)
If we are interested in the risk-neutral probability density function, we obtain:

qt (T,K) = ∂KQt (T,K)
= er(T−t) · ∂2

KCt (T,K)

where:

∂2
KCt (T,K) = ∂2

KC?t (T,K,Σt) +
2 · ∂2

K,ΣC?t (T,K,Σt) · ∂KΣt (T,K) +
∂ΣC?t (T,K,Σt) · ∂2

KΣt (T,K) +
∂2

ΣC?t (T,K,Σt) · (∂KΣt (T,K))2

and:

∂2
KC?t (T,K,Σ) = e−r(T−t)

φ (d2)
KΣ
√
T − t

∂2
K,ΣC?t (T,K,Σ) = e(b−r)(T−t)S (t) d1φ (d1)

ΣK

∂2
ΣC?t (T,K,Σ) = e(b−r)(T−t)S (t) d1d2

√
T − tφ (d1)

Σ

Example 81 We assume that S (t) = 100, T − t = 10, b = r = 5% and:

Σt (T,K) = 0.25 + ln
(

1 + 10−6 (K − 90)2 + 10−6 (K − 180)2
)

In Figure 9.12, we have represented the volatility surface and the associated risk-neutral
probability density function. In fact, they both contain the same information, but profes-
sionals are more familiar with implied volatilities than risk-neutral probabilities. We have
also reported the Black-Scholes risk-neutral distribution by considering the at-the-money
implied volatility. We notice that the Black-Scholes model underestimates the probability
of extreme events in this example.
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FIGURE 9.12: Risk-neutral probability density function

Robustness of the Black-Scholes formula El Karoui et al. (1998) assume that the
underlying price process is given by:

dS (t) = µ (t)S (t) dt+ σ (t)S (t) dW (t) (9.9)

whereas the trader hedges the call option with the implied volatility Σ (T,K), meaning that
the risk-neutral process is:

dS (t) = rS (t) dt+ Σ (T,K)S (t) dWQ (t) (9.10)

We reiterate that the dynamics of the replicating portfolio is:

dV (t) = φ (t) dS (t) + ψ (t) dB (t)

= φ (t) dS (t) + (V (t)− φ (t)S (t))
B (t) rB (t) dt

= φ (t) dS (t) + r (V (t)− φ (t)S (t)) dt
= rV (t) dt+ φ (t) (dS (t)− rS (t) dt)

Since C (t) = C (t, S (t)), we also have:

dC (t) =
(
∂tC (t, S (t)) + 1

2σ
2 (t)S2 (t) ∂2

SC (t, S (t))
)

dt+

∂SC (t, S (t)) dS (t)

Using the PDE (9.2), we notice that:

∂tC (t, S (t)) = rC (t, S (t))− rS (t) ∂SC (t, S (t))−
1
2Σ2 (T,K)S2 (t) ∂2

SC (t, S (t))
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We deduce that:

dC (t) = rC (t, S (t)) dt+
∂SC (t, S (t)) (dS (t)− rS (t) dt) +
1
2
(
σ2 (t)− Σ2 (T,K)

)
S2 (t) ∂2

SC (t, S (t)) dt

We consider the hedging error defined by:

e (t) = V (t)− C (t)

Since φ (t) = ∂SC (t, S (t)), we have:

de (t) = dV (t)− dC (t)
= rV (t) dt+ φ (t) (dS (t)− rS (t) dt)− rC (t, S (t)) dt−

∂SC (t, S (t)) (dS (t)− rS (t) dt) +
1
2
(
Σ2 (T,K)− σ2 (t)

)
S2 (t) ∂2

SC (t, S (t)) dt

= re (t) dt+ 1
2
(
Σ2 (T,K)− σ2 (t)

)
S2 (t) ∂2

SC (t, S (t)) dt

We deduce that14:

V (T )− C (T ) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt (9.11)

This equation is know as the robustness formula of Black-Scholes hedging (El Karoui et al.,
1998). Formula (9.11) is one of the most important results of this chapter. Indeed, since the
gamma coefficient of a call option is always positive, we can obtain an almost sure P&L
if the implied volatility is larger than the realized volatility and if there is no jump. More
generally, the previous result is valid for all types of European options:

V (T )− f (S (T )) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt (9.12)

where f (S (T )) is the payoff of the option. We obtain the following results:

• if Γ (t) ≥ 0, a positive P&L is achieved by overestimating the realized volatility:

Σ (T,K) ≥ σ (t) =⇒ V (T ) ≥ f (S (T ))

• if Γ (t) ≤ 0, a positive P&L is achieved by underestimating the realized volatility:

Σ (T,K) ≤ σ (t) =⇒ V (T ) ≥ f (S (T ))

• the variance of the hedging error is an increasing function of the absolute value of the
gamma coefficient:

|Γ (t)| ↗=⇒ var (V (T )− f (S (T )))↗

In terms of model risk, the robustness formula highlights the role of the implied volatility,
the realized volatility and the gamma coefficient. An important issue concerns the case when
the gamma can be positive and negative and changes sign during the life of the option. We
cannot then control the P&L by using a lower or an upper bound for the implied volatility15.

14Because we have e (0) = V (0)− C (0) = 0.
15This issue is solved on page 530.
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Example 82 We consider the replication of 100 ATM call options. The current price of the
asset is 100 and the maturity of the option is 6 months (or 130 trading days). We consider
the following parameters: b = r = 5%. We rebalance the delta hedging portfolio every trading
day. Moreover, we assume that the option is priced and hedged with a 20% implied volatility.

Figure 9.13 represents the density function of the hedging ratio π. In the case where the
realized volatility σ (t) is equal to the implied volatility, we retrieve the previous results:
π is centered around zero. However, if the realized volatility σ (t) is below (or above) the
implied volatility, π is shifted to the right (or the left). If σ (t) < Σ, then there is a higher
probability that the trader makes a profit. In our example, we obtain:

Pr {π > 0 | Σ = 20%, σ = 15%} = 99.04%

and:
Pr {π > 0 | Σ = 20%, σ = 25%} = 0.09%

FIGURE 9.13: Hedging error when the implied volatility is 20%

9.1.2 Interest rate risk modeling
Even if the Vasicek model is not used today by practitioners, it is interesting to study it

in order to understand the calibration challenge when considering fixed income derivatives.
Indeed, in the Black-Scholes model, the calibration consists in estimating a few number
of parameters and the main issue concerns the implied volatility. We will see that pricing
exotic fixed income derivatives is a more difficult task, because the choice of the risk factors
is not obvious and may depend on the tractability of the pricing model16.

16We invite the reader to refer to the book of Brigo and Mercurio (2006) for a more comprehensive
presentation on the pricing of fixed income derivatives.
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9.1.2.1 Pricing zero-coupon bonds with the Vasicek model

Vasicek (1977) assumes that the state variable is the instantaneous interest rate and
follows an Ornstein-Uhlenbeck process:{

dr (t) = a (b− r (t)) dt+ σ dW (t)
r (t0) = r0

We recall that a zero-coupon bond is a bond that pays $1 at the maturity date T . Therefore,
we have V (T, r) = 1 if we note V (t, r) the price of the zero-coupon bond at time t when
the interest rate r (t) is equal to r. The corresponding partial differential equation becomes
then:

1
2σ

2 ∂
2V (t, r)
∂ r2 + (a (b− r (t))− λ (t)σ) ∂ V (t, r)

∂ r
+ ∂ V (t, r)

∂ t
− r (t)V (t, r) = 0

By applying the Feynman-Kac representation theorem, we deduce that:

V (0, r0) = EQ
[
e
−
∫ T

0
r(t) dt

∣∣∣∣F0

]
(9.13)

where the risk-neutral dynamic of r (t) is:{
dr (t) = (a (b− r (t))− λ (t)σ) dt+ σ dWQ (t)
r (t0) = r0

Vasicek (1977) assumes that the risk price of the Wiener process is constant: λ (t) = λ. It
follows that the risk-neutral dynamic of r (t) is an Ornstein-Uhlenbeck process:{

dr (t) = a (b′ − r (t)) dt+ σ dWQ (t)
r (t0) = r0

where:
b′ = b− λσ

a

We note Z =
∫ T

0
r (t) dt. In Exercise 9.4.2 on page 593, we show that Z is a Gaussian

random variable where:
E [Z] = bT + (r0 − b)

(
1− e−aT

a

)
and:

var (Z) = σ2

a2

(
T −

(
1− e−aT

a

)
− 1

2a
(
1− e−aT

)2)
We deduce that:

V (0, r0) = EQ [e−Z∣∣F0
]

= exp
(
−EQ [Z] + 1

2 varQ (Z)
)

= exp
(
−r0β −

(
b′ − σ2

2a2

)
(T − β)− σ2β2

4a

)
where:

β = 1− e−aT

a
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If we use the standard notation B (t, T ), we have B (t, T ) = V (T − t, r (t)). We recall
that the zero-coupon rate R (t, T ) is defined by:

B (t, T ) = e−(T−t)R(t,T )

We deduce that:

R (t, T ) = − 1
T − t

lnB (t, T )

= rtβ

T − t
+
(
b′ − σ2

2a2

)(
T − t− β
T − t

)
+ σ2β2

4a (T − t)

=
(
b′ − σ2

2a2

)
+
(
rt − b′ +

σ2

2a2

)
β

T − t
+ σ2β2

4a (T − t)

Since we have:
R∞ = lim

T→∞
R (t, T ) = b′ − σ2

2a2

the zero-coupon rate has the following expression:

R (t, T ) = R∞ + (rt −R∞)
(

1− e−a(T−t)

a (T − t)

)
+
σ2 (1− e−a(T−t))2

4a3 (T − t) (9.14)

The yield curve can take three different forms (Figure 9.14). Vasicek (1977) shows that the

curve is increasing if rt ≤ R∞ −
σ2

4a2 and decreasing if rt ≥ R∞ + σ2

2a2 . Otherwise, it is a
bell curve.

FIGURE 9.14: Vasicek model (a = 2.5, b = 6% and σ = 5%)
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Let F (t, T1, T2) be the forward rate at time t for the period [T1, T2]. It verifies the
following relationship:

B (t, T2) = e−(T2−T1)F (t,T1,T2)B (t, T1)

We deduce that the expression of F (t, T1, T2) is:

F (t, T1, T2) = − 1
(T2 − T1) ln B (t, T2)

B (t, T1)

It follows that the instantaneous forward rate is given by this equation17:

f (t, T ) = F (t, T, T ) = −∂ lnB (t, T )
∂ T

Using Equation (9.14), we deduce another expression of the price of the zero-coupon bond:

B (t, rt) = exp
(
− (T − t)R∞ − (rt −R∞)

(
1− e−a(T−t)

a

)
−
σ2 (1− e−a(T−t))2

4a3

)

Therefore, the instantaneous forward rate in the Vasicek model is:

f (t, T ) = R∞ + (rt −R∞) e−a(T−t) +
σ2 (1− e−a(T−t)) e−a(T−t)

2a2

Remark 100 Forward rates are interest rates that are locked in forward rate agreements
(FRA). It involves two dates: T1 is the start of the period the rate will be fixed for, and T2
is the maturity date of the FRA. T2−T1 is the maturity of the locked interest rate. It is also
called the tenor of the interest rate that is being fixed. Therefore, F (t, T1, T2) is the forward
value of the spot rate R (t, T2 − T1).

9.1.2.2 The calibration issue of the yield curve

Hull and White (1990) propose to extend the Vasicek model by considering that the
three parameters a, b and σ are deterministic functions of time. Under the risk-neutral
probability measure, the dynamics of the interest rate is then:

dr (t) = a (t) (b (t)− r (t)) dt+ σ (t) dWQ (t)

The underlying idea is to fit the term structure of interest rates and other quantities, such
as the term structure of spot volatilities. However, the generalized Vasicek model produces
unrealistic volatility term structures. Therefore, Hull and White (1994) focused on this
extension:

dr (t) = a (b (t)− r (t)) dt+ σ dWQ (t)
= (θ (t)− ar (t)) dt+ σ dWQ (t)

17We also notice that B (t, T ) can be expressed in terms of instantaneous forward rates:

B (t, T ) = e
−
∫ T
t
f(t,u) du
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where θ (t) = a · b (t). If we want to fit exactly the yield curve, we can consider arbitrary
values for the parameters a and σ, because the calibration of the yield curve is done by the
time-varying mean-reverting parameter:

θ (t) = ∂ f (0, t)
∂ t

+ af (0, t) + σ2

2a
(
1− e−2at)

or:
b (t) = f (0, t) + 1

a
∂tf (0, t) + σ2

2a2

(
1− e−2at) (9.15)

We notice that b (t) depends on the instantaneous forward rate, which is the first derivative
of the price of the zero-coupon bond.

Example 83 We assume that the zero-coupon rates are given by the Nelson-Siegel model
with θ1 = 5.5%, θ2 = 0.5%, θ3 = −4.5% and θ4 = 1.8.

We reiterate that the spot rate R (t, T ) in the Nelson-Siegel model is equal to:

R (t, T ) = θ1 + θ2

(
1− e−(T−t)/θ4

(T − t) /θ4

)
+ θ3

(
1− e−(T−t)/θ4

(T − t) /θ4
− e−(T−t)/θ4

)
We deduce that the instantaneous forward rate corresponds to the following expression:

f (t, T ) = ∂ (T − t)R (t, T )
∂ T

= θ1 + θ2e
−(T−t)/θ4 + θ3 (T − t)

θ4
e−(T−t)/θ4

For the slope, we have:

∂ f (t, T )
∂ T

=
(

(θ3 − θ2)
θ4

− θ3 (T − t)
θ2

4

)
e−(T−t)/θ4

Fitting exactly the Nelson-Siegel yield curve is then equivalent to define the time-varying
mean-reverting parameter b (t) of the extended Vasicek model as follows:

b (t) = θ1 + θ2e
−t/θ4 + θ3t

θ4
e−t/θ4 + σ2

2a2

(
1− e−2at)+

1
a

(
(θ3 − θ2)

θ4
− θ3t

θ2
4

)
e−t/θ4

= θ1 +
((

θ2 + θ3t

θ4

)(
1− 1

aθ4

)
+ θ3

aθ4

)
e−t/θ4 +

σ2

2a2

(
1− e−2at)

In Figure 9.15, we have represented the yield curve obtained with the Nelson-Siegel model
in the top/left panel. We have also reported the curve of instantaneous forward rates in
the top/right panel. The bottom/left panel corresponds to the time-varying mean-reverting
parameter b (t). We have used three set of parameters (a, σ). Finally, we have recalculated
the yield curve of the extended Vasicek model in the bottom/right panel. We retrieve the
original yield curve. We can compare this solution with those obtained by minimizing the
sum of the squared residuals:(

r̂0, â, b̂, σ̂
)

= arg min
∑
i

(
RNS (t, Ti)−R (t, Ti; r0, a, b, σ)

)2
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where RNS (t, Ti) is the Nelson-Siegel spot rate, R (t, Ti; r0, a, b, σ) is the theoretical spot rate
of the Vasicek model and i denotes the ith observation. By considering all the maturities
between zero and twenty years with a step of one month, we obtain r̂0 = 6%, â = 16.88,
b̂ = 7.47% and σ̂ = 3.91%. Unfortunately, the fitted Vasicek model (curve #2) does not
reproduce the original yield curve contrary to the fitted extended Vasicek model (curve #1).

FIGURE 9.15: Calibration of the Vasicek model

The yield curve is not the only market information to calibrate. More generally, the
calibration set of an interest rate model also includes caplets, floorlets and swaptions (Brigo
and Mercurio, 2006). This explains that pricing interest rate exotic options is more difficult
than pricing equity exotic options, and one-factor models based on the short rate are not
sufficient, because it is not possible to calibrate caps, floors and swaptions.

9.1.2.3 Caps, floors and swaptions

We consider a number of future dates T0, T1, . . . , Tn, and we assume that the period
between two dates Ti and Ti−1 is approximately constant (e.g. 3M or 6M). A caplet is
the analog of a call option, whose underlying asset is a forward rate. It is defined by
the payoff (Ti − Ti−1) (F (Ti−1, Ti−1, Ti)−K)+, where K is the strike of the caplet and
F (Ti−1, Ti−1, Ti) is the forward rate at the future date Ti−1. δi−1 = Ti − Ti−1 is then the
tenor of the caplet, Ti−1 is the resetting date (or the fixing date) of the forward rate whereas
Ti is the maturity date of the caplet. A cap is a portfolio of successive caplets18:

Cap (t) =
n∑
i=1

Caplet (t, Ti−1, Ti)

18We have t ≤ T0.
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Similarly, a floor is a portfolio of successive floorlets:

Floor (t) =
n∑
i=1

Floorlet (t, Ti−1, Ti)

where the payoff of the floorlet is (Ti − Ti−1) (K − F (Ti−1, Ti−1, Ti))+.
A par swap rate is the fixed rate of an interest rate swap19:

Sw (t) = B (t, T0)−B (t, Tn)∑n
i=1 (Ti − Ti−1) ·B (t, Ti)

Then, we define the payoff of a payer swaption as20:

(Sw (T0)−K)+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

where Sw (T0) is the forward swap rate.

Remark 101 Generally, caps, floors and swaptions are written on the Libor rate, which is
defined as a simple forward rate:

L (t, Ti−1, Ti) = 1
Ti − Ti−1

(
B (t, Ti−1)
B (t, Ti)

− 1
)

In order to price these interest rate products, we can use the risk-neutral probability
measure Q, and we have21:

Caplet (t, Ti−1, Ti) = EQ
[
e
−
∫ Ti
t

r(s) ds
δi−1 (L (Ti−1, Ti−1, Ti)−K)+

∣∣∣∣Ft]
and:

Swaption (t) = EQ

[
e
−
∫ Tn
t

r(s) ds (Sw (T0)−K)+
n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

We face here a problem because the discount factor is stochastic and is not independent
from the forward rate L (Ti−1, Ti−1, Ti) or the forward swap rate Sw (T0). Therefore, the
risk-neutral transform does not help to price interest rate derivatives.

9.1.2.4 Change of numéraire and equivalent martingale measure

We recall that the price of the contingent claim, whose payoff is V (T ) = f (S (T )) at
time T , is given by:

V (0) = EQ
[
e
−
∫ T

0
r(s) ds · V (T )

∣∣∣∣F0

]
where Q is the risk-neutral probability measure. We can rewrite this equation as follows:

V (0)
M (0) = EQ

[
V (T )
M (T )

∣∣∣∣F0

]
(9.16)

19T0 = t corresponds to a spot swap, whereas T0 > t corresponds to a forward start swap.
20The payoff of a receiver swaption is:

(K − Sw (T0))+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

21We recall that δi−1 is equal to Ti − Ti−1.
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where22:
M (t) = exp

(∫ t

0
r (s) ds

)
Under the probability measure Q, we know that Ṽ (t) = V (t) /M (t) is an Ft-martingale.
The money market accountM (t) is then the numéraire when the martingale measure is the
risk-neutral probability measure23, but other numéraires can be used in order to simplify
pricing problems:

“The use of the risk-neutral probability measure has proved to be very powerful
for computing the prices of contingent claims [...] We show here that many
other probability measures can be defined in the same way to solve different
asset-pricing problems, in particular option pricing. Moreover, these probability
measure changes are in fact associated with numéraire changes” (Geman et al.,
1995, page 443).

Let us consider another numéraire N (t) > 0 and the associated probability measure given
by the Radon-Nikodym derivative:

dQ?

dQ = N (T ) /N (0)
M (T ) /M (0)

= e
−
∫ T

0
r(s) ds · N (T )

N (0)

We have:

EQ?
[
V (T )
N (T )

∣∣∣∣F0

]
= EQ

[
V (T )
N (T ) ·

dQ?

dQ

∣∣∣∣Ft]
= M (0)

N (0) · E
Q
[
V (T )
M (T )

∣∣∣∣F0

]
= M (0)

N (0) · V (0)

We deduce that:
V (0)
N (0) = EQ?

[
V (T )
N (T )

∣∣∣∣F0

]
(9.17)

We notice that Equation (9.17) is similar to Equation (9.16), except that we have changed
the numéraire (M (t)→ N (t)) and the probability measure (Q→ Q?). More generally, we
have:

V (t) = N (t) · EQ?
[
V (T )
N (T )

∣∣∣∣Ft]
Thanks to Girsanov theorem, we also notice that e−

∫ t
0
r(s) ds

N (t) is an Ft-martingale.

Example 84 The forward numéraire is the zero-coupon bond price of maturity T :

N (t) = B (t, T )

In this case, the probability measure is called the forward probability and is denoted by
Q? (T ). This martingale measure has been originally used by Jamshidian (1989) for pricing
bond options with the Vasicek model. Another important result is that forward rates are
martingales under the forward probability measure (Brigo and Mercurio, 2006).

22We note that M (0) = 1.
23M (t) is also called the spot numéraire.
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By noticing that N (T ) = B (T, T ) = 1, Equation (9.17) becomes:

V (t) = B (t, T )EQ?(T ) [V (T )| Ft]

For instance, in the case of a caplet, we obtain:

Caplet (t, Ti−1, Ti) = δi−1EQ
[
M (t)
M (Ti)

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣∣Ft]

= δi−1EQ?(Ti)
[
N (t)
N (Ti)

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣∣Ft]

= δi−1B (t, Ti)EQ?(Ti)
[

(L (Ti−1, Ti−1, Ti)−K)+
∣∣∣Ft]

where L (t, Ti−1, Ti) is an Ft-martingale under the forward probability measure Q? (Ti). If
we use the standard Black model, we obtain:

Caplet (t, Ti−1, Ti) = δi−1B (t, Ti) (L (t, Ti−1, Ti) Φ (d1)−KΦ (d2)) (9.18)

where24:
d1 = 1

σi−1
√
Ti−1 − t

ln L (t, Ti−1, Ti)
K

+ 1
2σi−1

√
Ti−1 − t

and:
d2 = d1 − σi−1

√
Ti−1 − t

If we consider other models, the general formula of the caplet price is25:

Caplet (t, Ti−1, Ti) = B (t, Ti)EQ?(Ti)

[(
1

B (Ti−1, Ti)
− (1 + δi−1K)

)+
∣∣∣∣∣Ft
]

Example 85 The annuity numéraire is equal to:

N (t) =
n∑
i=1

(Ti − Ti−1)B (t, Ti)

While the forward swap rate is a martingale under the annuity probability measure Q?, the
annuity numéraire is used to price a swaption (Brigo and Mercurio, 2006).

24σi−1 is the volatility of the Libor rate L (t, Ti−1, Ti).
25We have:

δi−1 (L (t, Ti−1, Ti)−K)+ =
(
B (t, Ti−1)
B (t, Ti)

− (1 + δi−1K)
)+

=
(B (t, Ti−1)− (1 + δi−1K)B (t, Ti))+

B (t, Ti)

and:

δi−1 (L (Ti−1, Ti−1, Ti)−K)+ =
(

1
B (Ti−1, Ti)

− (1 + δi−1K)
)+
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We deduce the following pricing formula for the swaption:

Swaption (t) = EQ

[
M (t)
M (Tn) (Sw (T0)−K)+

n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

= EQ?
[
N (t)
N (T0) (Sw (T0)−K)+

n∑
i=1

δi−1B (T0, Ti)

∣∣∣∣∣Ft
]

= N (t)EQ?
[

(Sw (T0)−K)+
∣∣∣Ft] (9.19)

= N (t)EQ?
[(

1−B (T0, Tn)
N (T0) −K

)+
∣∣∣∣∣Ft
]

Using Equation (9.19), we can also find a Black formula for the swaption, in exactly the same
way as caps and floors. However, we face here an issue. Indeed, it is equivalent to assume
that all the forward rates are log-normal under the different forward probability measures
Q? (Ti) and the swap rates are also log-normal under the annuity probability measures Q?.
The problem is that these different forward and swap rates are related, and their dynamics
are not independent.

9.1.2.5 The HJM model

Until the beginning of the nineties, the state variable of fixed income models is the in-
stantaneous interest rate r (t). For instance, it is the case of the models of Vasicek (1977) and
Cox et al. (1985). However, we have seen that we face some calibration issues when consid-
ering such framework. Heath et al. (1992) propose then that the state variables are forward
rates, and not spot rates. Under the risk-neutral probability measure Q, the dynamics of
the instantaneous forward rate for the maturity T is given by:

f (t, T ) = f (0, T ) +
∫ t

0
α (s, T ) ds+

∫ t

0
σ (s, T ) dWQ (s)

where f (0, T ) is the current forward rate. Therefore, the stochastic differential equation is:

df (t, T ) = α (t, T ) dt+ σ (t, T ) dWQ (t) (9.20)

Bond pricing We recall that:

B (t, T ) = e
−
∫ T
t
f(t,u) du

If we note X (t) = −
∫ T
t
f (t, u) du, we have:

dX (t) = f (t, t) dt−
∫ T

t

df (t, u) du

= f (t, t) dt−
(∫ T

t

α (t, u) du
)

dt−
(∫ T

t

σ (t, u) du
)

dWQ (t)

= (f (t, t) + a (t, T )) dt+ b (t, T ) dWQ (t)

where:
a (t, T ) = −

∫ T

t

α (t, u) du
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and:
b (t, T ) = −

∫ T

t

σ (t, u) du

We deduce that:

dB (t, T ) = eX(t) dX (t) + 1
2e

X(t) 〈dX (t) ,dX (t)〉

=
(
f (t, t) + a (t, T ) + 1

2b
2 (t, T )

)
B (t, T ) dt+

b (t, T )B (t, T ) dWQ (t)

Since f (t, t) is equal to the spot rate r (t), the HJM model implies the following restriction26:

α (t, T ) = σ (t, T )
∫ T

t

σ (t, u) du (9.21)

Equation (9.21) is known as the ‘drift restriction’ and is necessary to ensure no-arbitrage
opportunities. In this case, we verify that the discounted zero-coupon bond is a martingale
under the risk-neutral probability measure Q:

dB (t, T ) = r (t)B (t, T ) dt+ b (t, T )B (t, T ) dWQ (t)

Dynamics of spot and forward rates The drift restriction implies that the dynamics
of the instantaneous forward rate f (t, T ) is given by:

df (t, T ) =
(
σ (t, T )

∫ T

t

σ (t, u) du
)

dt+ σ (t, T ) dWQ (t)

Therefore, we have:

f (t, T ) = f (0, T ) +
∫ t

0

(
σ (s, T )

∫ T

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, T ) dWQ (s)

If we are interested in the instantaneous spot rate r (t), we obtain:

r (t) = f (t, t)

= r (0) +
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)

Forward probability measure We now consider the dynamics of the forward rate
f (t, T1) under the forward probability measure Q? (T2) with T2 ≥ T1. We reiterate that
the new numéraire N (t) is given by:

N (t) = B(t, T2) = e
−
∫ T2
t

f(t,u) du

26Indeed, we must have:
a (t, T ) +

1
2
b2 (t, T ) = 0

or:
∂T a (t, T ) = −b (t, T ) · ∂T b (t, T )
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In Exercise 9.4.5 on page 596, we show that:

df (t, T1) = −
(
σ (t, T1)

∫ T2

T1

σ (t, u) du
)

dt+ σ (t, T1) dWQ?(T2) (t)

It follows that f (t, T1) is a martingale under the forward probability measure Q? (T1):

df (t, T1) = σ (t, T1) dWQ?(T1) (t)

We can also show that B (t, T2) /B (t, T1) is a martingale under Q? (T1) and we have:

B (T1, T2) = B (t, T2)
B (t, T1) exp

(∫ T1

t

g (u) dWQ?(T1) (u)− 1
2

∫ T1

t

g2 (u) du
)

where:
g (t) = b (t, T2)− b (t, T1)

Some examples If we assume that σ (t, T ) is constant and equal to σ, we obtain:

f (t, T ) = f (0, T ) + σ2
(
T − t

2

)
t+ σWQ (t)

and:
r (t) = f (0, t) + σ2 t

2

2 + σWQ (t)

This case corresponds to the Gaussian model of Ho and Lee (1986).
Brigo and Mercurio (2006) consider the case of separable volatility:

σ (t, T ) = ξ (t)ψ (T )

We have:

dr (t) =
(
∂tf (0, t) + ψ2 (t)

∫ t

0
ξ2 (s) ds+ (r (t)− f (0, t))

ψ (t) ψ′ (t)
)

dt+

ξ (t)ψ (t) dWQ (t)

For example, if we set σ (t, T ) = σe−a(T−t), we have ξ (t) = σeat, ψ (T ) = e−aT and27:

dr (t) =
(
∂tf (0, t) + σ2

(
1− e−2at

2a

)
+ a (f (0, t)− r (t))

)
dt+ σ dWQ (t)

We retrieve the generalized Vasicek model proposed by Hull and White (1994):

dr (t) = a (b (t)− r (t)) dt+ σ dWQ (t)

where b (t) is given by Equation (9.15) on page 517.

27We have:

ψ2 (t)
∫ t

0
ξ2 (s) ds = σ2e−2at

∫ t

0
e2as ds

= σ2
(

1− e−2at

2a

)
and:

ψ′ (t)
ψ (t)

= −a
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Ritchken and Sankarasubramanian (1995) have identified necessary and sufficient con-
ditions on the functions ξ and ψ in order to obtain a Markovian short-rate process. They
showed that they must satisfy the following conditions:

ξ (t) = σ (t) e
∫ t

0
κ(s) ds

and:
ψ (T ) = e

−
∫ T

0
κ(s) ds

where σ (t) and κ (t) are two Ft-adapted processes. In this case, we obtain:

σ (t, T ) = σ (t) e−
∫ T
t
κ(s) ds

For instance, the generalized Vasicek model is a special case of this framework where the
two functions σ (t) and κ (t) are constant28.

Extension to multi-factor models We can show that the previous results can be ex-
tended when we assume that the instantaneous forward rate is given by the following SDE:

df (t, T ) = α (t, T ) dt+ σ (t, T )> dWQ (t)

where WQ (t) =
(
WQ

1 (t) , . . . ,WQ
n (t)

)
is a n-dimensional Brownian motion and ρ is the

correlation matrix of WQ (t). For instance, the drift restriction (9.21) becomes:

α (t, T ) = σ (t, T )> ρ
∫ T

t

σ (t, u) du

In the two-dimensional case, we obtain:

df (t, T ) =
(
σ1 (t, T )

∫ T

t

σ1 (t, u) du
)

dt+
(
σ2 (t, T )

∫ T

t

σ2 (t, u) du
)

dt

+ρ1,2

(
σ1 (t, T )

∫ T

t

σ2 (t, u) du+ σ1 (t, T )
∫ T

t

σ2 (t, u) du
)

dt

σ1 (t, T ) dWQ
1 (t) + σ2 (t, T ) dWQ

2 (t)

For example, Heath et al. (1992) extend the Vasicek model by assuming that σ1 (t, T ) = σ1,
σ2 (t, T ) = σ2e

−a2(T−t) and ρ1;2 = 0. In this case, we obtain:

r (t) = f (0, t) + σ2
1
t2

2 + σ2
2
a2

2

((
1− e−a2t

)
− 1

2
(
1− e−2a2t

))
+

σ1W
Q
1 (t) + σ2

∫ t

0
e−a2(t−s) dWQ

2 (s)

9.1.2.6 Market models

One of the disadvantages of short-rate and HJM models is that they focus on instanta-
neous spot or forward interest rates. However, these quantities are unobservable. At the end
of the nineties, academics have developed two families of models in order to bypass these
disadvantages: the Libor market model (LMM) and the swap market model (SMM).

28We have σ (t) = σ and κ (t) = a.
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The Libor market model The Libor market model has been introduced by Brace et al.
(1997) and is also known as the BGM model in reference to the names of Brace, Gatarek
and Musiela. We recall that the Libor rate is defined as a simple forward rate:

L (t, Ti, Ti+1) = 1
Ti+1 − Ti

(
B (t, Ti)
B (t, Ti+1) − 1

)
In order to simplify the notation, we write Li (t) = L (t, Ti, Ti+1). Under the forward prob-
ability measure Q? (Ti+1), the Libor rate Li (t) is a martingale:

dLi (t) = γi (t)Li (t) dWQ?(Ti+1)
i (t) (9.22)

Then, we can use the Black formula (9.18) on page 521 to price caplets and floorlets where
the volatility σi is defined by:

σ2
i = 1

Ti − t

∫ Ti

t

γ2
i (s) ds

Therefore, we can price caps and floors because they are just a sum of caplets and floorlets.

Flat or spot implied volatility We can define two surfaces of implied volatilities. Since
we observe the market prices of caps and floors, we can deduce the corresponding implied
volatilities by assuming that the volatility in the Black model is constant. Thus, we have:

Capn (t) = Cap (t, T0, T1, . . . , Tn)

=
n∑
i=1

Caplet (t, Ti−1, Ti)

=
n∑
i=1

Capleti (t)

where Capleti (t) = C (Li−1 (t) ,K, σi−1, Ti) and C (L,K, σ, T ) is the Black formula with
volatility σ. The implied volatility Σ (K,T ) is then obtained by solving the following equa-
tion:

n∑
i=1

C (Li−1 (t) ,K,Σ, Ti) = Capn (t)

The implied volatility is also called the ‘flat’ volatility and is denoted by Σflat (K,Tn). In this
case, there is a flat implied volatility for each strike K and each maturity Tn of caps/floors.
However, we can also compute an implied volatility Σ (K,T ) for each caplet. We have:

Capn (t) = Cap (t, T0, T1, . . . , Tn)

=
n∑
i=1

Caplet (t, Ti−1, Ti)

=
n∑
i=1

C (Li−1 (t) ,K,Σ (K,Ti−1) , Ti)

The estimation of the implied volatility surface is obtained by minimizing the sum of squared
residuals between observed and theoretical prices. In this case, the implied volatility is called
the ‘spot’ volatility and is denoted by Σspot (K,Ti−1).
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Example 86 We consider 6 caplets on the 3M Libor rate, whose strike is equal to 3%. The
tenor structures are respectively (3M,6M), (6M,9M), (9M,12M), (12M,15M), (15M,18M)
and (18M,21M). In the following table, we indicate the price of the six caps29, whose notional
is equal to $1 m.

Maturity of the cap 6M 9M 12M 15M 18M 21M
Cap price 151.50 529.74 1259.38 2221.82 3295.31 4594.40

We indicate below the current value of the forward Libor rate, and also the value of the
zero-coupon rate.

Start date Ti−1 3M 6M 9M 12M 15M 18M
Maturity Ti 6M 9M 12M 15M 18M 21M
Forward Libor rate 3.05% 3.15% 3.30% 3.40% 3.45% 3.55%
Zero-coupon rate 3.05% 3.10% 3.15% 3.20% 3.25% 3.30%

Given the term structure of the volatility, we can price the caplets and the caps30. Since
we have the price of the caps, we can calibrate the flat and spot implied volatilities. We
obtain the results given in Table 9.5.

TABLE 9.5: Calibration of Σflat (K,Tn), Σspot (K,Ti) and γi
Tn Σflat (K,Tn) Ti Σspot (K,Ti) Ti γi
6M 5.000% 3M 5.000% 3M 5.000%
9M 5.083% 6M 5.199% 6M 5.391%
12M 5.130% 9M 5.449% 9M 5.918%
15M 5.158% 12M 5.497% 12M 5.637%
18M 5.192% 15M 5.557% 15M 5.794%
21M 5.214% 18M 5.616% 18M 5.899%

We consider that the functions γi (t) are the same and are equal to γ (t). If we assume that
γ (t) is a piecewise constant function, we have:

γ (t) =
{
γ0 if t ∈ [0, T0[
γi if t ∈ [Ti−1, Ti[

It follows that: ∫ Ti

0
γ2 (s) ds =

∫ Ti−1

0
γ2 (s) ds+

∫ Ti

Ti−1
γ2 (s) ds

or:
TiΣspot (K,Ti)2 = Ti−1Σspot (K,Ti−1)2 + (Ti − Ti−1) γ2

i

We deduce that:
γ0 = Σspot (K,T0)

29The ith cap is the sum of the first i caplets.
30For instance, if we assume that the volatility σi for the second caplet is 5%, we obtain:

Caplet (0, 6M, 9M) = 106 × 0.25× e−0.75×3.05% × (3.15%× Φ (d1)− 3%× Φ (d2)) = $394.48

where:
d1 =

1
5%×

√
0.5

ln
(3.15%

3%

)
+

1
2
× 5%×

√
0.5 = 1.3977

and:
d2 = d1 − 5%×

√
0.5 = 1.3623
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and:

γi =

√
TiΣspot (K,Ti)2 − Ti−1Σspot (K,Ti−1)2

Ti − Ti−1

Therefore, we can use the spot volatilities to calibrate the function γ (t) (see Table 9.5 and
Figure 9.16).

FIGURE 9.16: Flat and spot implied volatilities

Remark 102 There is a lag between the flat volatility and the spot volatility, because we
use the convention that the flat volatility is measured at the maturity date of the cap while
the spot volatility is measured at the fixing date. In the previous example, the first flat
volatility corresponds to the 6-month maturity date of the cap, whereas the first spot volatility
corresponds to the 3-month fixing date of the caplet.

Dynamics under other probability measures The dynamics (9.22) is valid for the
Libor forward rate L (t, Ti, Ti+1). Then, we have:

dL0 (t) = γ0 (t)L0 (t) dWQ?(T1)
0 (t)

...
dLn−1 (t) = γn−1 (t)Ln−1 (t) dWQ?(Tn)

n−1 (t)

It is obvious that the Wiener processes (W0, . . . ,Wn−1) are correlated. We can show that
the dynamics of Li (t) under the probability measure Q? (Tk+1) is equal to:

dLi (t)
Li (t) = µi,k (t) dt+ γi (t) dWQ?(Tk+1)

k (t)
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where31:

µi,k (t) = −γi (t)
k∑

j=i+1
ρi,jγj (t) (Tj+1 − Tj)Lj (t)

1 + (Tj+1 − Tj)Lj (t) if k > i

and ρi,j is the correlation between WQ?(Ti+1)
i and WQ?(Tj+1)

j .
Brigo and Mercurio (2006) derive the risk-neutral dynamics of the forward Libor rate

Li (t) when we use the spot numéraire M (t) = exp
(∫ t

0 r (s) ds
)
. However, the expression

is complicated and it is not very useful from a practical point of view. This is why they
define another version of the spot numéraire, when the money market account is rebalanced
only on the resetting dates T0, T1, . . . , Tn−1. Let ϕ (t) be the next resetting date index after
time t, meaning that ϕ (t) = i if Ti−1 < t < Ti. The spot Libor numéraire is then defined
as follows:

M† (t) = B
(
t, Tϕ(t)−1

) ϕ(t)−1∏
j=0

(1 + δjLj (Tj))

and we have:

dLi (t)
Li (t) =

γi (t)
i∑

j=ϕ(t)

ρi,jγj (t) δjLj (t)
1 + δjLj (t)

 dt+ γi (t) dWQ
k (t)

where WQ
k (t) is a Brownian motion when the numéraire is M† (t).

The swap market model Since forward Libor rates Li (t) are log-normal distributed,
the forward swap rate Sw (t) cannot be log-normal. Then, the Black formula cannot be
applied to price swaptions32. However, we can always price swaptions using Monte Carlo
methods by considering the spot measure (Glasserman, 2003). To circumvent this issue,
Jamshidian (1997) proposed a model where the swap rate is a martingale under the annuity
probability measure Q?:

d Sw (t) = η (t) Sw (t) dWQ? (t)
Again, we can use the Black formula for pricing swaptions. However, we face the same
problem as previously, because forward swap and Libor rates cannot be both log-normal.

9.2 Volatility risk
In the first section of this chapter, we have seen canonical models (Black-Scholes, Black,

HJM and LMM) used to price options. In fact, they are not really ‘option’ pricing models in
the sense that European options such as calls, puts, caps, floors and swaptions are observed
in the market. Indeed, they are more ‘volatility’ pricing models, because they give a price
to the implied volatility of European options. Knowing the implied volatility surface, the
trader can then price exotic or OTC derivatives, and more importantly, define corresponding
hedging portfolios.

31If k < i, we have:

µi,k (t) = γi (t)
i∑

j=k+1

ρi,jγj (t)
(Tj+1 − Tj)Lj (t)

1 + (Tj+1 − Tj)Lj (t)

32Nevertheless, there exist several approximations for pricing swaptions (Rebonato, 2002).
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9.2.1 The uncertain volatility model
On page 512, we have seen that the P&L of the replicating strategy is given by the

formula of El Karoui et al. (1998):

V (T )− f (S (T )) = 1
2

∫ T

0
er(T−t)Γ (t)

(
Σ2 (T,K)− σ2 (t)

)
S2 (t) dt

If we assume that σ (t) ∈ [σ−, σ+], we obtain a simple rule for achieving a positive P&L:

• if Γ (t) ≥ 0, we have to hedge the portfolio by considering an implied volatility that
is equal to the upper bound σ+;

• if Γ (t) ≤ 0, we set the implied volatility to the lower bound σ−.

This rule is valid if the gamma of the option is always positive or negative, that is when
the payoff is convex. Avellaneda et al. (1995) extend this rule when the gamma can change
its sign during the life of the option. This is the case of many exotic options, which depend
on conditional events (butterfly, barrier, call spread, ratchet, etc.).

9.2.1.1 Formulation of the partial differential equation

We assume that the dynamics of the underlying price is given by the following SDE:

dS (t) = r (t)S (t) dt+ σ (t)S (t) dWQ (t) (9.23)

where:
σ− ≤ σ (t) ≤ σ+ (9.24)

Let V (t, S (t)) be the option price, whose payoff is f (S (T )). Avellaneda et al. (1995) show
that V (t, S (t)) is bounded:

V − (t, S (t)) ≤ V (t, S (t)) ≤ V + (t, S (t))

where V − (t, S (t)) = infQ(σ) EQ(σ)
[
exp

(
−
∫ T
t
r (s) ds

)
f (S (T ))

]
, V + (t, S (t)) =

supQ(σ) EQ(σ)
[
exp

(
−
∫ T
t
r (s) ds

)
f (S (T ))

]
and Q (σ) denotes all the probability measures

such that Equations (9.23) and (9.24) hold. We can then show that V − and V + satisfy the
HJB equation:

sup / inf
σ−≤σ(t)≤σ+

(
1
2σ

2 (t)S2 ∂
2 V (t, S)
∂ S2 + b (t)S ∂ V (t, S)

∂ S

)
+

∂ V (t, S)
∂ t

− r (t)V (t, S) = 0

Solving the HJB equation is equivalent to solve the modified Black-Scholes PDE:{ 1
2σ

2 (Γ (t, S))S2∂2
SV (t, S) + b (t)S∂SV (t, S) + ∂tV (t, S)− r (t)V (t, S) = 0

V (T, S (T )) = f (S (T ))

where:
σ (x) =

{
σ+ if x ≥ 0
σ− if x < 0 for V (t, S (t)) = V + (t, S (t))

and:
σ (x) =

{
σ− if x > 0
σ+ if x ≤ 0 for V (t, S (t)) = V − (t, S (t))
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Since Γ (t, S) = ∂2
SV (t, S) may change its sign during the time interval [t, T ], we have to

solve the PDE numerically. A solution consists in using finite difference methods described
in Appendix A.1.2.4 on page 1041.

Let umi be the numerical solution of V (tm, Si). At each iteration m, we approximate the
gamma coefficient by the central difference method:

Γ (tm, Si) '
umi+1 − 2umi + umi+1

h2

By assuming that:
sign (Γ (tm, Si)) ≈ sign (Γ (tm+1, Si))

we can compute the values taken by σ (Γ (t, S)) and solve the PDE for the next iteration
m+ 1.

9.2.1.2 Computing lower and upper pricing bounds

If we consider the European call option, we have Γ (t, S) > 0, meaning that:

V + (t, S (t)) = CBS
(
t, S (t) , σ+)

and:
V − (t, S (t)) = CBS

(
t, S (t) , σ−

)
where CBS (t, S, σ) is the Black-Scholes price at time t when the underlying price is equal
to S and the implied volatility is equal to Σ. Then, the worst-case scenario occurs when the
volatility σ (t) reaches the upper bound σ+.

This result is obtained because the delta of the option is a monotone function with
respect to the underlying price. However, this property does not hold for many derivative
contracts, in particular when the payoff is path dependent. In this case, the payoff depends
on the trajectory of the underlying asset. For instance, the payoff of a barrier option depends
on whether a certain barrier level was touched (or not touched) at some time during the life
of the option. We give here the payoff associated to the four main types of single barrier33:

• down-and-in call and put options (DIC/DIP):

fBarrier (S (T )) = 1

{
S0 > L,min

t∈T
S (t) ≤ L

}
· fVanilla (S (T ))

• down-and-out call and put option (DOC/DOP):

fBarrier (S (T )) = 1

{
S0 > L,min

t∈T
S (t) > L

}
· fVanilla (S (T ))

• up-and-in call and put options (UIC/UIP):

fBarrier (S (T )) = 1

{
S0 < H,max

t∈T
S (t) ≥ H

}
· fVanilla (S (T ))

33We have:

fVanilla (S (T )) =
{

(S (T )−K)+ for the call option
(K − S (T ))+ for the put option
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• up-and-out call and put options (UOC/UOP):

fBarrier (S (T )) = 1

{
S0 < H,max

t∈T
S (t) < H

}
· fVanilla (S (T ))

In the case of knocked-out barrier payoffs (DOC/DOP, UOC/UOP), the option termi-
nates the first time the barrier is crossed, whereas knocked-in barrier options (DIC/DIP,
UIC/UIP), the payoff is paid only if the underlying asset crosses the barrier. These barriers
can also be combined in order to obtain double barrier options:

• double knocked-in call and put options (KIC/KIP):

fBarrier (S (T )) = 1 {S (t) /∈ [L,H] , t ∈ T } · fVanilla (S (T ))

• double knocked-out call and put option (KOC/KOP):

fBarrier (S (T )) = 1 {S (t) ∈ [L,H] , t ∈ T } · fVanilla (S (T ))

These options also depend on the time monitoring t ∈ T of the barriers. In particular, we
distinguish continuous (T = [0, T ]), window (T ⊂ [0, T ]) and discrete (T = {t1, t2, . . . , tn})
barriers.

Example 87 We consider a double KOC barrier option with the following parameters:
K = 100, L = 80, H = 120, T = 1, b = 5% and r = 5%. We assume that the volatility σ (t)
lies in the range of 15% and 25%.

In the first and second panels of Figure 9.17, we report the price V (T, S) of the call
option for the continuous barrier (T = [0, 1]). If we use the Black-Scholes model34, the
upper bound is reached when σ (t) = σ− = 15% whereas the lower bound is reached when
σ (t) = σ+ = 25%. We have the feeling that the barrier price is a decreasing function of
the volatility. However, this is not true. Indeed, a high volatility increases the time value
of the final payoff (S (T )−K)+, but also decreases the probability to remain within the
barrier interval [L,H]. Therefore, there is a trade-off between these two opposite effects.
If we consider the uncertain volatility model (UVM), the upper bound is larger than this
obtained with the BS model, because the worst-case scenario is to have a low volatility
when the asset price is close to one barrier and a high volatility when the asset price is
far way from the barriers. Therefore, the worst-case scenario at time t depends on the
relative position of S (t) with respect to L, H and K. If we consider a window barrier with
T = [0.25, 0.75], we obtain the third and fourth panels of Figure 9.17. We notice that the
BS price is not monotone with respect to the volatility. When the current asset price S0 is
equal to the strike K, the BS price is higher when σ (t) = σ− = 15%. This is not the case
when S0 = 150. The reason is that a high volatility increases the probability than the asset
price is below the up barrier H when the window is triggered. A high volatility is also good
when the window ends.

9.2.1.3 Application to ratchet options

Ratchet or cliquet options are financial derivatives that provide a minimum return in
exchange for capping the maximum return. They are used by investors because they may

34Prices can be computed by numerically solving the PDE, or using the closed-form formulas of Rubinstein
and Reiner (1991).
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FIGURE 9.17: Comparing BS and UVM prices of the double KOC barrier option

protect them against downside risk. Let us see an example to understand the underlying
mechanism of such derivative contracts.

We consider a cliquet option with a 3-year maturity on an equity index S (t). The fixing
dates corresponds to the end of each calendar year. We assume that the initial value S0 of
the index is equal to 100. The payoff of the cliquet option is:

f (S (T )) = N ·

 3∑
j=1

max
(

0, S (Tj)− S (Tj−1)
S (Tj−1)

)
where {T1, T2, T3} are the fixing dates and N is the notional of the cliquet option. This
cliquet option accumulates positive annual returns. In the following table, we have report
four trajectories of S (Tj):

S (Tj) #1 #2 #3 #4
S (0) 100 100 100 100
S (1) 120 110 95 90
S (2) 85 125 95 50
S (3) 90 135 75 70

Coupon 25.9% 31.6% 0% 40%

More generally, the payoff of a ratchet is:

f (S (T )) = N ·min

Cg,max

Fg, n∑
j=1

max (F`,min (C`, Rj −K`))−Kg


where Cg is the global cap, Fg is the global floor, Kg is the global strike, C` is the local cap,
F` is the local floor and K` is the local strike. Here, Rj is the return between two fixing
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dates:
Rj = S (Tj)− S (Tj−1)

S (Tj−1)
At the maturity, the buyer of the cliquet option receives the sum of periodic returns subject
to local and global caps, floors and strikes. In the market, one of the most common payoffs
is the following:

f (S (T )) = N ·max

Fg, n∑
j=1

max
(

0,min
(
C`,

S (Tj)
S (Tj−1) − 1

))
With this payoff, the option buyer is hedged against the fall of the asset price and has the
guarantee to have a minimum return that is equal to the global floor Fg. On the contrary,
the option buyer limits the upside risk by introducing the local cap C`. Therefore, the price
of the option is bounded:

e−rT · Fg ≤ f (S (T )) ≤ e−rT ·max (Fg, nC`)

The fundamental issue of cliquet option pricing is the choice of the volatility model to
price the forward call option:

E

[(
S (Tj)
S (Tj−1) − 1

)+
∣∣∣∣∣F0

]

At first sight, we might consider the following solutions:

• we may use the implied forward volatility between Tj−1 and Tj , which is calculated
as follows:

Tj · Σ2 (Tj) = Tj−1 · Σ2 (Tj−1) + (Tj − Tj−1) · Σ2 (Tj−1, Tj)

• we may also use the implied volatility of maturity Tj − Tj−1 at the date Tj−1; this
implies to have a dynamic model of the implied volatility surface.

Since the payoff is locally non-convex, it is not possible to calculate a conservative price using
the Black-Scholes model. In this case, the choice of a good implied volatility is inappropriate.

Wilmott (2002) illustrates the difficulty of pricing cliquet options by comparing Black-
Scholes and uncertain volatility models. The BS price can be calculated using the Monte
Carlo method35. Another solution is to derive the corresponding PDE. In this case, we have
to introduce two additional variables: S′ = S (Tj−1) is the value of S (t) at the previous
fixing date and Q is a variable to keep track of the payoff:

Q =
n∑
j=1

max
(

0,min
(
C`,

S (Tj)
S (Ttj−1) − 1

))
The value of the option depends then on four state variables:

V = V (t, S, S′, Q)

35For that, we simulate the asset price at the fixing dates {0, T0, . . . , Tn, T} using the risk-neutral prob-
ability measure Q and we calculate the mean of the discounted payoff.
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We deduce that V (t, S, S′, Q) satisfies the following PDE between two fixing dates Tj−1
and Tj :

1
2σ

2S2∂2
SV (·) + b (t)S∂SV (·) + ∂tV (·)− r (t)V (·) = 0

whereas the final condition is:

V (T, S, S′, Q) = N ·max (Fg, Q)

As noted by Wilmott (2002), V (t, S, S′, Q) must also satisfy the jump condition at the
fixing date Tj :

V (Tj , S, S′, Q) = V

(
T+
j , S, S,Q+ max

(
0,min

(
C`,

S

S′
− 1
)))

This jump condition initializes the new value of S′ for the next period [Tj−1, Tj ] and update
the payoff Q. By introducing the state variable x = S/S′, Wilmott reduces the dimension
of the problem to three variables t, x and Q:

1
2σ

2x2∂2
xV (t, x,Q) + b (t)x∂xV (t, x,Q) + ∂tV (t, x,Q)− r (t)V (t, x,Q) = 0

V (Tj , x,Q) = V
(
T+
j , 1, Q+ max (0,min (C`, x− 1))

)
V (T, x,Q) = N ·max (Fg, Q)

This PDE can easily be solved numerically and the price of the cliquet option is equal to
V (0, 1, 0). For the uncertain volatility model, we have exactly the same PDE, except that
the quadratic term is replaced by 1

2σ
2 (Γ (t, x))x2∂2

xV (t, x,Q).

Example 88 We consider a cliquet option with the following parameters: r = 5%, b = 5%,
Fg = 10%, C` = 12% and N = 1. The maturity is equal to 5 years, and there are 5 annual
fixing dates. The volatility σ (t) lies in the range 20% to 30%.

In Figure 9.18, we show the PDE solution V (0, x, 0) for constant volatility and volatility
ranges. We notice that the BS price is not very sensitive to the volatility. With respect to
the mid volatility σ = 25%, the BS price increases by 1.35% if the volatility is 30% and
decreases by 1.57% if the volatility is 20%. On the contrary, the UVM price range (V + − V −)
represents 34% of the BS price. This result depends on the values of the global floor and the
local cap. An illustration is provided in Figure 9.19, which gives the relationship36 between
the cliquet option price V (0, 1, 0) and the local cap C`.

9.2.2 The shifted log-normal model
This model assumes that the asset price S (t) is a linear transformation of a log-normal

random variable X (t):
S (t) = α (t) + β (t)X (t)

where β (t) ≥ 0. Then, the payoff of the European call option is:

f (S (T )) = (S (T )−K)+

= (α (T ) + β (T )X (T )−K)+

= β (T )
(
X (T )− K − α (T )

β (T )

)+

36The parameters are those given in Example 88.
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FIGURE 9.18: Comparing BS and UVM prices of the cliquet option

FIGURE 9.19: Influence of the local cap on the cliquet option price
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This type of approach is interesting because the pricing of options can then be done using
the Black-Scholes formula:

C (0, S0) = β (T )CBS

(
X0,

K − α (T )
β (T ) , σX , T, bX , r

)
where bX and σX are the drift and diffusion coefficients of X (t) under the risk-neutral
probability measure Q. This modeling framework has been introduced by Rubinstein (1983)
and popularized by Damiano Brigo and Fabio Mercurio in a series of working papers written
between 2000 and 200337. This model was originally used in order to generate a volatility
skew, but it is now extensively used in interest rate derivatives because it extends the Black
model when facing negative interest rates.

9.2.2.1 The fixed-strike parametrization

Let us suppose that:

S (t) = α+ β exp
((

bQ (t)− 1
2σ

2
)
t+ σWQ (t)

)
We have S0 = α+ β meaning that:

S (t) = α+ (S0 − α) exp
((

bQ (t)− 1
2σ

2
)
t+ σWQ (t)

)
(9.25)

Let b the cost-of-carry parameter of the asset. Under the risk-neutral probability measure,
the martingale condition is:

EQ [e−btS (t) | F0
]

= S0

Since we have EQ [S (t)] = α + (S0 − α) ebQ(t)t, we deduce that the no-arbitrage condition
implies that:

α+ (S0 − α) eb
Q(t)t = S0e

bt

or:
bQ (t) = 1

t
ln
(
S0e

bt − α
S0 − α

)
The payoff of the European call option is:

f (S (T )) = (S (T )−K)+

= ((S (T )− α)− (K − α))+

We deduce that the price of the option is given by:

C (0, S0) = CBS
(
S0 − α,K − α, σ, T, bQ (T ) , r

)
(9.26)

In Figure 9.20, we report the volatility skew generated by the SLN model when the
current price S0 of the asset is 100, the maturity T is one year, the cost-of-carry b is 5%
and the interest rate 5 is 5%. We notice that the parameter σ of the SLN model is not of
the same magnitude than the implied volatility of the BS model. This is due to the shift α.
When α is positive (or negative), we have σ > Σ (T,K) (or σ < Σ (T,K)).

37See Brigo and Mercurio (2002a) for a survey of their different works.
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FIGURE 9.20: Volatility skew generated by the SLN model (fixed-strike parametrization)

9.2.2.2 The floating-strike parametrization

Let us now suppose that:

S (t) = αeϕt + βe(b−
1
2σ

2)t+σWQ(t)

We have S0 = α + β and EQ [S (t)] = αeϕt + βebt. We deduce that the stochastic process
e−btS (t) is a Ft-martingale if it is equal to:

S (t) = αebt + (S0 − α) e(b−
1
2σ

2)t+σWQ(t) (9.27)

The payoff of the European call option becomes:

f (S (T )) = (S (T )−K)+

=
((
S (T )− αebT

)
−
(
K − αebT

))+
It follows that the option price is equal to:

C (0, S0) = CBS
(
S0 − α,K − αebT , σ, T, b, r

)
(9.28)

Examples of Volatility skew are given in Figure 9.21 with the same parameters than those
we have used in Figure 9.20.

Remark 103 At first sight, the floating-strike parametrization seems to be different than
the fixed-strike parametrization. In practice, the parameters (α, σ) are calibrated for each
maturity T . This explains that the two parametrizations are very close.



Model Risk of Exotic Derivatives 539

FIGURE 9.21: Volatility skew generated by the SLN model (floating-strike parametriza-
tion)

9.2.2.3 The forward parametrization

If we consider the forward price F (t) instead of the spot price S (t), the two models
coincide because we have b = 0. In this case, the dynamics of the forward price is:

dF (t) = σ (F (t)− α) dWQ (t) (9.29)

and the price of the option is given by the Black formula38:

C (0, S0) = CBlack (F0 − α,K − α, σ, T, r) (9.30)

In Equations (9.29) and (9.30), we impose that α < F0 and α < K. This implies that
F (t) ∈ [α,∞). This model is appealing for fixed income derivatives, because the interest
rate may be negative when α is negative. In this case, we have:

dF (t) = (σF (t)− ασ) dWQ (t)
= (σ1F (t) + σ2) dWQ (t)

where σ1 = σ and σ2 = −ασ > 0. We obtain a stochastic differential equation whose
diffusion coefficient is a mix of log-normal and Gaussian volatilities.

38We recall that the Black formula can be viewed as a special case of the Black-Scholes formula when the
cost-of-carry parameter b is equal to zero:

CBlack (x,K, σ, T, r) = CBS (x,K, σ, T, 0, r)
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Lee and Wang (2012) prove the following results:

• monotonicity in strike:

sign
(
∂ Σ (T,K)

∂ K

)
= signα

• upper and lower bounds: {
Σ (T,K) < σ if α > 0
Σ (T,K) > σ if α < 0

• sharpness of bound:
lim
K→∞

Σ (T,K) = σ

• short-expiry behavior:

lim
T→0

Σ (T,K) =


σ ln (F0/K)

ln ((F0 − α) / (K − α)) if K 6= F0

σ
(
1− αF−1

0
)

if K = F0

The implied volatility formula does not depend on the maturity T and is only valid
when T is equal to zero. However, it is a good approximation for other maturities as shown
in Table 9.6. We use the previous parameters and three different maturities (one-month,
one-year and five-year).

TABLE 9.6: Error of the SLN implied volatility formula (in bps)

K
(α = 22, σ = 25%) (α = −70, σ = 12%)
1M 1Y 5Y 1M 1Y 5Y

80 1.0 11.1 57.0 −0.9 −12.9 −66.0
90 0.7 10.6 54.1 −1.0 −11.9 −61.4

100 0.9 10.2 51.6 −1.1 −11.3 −57.3
110 1.0 9.7 49.6 −0.8 −10.8 −53.8
120 0.7 9.3 47.7 −0.6 −10.3 −51.3

9.2.2.4 Mixture of SLN distributions

One limitation of the SLN model is that it only produces a volatility skew, and not a
volatility smile. In order to obtain a U -shaped curve, Brigo and Mercurio (2002b) suggest
that the (risk-neutral) probability density function f (x) of the asset price density is given
by the mixture of known basic densities:

f (x) =
m∑
j=1

pjfj (x)

where fj is the jth basic density, pj > 0 and
∑m
j=1 pj = 1. Let G (S (T )) be the payoff of

an European option. We have:

C (0, S0) = EQ [e−rTG (S (T ))
∣∣F0

]
=

∫
e−rTG (S (T )) f (x) dx
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We deduce that:

C (0, S0) =
∫
e−rTG (S (T ))

m∑
j=1

pjfj (x) dx

=
m∑
j=1

pj

∫
e−rTG (S (T )) fj (x) dx

=
m∑
j=1

pjEQj
[
e−rTG (S (T ))

∣∣F0
]

where Qj is the jth probability measure. It is then straightforward to price an European
option using formulas of basic models. If we consider a mixture of two shifted log-normal
models, the price of the European call option is equal to:

C (0, S0) = p · CSLN (S0,K, σ1, T, b, r, α1) +
(1− p) · CSLN (S0,K, σ2, T, b, r, α2)

where CSLN is the formula of the SLN model39. The model has five parameters: σ1, σ2, α1,
α2 and p.

Example 89 We consider a calibration set of five options, whose strike and implied volatil-
ities are equal to:

Kj 80 90 100 110 120
Σ (1,Kj) 21% 19% 18.25% 18.5% 19%

The current value of the asset price is equal to 100, the maturity of options is one year, the
cost-of-carry parameter is set to 0 and the interest rate is 5%.

The parameters are estimated by minimizing the weighted least squares:

min
n∑
j=1

wj

(
Ĉj − CSLN (S0,Kj , σ1, σ2, Tj , b, r, α1, α2, p)

)2

where:
Ĉj = CBS (S0,Kj ,Σ (Tj ,Kj) , Tj , b, r)

and wj is the weight of the jth option. We consider three parameterizations: (#1) the
weights wj are uniform, and we impose that α1 = α2 and p = 50%; (#2) the weights wj
are uniform, and p is set to 25%; (#3) the weights wj are inversely proportional to option
prices Ĉj , and p is set to 50%. Results are given in Table 9.7 and Figure 9.22. We notice
that α1 and α2 can take large values. Shifted log-normal models are generally presented as
a low perturbation of the Black-Scholes model. In practice, they are very different.

9.2.2.5 Application to binary, corridor and barrier options

One of the difficulties when using the Black-Scholes model with exotic options is the
choice of the implied volatility. In the case of an European call option, it is obvious to
use the implied volatility Σ (T,K) that corresponds to the strike and the maturity of the
option. In the case of a double barrier option, we can use the implied volatility Σ (T,K)

39It corresponds to one of the three expressions (9.26), (9.28), and (9.30).
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TABLE 9.7: Calibrated parameters of the mixed SLN model
Model #1 #2 #3
σ1 16.5% 8.2% 10.2%
σ2 7.3% 17.2% 21.7%
α1 −53.3 −289.7 −145.2
α1 −53.3 19.6 47.4
p 50.0% 25.0% 50.0%

FIGURE 9.22: Implied volatility (in %) of calibrated mixed SLN models

that corresponds to the strike of the option, the implied volatility Σ (T, L) that corresponds
to the lower barrier of the option, the implied volatility Σ (T,H) that corresponds to the
higher barrier of the option, or another implied volatility. In fact, there is no satisfactory
answer.

Let S (t) be the asset price at time t. The payoff of the binary cash-or-nothing call option
is:

f (S (T )) = 1 {S (T ) > K}

We deduce that:

BCC (0, S0) = EQ
[
e
−
∫ T

0
r(s) ds · 1 {S (T ) > K}

∣∣∣∣F0

]
If we consider the Black-Scholes model, we obtain:

BCC (0, S0) = e−rTΦ (d2)

We can replicate this option by using the classical dynamic delta hedging approach pre-
sented on page 495. Here, we consider another framework, which is called the static hedging
method. The hedging portfolio consists in:
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• a long position on the European call option with strike K;

• a short position on the European call option with strike K + ε.

If the notional of each option is set to ε, the value of the hedging portfolio at time t is equal
to:

V (t) = 1
ε
· C (t, S (t) ,K)− 1

ε
· C (t, S (t) ,K + ε)

It follows that the value of the hedging strategy is equal to:

X (t) = BCC (t, S (t))− V (t)

We notice that:

lim
ε→0

X (T ) = BCC (T, S (T ))− lim
ε→0

V (T )

= 1 {S (T ) > K} − lim
ε→0

(S (t)−K)+ − (S (T )−K − ε)+

ε
= 1 {S (T ) > K} − 1 {S (T ) > K}
= 0

The no-arbitrage condition implies that:

BCC (t, S (t)) = lim
ε→0

C (t, S (t) ,K)− C (t, S (t) ,K + ε)
ε

= − lim
ε→0

C (t, S (t) ,K + ε)− C (t, S (t) ,K)
ε

= −∂ C (t, S (t) ,K)
∂ K

This result is valid only if the volatility is constant. If the volatility is not constant, the
price BCC (t, S (t)) becomes:

lim
ε→0

C (t, S (t) ,K,Σ (T,K))− C (t, S (t) ,K + ε,Σ (T,K + ε))
ε

= −∂ C (t, S (t) ,K,Σ (T,K))
∂ K

− ∂ C (t, S (t) ,K,Σ (T,K))
∂ Σ · ∂ Σ (T,K)

∂ K
= BCCBS (t, S (t) ,Σ (T,K))− υBS (t, S (t) ,Σ (T,K))ω (T,K)

where BCCBS (t, S (t) ,Σ (T,K)) is the Black-Scholes price with implied volatility Σ (T,K),
υBS (t, S (t) ,Σ (T,K)) is the Black-Scholes vega for the European call option and ω (T,K)
is the skew of the volatility surface:

ω (T,K) = ∂ Σ (T,K)
∂ K

This framework, called the skew-method (SM) model, shows that taking into account the
volatility smile cannot be reduced to choosing the right implied volatility, because we have:

BCCSM (t, S (t)) 6= BCCBS (t, S (t) ,Σ (T,K))

Example 90 We price a binary call option when the underlying asset price is 100, the
maturity of the option is 6 months, and the parameters b and r are equal to 5%. The skew
ω (T,K) of the implied volatility can take the values 0, −20 and +20 bps. We consider two
cases for the implied volatility: (1) Σ (T,K) is equal to 20%, (2) Σ (T,K) is a linear function
with respect to K:

Σ (T,K) = Σ (T, S0) + ω (T,K) · (K − S0)
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FIGURE 9.23: Impact of the implied volatility skew on the binary option price

Figure 9.23 represents the relationship between the binary call option price BCC (0, S0)
and the strike K. The first panel assumes that the implied volatility Σ (T,K) is equal to
20%. We verify that:{

ω (T,K) < 0⇒ BCCSM (0, S0) < BCCBS (0, S0,Σ (T,K))
ω (T,K) > 0⇒ BCCSM (0, S0) > BCCBS (0, S0,Σ (T,K))

However, the results shown in the first panel may be misleading, because it is not possi-
ble to compare the price for two different strikes. Indeed, if K2 > K1 and ω (T,K) > 0
for every strike K, this implies that Σ (T,K2) > Σ (T,K1), BCCBS (0, S0,Σ (T,K2)) >
BCCBS (0, S0,Σ (T,K1)), but υBS (0, S0,Σ (T,K2)) > υBS (0, S0,Σ (T,K1)). A higher im-
plied volatility increases the binary option price thanks to the impact on the Black-Scholes
price, but also reduces it thanks to the impact on the vega. Therefore, the second and third
panels are more useful to understand the dynamics of the binary option price with respect
to the strike. We observe that it is more complex because of the two contrary effects.

We now assume that the shifted log-normal model is the right model. We have:

1 {S (T ) > K} ⇔ 1 {α (T ) + β (T )X (T ) > K}

⇔ 1
{

(S0 − α) e(b−
1
2σ

2)T+σWQ(T ) > K − αebT
}

We deduce that:

BCCSLN (0, S0) = fBS
(
S0 − α,K − αebT , σ, T, b, r

)
(9.31)

where fBS is the Black-Scholes formula of the BCC option. Equation (9.31) is equivalent to
shift the current price and the option strike.
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TABLE 9.8: Price of the binary call option (α = −50, σ = 15%)

K Σ (T,K) ω (T,K) BS SLN SM
80 23.64 −5.47 0.8087 0.8184 0.8184
90 23.14 −4.57 0.6761 0.6895 0.6895

100 22.72 −3.87 0.5160 0.5306 0.5306
110 22.36 −3.34 0.3582 0.3715 0.3715
120 22.05 −2.92 0.2271 0.2374 0.2374

TABLE 9.9: Price of the binary call option (α = 50, σ = 40%)

K Σ (T,K) ω (T,K) BS SLN SM
80 16.71 17.25 0.8937 0.8780 0.8780
90 18.21 13.13 0.7390 0.7055 0.7055

100 19.39 10.51 0.5364 0.4971 0.4971
110 20.34 8.69 0.3546 0.3202 0.3202
120 21.14 7.35 0.2209 0.1953 0.1953

We consider the following parameters: S0 = 100, T = 1, b = 5% and r = 5%. The
SLN parameters α and σ are equal to −50 and 15%. In Table 9.8, we price the binary
call option with three models: the Black-Scholes model with the implied volatility Σ (T,K),
the SLN model and the SM approximation using the implied volatility Σ (T,K) and the
volatility skew ω (T,K). We remark that the Black-Scholes model produces bad option
prices, whereas the SM prices are equal to those obtained with the SLN model. We obtain
the same conclusion with an increasing smile as shown in Table 9.9.

The previous analysis can be extended to many other payoffs including corridor and
barrier options. For instance, the holder of a corridor option receives a coupon at maturity,
the magnitude of which depends on the behavior of a specified spot rate during the lifetime
of the corridor. A special case is the range binary corridor option that pays a fixed coupon
c if the asset stays within the range [L,H]:

f (S (T )) = c
n∑
j=1

1 {S (Tj) ∈ [L,H]}

where {T1, . . . , Tn} are the fixing dates of the corridor option. Since we have:

1 {S (Tj) ∈ [L,H]} ⇔ 1 {L ≤ S (Tj) ≤ H}
⇔ 1 {S (Tj) ≥ L} − 1 {S (Tj) ≥ H}

we deduce that the price CC (0, S0) is related to a series of BCC cash flows:

CC (0, S0) = c
n∑
j=1

(BCC (0, S0, L)−BCC (0, S0, H))

where BCC (0, S0,K) is the price of the cash-or-nothing binary call option, whose strike
is K. We can then use SLN, mixed-SLN or SM models in order to take into account the
volatility smile.
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Remark 104 In the case of barrier options, we can use the Black-Scholes formulas of
Rubinstein and Reiner (1991) by shifting the parameters S0, K, L and H:

S0 → S0 − α
K → K − α0e

bT

L→ L− α0e
bT

H → H − α0e
bT

9.2.3 Local volatility model
The local volatility model has been proposed by Dupire (1994) using continuous-time

modeling and, Derman and Kani (1994) in a binomial tree framework. It is one of the
most famous smile models with Heston and SABR models. We assume that the risk-neutral
dynamics of the asset price is given by the following SDE:

dS (t) = bS (t) dt+ σ (t, S (t))S (t) dWQ (t)

We can then retrieve the local volatility surface σ (t, S) from the implied volatility surface
Σ (T,K), because the knowledge of all European option prices is sufficient to estimate the
unique risk-neutral diffusion (Dupire, 1994).

9.2.3.1 Derivation of the forward equation

The Fokker-Planck equation Using Appendix A.3.6 on page 1072, the risk-neutral
probability density function qt (T, S) of the asset price S (T ) satisfies the forward Chapman-
Kolmogorov equation:

∂ qt (T, S)
∂ T

= −∂ [bSqt (T, S)]
∂ S

+ 1
2
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2

The initial condition is:
qt (t, S) = 1 {S = St}

where St is the value of S (t) that is known at time t.

The Breeden-Litzenberger formulas On page 508, we have seen that the risk-neutral
probability measure is related to the prices of European options. In particular, we have
found that:

Ct (T,K) = e−r(T−t)
∫ ∞
K

(S −K) qt (T, S) dS

∂ Ct (T,K)
∂ K

= −e−r(T−t)
∫ ∞
K

qt (T, S) dS

∂2 Ct (T,K)
∂ K2 = e−r(T−t)qt (T,K)

Main result We also have:

∂ Ct (T,K)
∂ T

= −rCt (T,K) + e−r(T−t)
∫ ∞
K

(S −K) ∂ qt (T, S)
∂ T

dS

= −rCt (T,K) + e−r(T−t)I
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Using the Fokker-Planck equation, we obtain:

I =
∫ ∞
K

(S −K)
(

1
2
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 − ∂ [bSqt (T, S)]

∂ S

)
dS

= 1
2

∫ ∞
K

(S −K)
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 dS −∫ ∞

K

(S −K) ∂ [bSqt (T, S)]
∂ S

dS

= 1
2I1 − I2

Using an integration by parts, we have:

I1 =
∫ ∞
K

(S −K)
∂2 [σ2 (T, S)S2qt (T, S)

]
∂ S2 dS

=
[

(S −K)
∂
[
σ2 (T, S)S2qt (T, S)

]
∂ S

]∞
K

−

∫ ∞
K

∂
[
σ2 (T, S)S2qt (T, S)

]
∂ S

dS

= 0−
[
σ2 (T, S)S2qt (T, S)

]∞
K

= σ2 (T,K)K2qt (T,K)

We notice that40:

I2 =
∫ ∞
K

(S −K) ∂ [bSqt (T, S)]
∂ S

dS

=
[

(S −K) bSqt (T, S)
]∞
K

− b
∫ ∞
K

Sqt (T, S) dS

= −b
∫ ∞
K

Sqt (T, S) dS

= −ber(T−t)
(
Ct (T,K) +K

∂ Ct (T,K)
∂ K

)
The expression of I is then equal to:

I = 1
2σ

2 (T,K)K2qt (T,K) + ber(T−t)
(
Ct (T,K)−K∂ Ct (T,K)

∂ K

)
40Using Breeden-Litzenberger formulas, we have:

er(T−t)Ct (T,K) =
∫ ∞
K

(S −K) qt (T, S) dS

=
∫ ∞
K

Sqt (T, S) dS −K
∫ ∞
K

qt (T, S) dS

=
∫ ∞
K

Sqt (T, S) dS −Ker(T−t)
∂ Ct (T,K)

∂ K
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It follows that:

∂ Ct (T,K)
∂ T

= −rCt (T,K) + 1
2σ

2 (T,K)K2 ∂
2 Ct (T,K)
∂ K2 +

b

(
Ct (T,K)−K∂ Ct (T,K)

∂ K

)
We conclude that:

1
2σ

2 (T,K)K2 ∂
2 Ct (T,K)
∂ K2 − bK ∂ Ct (T,K)

∂ K
−

∂ Ct (T,K)
∂ T

+ (b− r)Ct (T,K) = 0 (9.32)

Differences between backward and forward PDE approaches Equation (9.32) is
very important because it can be interpreted as the dual of the backward PDE (9.2):{ 1

2σ
2 (t, S)S2∂2

SV (t, S) + bS∂SV (t, S) + ∂tV (t, S)− rV (t, S) = 0
V (T, S (T )) = f (T, S (T ) ,K)

where V (t, S) is the price of the European option, whose terminal payoff is f (T, S (T ) ,K).
In the case of Dupire model, the pricing formula becomes:

1
2σ

2 (T,K)K2∂2
KV (T,K)− bK∂KV (T,K)−

∂TV (T,K) + (b− r)V (T,K) = 0
V (t,K) = f (t, St,K)

where V (T, S) is the price of the European option, whose initial payoff is f (t, St,K). In
the backward formulation, the state variables are t and S, whereas the fixed variables are
T and K. In the backward formulation, the state variables become T and K, whereas the
fixed variables are now the current time41 t and the current asset price St. This is not the
only difference between the two approaches. Indeed, the backward PDE approach suggests
that we can hedge the option using a dynamic portfolio of the underlying asset, whereas
the forward PDE approach suggests that we can hedge the option using a static portfolio
of call and put options.

We consider the pricing of an European call option with the following parameters: S0 =
100, K = 100, σ (t, S) = 20%, T = 0.5, b = 2% and r = 5%. In the case of the backward
PDE, we consider the usual boundary conditions:{

C (t, S) = 0
∂SC (t,+∞) = 1

For the forward PDE, the boundary conditions are42:{
∂KC (T, 0) = −1
C (T,+∞) = 0

In Figure 9.24, we show the relative error (expressed in bps) of numerical solutions when
considering the Crank-Nicholson scheme. In the case of the backward PDE, the state variable

41t can be equal to zero.
42We can also use the following specifications:{

C (T, 0) = e(b−r)TS0
∂KC (T,+∞) = 0
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is the current asset price S0, and we obtain all the option prices when the strike is equal to
100. In the case of the forward PDE, the state variable is the strike K, and we obtain all the
option prices when the current asset price is equal to 100. We notice that the relative errors
are equivalent when S0 is equal to K. In fact, the efficiency of the numerical algorithms will
depend on the relative position between S0 and K.

FIGURE 9.24: Relative error of backward and forward PDE numerical solutions

9.2.3.2 Duality between local volatility and implied volatility

We can inverse Equation (9.32) in order to relate the expression of the local volatility
and the price of the call option:

σ2 (T,K) = 2bK∂KC (T,K) + ∂TC (T,K)− (b− r)C (T,K)
K2∂2

KC (T,K)

In Exercise 9.4.8 on page 599, we show that σ (T,K) can also be written with respect to
the implied volatility Σ (T,K):

σ (T,K) =

√
A (T,K)
B (T,K) (9.33)

where:

A (T,K) = Σ2 (T,K) + 2bKTΣ (T,K) ∂KΣ (T,K) +
2TΣ (T,K) ∂TΣ (T,K)

and:

B (T,K) = 1 + 2K
√
Td1∂KΣ (T,K) +K2TΣ (T,K) ∂2

KΣ (T,K) +
K2Td1d2 (∂KΣ (T,K))2
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Equation (9.33) is the key finding of Dupire (1994). Indeed, knowing the implied volatility
surface, we can retrieve the unique local volatility function that matches the set of all
European call and put option prices.

Many results have been derived from Equation (9.33). For instance, if there is no skew43,
the local volatility function does not depend on the strike44:

σ2 (T ) = Σ2 (T ) + 2TΣ (T ) ∂ Σ (T )
∂ T

(9.34)

On the contrary, the local volatility always depends on the maturity T even if there is no
time-variation in the implied volatility45.

FIGURE 9.25: Calibrated local volatility σ (T, S) (in %)

Example 91 We assume that the implied volatility is equal to:

Σ (T,K) = Σ0 + α (S0 −K)2

where Σ0 = 20%, α = 1 bp, S0 = 100 and b = 5%.

Figure 9.25 shows the calibrated local volatility for different values of T . We verify the
time-variation property of the local volatility. We notice that Equation (9.34) is equivalent
to:

σ2 (T ) = ∂ TΣ2 (T )
∂ T

or:
Σ2 (T ) = 1

T

∫ T

0
σ2 (t) dt

The implied variance is then the time series average of the local variance.
43We have Σ (T,K) = Σ (T ).
44This result is obtained by setting ∂KΣ (T,K) and ∂2

KΣ (T,K) equal to 0 in Equation (9.33).
45We have Σ (T,K) = Σ (K).
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Another important result concerns the behavior of the implied volatility near expiry.
Let x be the log-moneyness:

x = ϕ (T,K)

= ln S0

K
+ bT

We introduce the functions Σ̃ and σ̃ such that Σ (T,K) = Σ̃ (T, ϕ (T,K)) and σ (T,K) =
σ̃ (T, ϕ (T,K)). Berestycki et al. (2002) showed that the implied volatility is the harmonic
mean of the local volatility46:

1
Σ̃ (0, x)

=
∫ 1

0

dy
σ̃ (0, xy)

It follows that:
∂ Σ̃ (0, 0)
∂ x

= 1
2
∂ σ̃ (0, 0)
∂ x

The ATM slope of the implied volatility near expiry is equal to one half the slope of the
local volatility.

9.2.3.3 Dupire model in practice

One of the problems is the availability of the call/put prices for all maturities and all
strikes. In practice, we only know the option price for some maturities Tm and some strikes
Ki. This is why we have to use a calibration method to obtain the continuous volatility
surface Σ (T,K).

Time interpolation We note υ (T,K) the total implied variance:

υ (T,K) = TΣ2 (T,K)

The linear interpolation of the total implied variance gives:

υ (T,K) = w · υ (Tm,Km (T )) + (1− w) · υ (Tm+1,Km+1 (T ))

where T ∈ [Tm, Tm+1] and:
w = Tm+1 − T

Tm+1 − Tm
We deduce that:

Σ2 (T,K) = Tm (Tm+1 − T )
T (Tm+1 − Tm)Σ2 (Tm,Km (T )) +

Tm+1 (T − Tm)
T (Tm+1 − Tm)Σ2 (Tm+1,Km+1 (T ))

= am (T ) Σ2 (Tm,Km (T )) + bm+1 (T ) Σ2 (Tm+1,Km+1 (T ))

where:
am (T ) = Tm (Tm+1 − T )

T (Tm+1 − Tm)

46See Exercise 9.4.8 on page 599 for the proof of this result.
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and:
bm+1 (T ) = Tm+1 (T − Tm)

T (Tm+1 − Tm) = 1− am (T )

In the previous scheme, we interpolate the total variance for the strikeK and the maturity T
by considering the pairs (Tm,Km (T )) and (Tm+1,Km+1 (T )). Generally, the strikes Km (T )
and Km+1 (T ) are a translation of the strike K:{

Km (T ) = km · (T )K
Km+1 (T ) = km+1 · (T )K

with km (Tm) = 1 and km+1 (Tm+1) = 1. The simplest rule is km (T ) = km+1 (T ) = 1.
Another method is to define km (Tm) = e−b(T−Tm) ≤ 1 and km+1 (Tm+1) = eb(Tm+1−T ) ≥ 1.

Example 92 We assume that the implied volatility is equal to:

Σ (Tm,K) = Σm + αm (K − 100)2

where Σm = 20% + 0.005 · (Tm − 1.0), αm = 0.05 · Tm bps and Tm is equal to 1, 2, 3, 4 and
5 years. The cost-of-carry parameter b is set to 5%.

We have represented the implied volatility Σ (Tm,K) in the first panel in Figure 9.26. We
can then compute the volatility surface. When T is lower than the first observed maturity or
higher than the last observed maturity, we can extrapolate the implied volatility in several
ways. The simplest method is to assume that the implied volatility is constant. In the third
panel, we have reported the interpolated implied volatility with respect to the maturity T
for three different strikes. We notice that it is curved between two interpolating knots due
to the effect of the square root transformation.

FIGURE 9.26: Time interpolation of the implied volatility
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Non-parametric interpolation We note Sm (K) the non-parametric function that give
the value of Σ (Tm,K) for all values of strike K. The calculation of the local volatility
surface implies to calculate the quantities ∂KΣ (T,K), ∂2

KΣ (T,K) and ∂TΣ (T,K). We
use the shortened notations: Sm = Sm (Km (T )), S ′m = S ′m (Km (T )), S ′′m = S ′′m (Km (T )),
Sm+1 = Sm+1 (Km+1 (T )), S ′m+1 = S ′m+1 (Km+1 (T )) and S ′′m+1 = S ′′m+1 (Km+1 (T )). We
have:

Σ (T,K) ∂KΣ (T,K) = 1
2∂KΣ2 (T,K)

= am (T ) km (T )SmS ′m +
bm+1 (T ) km+1 (T )Sm+1S ′m+1

For the second term, we obtain:

Σ (T,K) ∂2
KΣ (T,K) = 1

2∂
2
KΣ2 (T,K)− (∂KΣ (T,K))2

= am (T ) k2
m (T )

(
SmS ′′m + (S ′m)2

)
+

bm+1 (T ) k2
m+1 (T )

(
Sm+1S ′′m+1 +

(
S ′m+1

)2)−
(∂KΣ (T,K))2

Since we have:
a′m (T ) = −TmTm+1

T 2 (Tm+1 − Tm)
and:

b′m+1 (T ) = TmTm+1

T 2 (Tm+1 − Tm)
we deduce that the last term is equal to47:

Σ (T,K) ∂TΣ (T,K) = 1
2∂TΣ2 (T,K)

= 1
2a
′
m (T ) Σ2 (Tm,Km (T )) +

1
2b
′
m+1 (T ) Σ2 (Tm+1,Km+1 (T )) +

am (T ) Σ (Tm,Km (T )) ∂TΣ (Tm,Km (T )) +
bm+1 (T ) Σ (Tm+1,Km+1 (T )) ∂TΣ (Tm+1,Km+1 (T ))

= 1
2 (Sm+1 − Sm) TmTm+1

T 2 (Tm+1 − Tm) +

am (T )SmS ′mK∂T km (T ) +
bm (T )Sm+1S ′m+1K∂T km+1 (T )

In the case where km (T ) = km+1 (T ) = 1, the previous formula reduces to:

Σ (T,K) ∂TΣ (T,K) = 1
2 (Sm+1 − Sm) TmTm+1

T 2 (Tm+1 − Tm)

In practice, we don’t observe the function Sm (K), but only few values of Σ (Tm,Ki) for
some maturities Tm and some strikes Ki. An example is given in Table 9.10. We assume that

47We use the fact that ∂TKm (T ) = K∂T km (T ) and ∂TKm+1 (T ) = K∂T km+1 (T ).
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TABLE 9.10: Calibration set
Tm = 1/12

Ki 87.0 92.0 96.0 98.0 100.0 103.0 106.0 110.0 116.0
Σ (Tm,Ki) 13.7 13.7 13.3 13.2 13.0 13.1 13.2 13.5 13.5

Tm = 3/12
Ki 77.0 85.0 93.0 97.0 101.0 106.0 111.0 121.0 134.0

Σ (Tm,Ki) 14.9 14.9 14.1 14.0 13.5 13.8 14.2 15.1 15.1
Tm = 6/12

Ki 66.0 78.0 89.0 96.0 102.0 111.0 119.0 136.0 161.0
Σ (Tm,Ki) 16.8 16.8 15.5 15.0 14.5 15.0 15.5 16.8 16.8

Tm = 1
Ki 53.0 69.0 86.0 96.0 104.0 119.0 133.0 166.0 217.0

Σ (Tm,Ki) 19.0 19.0 17.0 16.0 15.5 16.5 17.5 18.5 18.5
Tm = 2

Ki 37.0 56.0 80.0 96.0 103.0 137.0 163.0 229.0 347.0
Σ (Tm,Ki) 21.9 21.9 20.0 18.5 18.5 19.0 19.5 20.8 20.8

five maturities are quoted (1M, 3M, 6M, 1Y and 2Y). For each maturity, we observe the
implied volatility (expressed in %) for 9 strikes. This is why we have to use an interpolation
method. In Figure 9.27, we have represented the function Sm (K) obtained with the cubic
spline method48. One of the issues is the interpolated implied volatility on the wings. Here,
we have chosen to keep the cubic spline values, but an alternative approach is to assume
that the smile is constant before the first strike and after the last strike. Let us assume
that S0 = 100, b = 5% and r = 5%. Using the time approximation approach, we obtain
the implied volatility surface given in Figure 9.28. The implied volatility is constant when
T ≤ 1/12 and T ≥ 2. Finally, the local volatility surface is reported in Figure 9.29. We
notice that it is not a smooth function. This is why we can use cubic spline approximation
or other smoothing methods in place of cubic spline interpolation49. However, we not not
retrieve exactly the quoted implied volatilities with this approach.

Remark 105 In real life, the number of strikes may be different from one maturity to
another, and may be smaller. For example, in the case of currency options50, we generally
have 5 quoted options (ATM, 10-delta call, 25-delta call, 10-delta put and 25-delta put).

Parametric calibration In the previous section, Σ (T,K) and σ (T,K) are calibrated us-
ing non-parametric approaches such as the cubic spline method. This produces a disorderly
local volatility surface. In order to avoid this problem, we can use a parametric framework.
For instance, we can calibrate Σ (T,K) using the SABR model. Another popular approach
is to consider the stochastic volatility inspired or SVI parametrization.

We recall that the total implied variance is equal to:

υ (T,K) = TΣ2 (T,K)

We assume that υ (T,K) = υ̃ (T, x) and Σ (T,K) = Σ̃ (T, x) where x is the log-moneyness:

x = ϕ (T,K) = ln K

F (T ) = ln K

S0ebT

48See Appendix A.1.2.1 on page 1035.
49See Crépey (2003) and Fengler (2009).
50FX vanilla options are generally quoted in terms of volatility with respect to a fixed delta, and not in

terms of premium with respect to a given strike.



Model Risk of Exotic Derivatives 555

FIGURE 9.27: Cubic spline interpolation Sm (K) (in %)

FIGURE 9.28: Implied volatility surface Σ (T,K) (in %)
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FIGURE 9.29: Local volatility surface σ (T,K) (in %)

Let υ̃T (x) = υ̃ (T, x) be the total implied variance for a given maturity slice. Gatheral
(2004) introduces the following SVI parametrization:

υ̃T (x) = α+ β

(
ρ (x−m) +

√
(x−m)2 + σ2

)
where β > 0, σ > 0 and ρ ∈ [−1, 1]. We have:

υ̃T (m) = α+ βσ

and: {
limx→−∞ υ̃T (x) = α− β (1− ρ) (x−m)
limx→∞ υ̃T (x) = α+ β (1 + ρ) (x−m)

Gatheral deduces that α controls the general level, β influences the slope of the wings, σ
changes the curvature of the smile, ρ impacts the symmetry of the smile while m shifts the
smile.

Example 93 We assume that α = 2%, β = 0.3, σ = 10%, ρ = −40% and m = 0. Figure
9.30 shows the impact of each parameter on the total variance υ̃T (x).

Gatheral and Jacquier (2014) show that a volatility surface is free of static arbitrage if
and only if it is free of calendar spread arbitrage51 and each time slice is free of butterfly
arbitrage52. The first property implies that:

∂T υ̃ (T, x) ≥ 0

51This means that the price of an European option is monotone with the maturity.
52This means that the probability density function is non-negative for any given maturity T .
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FIGURE 9.30: Impact of SVI parameters on the total variance υ̃T (x)

for all x ∈ R. Thanks to Breeden and Litzenberger (1978), the second property is equivalent
to verify that53:

∂2 C (T,K)
∂ K2 ≥ 0

These authors deduce then how the absence of static arbitrage impacts SVI parameters.
We consider the calibration set defined in Table 9.10 on page 554. We delete the two

extreme strikes of each maturity54. In Figure 9.31, we show the SVI parametrization for
each maturity. By considering the time interpolation presented previously, we can define the
implied volatility surface Σ (T,K) and then calculate the local σ (T,K). These two volatility
surfaces are reported in Figure 9.31.

Hedging coefficients Let Σ (T,K, St) and σ (T,K, St) be the implied and local volatil-
ity surfaces that depend on the current price St. We also write the value of the option
V (T,K, St) as a function of the maturity T , the strike K and the current price St. The
delta of the option is then equal to:

∆t = ∂ V (T,K, St)
∂ St

If we use the finite difference approximation, we obtain:

∆ ≈ V (T,K, St + ε)− V (T,K, St − ε)
2ε

53See Section 9.1.1.4 on page 508.
54In fact, we have added these two points in the calibration set in order to stabilize the non-parametric

calibration. However, this approach is not adequate because volatility smile is linear and not constant at
extreme strikes (Lee, 2004).
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FIGURE 9.31: SVI parametrization, implied volatility Σ (T,K) and local volatility
σ (T,K) (in %)

Computing the option price and its corresponding delta require then to calculate three local
volatility surfaces55 and solve the forward PDE three times56. This method can also be used
to calculate the gamma of the option, because we have:

Γ ≈ V (T,K, St + ε)− 2V (T,K, St) + V (T,K, St − ε)
ε2

The vega coefficient in a local volatility model is not well-defined. It can be measured with
respect to the local volatility σ (T,K, St) or the implied volatility Σ (T,K, St). The most
frequent approach is to measure the vega as the sensitivity of the price to a parallel shift of
Σ (T,K, St). We have:

υ = V ′ (T,K, St)− V (T,K, St)
ε′

where V ′ (T,K, St) is the option price obtained when the implied volatility surface is
Σ (T,K, St) + ε′.

One of the issues with the local volatility model is that greeks are not easy to compute
and are not stable in the time and across strikes. This is a severe disadvantage, since the
hedging of the option is not straightforward and generally less efficient than the hedging
portfolio given by the Black-Scholes model:

“Market smiles and skews are usually managed by using local volatility models
a la Dupire. We discover that the dynamics of the market smile predicted by
local vol models is opposite of observed market behavior: when the price of the
underlying decreases, local vol models predict that the smile shifts to higher

55We have to calculate σ (T,K, St − ε), σ (T,K, St) and σ (T,K, St + ε).
56We have to calculate V (T,K, St − ε), V (T,K, St) and V (T,K, St + ε).
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prices; when the price increases, these models predict that the smile shifts to
lower prices. Due to this contradiction between model and market, delta and
vega hedges derived from the model can be unstable and may perform worse
than naive Black-Scholes’ hedges” (Hagan et al., 2002, page 84).

9.2.3.4 Application to exotic options

Another shortcoming of the local volatility model is the unrealistic probability distribu-
tion of the conditional random variable S (t2) | S (t1). This is why this model is only used
for European options, and not for path-dependent derivatives. In particular, it has been
popular in the 1990s and 2000s for pricing European barrier options.

We consider the calibration set given in Table 9.10 on page 554. We assume that S0,
b = 5% and 5 = 5%. We price different payoffs given in Table 9.11, whose parameters are
K = 100, L = 90 and H = 115. The maturity is set to one year. Prices are calculated with
a Crank-Nicholson scheme with 2 000 discretization points57 in space, 2 000 discretization
points in time and traditional boundary conditions58. Results are given in column LV. We
can compare them with Black-Scholes prices calculated with implied volatilities59 Σ1 = 16%
and Σ2 = 15.5%. For each payoff and each value of implied volatility, we report two values
of the option price: one obtained by solving the PDE and another one calculated with the
analytical formulas of Rubinstein and Reiner (1991). We observe some differences between
the two prices, because the PDE price depends on the choice of the discretization scheme and
the boundary conditions. We notice that the prices DOC, UOC, KOC and BCC calculated
with the local volatility model are not in the interval of BS prices.

TABLE 9.11: Barrier option pricing with the local volatility model

Option Payoff LV BS-PDE BS-RR
Σ1 Σ2 Σ1 Σ2

Call (S (T )−K)+ 8.85 8.96 8.78 8.96 8.78
Put (K − S (T ))+ 3.97 4.08 3.90 4.08 3.90
DOC 1 {S (t) > L} · (S (T )−K)+ 7.98 8.14 8.05 8.11 8.02
DOP 1 {S (t) > L} · (K − S (T ))+ 0.26 0.27 0.28 0.25 0.27
UOC 1 {S (t) < H} · (S (T )−K)+ 0.99 0.88 0.94 0.83 0.89
UOP 1 {S (t) < H} · (K − S (T ))+ 3.81 3.90 3.75 3.89 3.74
KOC 1 {S (t) ∈ [L,H]} · (S (T )−K)+ 0.65 0.56 0.64 0.52 0.59
KOP 1 {S (t) ∈ [L,H]} · (K − S (T ))+ 0.20 0.20 0.22 0.19 0.21
BCC 1 {S (T ) ≥ K} 0.58 0.56 0.57 0.56 0.57
BCP 1 {S (T ) ≤ K} 0.37 0.39 0.38 0.39 0.38

57We assume that S (t) ∈ [0, 200].
58We use the following Dirichlet and Neumann conditions:

V
(
t, S−

)
= 0 V

(
t, S+

)
= 0 ∂SV

(
t, S−

)
= −1 ∂SV

(
t, S+

)
= 0

Call, BCC Put, BCP Put, BCP Call, BCC
DOC, DOP, UOC DOP, UOC, UOP UOP DOC

KOC, KOP KOC, KOP

where S− = 0 and S+ = 200.
59Σ1 = 16% and Σ2 = 15.5% correspond to the two implied volatilities of strikes 96 and 104 for the

one-year maturity.
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9.2.4 Stochastic volatility models
The most popular approach to model the volatility smile is to consider that the volatility

is not constant, but stochastic. In this case, we obtain a model with two state variables,
which are the spot price S (t) and the volatility σ (t). After deriving the general formula of
the fundamental pricing equation, we present Heston and SABR models, which are the two
most important parametrizations of this class of models.

9.2.4.1 General analysis

Pricing formula We assume that the joint dynamics of the spot price S (t) and the
stochastic volatility σ (t) is:{

dS (t) = µ (t)S (t) dt+ σ (t)S (t) dW1 (t)
dσ (t) = ζ (σ (t)) dt+ ξ (σ (t)) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. S (t) is a geometric Brownian motion with time-varying pa-
rameters µ (t) and σ (t), whereas σ (t) follows a general diffusion that does not depend on
S (t). In the Black-Scholes model, the volatility has the status of parameter. In this new
approach, the volatility is a second state variable. The SV model is defined by the functions
ζ (y) and ξ (y).

Using Itô’s lemma, we can show that the fundamental pricing equation defined on page
492 becomes60:

1
2σ

2S2∂2
SV (t, S, σ) + ρσSξ (σ) ∂2

S,σV (t, S, σ) + 1
2ξ

2 (σ) ∂2
σV (t, S, σ)

+ (µ− λSσ)S∂SV (t, S, σ) + (ζ (σ)− λσξ (σ)) ∂σV (t, S, σ)
+∂tV (t, S, σ)− rV (t, S, σ) = 0

where V (t, S, σ) is the price of the contingent claim, V (T, S (T )) = f (S (T )) and f (S (T ))
is the option payoff. As previously, the market price of the spot risk W1 (t) is:

λS (t) = µ (t)− b (t)
σ (t)

By introduction the function ζ ′ (y):

ζ ′ (σ (t)) = ζ (σ (t))− λσ (t) ξ (σ (t))

we obtain the following PDE:

1
2σ

2S2∂2
SV (t, S, σ) + ρσSξ (σ) ∂2

S,σV (t, S, σ) + 1
2ξ

2 (σ) ∂2
σV (t, S, σ)

+bS∂SV (t, S, σ) + ζ ′ (σ) ∂σV (t, S, σ) + ∂tV (t, S, σ)− rV (t, S, σ) = 0
(9.35)

Equation (9.35) is the equivalent of Equation (9.2) on page 492 when the volatility is
stochastic.

Using the Girsanov theorem, we deduce that the risk-neutral dynamics is:{
dS (t) = b (t)S (t) dt+ σ (t)S (t) dWQ

1 (t)
dσ (t) = ζ ′ (σ (t)) dt+ ξ (σ (t)) dWQ

2 (t)

60We omit the dependence in t in order to simplify the notation.
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The martingale solution is then equal to:

V0 = EQ
[
e
−
∫ T

0
r(t) dt

f (S (T ))
∣∣∣∣F0

]
We retrieve the formula obtained in the one-dimensional case. However, the computation
of the expected value is now more complex since S (T ) depends on the trajectory of the
volatility σ (t).

Hedging portfolio The computation of greek coefficients is more complex in SV models.
This is why the definition of the hedging portfolio is not straightforward and depends on
the assumption on the smile dynamics. In the case of the Black-Scholes model, delta and
vega sensitivities are equal to:

∆BS = ∂ VBS (S0,K,Σ, T )
∂ S0

and:
υBS = ∂ VBS (S0,K,Σ, T )

∂ Σ
In the case of the stochastic volatility model, we have:

∆SV = ∂ VSV (S0,K, σ0, T )
∂ S0

If we assume that VSV (S0,K, σ0, T ) = VBS (S0,K,ΣSV (T, S0) , T ), we obtain:

∆SV = ∂ VBS (S0,K,ΣSV, T )
∂ S0

+ ∂ VBS (S0,K,ΣSV, T )
∂ ΣSV

· ∂ ΣSV (T, S0)
∂ S0

= ∆BS + υBS ·
∂ ΣSV (T, S0)

∂ S0

Therefore, the delta of the SV model depends on the BS vega. Generally, we have
∂S0ΣSV (T, S0) ≥ 0 implying that ∆SV ≥∆BS.

The calculation of the vega coefficient is a second issue. Indeed, the natural hedging
portfolio should consist in two long/short exposures since we have two risk factors S (t) and
σ (t). Therefore, we can define the vega sensitivity as follows:

υSV = ∂ VSV (S0,K, σ0, T )
∂ σ0

However, this definition has no interest since the stochastic volatility σ (t) cannot be directly
or even indirectly trade. This is why most of traders prefer to use a BS vega:

υSV = ∂ VBS (S0,K,ΣSV (T, S0) , T )
∂ ΣSV

Here, we make the assumption that the vega is calculated with respect to the implied
volatility ΣSV (T, S0) deduced from the stochastic volatility model. It can be viewed as a
pure Black-Scholes vega, but most of times, it corresponds to a shift of the implied volatility
surface. This approach requires a new calibration of the stochastic volatility parameters. In
some sense, the vega can be viewed as the difference between the prices obtained with two
stochastic volatility models.
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9.2.4.2 Heston model

Heston (1993) assumes that the stochastic differential equation of the spot price is equal
to: {

dS (t) = µS (t) dt+
√
v (t)S (t) dW1 (t)

dv (t) = κ (θ − v (t)) dt+ ξ
√
v (t) dW2 (t)

where S (0) = S0, v (0) = v0 and W (t) = (W1 (t) ,W2 (t)) is a two-dimensional Wiener
process with E [W1 (t)W2 (t)] = ρ t. We notice that the stochastic variance v (t) follows a
CIR process: θ is the long-run variance, κ is the mean-reverting parameter and ξ is the
volatility of the variance (also called the vovol parameter).

Remark 106 We have σ (t) =
√
v (t) and:

dσ (t) =
((

κθ

2 −
ξ2

8

)
1

σ (t) −
1
2κσ (t)

)
dt+ 1

2ξ dW2 (t)

The stochastic volatility is then an Ornstein-Uhlenbeck process if we impose θ = ξ2/ (4κ).

As the second state variable of the Heston model is the stochastic variance v (t), the
price V (t, S, v) of the option must satisfy the PDE61:

1
2vS

2∂2
SV + ρξvS∂2

S,vV + 1
2ξ

2v∂2
vV

+bS∂SV + (κ (θ − v (t))− λv) ∂vV + ∂tV − rV = 0

It follows that the risk-neutral dynamics is:{
dS (t) = bS (t) dt+

√
v (t)S (t) dWQ

1 (t)
dv (t) = (κ (θ − v (t))− λv (t)) dt+ ξ

√
v (t) dWQ

2 (t)

In the case of European call and put options, Heston (1993) gives a closed-form solution of
the price:

C0 = S0e
(b−r)TP1 −Ke−rTP2

P0 = S0e
(b−r)T (P1 − 1)−Ke−rT (P2 − 1)

where the probabilities P1 and P2 satisfy:

Pj = 1
2 + 1

π

∫ ∞
0

Re
(
e−iφ lnKϕj (S0, v0, T, φ)

iφ

)
dφ

ϕj (S0, v0, T, φ) = exp (Cj (T, φ) +Dj (T, φ) v0 + iφ lnS0)

Cj (T, φ) = ibφT + aj
ξ2

(
(bj − iρξφ+ dj)T − 2 ln

(
1− gjedjT

1− gj

))
Dj (T, φ) = bj − iρξφ+ dj

ξ2

(
1− edjT

1− gjedjT

)
gj = bj − iρξφ+ dj

bj − iρξφ− dj

dj =
√

(iρξφ− bj)2 − ξ2 (2iujφ− φ2)

where a1 = a2 = κθ, b1 = κ+ λ− ρξ, b2 = κ+ λ, u1 = 1/2 and u2 = −1/2.

61Heston (1993) makes the assumption that λv (t) ∝
√
v.
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The existence of these semi-analytical formulas for European options is one of the main
factors for explaining the popularity of the Heston model. However, the implementation of
the formulas is not straightforward since it requires computing the integral of the inverse
Fourier transform. In particular, Kahl and Jäckel (2005) show that the evaluation of loga-
rithms with complex arguments may produce a numerical instability. Numerical softwares
will generally do the following computation:

ln
(

1− gjedjT

1− gj

)
= ln |r|+ iϕ

where:
r =

∣∣∣∣1− gjedjT1− gj

∣∣∣∣
and:

ϕ = arg
(

1− gjedjT

1− gj

)
However, the fact that ϕ ∈ [−π, π] will create a discontinuity when integrating the function.
In order to circumvent this problem, we note:

gj = r (gj) eiϕ(gj)

and:
dj = a (dj) + ib (dj)

Kahl and Jäckel (2005) deduce that:

gj − 1 = r (gj) eiϕ(gj) − 1
= r̃ei(ϕ̃j+2πm̃)

where m̃ =
⌊
(2π)−1 (ϕ (gj) + π)

⌋
, ϕ̃j = arg (gj − 1) and r̃ = |gj − 1|. They also found that:

gje
djT − 1 = r (gj) eiϕ(gj)ea(dj)T+ib(dj)T − 1

= r (gj) ea(dj)T ei(ϕ(gj)+b(dj)T ) − 1
= r̆ei(ϕ̆j+2πm̆)

where m̆ =
⌊
(2π)−1 (ϕ (gj) + b (dj)T + π)

⌋
, ϕ̆j = arg

(
gje

djT − 1
)
and r̆ =

∣∣gjedjT − 1
∣∣.

Finally, they obtain:

ln
(

1− gjedjT

1− gj

)
= ln r̆

r̃
+ i (ϕ̆j − ϕ̃j + 2πm̆− 2πm̃)

In Figure 9.32, we show the functions f1 (u) and f2 (u) defined by:

fj (u) = Re
(
e−iu lnKϕj (S0, v0, T, u)

iu

)
The parameters are S0 = 100, K = 100, T = 30, b = 0.00, v0 = 0.2, κ = 1, θ = 0.2, ξ = 0.5
and λ = 0. For f1 (u), we use ρ = 30% whereas ρ is set to −30% for the function f2 (u). We
see the discontinuity produced by numerical softwares. The Kahl-Jäckel method produces
continuous functions without jumps. The problem can sometimes affect the two functions
f1 (u) and f2 (u). This is the case in Figure 9.33 with the following parameters S0 = 100,
K = 100, T = 30, b = 0.05, v0 = 4%, κ = 0.5, θ = 4%, ξ = 0.7, ρ = −0.80 and λ = 0.
Again, the Kahl-Jäckel method performs the good correction.
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FIGURE 9.32: Functions f1 (u) and f2 (u) (κ = 1)

FIGURE 9.33: Functions f1 (u) and f2 (u) (κ = 0.5)
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FIGURE 9.34: Implied volatility of the Heston model (in %)

Example 94 The parameters are equal to S0 = 100, b = r = 5%, v0 = θ = 4%, κ = 0.5,
ξ = 0.9 and λ = 0. We consider the pricing of the European call option, whose maturity is
three months.

Figure 9.34 shows the implied volatility for different values of the strike K and the
correlation ρ. We notice that the Heston model can produce different shapes of the volatility
surface. In Figure 9.35, we have reported the skew of the implied volatility defined by:

ω (T,K) = ∂ Σ (T,K)
∂ K

Several authors have proposed approximations of the Heston implied volatility Σt (T,K).
We can cite Schönbucher (1999), Forde and Jacquier (2009), and Gatheral and Jacquier
(2011). A more general approach has been proposed by Durrleman (2010), who assumes
that the dynamics of St is Markovian with:

S (t) = S0 exp
(∫ t

0
σ (s) dW (s)− 1

2

∫ t

0
σ2 (s) ds

)
and: 

dσ2 (t) = µ (t) dt− 2σ (t)
(
a (t) dW (t) + ã (t) dW̃ (t)

)
dµ (t) = (·) dt+ ω (t) dW (t) + (·) dW̃ (t)
da (t) = m (t) dt+ u (t) dW (t) + ũ (t) dW̃ (t)
dã (t) = (·) dt+ v (t) dW (t) + (·) dW̃ (t)
du (t) = (·) dt+ x (t) dW (t) + (·) dW̃ (t)

where (·) is a generic symbol for a continuous adapted process. Durrleman (2010) shows
that:

Σ2
t (T,K) ' σ2 (t) + a (t) s (t) + b (t) τ

2 + c (t) s2 (t)
2 + d (t) s (t) τ

2 + e (t) s3 (t)
6
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FIGURE 9.35: Skew of the Heston model (in bps)

where τ = T − t and s (t) = lnS (t) − lnK. The coefficients b (t), c (t), d (t) and e (t) are
given by:

b (t) = µ (t)− a2 (t)
2 − 2ã2 (t)

3 − a (t)σ2 (t) + 2u (t)σ (t)
3

and:

c (t) = −2u (t)
3σ (t) −

a2 (t)
2σ2 (t) + 2ã2 (t)

3σ2 (t)

d (t) = 2m (t)
3 − ω (t)

3σ (t) −
x (t)

2 − a (t)µ (t)
3σ2 (t) + ã (t) ũ (t)

6σ (t) + ã (t) v (t)
σ (t) +

2a (t) ã2 (t)
3σ2 (t) + 2u (t)σ (t)

3 − a2 (t)
3

e (t) = x (t)
2σ2 (t) + 2a (t)u (t)

σ3 (t) − 3ã (t) ũ (t)
2σ3 (t) − ã (t) v (t)

σ3 (t) + 3a3 (t)
2σ4 (t) −

4a (t) ã2 (t)
σ4 (t)

In the case of the Heston model, we have:{
dS (t) = σ (t)S (t) dW (t)
dσ2 (t) = κ

(
θ − σ2 (t)

)
dt+ ξσ (t)

(
ρ dWt +

√
1− ρ2 dW̃t

)
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It follows that a (t) = − ξρ2 , ã (t) = − ξ
√

1−ρ2

2 and ω (t) = m (t) = u (t) = ũ (t) = v (t) =
x (t) = 0. We deduce that:

b (t) = κ
(
θ − σ2 (t)

)
+ ξρσ2 (t)

2 − ξ2

6

(
1− ρ2

4

)
c (t) = ξ2

6σ2 (t)

(
1− 7ρ2

4

)
d (t) = κξρ

6

(
θ

σ2
t

− 1
)
− ξ2ρ

12

(
ρ+

ξ
(
1− ρ2)
σ2 (t)

)

e (t) = ξ3ρ

2σ4 (t)

(
1− 11ρ2

8

)
In Figure 9.36, we have generated the volatility surface using the Durrleman formula of
the Heston model approximation. The parameters are S (t) = 100, σ (t) = 20%, κ = 0.5,
θ = 4% and ξ = 0.2. We consider different values for the correlation parameter ρ and the
maturity T . We notice that the Durrleman formula does not fit correctly the Heston smile
when the absolute value |ρ| of the correlation is high.

FIGURE 9.36: Implied volatility of the Durrleman formula (in %)

Example 95 We assume that S (t) = 100 and T = 0.5. The volatility smile is given by the
following values:

K 90.00 95.00 100.00 105.00 110.00
Σt (T,K) (in %) 20.25 19.92 19.67 19.49 19.38
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FIGURE 9.37: Calibration of the smile by the Heston model and the Durrleman formula

The calibration of the smile gives the following result62:

Model σ (t) κ θ ξ ρ
Heston 0.201 0.980 0.040 0.192 −0.207
Durrleman 0.222 1.000 0.014 0.191 −0.193

The volatility surface of each calibrated model is represented in Figure 9.37. The results are
very similar.

Remark 107 The Heston model was very popular in the 2000s. Nevertheless, even if we
have an analytical formula for the call and put prices, the absence of a true implied volatility
formula was an obstacle of its development, and the use of the Heston model is today less
frequent. The Heston model has then been replaced by the SABR model, because of the
availability of an implied volatility formula.

9.2.4.3 SABR model

Hagan et al. (2002) suggest using the SABR63 model to take into account the smile
effect. The dynamics of the forward rate F (t) is given by:{

dF (t) = α (t)F (t)β dWQ
1 (t)

dα (t) = να (t) dWQ
2 (t)

where E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t. Since β ∈ [0, 1], α (t) is not necessarily the instantaneous

volatility of F (t) except in the cases β = 0 (Gaussian volatility) and β = 1 (log-normal

62It consists of minimizing the sum of squared errors between observed implied volatilities and theoretical
implied volatilities deduced from the option model.

63This is the acronym of stochastic−α− β − ρ.
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volatility). The model has also 4 parameters: α the current value of α (t), β the exponent
of the forward rate, ν the log-normal volatility of α (t) and ρ the correlation between the
two Brownian motions. One of the big interests of the SABR model is that we have an
approximate formula of the implied Black volatility:

ΣB (T,K) = α

(F0K)(1−β)/2
(

1 + (1−β)2

24 ln2 F0
K + (1−β)4

1920 ln4 F0
K

) ( z

χ (z)

)
·

(
1 +

(
(1− β)2

α2

24 (F0K)1−β + ρανβ

4 (F0K)(1−β)/2 + 2− 3ρ2

24 ν2

)
T

)

where z = να−1 (F0K)(1−β)/2 ln F0

K
and χ (z) = ln

(√
1− 2ρz + z2 + z − ρ

)
− ln (1− ρ).

Let us see the interpretation of the parameters64. We have represented their impact in
Figures65 9.38 and 9.39. The parameter β allows to define a stochastic log-normal model
when β is equal to 1, or a stochastic normal model when β is equal to 0, or an hybrid model.
The choice of β is generally exogenous. The main reason is that β is highly related to the
dynamics of the ATM implied volatility. If β is equal to 1, we observe a simple translation
of the smile when the forward rate moves (first panel in Figure 9.38). If β is equal to 0, the
ATM implied volatility decreases when the forward rates increases (second panel in Figure
9.38). This explains the behavior of the backbone, which represents the dynamics of the
ATM implied volatility when the forward rate varies (third panel in Figure 9.38).

FIGURE 9.38: Impact of the parameter β

64In the following examples, we consider a one-year option, whose current forward rate F0 is equal to 5%.
65The default values are α = 10%, β = 1, ν = 50% and ρ = 0.
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FIGURE 9.39: Impact of the parameters α, ν and ρ

The parameter α controls the level of implied volatilities (see Panel 1 in Figure 9.39).
In particular, α is close to the value of the ATM volatility when β is equal to one66. ν is
called the vovol (or vol-vol) parameter, because it measures the volatility of the volatility. ν
impacts then the stochastic property of the volatility α (t). The limit case ν = 0 corresponds
to the constant volatility and we obtain the classical Black model67. An increase of ν tends
to increase the slope of the implied volatility (see Panel 2 in Figure 9.39). The asymmetry
of the smile is due to the parameter ρ. For instance, if ρ is negative, the skew is more
important in the left side than in the right side (see Panel 3 in Figure 9.39).

Remark 108 The parameters β and ρ impact the slope of the smile in a similar way.
Then, they cannot be jointly identifiable. For example, let us consider the following smile
when F0 is equal to 5%: ΣB (1, 3%) = 13%, ΣB (1, 4%) = 10%, ΣB (1, 5%) = 9% and
ΣB (1, 7%) = 10%. If we calibrate this smile for different values of β, we obtain the following
solutions:

β α ν ρ
0.0 0.0044 0.3203 0.2106
0.5 0.0197 0.3244 0.0248
1.0 0.0878 0.3388 −0.1552

We have represented the corresponding smiles in Figure 9.40 and we verify that the three
sets of calibrated parameters give the same smile.

66In this case, we have:

ΣB (T, F0) = α

(
1 +
(
ραν

4
+

2− 3ρ2

24
ν2
)
T

)
It follows that ΣB (T, F0) is exactly equal to α when ρ is equal to zero.

67When β is equal to one of course.
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FIGURE 9.40: Implied volatility for different parameter sets (β, ρ)

We have seen that the choice of β is not important for calibrating the SABR model for
a given maturity. We have already seen that the parameter β has a great impact on the
dynamics on the backbone. Therefore, there are two approaches for estimating β:

1. β can be chosen from prior beliefs (β = 0 for the normal model, β = 0.5 for the CIR
model and β = 1 for the log-normal model);

2. β can be statistically estimated by considering the dynamics of the forward rate.

TABLE 9.12: Calibration of the parameter β in the SABR model

Rate Level Difference Empirical quantile of β̂t,t+h
β̂ R2

c β̂ R2
c 10% 25% 50% 75% 90%

1y1y −0.06 0.91 0.59 0.15 −2.01 −0.14 0.71 1.00 2.17
1y5y −0.29 0.87 0.32 0.27 −1.80 −0.28 0.73 1.11 2.76
1y10y −0.37 0.80 0.34 0.22 −2.04 −0.23 0.71 1.11 2.69
5y1y 0.42 0.29 0.35 0.22 −1.58 −0.31 0.71 1.00 2.38
5y5y −0.01 0.73 0.23 0.28 −2.12 −0.36 0.61 1.00 2.52
5y10y −0.10 0.69 0.27 0.23 −1.99 −0.30 0.70 1.05 2.58
10y1y 0.96 0.00 0.28 0.20 −1.88 −0.20 0.80 1.07 2.43
10y5y −0.10 0.65 0.28 0.20 −2.02 −0.29 0.73 1.02 2.76
10y10y −0.47 0.73 0.27 0.20 −1.71 −0.24 0.85 1.07 2.93

The second approach is based on the approximation of the ATM volatility:

Σt (T, Ft) '
α

F 1−β
t

We have:
ln Σt (T, Ft) = lnα+ (β − 1) lnFt + ut (9.36)
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We can then estimate β by considering the linear regression of the logarithm of the ATM
volatility on the logarithm of the forward rate. However, these two variables are generally
integrated of order one or I (1). A better approach is then to consider the alternative linear
regression68:

ln Σt+h (T, Ft+h)− ln Σt (T, Ft) = c+ (β − 1) (lnFt+h − lnFt) + ut (9.37)

where c is a constant. In this case, the linear regression is performed using the difference
and not the level of implied volatilities. Using the Libor EUR rates between 2000 and 2003,
we obtain results given in Table 9.12. In the first column, we indicate the maturity and the
tenor of the forward rate. The next two columns report the estimate β̂ and the R-squared
coefficient R2

c for the regression model (9.36). Then, we have the values of β̂ and R2
c for the

regression model69 (9.37). We observe some strong differences between the two approaches
(see also the probability density function of β̂ in Figure 9.41). These results show that the
regression model (9.36) produces bad results. However, it does not mean that the second
regression model (9.36) is more robust. Indeed, we can calculate the exact value β̂t,t+h that
explains the dynamics of the ATM volatility from time t to time t+ h:

β̂t,t+h = ln (Ft+h · Σt+h (T, Ft+h))− ln (Ft · Σt (T, Ft))
lnFt+h − lnFt

In Table 9.12, we notice the wide dispersion of β̂t,t+h. On average, the parameter β is around
70%, but it can also take some large negative or positive values. This is why β is generally
chosen from prior beliefs.

Once we have set the value of β, we estimate the parameters (α, ν, ρ) by fitting the
observed implied volatilities. However, we have seen that α is highly related to the ATM
volatility. Indeed, we have:

ΣB (T, F0) = α

F 1−β
0

(
1 +

(
(1− β)2

α2

24F 2−2β
0

+ ρανβ

4F 1−β
0

+ 2− 3ρ2

24 ν2

)
T

)

We deduce that:

α3

(
(1− β)2

T

24F 2−2β
0

)
+ α2

(
ρνβT

4F 1−β
0

)
+ α

(
1 + 2− 3ρ2

24 ν2T

)
− ΣB (T, F0)F 1−β

0 = 0

Let α = gα (ΣB (T, F0) , ν, ρ) be the positive root of the cubic equation. Therefore, imposing
that the smile passes through the ATM volatility ΣB (T, F0) allows to reduce the calibration
to two parameters (ν, ρ).

Example 96 We consider the following smile:

K (in %) 2.8 3.0 3.5 3.7 4.0 4.5 5.0 7.0
Σ (T,K) (in %) 13.2 12.8 12.0 11.6 11.0 10.0 9.0 10.0

The maturity T is equal to one year and the forward rate F0 is set to 5%.

68We have:
Σt+h (T, Ft+h)

Σt (T, Ft)
'
(
Ft+h
Ft

)β−1

69In this case, we set h to one trading day.
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FIGURE 9.41: Probability density function of the estimate β̂ (SABR model)

If we consider a stochastic log-normal model (β = 1), we obtain the following results:

Calibration α (in %) β ν ρ (in %) RSS ΣATM (in %)
#1 9.466 1.00 0.279 −23.70 0.630 9.51
#2 8.944 1.00 0.322 −22.90 1.222 9.00

RSS indicates the residual sum of squares (expressed in bps). In the first calibration, we
estimate the three parameters α, ν and ρ. In this case, the residual sum of squares is equal to
0.63 bps, but the SABR ATM volatility is equal to 9.51%, which is far from the market ATM
volatility. In the second calibration, we estimate the two parameters ν and ρ, whereas α is
the solution of the cubic equation that fits the ATM volatility. We notice that the residual
sum of squares has increased from 0.63 bps to 1.222 bps, but the SABR ATM volatility
is exactly equal to the market ATM volatility. The two calibrated smiles are reported in
Figure 9.42.

Remark 109 One of the issues with implied volatility calibration is that we generally have
more market prices for the put (or left) wing of the smile than its call (or right) wing. This
implies that the put wing is better calibrated than the call wing, and we may observe a large
difference between the calibrated ATM volatility and the market ATM volatility. Therefore,
professionals prefer the second calibration.

The sensitivities correspond to the following formulas70:

∆ = ∂ CB
∂ F0

+ ∂ CB
∂ Σ · ∂ ΣB (T,K)

∂ F0

70If we consider the parametrization α = gα (ΣATM, ν, ρ), we have:

∆ =
∂ CB
∂ F0

+
∂ CB
∂ Σ

·
(
∂ ΣB (T,K)

∂ F0
+
∂ ΣB (T,K)

∂ α
·
∂ gα (ΣATM, ν, ρ)

∂ F0

)
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FIGURE 9.42: Calibration of the SABR model

and:
υ = ∂ CB

∂ Σ · ∂ ΣB (T,K)
∂ α

To obtain these formulas, we apply the chain rule on the Black formula by assuming that
the volatility Σ is not constant and depends on F0 and α.

Remark 110 We notice that the vega is defined with respect to the parameter α. This
approach is little used in practice, because it is difficult to hedge this model parameter. This
is why traders prefer to compute the vega with respect to the ATM volatility:

υ = ∂ CB
∂ Σ · ∂ ΣB (T,K)

∂ α
· ∂ α

∂ ΣATM

where ΣATM = ΣB (T, F0).

Remark 111 Bartlett (2006) proposes a refinement for computing the delta. Indeed, a shift
in F0 produces a shift in α, because the two processes F (t) and α (t) are correlated. Since
we have:

dα (t) = να (t) dWQ
2 (t)

= να (t)
(
ρdWQ

1 (t) +
√

1− ρ2 dW (t)
)

and:
dWQ

1 (t) = dF (t)
α (t)F (t)β

we deduce that:
dα (t) = νρ

F (t)β
dF (t) + να (t)

√
1− ρ2 dW (t)
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The new delta is then:

∆? = ∂ CB
∂ F0

+ ∂ CB
∂ Σ

(
∂ ΣB (T,K)

∂ F0
+ ∂ ΣB (T,K)

∂ α
· ∂ α
∂ F0

)
= ∂ CB

∂ F0
+ ∂ CB

∂ Σ

(
∂ ΣB (T,K)

∂ F0
+ νρ

F (t)β
∂ ΣB (T,K)

∂ α

)
= ∆ + νρ

F (t)β
υ

Therefore, this approach is particularly useful when we consider a delta hedging instead of
a delta-vega hedging, since the new delta risk incorporates a part of the vega risk.

9.2.5 Factor models
Factor models are extensively used for modeling fixed income derivatives (Vasicek, CIR,

HJM, etc.). They assume that interest rates are linked to some factors X (t), which can be
observable or not observable. For instance, the factor is directly the instantaneous interest
rate r (t) in Vasicek or CIR models. However, a one-factor model is generally limited and
is not enough rich to fit the yield curve and the basic asset prices (caplets and swaptions).
During a long time, academics have developed multi-factor models by considering explicit
factors (level, slope, convexity, etc.). For instance, Brennan and Schwartz (1979) consider
the short-term interest rate and the long-term interest rate, whereas Longstaff and Schwartz
(1992) use the short-term interest rate and its volatility. Today, this type of approach is
outdated and is replaced by a more pragmatic approach based on non-explicit factors.

9.2.5.1 Linear and quadratic Gaussian models

Let us assume that the instantaneous interest rate r (t) is linked to the factors X (t)
under the risk-neutral probability Q as follows:

r (t) = α (t) + β (t)>X (t) +X (t)> Γ (t)X (t)

where α (t) is a scalar, β (t) is a n×1 vector and Γ (t) is a n×n matrix. This parametrization
encompasses different specific cases: one-factor model, affine model and quadratic model71.
We also assume that the factors follow an Ornstein-Uhlenbeck process:

dX (t) = (a (t) +B (t)X (t)) dt+ Σ (t) dWQ (t)

where a (t) is a n× 1 vector, B (t) is a n× n matrix, Σ (t) is a n× n matrix and WQ (t) is
a standard n-dimensional Brownian motion.

El Karoui et al. (1992a) show that there exists a family of α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T )
such that the price of the zero-coupon bond B (t, T ) is given by:

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)−X (t)> Γ̂ (t, T )X (t)

)
71As shown by Filipović (2002), it is not necessary to use higher order because the only consistent

polynomial term structure approaches are the affine and quadratic term structure models.
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where α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T ) solve a system of Riccati equations. If we assume that
the matrix Γ̂ (t, T ) is symmetric, we obtain:72:

∂tα̂ (t, T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)
− β̂ (t, T )> a (t) +

1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = −B (t)> β̂ (t, T ) + 2Γ̂ (t, T ) Σ (t) Σ (t)> β̂ (t, T )−
2Γ̂ (t, T ) a (t)− β (t)

∂tΓ̂ (t, T ) = 2Γ̂ (t, T ) Σ (t) Σ (t)> Γ̂ (t, T )−
2Γ̂ (t, T )B (t)− Γ (t)

with the boundary conditions α̂ (T, T ) = β̂ (T, T ) = Γ̂ (T, T ) = 0. We notice that the
expression of the forward interest rate F (t, T1, T2) is given by:

F (t, T1, T2) = − 1
T2 − T1

ln B (t, T2)
B (t, T1)

=
α̂ (t, T2)− α̂ (t, T1) +

(
β̂ (t, T2)− β̂ (t, T2)

)>
X (t)

T2 − T1
+

X (t)>
(

Γ̂ (t, T2)− Γ̂ (t, T1)
)
X (t)

T2 − T1

We deduce that the instantaneous forward rate is equal to:

f (t, T ) = α (t, T ) + β (t, T )>X (t) +X (t)> Γ (t, T )X (t)

where α (t, T ) = ∂T α̂ (t, T ), β (t, T ) = ∂T β̂ (t, T ) and Γ (t, T ) = ∂T Γ̂ (t, T ). It follows that
α (t) = α (t, t) = ∂tα̂ (t, t), β (t) = β (t, t) = ∂tβ̂ (t, t) and Γ (t) = Γ (t, t) = ∂tΓ̂ (t, t).

Let V (t,X) be the price of the option, whose payoff is f (x). It satisfies the following
PDE:

1
2 trace

(
Σ (t) ∂2

XV (t,X) Σ (t)>
)

+ (a (t) +B (t)X) ∂XV (t,X) +

∂tV (t,X)−
(
α (t) + β (t)>X +X>Γ (t)X

)
V (t,X) = 0

(9.38)

Once we have specified the functions α (t), β (t), Γ (t), a (t), B (t) and Σ (t), we can then price
the option by solving numerically the previous multidimensional PDE with the terminal
condition V (T,X) = f (X). Most of the time, the payoff is not specified with respect to the
state variables X, but depends on the interest rate r (t). In this case, we use the following
transformation:

f (r) = f
(
α (T ) + β (T )>X +X>Γ (T )X

)
Remark 112 We can also calculate the price of the option by Monte Carlo methods. This
approach is generally more efficient when the number of factors is larger than 2.

72See Exercise 9.4.10 on page 601 and Ahn et al. (2002) for the derivation of the Riccati equations.
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9.2.5.2 Dynamics of risk factors under the forward probability measure

We have:
dB (t, T )
B (t, T ) = r (t) dt−

(
2Γ̂ (t, T )X (t) + β̂ (t, T )

)>
Σ (t) dWQ (t)

We deduce that:

WQ?(T ) (t) = WQ (t) +
∫ t

0
Σ (s)>

(
2Γ̂ (s, T )X (s) + β̂ (s, T )

)
ds

defines a Brownian motion under Q? (T ). It follows that:

dX (t) =
(
ã (t) + B̃ (t)X (t)

)
dt+ Σ (t) dWQ?(T ) (t)

where:
ã (t) = a (t)− Σ (t) Σ (t)> β̂ (t, T )

and:
B̃ (t) = B (t)− 2Σ (t) Σ (t)> Γ̂ (t, T )

We conclude that X (t) is Gaussian under any forward probability measure Q? (T ):

X (t) ∼ N (m (0, t) , V (0, t))

El Karoui et al. (1992a) show that the conditional mean and variance satisfies the following
forward differential equations:

∂Tm (t, T ) = a (T ) +B (T )m (t, T )− 2V (t, T ) Γ (T )m (t, T )−
V (t, T )β (T )

∂TV (t, T ) = V (t, T )B (T )> +B (T )V (t, T )− 2V (t, T ) Γ (T )V (t, T ) +
Σ (T ) Σ (T )>

If t is equal to zero, the initial conditions are m (0, 0) = X (0) = 0 and V (0, 0) = 0. If t 6= 0,
we proceed in two steps: first, we calculate numerically the solutions m (0, t) and V (0, t),
and second, we initialize the system with m (t, t) = m (0, t) and V (t, t) = V (0, t).

Remark 113 In fact, the previous forward differential equations are not obtained under the
traditional forward probability measure Q? (T ), but under the probability measure Q? (t, T )
defined by the following Radon-Nykodin derivative:

dQ? (t, T )
dP = e

−
∫ T

0
r(s) ds

e

∫ T
t
f(t,s) ds

The reason is that we would like to price at time t any caplet with maturity T . Therefore,
this is the maturity T and not the filtration Ft that moves.

9.2.5.3 Pricing caplets and swaptions

We reiterate that the formula of the Libor rate L (t, Ti−1, Ti) at time t between the dates
Ti−1 and Ti is:

L (t, Ti−1, Ti) = 1
Ti − Ti−1

(
B (t, Ti−1)
B (t, Ti)

− 1
)

It follows that the price of the caplet is given by:

Caplet = B (0, t)EQ?(t)
[
(B (t, Ti−1)− (1 + (Ti − Ti−1)K)B (t, Ti))+

]
where Q? (t) is the forward probability measure. We can then calculate the price using two
approaches:
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1. we can solve the partial differential equation;

2. we can calculate the mathematical expectation using numerical integration.

In the first approach, we consider the PDE (9.38) with the following payoff:

f (X) = max (0, g (X))

where:

g (X) = exp
(
−α̂ (t, Ti−1)− β̂ (t, Ti−1)>X −X>Γ̂ (t, Ti−1)X

)
−

(1 + δi−1K) exp
(
−α̂ (t, Ti)− β̂ (t, Ti)>X −X>Γ̂ (t, Ti)X

)
In the second approach, we have X (t) ∼ N (m (0, t) , V (0, t)) under the forward probability
Q? (t). We deduce that:

Caplet (t, Ti−1, Ti) = B (0, t)
∫
f (x)φn (x;m (0, t) , V (0, t)) dx

This integral can be computed numerically using Gauss-Legendre quadrature methods.
For the swaption, the payoff is:

f (X) = (Sw (T0)−K)+
n∑
i=1

(Ti − Ti−1)B (T0, Ti)

=
(
B (T0, T0)−B (T0, Tn)−K

n∑
i=1

(Ti − Ti−1)B (T0, Ti)
)+

= max (0, g (X))

where:

g (X) = exp
(
−α̂ (T0, T0)− β̂ (T0, T0)>X −X>Γ̂ (T0, T0)X

)
−

exp
(
−α̂ (T0, Tn)− β̂ (T0, Tn)>X −X>Γ̂ (T0, Tn)X

)
−

K
n∑
i=1

δi−1 exp
(
−α̂ (T0, Ti)− β̂ (T0, Ti)>X −X>Γ̂ (T0, Ti)X

)
As previously, we can price the swaption by solving the PDE with the payoff f (X) or by
calculating the following integral:

Swaption = B (0, T0)
∫
f (x)φn (x;m (0, T0) , V (0, T0)) dx

9.2.5.4 Calibration and practice of factor models

The calibration of the model consists in fitting the functions α (t), β (t), Γ (t), a (t),
B (t) and Σ (t). Generally, professionals assume that a (t) = 0 and B (t) = 0. Indeed, if we
consider the following transformation:

X̃ (t) = e
−
∫ t

0
B(s) ds

X (t)−
∫ t

0
a (s) e−

∫ s
0
B(u) du ds
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we obtain:

dX̃ (t) = e
−
∫ t

0
B(s) dsΣ (t) dWQ (t)

= Σ̃ (t) dW (t)

Without loss of generality, we can then set dX (t) = Σ (t) dWQ (t), and the Riccati equations
are simplified as follows:

∂tα̂ (t, T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)

+ 1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = 2Γ̂ (t, T )>Σ (t) Σ (t)> β̂ (t, T )− β (t)
∂tΓ̂ (t, T ) = 2Γ̂ (t, T )>Σ (t) Σ (t)> Γ̂ (t, T )− Γ (t)

If we consider an affine model, we retrieve the formula of Duffie and Huang (1996):

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)

)
where73: {

∂tα̂ (t, T ) = 1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

∂tβ̂ (t, T ) = −β (t)

First, we must fit the initial yield curve, which is noted B (0, T ). If we assume that
X (0) = 0, we obtain:

α̂ (t, T ) = − ln B (0, T )
B (0, t)

We notice that the computation of α̂ (t, T ) allows to define α (t):

α (t) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)

+ 1
2 β̂ (t, T )>Σ (t) Σ (t)> β̂ (t, T )− ∂tα̂ (t, T )

because ∂tα̂ (t, T ) can be calculated using finite differences. Therefore, the problem dimen-
sion is reduced and the calibration depends on β (t), Γ (t) and Σ (t). In order to calibrate
these functions, we need to fit other products like caplets and swaptions. We have shown
that these products can be priced using numerical integration. Therefore, the calibration of
β (t), Γ (t) and Σ (t) can be done without solving the PDE, which is time-consuming.

Let us now see what type of volatility smile is generated by quadratic and linear Gaussian
factor models. We assume that the functions β (t), Γ (t) and Σ (t) are piecewise constant
functions, whose knots are t?1 = 0.5 and t?2 = 0.5. For instance, the function β (t) is given by:

β (t) =

 β1 if t ∈ [0, 0.5[
β2 if t ∈ [0.5, 1[
β3 if t ∈ [1,∞)

where β1, β2 and β3 are three scalars. Therefore, β (t) is defined by the vector (β1, β2, β3).
In a similar way, Γ (t) and Σ (t) are defined by the vectors (Γ1,Γ2,Γ3) and (Σ1,Σ2,Σ3). We

73In the general case a (t) 6= 0 and B (t) 6= 0, we have:{
∂tα̂ (t, T ) = −β̂ (t, T )> a (t) + 1

2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)
∂tβ̂ (t, T ) = −B (t)> β̂ (t, T )− β (t)
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FIGURE 9.43: Volatility smiles generated by the quadratic Gaussian model

consider 4 parameter sets74:

Set (β1, β2, β3) (Γ1,Γ2,Γ3) (Σ1,Σ2,Σ3)
#1 (0.3, 0.4, 0.5) (−20,−10, 10) (3, 3.2, 3.5)
#2 (0.3, 0.4, 0.5) (20, 15, 10) (3, 3.2, 3.5)
#3 (0.3, 0.4, 0.5) (5, 5, 5) (4, 3.5, 3)
#4 (0.3, 0.4, 0.5) (−10,−10,−10) (6, 5, 4)

We also assume that the yield curve is flat and is equal to 5%. We consider the pricing of a
caplet with T0 = T1 − 2/365, T1 = 0.5 and T2 = 1.5 for different strikes Ki = K?

i · Sw (T0)
where K?

i ∈ [0.8, 1.2]. In Figure 9.43, we have reported the implied Black volatilities (in %)
generated by the quadratic Gaussian model with the four parameter sets. We notice that
the quadratic Gaussian model can generate different forms of volatility smiles. Since it is
a little more flexible than the linear Gaussian model, we can obtained U-shaped and even
reverse U-shaped volatility smiles.

9.3 Other model risk topics
In this section, we consider other risks than the volatility risk. In particular, we study

the impact of dividends on option premia, the pricing of basket options and the liquidity
risk.

74The volatilities (Σ1,Σ2,Σ3) are normalized by the factor
√

260× 10−4.
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9.3.1 Dividend risk
9.3.1.1 Understanding the impact of dividends on option prices

Let us consider that the underlying asset pays a continuous dividend yield d during the
life of the option. We have seen that the risk-neutral dynamics become:

dS (t) = (r − d)S (t) dt+ σS (t) dW (t)

We deduce that the Black-Scholes formula is equal to:

C0 = S0e
−dTΦ (d1)−Ke−rTΦ (d2)

where:

d1 = 1
σ
√
T

(
ln S0

K
+ (r − d)T

)
+ 1

2σ
√
T

d2 = d1 − σ
√
T

We can also show that limd→∞ C0 = 0. In Figure 9.44, we report the price of the option
when K = 100, σ = 20%, r = 5% and T = 0.5. We consider different level of the dividend
yield d. We notice that the call price is a decreasing function of the continuous dividend. If
we consider put options instead of call options, the function becomes increasing.

FIGURE 9.44: Impact of dividends on the call option price

We generally explain the impact of dividends because stock prices generally fall by the
amount of the dividend on the ex-dividend date. Let S (t) denote the value of the underlying
asset at time t and D the discrete dividend paid at time tD. We have:

S (tD) = S
(
t−D
)
−D
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The impact on the payoff is not the unique effect. Indeed, we recall that the option price is
the cost of the replication portfolio. When the trader hedges the call option, he has a long
exposure on the asset since the delta is positive. This implies that he receives the dividend
of the asset. Therefore, the hedging cost of the call option is reduced. In the case of a put
option, the trader has a short exposure and has to pay the dividend. As a result, the hedging
cost of the put option is increased.

9.3.1.2 Models of discrete dividends

We denote by S (t) the market price and Y (t) an additional process that is assumed to
be a geometric Brownian motion:

dY (t) = rY (t) dt+ σY (t) dWQ (t)

Following Frishling (2002), there are three main approaches to take into account discrete
dividends. In the first approach, Y (t) is the capital price process excluding the dividends
and the market price S (t) is equal to the sum of the capital price and the discounted value
of future dividends:

S (t) = Y (t) +
∑

tk∈[t,T ]

D (tk) e−r(tk−t)

To price European options, we then replace the price S0 by the adjusted price Y0 =
S0 −

∑
tk≤T D (tk) e−rtk . In the second approach, we define D (t) as the sum of capital-

ized dividends paid until time t:

D (t) =
∑

1 {tk < t} ·D (tk) er(t−tk)

The market price S (t) is equal to the difference between the cum-dividend price Y (t) and
the capitalized dividends (Haug et al., 2003):

S (t) = Y (t)−D (t)

We deduce that:

(S (T )−K)+ = (Y (T )−D (T )−K)+

= (Y (T )− (K +D (T )))+

= (Y (T )−K ′)+

In the case of European options, we replace the strike K by the adjusted strike K ′ =
K +

∑
tk≤T

D (tk) er(T−tk). The last approach considers the market price process as a
discontinuous process:{

dS (t) = rS (t) dt+ σS (t) dWQ (t) if tk−1 < t < tk
S (t) = S

(
t−k
)
−D (tk) if t = tk

Therefore, we calculate the option price using finite differences or Monte Carlo simulations.

Remark 114 The three models can be used to price exotic options, and not only European
options. Generally, we do not have closed-form formulas and we calculate the price with nu-
merical methods. For that, we have to define the risk-neural dynamics of S (t). For instance,
we have for the second model75:

dS (t) =
(
rS (t)−

∑
1 {tk = t} ·D (tk) er(t−tk)

)
dt+ σ (S (t) +D (t)) dWQ (t)

75We notice that:
dD (t) =

(
rD (t) +

∑
1 {tk = t} ·D (tk) er(t−tk)

)
dt
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Example 97 We assume that S0 = 100, K = 100, σ = 30%, T = 1, r = 5% and b = 5%.
A dividend D (t1) will be paid at time t1 = 0.5.

Table 9.13 compares option prices when we use the three previous models. When D (t1)
is equal to zero, the three models give the same price: the call option is equal to 14.23
whereas the put option is equal to 9.35. When the asset pays a dividend, the three models
give different option prices. For instance, if the dividend is equal to 3, the call option is equal
to 12.46 for Model #1, 12.81 for Model #2 and 12.69 for Model #3. We notice that the
three models produce very different option prices76. Therefore, the choice of the dividend
model has a big impact on the pricing of derivatives.

TABLE 9.13: Impact of the dividend on the option price
Call Put

D (t1) (#1) (#2) (#3) (#1) (#2) (#3)
0 14.23 14.23 14.23 9.35 9.35 9.35
3 12.46 12.81 12.69 10.51 10.86 10.64
5 11.34 11.92 11.69 11.34 11.92 11.59

10 8.78 9.93 9.42 13.66 14.80 14.20

Remark 115 The previous models assume that dividends are not random at the inception
date of the option. In practice, only the first dividend can be known if it has been announced
before the inception date. This implies that dividends are generally unknown. Some authors
have proposed option models with stochastic dividends, but they are not used by professionals.
Most of the time, they use a very basic model. For instance, the Gordon growth model
assumes that dividends increase at a constant rate g:

D (tk) = (1 + g)(tk−t1)
D (t1)

The parameter g can be calibrated in order to match the forward prices.

9.3.2 Correlation risk
Until now, we have studied the pricing and hedging of options that are based on one

underlying asset. Banks have also developed derivatives with several underlying assets. In
this case, the option price is sensitive to the covariance risk, which may be split between
volatility risk and correlation risk. Here, we face two issues: the determination of implied
correlations, and the hedging of the correlation risk.

9.3.2.1 The two-asset case

Pricing of basket options We consider the example of a basket option on two assets.
Let Si (t) be the price process of asset i at time t. According to the Black-Scholes model,
we have: {

dS1 (t) = b1S1 (t) dt+ σ1S1 (t) dWQ
1 (t)

dS2 (t) = b2S2 (t) dt+ σ2S2 (t) dWQ
2 (t)

where bi and σi are the cost-of-carry and the volatility of asset i. Under the risk-neutral
probability measure Q, WQ

1 (t) and WQ
2 (t) are two correlated Brownian motions:

E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t

76We also notice that the price given by the third model is between the two prices calculated with the
first and second models.
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The option price associated to the payoff (α1S1 (T ) + α2S2 (T )−K)+ is the solution of the
two-dimensional PDE:

1
2σ

2
1S

2
1∂

2
S1
C + 1

2σ
2
2S

2
2∂

2
S2
C + ρσ1σ2S1S2∂

2
S1,S2

C+

b1S1∂S1C + b2S2∂S2C + ∂tC − rC = 0

with the terminal condition:

C (T, S1, S2) = (α1S1 + α2S2 −K)+

Using the Feynman-Kac representation theorem, we have:

C0 = EQ
[
e
−
∫ T

0
r dt (α1S1 (T ) + α2S2 (T )−K)+

]
The value C0 can be calculated using numerical integration techniques such as Gauss-
Legendre or Gauss-Hermite quadrature methods. In some cases, the two-dimensional prob-
lem can be reduced to one-dimensional integration. For instance, if α1 < 0, α2 > 0 and
K > 0, we obtain77:

C0 =
∫
R

BS (S? (x) ,K? (x) , σ?, T, b?, r)φ (x) dx

where S? (x) = α2S2 (0) eρσ2
√
Tx, K? (x) = K − α1S1 (0) e(b1−

1
2σ

2
1)T+σ1

√
Tx, σ? =

σ2
√

1− ρ2 and b? = b2 −
1
2ρ

2σ2
2 .

Example 98 We assume that S1 (0) = S2 (0) = 100, σ1 = σ2 = 20%, b1 = 10%, b2 = 0 and
r = 5%. We calculate the price of a basket option, whose maturity T is equal to one year.
For the other characteristics (α1, α2,K), we consider different set of parameters: (1,−1, 1),
(1,−1, 5), (0.5, 0.5, 100), (0.5, 0.5, 110) and (0.1, 0.1,−5).

TABLE 9.14: Impact of the correlation on the basket option price
α1 1.0 1.0 0.5 0.5 0.1
α2 −1.0 −1.0 0.5 0.5 0.1
K 1 5 100 110 −5
−0.90 20.41 18.23 5.39 0.66 24.78
−0.75 19.81 17.62 6.06 1.35 24.78
−0.50 18.76 16.55 6.97 2.31 24.78
−0.25 17.61 15.37 7.73 3.12 24.78

ρ 0.00 16.35 14.08 8.39 3.83 24.78
0.25 14.94 12.61 8.99 4.46 24.78
0.50 13.30 10.88 9.54 5.05 24.78
0.75 11.29 8.66 10.05 5.59 24.78
0.90 9.78 6.81 10.34 5.90 24.78

Using Gauss-Legendre quadratures, we obtain the prices of the basket option given in
Table 9.14. We notice that the price can be an increasing, decreasing or independent function
of the correlation parameter ρ.

77See Exercise 9.4.11 on page 602.
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Remark 116 We can extend the previous framework to other payoff functions. The PDE
is the same, only the terminal condition changes:

C (T, S1, S2) = f (S1 (T ) , S2 (T ))

where f (S1 (T ) , S2 (T )) is the payoff function.

Cega sensitivity The correlation risk studies the impact of the parameter ρ on the option
price C0. For instance, Rapuch and Roncalli (2004) show that the price of the spread option,
whose payoff is (S1 (T )− S2 (T )−K)+, is a decreasing function of the correlation param-
eter ρ. They also extend this result to an arbitrary European payoff f (S1 (T ) , S2 (T )). In
particular, they demonstrate that, if the cross-derivative ∂2

1,2f is a negative (resp. positive)
measure, then the option price is decreasing (resp. increasing) with respect to ρ. For in-
stance, the payoff function of the call option on the maximum of two assets is defined as
f (S1, S2) = (max (S1, S2)−K)+. Since ∂2

1,2f (S1, S2) = −1 {S1 = S2, S1 > K} is a nega-
tive measure, the option price decreases with respect to ρ. In the case of a Best-of call/call
option, the payoff function is f (S1, S2) = max

(
(S1 −K1)+

, (S2 −K2)+
)
and we have:

∂2
1,2f (S1, S2) = −1 {S2 −K2 − S1 +K1 = 0, S1 > K1, S2 > K2}

We have the same behavior than the Max option. For the Min option, we remark that
min (S1, S2) = S1 + S2 −max (S1, S2). So, the option price is an increasing function of ρ.
Other results could be found in Table 9.15.

TABLE 9.15: Relationship between the basket option price and the correlation parameter
ρ

Option type Payoff Increasing Decreasing
Spread (S2 − S1 −K)+ X
Basket (α1S1 + α2S2 −K)+

α1α2 > 0 α1α2 < 0
Max (max (S1, S2)−K)+ X
Min (min (S1, S2)−K)+ X

Best-of call/call max
(

(S1 −K1)+
, (S2 −K2)+

)
X

Best-of put/put max
(

(K1 − S1)+
, (K2 − S2)+

)
X

Worst-of call/call min
(

(S1 −K1)+
, (S2 −K2)+

)
X

Worst-of put/put min
(

(K1 − S1)+
, (K2 − S2)+

)
X

The sensitivity of the option price with respect to the correlation parameter ρ is called
the cega:

c = ∂ C0

∂ρ

Generally, it is difficult to fix a particular value of ρ, because a correlation is not a stable
parameter. Moreover, the value of ρ used for pricing the option must reflect the risk-neutral
distribution. Then, it is not obvious that the ‘risk-neutral correlation’ is equal to the ‘his-
torical correlation’. Most of the time, we only have an idea about the correlation range
ρ ∈ [ρ−, ρ+]. The previous analysis leads us to define the lower and upper bounds of the
option price when the cega is either positive or negative. We have:

C0 ∈
{

[C0 (ρ−) ,C0 (ρ+)] if c ≥ 0
[C0 (ρ+) ,C0 (ρ−)] if c ≤ 0

We can define the conservative price by taking the maximum between C0 (ρ−) and C0 (ρ+).



586 Handbook of Financial Risk Management

Remark 117 In the case where ρ− = −1 and ρ+ = 1, the bounds satisfy the one-
dimensional PDE:{ 1

2σ
2
1S

2∂2
SC (t, S) + b1S∂SC (t, S) + ∂tC (t, S)− rC (t, S) = 0

C (T, S) = f (S, g (S))

where:

g (S) = S2 (0)
(

S

S1 (0)

)±σ2/σ1

exp
((

b2 −
1
2σ

2
2 ±

(
1
2σ1σ2 −

σ2

σ1
b1

))
T

)
The implied correlation Like the implied volatility, the implied correlation is the
value we put into the Black-Scholes formula to get the true market price. At first
sight, the concept of implied correlation seems to be straightforward. For instance,
let us consider composite options, whose payoff is defined by (S1 (T )− kS2 (T ))+. It
is a special case of the general payoff (α1S1 (T ) + α2S2 (T )−K)+ where α1 = 1,
α2 = k and K = 0. The parameters are those given in Example 98. The val-
ues (k,C0) taken by the relative strike k and the market price C0 are respectively
equal to (0.10, 95.61), (0.20, 86.10), (0.30, 76.59), (0.40, 67.08), (0.50, 57.57), (0.60, 48.06),
(0.70, 38.62), (0.80, 29.46), (0.90, 21.12), (1.00, 14.32), (1.10, 9.45) and (1.20, 6.30). Using
these 12 market prices, we deduce the correlation smile with respect to k in Figure 9.45. We
now consider the option, whose payoff is

( 1
2S1 (T ) + 1

2S2 (T )− 100
)+. Which correlation

should be used? There is no obvious answer. Indeed, we notice that a correlation smile is al-
ways associated to a given payoff. This is why it is generally not possible to use a correlation
smile deduced from one payoff function to price the option with another payoff function.
Contrary to volatility, the concept of implied correlation makes sense, but not the concept
of correlation smile.

Riding on the smiles Until now, we have assumed that the volatilities of the two assets
are given. In practice, the two volatilities are unknown and must be deduced from the volatil-
ity smiles Σ1 (K1, T ) and Σ2 (K2, T ) of the two assets. The difficulty is then to find the corre-
sponding strikes K1 and K2. In the case of the general payoff (α1S1 (T ) + α2S2 (T )−K)+,
we have: {

(α1 = 1, α2 = 0,K ≥ 0)⇒ K1 = K
(α1 = −1, α2 = 0,K ≤ 0)⇒ K1 = −K

and: {
(α1 = 0, α2 = 1,K ≥ 0)⇒ K2 = K
(α1 = 0, α2 = −1,K ≤ 0)⇒ K2 = −K

The payoff of the spread option can be written as follows:

(S1 (T )− S2 (T )−K)+ = ((S1 (T )−K1) + (K2 − S2 (T )))+

≤ (S1 (T )−K1)+︸ ︷︷ ︸
Call

+ (K2 − S2 (T ))+︸ ︷︷ ︸
Put

where K1 = K2 + K. Therefore, the price of the spread option can be bounded above by
a call price on S1 plus a put price on S2. However, the implicit strikes can take different
values. Let us assume that S1 (0) = S2 (0) = 100 and K = 4. Below, we give five pairs
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FIGURE 9.45: Correlation smile

(K1,K2) and the associated implied volatilities (Σ1 (K1, T ) ,Σ2 (K2, T )):

Pair #1 #2 #3 #4 #5
K1 104 103 102 101 100
K2 100 99 98 97 96

Σ1 (K1, T ) 16% 17% 18% 19% 20%
Σ2 (K2, T ) 20% 22% 24% 26% 28%

C0 10.77 11.37 11.99 12.61 13.24

We also compute the price of the spread option78 and report it in the last row of the above
table. We notice that the price varies from 10.77 to 13.24, even if we use the same correlation
parameter. We face here an issue, because this simple example shows that two-dimensional
option pricing is not just an extension of one-dimensional option pricing, and the concept
of implied volatility becomes blurred.

9.3.2.2 The multi-asset case

How to define a conservative price? In the multivariate case, the PDE becomes:

1
2

n∑
i=1

σ2
i S

2
i ∂

2
SiC +

n∑
i<j

ρi,jσiσjSiSj∂
2
Si,SjC+

n∑
i=1

biSi∂iC + ∂tC − rC = 0

with the terminal value:

C (T, S1, . . . , Sn) = f (S1 (T ) , . . . , Sn (T ))

78The parameters are b1 = 10%, b2 = 0%, r = 5%, ρ = 50% and T = 1.
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Here, ρi,j is the correlation between the Brownian motions of Si and Sj . Most of the time,
the trader uses the same value ρ for all asset correlations ρi,j .

Rapuch and Roncalli (2004) show that the price is increasing (resp. decreasing) with
respect to ρ if

∑n
i<j σiσj∂

2
Si,Sj

f is a positive (resp. negative) measure. Let us consider the
payoff function f (S1, S2,S3) = (S1 + S2 − S3 −K)+, we have:

n∑
i<j

σiσj∂
2
Si,Sjf = (σ1σ2 − σ1σ3 − σ2σ3) · 1 {S1 + S2 − S3 −K = 0}

Hence, if σ1σ2−σ1σ3−σ2σ3 > 0, the price increases with respect to ρ, and if σ1σ2−σ1σ3−
σ2σ3 < 0, the price decreases with respect to ρ. As a result, it is more difficult to define
conservative prices for multi-asset options.

Issues with constant correlation matrices We consider a basket of n stocks. The
basket volatility is given by:

σB =

√√√√ n∑
i=1

w2
i σ

2
i + 2

n∑
i>j

ρi,jwiwjσiσj

where wi is the weight of asset i in the basket, σi the volatility of asset i and ρi,j the
correlation between asset i and asset j. The implied correlation ρimp of the basket is defined
as the root of the following equation:

σ2
B −

n∑
i=1

w2
i σ

2
i − 2ρimp

n∑
i>j

wiwjσiσj = 0

Skintzi and Refenes (2003) deduce that:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i

2
∑n
i>j wiwjσiσj

Another expression of the implied correlation is79:

ρimp =
σ2
B −

∑n
i=1 w

2
i σ

2
i

(
∑n
i=1 wiσi)

2 −
∑n
i=1 w

2
i σ

2
i

The concept of implied correlation has been very popular before the Global Financial Crisis.
It was at the heart of a strategy known as volatility dispersion trading, which consists in
selling variance swaps on an index and buying variance swaps on index components.

The previous analysis assumes a constant correlation matrix Cn (ρ) for modeling the
dependance between asset returns. Over time, it has become the standard for pricing basket

79Indeed, we have:

σmax =

√√√√ n∑
i=1

w2
i σ

2
i + 2

∑
i>j

wiwjσiσj =
n∑
i=1

wiσi

implying that:

2
n∑
i>j

wiwjσiσj =

(
n∑
i=1

wiσi

)2

−
n∑
i=1

w2
i σ

2
i
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options with several assets. However, this approach implies a specific factor model. It is
equivalent to assume that the underlying assets depend on a common risk factor with the
same sensitivity. With such assumption, it is extremely difficult to estimate the conservative
price of basket options with barriers, best-of/worst-of options, etc. To illustrate this problem,
we consider the following payoff:

(S1 (T )− S2 (T ) + S3 (T )− S4 (T )−K)+ · 1 {S5 (T ) > L}

We calculate the option price of maturity 3 months using the Black-Scholes model. We
assume that Si (0) = 100 and Σi = 20% for the five underlying assets, the strike K is equal
to 5, the barrier L is equal to 105, and the interest rate r is set to 5%. In Figure 9.46,
we report the option price when the correlation matrix is C5 (ρ). Since the option price
decreases with respect to ρ, it can be bounded above by 2.20. If we simulate correlation
matrices with uniform singular values, we notice that the maximum price of 2.20 is not a
conservative price. For instance, if we consider the correlation matrix below, we obtain an
option price of 3.99:

C =


1.0000 0.2397 0.7435 −0.1207 0.0563
0.2397 1.0000 −0.0476 −0.0260 −0.1958
0.7435 −0.0476 1.0000 0.2597 0.1153
−0.1207 −0.0260 0.2597 1.0000 −0.7568

0.0563 −0.1958 0.1153 −0.7568 1.0000



FIGURE 9.46: Price of the basket option with respect to the constant correlation

9.3.2.3 The copula method

Using Sklar’s theorem, it comes that the multivariate risk-neutral distribution has the
following canonical representation:

Q (S1 (t) , . . . , Sn (t)) = CQ (Q1 (S1 (t)) , . . . ,Qn (Sn (t)))
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CQ is called the risk-neutral copula (Cherubini and Luciano, 2002). The copula approach has
been extensively used in order to derive the bounds of basket options. For instance, Rapuch
and Roncalli (2004) extend the results presented in Section 9.3.2.1 on page 583 to the copula
approach. In particular, they show that if the payoff function f is supermodular80, then the
option price increases with respect to the concordance order. More explicitly, we have:

C1 ≺ C2 ⇒ C0 (S1, S2; C1) ≤ C0 (S1, S2; C2)

Therefore, the previous results hold if we replace the Black-Scholes model with the Normal
copula model. Thus, the spread option is a decreasing function of the Normal copula pa-
rameter ρ even if we use a local or stochastic volatility model in place of the Black-Scholes
model. In a similar way, one can find lower and upper bounds of multi-asset option prices
by considering lower and upper Fréchet copulas. As shown by Tankov (2011), these bounds
can be improved significantly when partial information is available such as the prices of
digital basket options.

In practice, the Normal copula model is extensively used for pricing multi-asset
European-style option for two reasons:

1. The first one is that multi-asset option prices must be ‘compatible’ with single-asset
option prices. This means that it would be inadequate to price single-asset options
with a complex model, e.g. the SABR model, and in the same time to price multi-asset
options with the multivariate Black-Scholes model. Indeed, this decoupling approach
creates arbitrage opportunities at the level of the bank itself.

2. The Normal copula model is a natural extension of the multivariate Black-Scholes
model since the dependence function is the same.

Nevertheless, we face an issue because the pricing of the payoff f (S1 (T ) , . . . , Sn (T )) re-
quires knowing the joint distribution of the random vector (S1 (T ) , . . . , Sn (T )), whose an
analytical expression does not generally exist81. This is why multi-asset options are priced
using the Monte Carlo method. However, the analytical distribution of the marginals are
generally unknown. Therefore, we have to implement the method of empirical quantile func-
tions described on page 806:

1. for each random variable Si (T ), simulate m1 random variates S?i,m and estimate the
empirical distribution F̂i;

2. simulate a random vector (u1,j , . . . , un,j) from the copula function C (u1, . . . , un);

3. simulate the random vector (S1,j , . . . , Sn,j) by inverting the empirical distributions
F̂i:

Si,j ← F̂−1
i (ui,j)

or equivalently:

Si,j ← inf
{
x

∣∣∣∣ 1
m1

∑m1

m=1
1
{
x ≤ S?i,m

}
≥ ui

}
80The function f is supermodular if and only if:

∆(2)f := f (x1 + ε1, x2 + ε2)− f (x1 + ε1, x2)− f (x1, x2 + ε2) + f (x1, x2) ≥ 0

for all (x1, x2) ∈ R2 and (ε1, ε2) ∈ R2
+.

81An exception concerns the SABR model for which we have found an expression of the probability
distribution thanks to the Breeden-Litzenberger representation.
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4. repeat steps 2 and 3 m2 times;

5. the MC estimate of the option price is equal to:

Ĉ0 = e−rT

 1
m2

m2∑
j=1

f (S1,j , . . . , Sn,j)


It follows that the first step is used for estimating the distribution of Si (T ). For this
step, we use m1 simulations of the single-asset option model. However, this step generates
independent random variables. Therefore, the steps 2 and 3 are used in order to create the
right dependence between (S1 (T ) , . . . , Sn (T )).

Example 99 We consider the two-asset option with the following payoff:

f (F1 (T ) , F2 (T )) = 100 ·
(

max
(
F1 (T )
F1 (0) − 1, F2 (T )

F2 (0) − 1
)
−K

)+

where F1 (t) and F2 (t) are two forward rates. We assume that F1 (0) = 5% and F2 (0) = 6%.
The maturity of the option is equal to one year, whereas the strike of the option is set to
2%. Using the SABR model, we have calibrated the volatility smiles and we have obtained
the following estimates:

α β ν ρ
F1 8.944% 1.00 0.322 −22.901%
F2 12.404% 1.00 0.280 16.974%

In Figure 9.47, we have reported the price of the two-asset option with respect to the
dependence parameter ρ. For the Black-Scholes model, we use the ATM implied volatilities82
and the parameter ρ represents the implied correlation. For the SABR model, we use the
Normal copula model, and ρ is the copula parameter. We notice that the Black-Scholes
model overestimates the option price compared to the SABR model. We also verified that
the option price is a decreasing function with respect to ρ.

9.3.3 Liquidity risk
Liquidity risk can be incorporated in the theory of option pricing, but it requires solving

a stochastic optimal control problem (Çetin et al., 2004, 2006; Jarrow and Protter, 2007;
Çetin et al., 2010). In practice, these approaches are not used by professionals, but some
theoretical results help to understand the impact of liquidity risk on option pricing. However,
there is no satisfactory solution, and ‘cooking recipes’ differ from one bank to another one,
one trading desk to another one, one trader to another one. But the issue here is not to
solve this problem, but to understand the model risk from a risk management perspective.

It is obvious that liquidity risk impacts trading costs, in particular the price of the
replication strategy because of bid-ask spreads. Here, we don’t want to focus on ‘normal’
liquidity risk, but on ‘trading’ liquidity risk. Option theory assumes that we can replicate the
option, meaning that we can sell or buy the underlying asset at any time. For liquid assets,
this assumption is almost verified even if we can face high bid-ask spread. For less liquid
assets, this assumption is not verified. Let us consider one of the most famous examples,
which concerns call options on Sharpe ratio. Starting from 2004, some banks proposed

82They are equal to 9% for F1 and 12.5% for F2.
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FIGURE 9.47: Comparison of the option price obtained with Black-Scholes and copula-
SABR models

to investors a payoff of the form (SR (0;T )−K)+ where SR (0;T ) is the Sharpe ratio of
the underlying asset during the option period. This payoff is relatively easy to replicate.
However, most of call options on Sharpe ratio have been written on mutual funds and hedge
funds. The difficulty comes from the liquidity of these underlying assets. For instance, the
trader does not know exactly the price of the asset when he executes his order because of
the notice period83. This can be a big issue when the fund offers weekly or monthly liquidity.
The second problem comes from the fact that the fund manager can impose lock-up period
and gates. For instance, a gate limits the amount of withdrawals. During the 2008/2009
hedge fund crisis, many traders faced gate provisions and were unable to adjust their delta.
This crisis marketed the end of call options on Sharpe ratio.

The previous example is an extreme case of the impact of liquidity on option trading.
However, this type of problems is not unusual even with liquid markets, because liquidity is
time-varying and may impact delta hedging at the worst possible time. Let us consider the
replication of a call option. If the price of the underlying asset decreases sharply, the delta
is reduced and the option trader has to sell asset shares. Because of their trend-following
aspect, option traders generally buy assets when the market goes up and sell assets when
the market goes down. However, we know that liquidity is asymmetric between these two
market regimes. Therefore, it is more difficult to adjust the delta exposure when the market
goes down, because of the lack of liquidity. This means that some payoffs are more sensitive
to others.

83A subscription/redemption notice period requires that the investor informs the fund manager a certain
period in advance before buying/selling fund shares.
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9.4 Exercises
9.4.1 Option pricing and martingale measure

We consider the Black-Scholes model. The price process S (t) follows a Geometric Brow-
nian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)
and the risk-free asset B (t) satisfies:

dB (t) = rB (t) dt

We consider a portfolio (φ (t) , ψ (t)) invested in the stock S and the risk-free bond B. We
note V (t) the value of this portfolio.

1. Show that:
dV (t) = rV (t) dt+ φ (t) (dS (t)− rS (t) dt)

2. We note Ṽ (t) = e−rtV (t) and S̃ (t) = e−rtS (t). Show that:

dṼ (t) = φ (t) dS̃ (t)

3. Show that Ṽ (t) is a martingale under the risk measure Q. Deduce that:

V (t) = e−r(T−t)EQ [V (T )| Ft]

4. Define the corresponding martingale measure.

5. Calculate the price of the binary option 1 {S (T ) ≥ K}.

9.4.2 The Vasicek model
Vasicek (1977) assumes that the instantaneous interest rate follows an Ornstein-

Uhlenbeck process: {
dr (t) = a (b− r (t)) dt+ σ dW (t)
r (t0) = r0

and the risk price of the Wiener process is constant:

λ (t) = λ

We consider the pricing of a zero-coupon bond, whose maturity is equal to T .

1. Write the partial differential equation of the zero-coupon bond B (t, r) when the in-
terest rate r (t) is equal to r.

2. Using the solution of the Ornstein-Uhlenbeck process given on page 1075, show that
the random variable Z defined by:

Z =
∫ T

0

r (t) dt

is Gaussian.

3. Calculate the first two moments.

4. Deduce the price of the zero-coupon bond.
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9.4.3 The Black model
In the model of Black (1976), we assume that the price F (t) of a forward or futures

contract evolves as follows:
dF (t) = σF (t) dW (t)

1. Write the PDE equation associated to the call option payoff:

C (T ) = max (F (T )−K, 0)

when the interest rate is equal to r.

2. Using the Feynman-Kac representation theorem, deduce the current price of the call
option.

3. We assume that the stock price S (t) follows a geometric Brownian motion:

dS (t) = µS (t) dt+ σS (t) dW (t)

Show that the Black formula can be used to price an European option, whose under-
lying asset is the futures contract of the stock.

4. What does the Black formula become if we assume that the interest rate r (t) is
stochastic and is independent of the forward price F (t)?

5. What is the problem if we consider that the interest rate r (t) and the forward price
F (t) are not independent?

6. We reiterate that the price of the zero-coupon bond is given by:

B (t, T ) = EQ
[
e
−
∫ T
t
r(s) ds

∣∣∣∣Ft]
The instantaneous forward rate f (t, T ) is defined as follows:

f (t, T ) = −∂ lnB (t, T )
∂ T

We consider that the numéraire is the bond price B (t, T ) and we note Q? the associ-
ated forward probability measure.

(a) Show that:
∂ B (t, T )
∂ T

= −B (t, T ) · EQ? [f (T, T )| Ft]

(b) Deduce that f (t, T ) is an Ft-martingale under the forward probability measure
Q?.

(c) Find the price of the call option, whose payoff is equal to:

C (T ) = max (f (T, T )−K, 0)

9.4.4 Change of numéraire and Girsanov theorem
Part one

Let X (t) and Y (t) be two Ft-adapted processes.

1. Calculate the stochastic differentials d (X (t)Y (t)) and d (1/Y (t)).

2. We note Z (t) the ratio of X (t) and Y (t). Show that:
dZ (t)
Z (t) = dX (t)

X (t) −
dY (t)
Y (t) + 〈dY (t) ,dY (t)〉

Y 2 (t) − 〈dX (t) ,dY (t)〉
X (t)Y (t)
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Part two

Let S (t) be the price of an asset. Under the probability measureQ, S (t) has the following
dynamics:

dS (t) = µS (t)S (t) dt+ σS (t)S (t) dWQ (t)

The corresponding numéraire is denoted by M (t) and we have:

dM (t) = µM (t)M (t) dt+ σM (t)M (t) dWQ (t)

We now consider another numéraire N (t) whose dynamics is given by:

dN (t) = µN (t)N (t) dt+ σN (t)N (t) dWQ (t)

and we note Q? the probability measure associated to N (t). We assume that:

dS (t) = µ?S (t)S (t) dt+ σS (t)S (t) dWQ? (t)

1. Why can we assume that the diffusion coefficient of S (t) is the same under the two
probability measures Q and Q??

2. Find the process g (t) such that:

dWQ? (t) = dWQ (t)− g (t) dt

Let Z (t) be the Radon-Nikodym derivative defined by:

Z (t) = dQ?

dQ

Show that:
dZ (t)
Z (t) = g (t) dWQ (t)

3. We recall that another expression of Z (t) is:

Z (t) = N (t) /N (0)
M (t) /M (0)

Deduce that:
g (t) = σN (t)− σM (t)

Find the expression of µN (t).

4. Show that changing the numéraire is equivalent to change the drift:

µ?S (t) = µS (t) + σS (t) (σN (t)− σM (t))

5. Deduce that:

µ?S (t) dt−
〈

dS (t)
S (t) ,

dN (t)
N (t)

〉
= µS (t) dt−

〈
dS (t)
S (t) ,

dM (t)
M (t)

〉
and:

µ?S (t) dt = µS (t) dt+
〈

dS (t)
S (t) ,d lnN (t)

M (t)

〉
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Part three

Under the risk-neutral probability measure Q, we assume that the asset price and the
numéraire are given by the following stochastic differential equations:

dS (t) = r (t)S (t) dt+ σS (t)S (t) dWQ
S (t)

and:
dN (t) = r (t)N (t) dt+ σN (t)N (t) dWQ

N (t)

where N (0) = 1,WQ
S (t) andWQ

N (t) are two Wiener processes and E
[
WQ
S (t)WQ

N (t)
]

= ρ t.
We note S̃ (t) = S (t) /N (t) the asset price expressed in the numéraire N (t).

1. Find the stochastic differential equation of S̃ (t):

S̃ (t) = S (t)
N (t)

2. Let Q? be the martingale measure associated to the numéraire N (t).

(a) We assume that σN (t) = 0. Show that the discounted asset price is an Ft-
martingale under the risk-neutral probability measure.

(b) We consider the case WQ
S (t) = WQ

N (t). Using Girsanov theorem, show that:

dS̃ (t) = σ̃ (t) S̃ (t) dWQ? (t)

where WQ? is a Brownian motion under the probability measure Q? and σ̃ (t) is
a function to be defined.

(c) What does this result become in the general case?

9.4.5 The HJM model and the forward probability measure
We assume that the instantaneous forward rate f (t, T1) is given by the following stochas-

tic differential equation:

df (t, T1) = α (t, T1) dt+ σ (t, T1) dWQ (t)

where Q is the risk-neutral probability measure.

1. We consider the forward probability measure Q? (T2) where T2 ≥ T1. Define the
corresponding numéraire N (t) and show that the Radon-Nikodym derivative is equal
to:

dQ?

dQ = e
−
∫ T2

0
(r(t)−f(0,t)) dt

2. We recall that the dynamics of the instantaneous spot rate r (t) is:

r (t) = r (0) +
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)

Show that:
dQ?

dQ = e

∫ T2
0

a(t,T2) dt+
∫ T2

0
b(t,T2) dWQ(t)
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where:
a (t, T2) = −

∫ T2

t

(
σ (t, v)

∫ v

t

σ (t, u) du
)

dv

and:
b (t, T2) = −

∫ T2

t

σ (t, v) dv

3. Using the drift restriction in the HJM model, show that:

WQ?(T2) (t) = WQ (t)−
∫ t

0
b (s, T2) ds

is a Brownian motion under the forward probability measure Q? (T2).

4. Find the dynamics of f (t, T1) under the forward probability measure Q? (T2).

5. Show that f (t, T1) is a martingale under the forward probability measure Q? (T1).

6. We recall that the price of the zero-coupon bond satisfies the SDE:

dB (t, T ) = r (t)B (t, T ) dt+ b (t, T )B (t, T ) dWQ (t)

(a) Show that:
B (t, T2)
B (t, T1) = B (s, T2)

B (s, T1)e
X(s,t)

where X (s, t) is a random variable to define.
(b) Deduce that B (t, T2) /B (t, T1) is a martingale under Q? (T1).

9.4.6 Equivalent martingale measure in the Libor market model
Let Li (t) = L (t, Ti, Ti+1) be the forward Libor rate when resetting and maturity dates

are respectively equal to Ti and Ti+1. Under the forward probability measure Q? (Ti+1), the
dynamics of Li (t) is given by the following SDE:

dLi (t) = γi (t)Li (t) dWQ?(Ti+1)
i (t)

1. Using the definition of the Libor rate, find the relationship betweenB (t, Tj+1) /B (t, Tj)
and Lj (t). Let Tk+1 > Ti+1. Deduce an expression of the ratio:

B (t, Tk+1)
B (t, Ti+1)

in terms of Libor rates Lj (t) (j = i+ 1, . . . , k).

2. We change the probability measure fromQ? (Ti+1) toQ? (Tk+1). Define the numéraires
M (t) and N (t) associated to Q? (Ti+1) to Q? (Tk+1). Deduce an expression of Z (t):

Z (t) = dQ? (Tk+1)
dQ? (Ti+1)

in terms of Libor rates Lj (t) (j = i+ 1, . . . , k).

3. Calculate d lnZ (t).
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4. Calculate the drift ζ defined by:

ζ =
〈

dLi (t)
Li (t) ,d lnZ (t)

〉
5. Show that the dynamics of Li (t) under the forward probability measure Q? (Tk+1) is

given by:
dLi (t)
Li (t) = µi,k (t) dt+ γi (t) dWQ?(Tk+1)

k (t)

where µi,k (t) is a drift to determine.

6. What does the previous results become if Tk+1 < Ti+1?

9.4.7 Displaced diffusion option pricing
Brigo and Mercurio (2002a) consider the diffusion process X (t) given by:{

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dWQ (t)
X (0) = X0

They assume that the asset price S (t) is an affine transformation of X (t):
S (t) = α (t) + β (t) ·X (t)

where β (t) > 0.
1. By applying Itô’s lemma to S (t), find the condition on α (t) and β (t) in order to

satisfy the martingale condition:
EQ [e−bt · S (t) | F0

]
= S0

where b is the cost-of-carry parameter.

2. We consider the CEV process:
dX (t) = µ (t)X (t) dt+ σ (t)X (t)γ dWQ (t)

where γ ∈ [0, 1]. Show that the solutions of α (t) and β (t) are:{
α (t) = α0 · exp (bt)
β (t) = β0 · exp

(∫ t
0 (b− µ (s)) ds

)
3. Deduce the SDE of S (t).

4. We consider the case γ = 1. Give the SDE of X (t). Calculate the solutions of X (t)
and S (t).

5. Give the price of the European call option, whose payoff is equal to (S (T )−K)+.

6. We now assume that σ (t) = σ.

(a) Using the formula of Lee and Wang (2012), give an approximation of the implied
volatility Σ (T,K).

(b) Calculate the volatility skew:

ω (T,K) = ∂ Σ (T,K)
∂ K

(c) Give the price of the binary call option in the case of the BS model.
(d) Deduce the BCC price when we consider the SLN model.
(e) Give an approximation of the BCC price based on the implied volatility skew.
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9.4.8 Dupire local volatility model
We assume that:

dS (t) = bS (t) dt+ σ (t, S (t))S (t) dWQ (t)

1. Give the forward equation for pricing the call option C (T,K). Deduce the expression
of the local variance σ2 (T,K).

2. Using the Black-Scholes formula, find the relationship between the local volatility
σ (T,K) and the implied volatility Σ (T,K).

3. We consider the discounted payoff function:

f̃ (T, S (T )) = e−r(T−t) (S (T )−K)+

Using Itô’s lemma, calculate the derivative of the call option with respect to the
maturity:

∂TC (T,K) =
E
[
df̃ (T, S (T ))

∣∣Ft]
dT

4. Calculate ∂KC (T,K) and ∂2
KC (T,K) using the discounted payoff function. Retrieve

the forward equation84 of Dupire (1994).

5. We introduce the log-moneyness x:

x = ϕ (T,K)

= ln S0

K
+ bT

and the functions σ̃ (T, x) and Σ̃ (T, x), which are defined by the relationships:

Σ (T,K) = Σ̃ (T, ϕ (T,K))

and:
σ (T,K) = σ̃ (T, ϕ (T,K))

(a) Calculate d1, d2 and d1d2.
(b) Write the derivatives ∂KΣ (T,K), ∂TΣ (T,K) and ∂2

KΣ (T,K) using the variables
T and x.

(c) Deduce the relationship between σ̃ (T, x) and Σ̃ (T, x).
(d) Show that:

∂xΣ̃ (0, 0) = 1
2∂xσ̃ (0, 0)

9.4.9 The stochastic normal model
Let F (t) be the forward rate. We assume that the dynamics of F (t) is given by the

SABR model: {
dF (t) = α (t)F (t)β dWQ

1 (t)
dα (t) = να (t) dWQ

2 (t)

where E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t. In what follows, we consider the special case β = 0.

84This approach has also been proposed by Derman et al. (1996).
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1. How to transform the Black volatility ΣB (T,K) into the implied normal volatility
ΣN (T,K)?

2. Give the expression of the implied normal volatility85 ΣN (T,K) for the general case
β ∈ [0, 1].

3. Deduce the formula of ΣN (T,K) when β = 0.

4. What is the ATM normal volatility?

5. Calculate ∂KΣN (T,K).

6. Recall the price of the call option for the normal model, whose volatility is σN .

7. We now assume that σN is equal to the SABR normal volatility ΣN (T,K). Deduce
the cumulative distribution function of F (T ).

8. By considering the following approximation86:√
F0K ln F0

K
' F0 −K

calculate the probability density function of F (T ).

9. Show that:

F (t) = F0 + α

ν

∫ ν2t

0
exp

(
−1

2s+W2 (s)
)

dW1 (s)

where W1 (t) and W2 (t) have the same properties as WQ
1 (t) and WQ

2 (t).

10. We note:
X (t) =

∫ t

0
exp

(
−1

2s+W2 (s)
)

dW1 (s)

and:
Ma (t) = exp

(
−1

2at+ aW2 (t)
)

Let us introduce the function Ψn,a (t):

Ψn,a (t) = E [Xn (t)Ma (t)]

where n ∈ N and a ∈ R+. Verify that Ψn,a (t) satisfies the ordinary differential
equation:

dΨn,a (t)
dt = a(a− 1)

2 Ψn,a (t) + nρaΨn−1,a+1 (t) + n(n− 1)
2 Ψn−2,a+2 (t)

where Ψn,a (0) = 0. What is the link between Ψn,a (t) and the statistical moments of
F (t)?

11. Calculate Ψ0,a (t), Ψ1,a (t), Ψ2,a (t), Ψ3,0 (t) and Ψ4,0 (t). Deduce the first four central
moments of F (t).

12. Calculate an approximation of the volatility, skewness and kurtosis of F (t) when
t ' 0.

85Hagan et al. (2002) calculate this expression in Appendix A.4 on page 102.
86Hagan et al. (2002), Equations (A67b) and (A68a), page 102.
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13. We assume that F0 = 10% and T = 1, and we consider the following smile:

K 7% 10% 13%
ΣB (T,K) 30% 20% 30%

(a) Calculate the equivalent normal volatility ΣN (T,K).
(b) Calibrate the parameters of the stochastic normal model.
(c) Draw the cumulative distribution function of F (T ). What is the problem?
(d) Draw the probability density function of F (T ) when we consider the approxi-

mation
√
F0K ln F0

K
' F0 −K.

(e) Calculate the skewness and the kurtosis of F (T ). Comment on these results.

9.4.10 The quadratic Gaussian model
We consider the quadratic Gaussian model:

r (t) = α (t) + β (t)>X (t) +X (t)> Γ (t)X (t)

where the state variables X (t) follow an Ornstein-Uhlenbeck process:

dX (t) = (a (t) +B (t)X (t)) dt+ Σ (t) dWQ (t)

1. Find the PDE associated to the zero-coupon bond B (t, T ).

2. We assume that the solution of B (t, T ) has the following form:

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)−X (t)> Γ̂ (t, T )X (t)

)
where Γ̂ (t, T ) is a symmetric matrix. Show that α̂ (t, T ), β̂ (t, T ) and Γ̂ (t, T ) satisfy
a system of ODEs.

3. Find a condition that Γ̂ (t, T ) is a symmetric matrix. Why do we need this hypothesis?

4. Let Q? (T ) be the forward probability measure. Recall the dynamics of X (t) under
Q? (T ). Using the explicit solution, demonstrate that X (t) is Gaussian:

X (t) ∼ N (m (0, t) , V (0, t))

Find the dynamics of m (0, t) and V (0, t). Compare these results with those obtained
by El Karoui et al. (1992a).

5. Define the Libor rate L (t, Ti−1, Ti).

6. Demonstrate that the pricing formula of the caplet is equal to:

Caplet = B (0, t) · EQ?(t) [max (0, g (X))]

where Q? (t) is the forward probability measure and g (x) is a function to define.

7. Show that:
Caplet = B (0, t)

∫
E
h (x) dx

where h (x) = g (x)φ (x;m (0, t) , V (0, t)) and E is a set to define.
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8. We consider the following function:

J (a, b, c,m, V, x1, x2) =
∫ x2

x1

e−ax
2−bx−c
√

2πV
e−

1
2V (x−m)2

dx

Find the analytical expression of J .

9. Deduce the analytical expression of the caplet.

9.4.11 Pricing two-asset basket options
We assume that the risk-neutral dynamics of S1 (t) and S2 (t) are given by:{

dS1 (t) = b1S1 (t) dt+ σ1S1 (t) dWQ
1 (t)

dS2 (t) = b2S2 (t) dt+ σ2S2 (t) dWQ
2 (t)

where WQ
1 (t) and WQ

2 (t) are two correlated Brownian motions:

E
[
WQ

1 (t)WQ
2 (t)

]
= ρ t

1. By considering the following payoff (α1S1 (T ) + α2S2 (T )−K)+, show that the price
of the option can be expressed as a double integral.

2. We consider the computation of I = E
[(
Aeb+c·ε −D

)+] where ε ∼ N (0, 1), and A,
b, c and D are four scalars.

(a) Find the value of I when A > 0 and D > 0.
(b) Deduce the value of I in the other cases.

3. We assume that α1 < 0, α2 > 0 and K > 0. Using the Cholesky decomposition,
reduce the computation of the double integral to a single integral.

4. Extend this result to the case α1 > 0, α2 < 0 and K > 0.

5. Discuss the general case.



Chapter 10
Statistical Inference and Model Estimation

In this chapter, we present the statistical tools used in risk management. The first section
concerns estimation methods that are essential to calibrate the parameters of a statistical
model. This includes the linear regression, which is the standard statistical tool to investigate
the relationships between data in empirical research, and the method of maximum likelihood
(ML), whose goal is to estimate parameters of non-linear and non-Gaussian financial models.
We also present the generalized method of moments (GMM), which is very popular in
economics because we can calibrate non-reduced forms or structural models. Finally, the
last part of the first section is dedicated to non-parametric estimators. In the second section,
we study time series modeling, in particular ARMA processes and error correction models.
We also investigate state-space models, which encompass many dynamic models. A focus is
also done on volatility modeling, which is an important issue in risk management. Finally,
we discuss the application of spectral analysis. Most of statistical tools presented in this
chapter are used in the next chapters, for example the estimation of copula models, the
calibration of stressed scenarios or the implementation of credit scoring.

10.1 Estimation methods
10.1.1 Linear regression

Let Y and X be two random vectors. We consider the conditional expectation problem:

y = E [Y | X = x] = m (x) (10.1)

The underlying idea is to find an estimate m̂ (x) of the function m (x). In the general case,
this problem is extremely difficult to solve. However, if (Y,X) is a Gaussian random vector,
the function m (x) can then be determined by considering the Gaussian linear model:

Y = β>X + u (10.2)

where u ∼ N
(
0, σ2). Most of the time, the joint distribution of (Y,X) is unknown. In this

case, the linear model is estimated by applying least squares techniques to a given sample
(Y,X):

Y = Xβ + U

Remark 118 In order to distinguish random variables and observations, we write matrices
and vectors that are related to observations in bold style.

603
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10.1.1.1 Least squares estimation

Derivation of the OLS estimator We consider a training set of n iid samples (yi, xi).
For the ith observation, we have:

yi =
K∑
k=1

βkxi,k + ui (10.3)

The least squares estimate of the parameter vector β is defined as follows:

β̂ = arg min
n∑
i=1

u2
i

We introduce the following matrix notations: Y is the n× 1 vector with elements Yi = yi,
X is the n×K matrix defined as follows:

X =

 x1,1 x1,K
. . .

xn,1 xn,K


and U is the n × 1 vector with elements Ui = ui. In this case, the system of equations
(10.3) becomes:

Y = Xβ + U (10.4)

Let RSS (β) be the residual sum of squares. We have:

RSS (β) =
n∑
i=1

u2
i

= U>U
= Y>Y− 2β>X>Y + β>X>Xβ

The least squares estimator verifies the set of normal equations ∂βU>U = 0 and we deduce
that −2X>Y + 2X>Xβ̂ = 0. The expression of the least squares estimator is then:

β̂ =
(
X>X

)−1 X>Y (10.5)

To obtain the expression of β̂, we only need the assumption that the rank of the matrix X is
K. In this case, β̂ is the solution of the least squares problem. To go further, we assume that
(Y,X) is a Gaussian random vector. The solution of the conditional expectation problem
E [Y | X = x] = m (x) is then:

m̂ (x) = x>β̂

= x>
(
X>X

)−1 X>Y

It means that the prediction of Y given that X = x is equal to ŷ = x>β̂. If we consider the
training data X, we obtain:

Ŷ = m̂ (X)

= X
(
X>X

)−1 X>Y
= HY
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where H = X
(
X>X

)−1 X> is called the ‘hat’ matrix1. We notice that m̂ (X) is a linear
predictor of Y.

Statistical inference Because (Y,X) is a Gaussian random vector, it implies that u =
Y − β>X is a Gaussian random variable. We notice that:

β̂ =
(
X>X

)−1 X>Y

= β +
(
X>X

)−1 X>U

By assuming the exogeneity of the variables X – meaning that E [u | X = x] = 0 – we
deduce that β̂ is an unbiased estimator:

E
[
β̂
]

= β +
(
X>X

)−1 E
[
X>U

]
= β

We recall that U ∼ N
(
0, σ2In

)
. It follows that:

var
(
β̂
)

= E
[(
β̂ − β

)(
β̂ − β

)>]
= E

[(
X>X

)−1 X>UU>X
(
X>X

)−1]
=

(
X>X

)−1 X>E
[
UU>

]
X
(
X>X

)−1

=
(
X>X

)−1 X>
(
σ2In

)
X
(
X>X

)−1

= σ2 (X>X
)−1

We conclude that:
β̂ ∼ N

(
β, σ2 (X>X

)−1)
In most cases, σ2 is unknown and we have to estimate it. The vector of residuals is:

Û = Y− Ŷ
= Y−Xβ̂

We notice that E
[
Û
]

= 0 and var
(
Û
)

= σ2 (In −H). Because RSS
(
β̂
)

= Û> (In −H) Û
is a quadratic form, we can show that:

σ̂2 =
RSS

(
β̂
)

n−K

1We interpret H as the orthogonal projection matrix generated by X implying that H is idempotent,
that is HH = H. Indeed, we have:

HH = X
(
X>X

)−1
X>X

(
X>X

)−1
X>

= X
(
X>X

)−1
X>

= H
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is an unbiased estimator of σ2 and σ̂2/σ2 ∼ χ2
n−K . In order to measure the model quality,

we consider the coefficient of determination or R2
c . It is defined as follows:

R2
c = 1−

RSS
(
β̂
)

TSS

where TSS =
∑n
i=1 (yi − ȳ) is the total sum of squares. We have R2

c ≤ 1. A high (resp. low)
level indicates a good (resp. bad) goodness-of-fit of the regression model.

Example 100 We consider the data given in Table 10.1. We would like to explain the
dependent variable yi by four explanatory variables x1, x2, x3 and x4. There are 10 obser-
vations and we note that x1 is in fact a constant.

TABLE 10.1: Data of the linear regression problem
i y x1 x2 x3 x4
1 1.5 1.0 2.4 3.6 0.3
2 20.4 1.0 1.1 3.8 5.9
3 17.1 1.0 5.1 6.3 6.1
4 30.9 1.0 2.7 2.4 9.5
5 22.2 1.0 3.3 3.0 7.4
6 9.1 1.0 1.0 5.4 4.9
7 39.2 1.0 9.6 2.8 8.1
8 3.1 1.0 2.9 4.4 1.0
9 7.2 1.0 4.2 5.6 1.7

10 27.6 1.0 8.1 1.7 5.4

We consider the linear regression model:

yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + ui

It follows that:

X>X =


10.000 40.400 39.000 50.300
40.400 235.980 143.660 224.830
39.000 143.660 172.460 179.170
50.300 224.830 179.170 339.790


and:

X>Y =


178.300
918.150
591.190

1209.440


We deduce that the estimates are:

β̂ =


β̂1
β̂2
β̂3
β̂4

 =


3.446
1.544
−1.645

2.895


We can then compute the residuals. We obtain û1 = −0.597, û2 = 4.427, etc. The sum of
squared residuals is equal to RSS

(
β̂
)

= 40.184, which implies that σ̂ = 2.588. Therefore,
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the estimate of the covariance matrix of β̂ is:

cov
(
β̂
)

= σ̂2 (X>X
)−1 =


15.353 −0.602 −2.263 −0.682
−0.602 0.108 0.061 −0.015
−2.263 0.061 0.428 0.069
−0.682 −0.015 0.069 0.094


For this linear regression, the coefficient of determination is equal to:

R2
c = 1− 40.184

1422.041 = 97.17%

By construction, the standard errors σ
(
β̂k

)
of the estimator β̂k is the square root of the

kth diagonal element of cov
(
β̂
)
. The assumption H0 : β̂k = bk is then tested by computing

the t-statistic:

t = β̂k − bk
σ
(
β̂k

) ∼ tn−K

and the associated p-value2:
p = 2 (1− tn−K (|t|))

For instance, we report the t-statistic and the p-value associated to the hypothesis H0 :
β̂k = 0 in Table 10.2. We cannot reject this assumption for the estimate β̂1 at the 10%
confidence level, meaning that β̂1 is not significant.

TABLE 10.2: Results of the linear regression

Parameter Estimate Standard
t-statistic p-valueerror

β1 3.4461 3.9183 0.8795 0.4130
β2 1.5442 0.3289 4.6943 0.0033
β3 −1.6454 0.6543 −2.5146 0.0457
β4 2.8951 0.3071 9.4264 0.0001

Gauss-Markov theorem Let β̃ = AY be a linear estimator. The Gauss-Markov theorem
states that, among all linear unbiased estimators of β, β̂ =

(
X>X

)−1 X>Y has the smallest
variance:

var
(
β̃
)
≥ var

(
β̂
)

In this case, we say that β̂ is BLUE (best linear unbiased estimator). Let us write β̃ as
follows:

β̃ = AY
= AXβ + AU

We have:

E
[
β̃
]

= E [AY]
= AXβ + E [AU]
= AXβ

2The p-value is the estimated probability of rejecting the null hypothesis H0.
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We deduce that β̃ is unbiased if AX = IK . We also notice that:

var
(
β̃
)

= E
[(
β̃ − β

) (
β̃ − β

)>]
= E

[
AUU>A>

]
= σ2

(
AA>

)
We set A = B +

(
X>X

)−1 X>. We have BX = 0 because AX = IK . It follows that:

AA> =
(
B +

(
X>X

)−1 X>
)(

B +
(
X>X

)−1 X>
)>

= BB> +
(
X>X

)−1 X>B> + BX
(
X>X

)−1 +
(
X>X

)−1

= BB> +
(
X>X

)−1

Because the matrix BB> is positive semi-definite, we finally deduce that:

var
(
β̃
)

= σ2
(
AA>

)
= σ2

(
BB> +

(
X>X

)−1)
≥ σ2 (X>X

)−1

10.1.1.2 Relationship with the conditional normal distribution

Let us consider a Gaussian random vector defined as follows:(
Y
X

)
∼ N

((
µy
µx

)
,

(
Σy,y Σy,x
Σx,y Σx,x

))
On page 1062, we show that the conditional distribution of Y given X = x is a multivariate
normal distribution where:

µy|x = E [Y | X = x]
= µy + Σy,xΣ−1

x,x (x− µx)

and:

Σy,y|x = σ2 [Y | X = x]
= Σy,y − Σy,xΣ−1

x,xΣx,y

We deduce that:
Y = µy + Σy,xΣ−1

x,x (x− µx) + u

where u is a centered Gaussian random variable with variance σ2 = Σy,y|x. It follows that:

Y =
(
µy − Σy,xΣ−1

x,xµx
)︸ ︷︷ ︸

β0

+ Σy,xΣ−1
x,x︸ ︷︷ ︸

β>

x+ u (10.6)

We recognize the linear regression of Y on a constant and a set of exogenous variables X:

Y = β0 + β>X + u
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Moreover, we have:

R2
c = 1− σ2

Σy,y

=
Σy,xΣ−1

x,xΣx,y
Σy,y

Example 101 We consider a Gaussian random vector X = (X1, X2, X3, X4). The expected
values are equal to µ1 = 2, µ2 = 5, µ3 = −4 and µ4 = 3 whereas the standard deviations are
equal to σ1 = 1, σ2 = 2, σ3 = 0.5 and σ4 = 1. The correlation between the random variables
is given by the following matrix:

ρ =


1.00
0.90 1.00
0.70 0.40 1.00
0.60 0.50 0.30 1.00


For each random variable Xi, we can compute the conditional Gaussian regression using

the previous formulas:
Xi = β0 +

∑
k 6=i

βkXk + u

Results are reported in Table 10.3. For example, it means the linear regression of X1 on
X2, X3 and X4 is:

X1 = 2.974 + 0.335 ·X2 + 0.774 ·X3 + 0.148 ·X4 + u

where u ∼ N
(
0, 0.192) and the associated R2

c is equal to 96.39%.

TABLE 10.3: Results of the conditional Gaussian regression

Y β̂0 β̂1 β̂2 β̂3 β̂4 σ R2
c

X1 2.974 0.335 0.774 0.148 19.01% 96.39%
X2 −7.205 2.667 −1.949 −0.308 53.59% 92.82%
X3 −4.017 1.000 −0.317 −0.133 21.60% 81.33%
X4 −4.273 2.091 −0.545 −1.455 71.35% 49.09%

Remark 119 The previous analysis raises the question of the status of the variables Y
and X in the linear regression framework. In this model, Y is called the dependent variable
and X are called the independent (or explanatory) variables. This implies that there is a
relationship from X to Y. In some way, linear regression has a strong connotation of an
explicit directional (or causal) relationship. However, the previous example shows clearly
that linear regression does not mean causality!

Indeed, linear regression may be viewed as another way to interpret the correlation
between random variables. Let us consider the case where X is a one-dimension random
variable. We note ρx,y the correlation betweenX and Y whereas σx and σy are their standard
deviations. In this case, we have:

Σ =
(

σ2
y ρx,yσxσy

ρx,yσxσy σ2
x

)
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The conditional Gaussian regression (10.6) becomes:

Y = β0 + βX + u

where:

β = ρx,yσxσy
σ2
x

= ρx,yσy
σx

and:

β0 = µy −
ρx,yσxσy

σ2
x

µx

= µy − βµx

We also deduce that the expression of the R2
c statistic is:

R2
c = (ρx,yσxσy)2

σ2
xσ

2
y

= ρ2
x,y

The coefficient of determination is then the square of the correlation coefficient, meaning
that their significance is not of the same magnitude. Indeed, a value of 50% for the R2

c

statistic corresponds to a value of 70% for the correlation.
The previous analysis shows that:

β = cov (X,Y )
var (X)

The single risk factor model of Sharpe (1964) exploits this result since we have:

Ri,t = αi + βiRm,t + ui,t

or equivalently:
βi = cov (Ri, Rm)

var (Ri)
where Ri,t is the asset’s return and Rm,t is the market’s return.

10.1.1.3 The intercept problem

Example 102 We consider the following data with 20 observations:

yi 13.9 11.5 14.9 14.6 13.7 17.3 18.1 14.8 14.7 14.7
xi 4.4 3.4 4.9 4.4 4.4 6.3 6.6 4.8 4.5 4.6
yi 16.1 14.6 15.2 18.1 11.5 14.0 18.4 15.0 12.0 14.8
xi 5.7 5.0 5.2 6.5 3.2 4.5 6.9 5.2 3.1 4.9

We want to explain the dependent variable Y by the explanatory variable X.

If we include a constant in the regression model, we obtain:

Y = 1.8291 + 5.8868 ·X + u with u ∼ N
(
0, 0.35222) (10.7)
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FIGURE 10.1: Illustration of the intercept problem

Without the intercept, the linear regression becomes:

Y = 2.9730 ·X + u with u ∼ N
(
0.2529, 1.29802) (10.8)

The corresponding fitted curves are reported in Figure 10.1. By omitting the constant, we
have overestimated the slope β of the curve.

The previous example shows that a linear regression is valid only if we include the
intercept in the model. Indeed, without the intercept, the residuals are not centered: E [u] 6=
0. If we consider the conditional Gaussian regression, we have the relationship β0 = µy −
β>µx. By omitting the constant – Y = β>X+u, we set β = 0 and the previous relationship
does not hold any more. In this case, the residuals incorporate the mean effect of the data.
Indeed, we have E [Y ] = β>E [X] +E [u] meaning that E [u] = µy − β>µx is not necessarily
equal to zero (see Exercise 10.3.2 on page 705).

Remark 120 Let us consider the linear regression with a constant. We have Y = β0 +
β>X+u. It follows that µy = β0 +β>µx because the residuals are centered. We deduce that:

Y − µy = β> (X − µx) + u

By considering the centered data instead of the original data, the intercept problem vanishes.
This type of transformation is common in statistics and finance. Generally, raw data have
to be analyzed and modified if we want to obtain more robust relationships. Normalizing,
using logarithmic scale or creating dummy variables are some examples of data processing.

10.1.1.4 Coefficient of determination

We have defined the coefficient of determination as follows:

R2
c = 1−

∑n
i=1 u

2
i∑n

i=1 (yi − ȳ)2
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We can show that R2
c ≤ 1. If one of the independent variables is a constant, the linear

regression model becomes:

yi = β0 +
K∑
k=1

βkxi,k + ui

In this case, we have 0 ≤ R2
c ≤ 1. Testing the hypothesis H0 : β1 = . . . = βK = 0 is

equivalent to consider the Fisher test:

(n−K)R2
c

(K − 1) (1−R2
c)
∼ F (K − 1, T −K)

Therefore, the use of R2
c is valid when there is a constant in the linear regression. It measures

the significance of the model versus the naive model: yi = ȳ+ui. If the constant is omitted,
R2
c can take negative value and is not pertinent. In this case, it is better to use the uncentered

coefficient of determination:
R2 = 1−

∑n
i=1 u

2
i∑n

i=1 yi
2

We can show that 0 ≤ R2 ≤ 1. One of the drawbacks when using R2 or R2
c comes from the

fact that the coefficient of determination increases with the number of exogenous variables.
The more the number of explanatory variables, the more the R-squared. To correct this
effect, we can use adjusted coefficients of determination:

R̄2 = 1−
(∑n

i=1 u
2
i

)
/ (n−K)

(
∑n
i=1 y

2
i ) /n

and:
R̄2
c = 1−

(∑n
i=1 u

2
i

)
/ (n−K)(∑n

i=1 (yi − ȳ)2
)
/ (n− 1)

10.1.1.5 Extension to weighted least squares regression

Definition The weighted least squares (or WLS) estimator is defined by:

β̂ = arg min
n∑
i=1

wiu
2
i

where wi is the weight associated to the ith observation. It is obvious that the analytical
solution is:

β̂ =
(
X>WX

)−1 X>WY

where W is a diagonal matrix with Wi,i = wi.

Robust regression Let us consider the least squares problem:

β̂ = arg min
n∑
i=1

ρ (ui) = arg min
n∑
i=1

ρ
(
yi − x>i β

)
(10.9)

where ρ (u) = u2. Huber (1964) suggests to generalize this method by considering other
functions ρ (u). In this approach (called M -estimation), the function ρ (u) satisfies some
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properties: ρ (u) ≥ 0, ρ (0) = 0, ρ (u) = ρ (−u) and ρ (u1) ≥ ρ (u2) if |u1| ≥ |u2|. If we note
ψ (u) = ρ′ (u), the first-order conditions of Problem (10.9) are:

n∑
i=1

ψ
(
yi − x>i β

)
xi,k = 0 for all k = 1, . . . ,K

We deduce that:
n∑
i=1

ψ
(
yi − x>i β

)
yi − x>i β

(
yi − x>i β

)
xi,k = 0

By writing wi = ψ (ui) /ui, we finally obtain:
n∑
i=1

wi
(
yi − x>i β

)
xi,k = 0

We notice that the system of equations corresponds exactly to the first-order conditions of
the WLS problem. The only difference is the endogeneity of the weights wi that depend on
the residuals ui. To solve this system, we use the following iterative algorithm:

1. we choose an initial value β(0);

2. we calculate the diagonal matrix W (j−1) with wi = ψ (ui) /ui where ui = yi −
x>i β

(j−1);

3. at the jth iteration, we calculate the WLS estimator:

β(j) =
(
X>W (j−1)X

)−1
X>W (j−1)Y

4. we repeat steps 2 and 3 until the convergence of the algorithm:
∣∣β(j) − β(j−1)

∣∣ ≤ ε;
5. the M -estimator β̂ is equal to β(∞).

The most well-known M -estimator is obtained by setting ρ (u) = |u| and ψ (u) = sign (u)
and is called LAD (least absolute deviation). A variant is proposed by Huber (1964):

ρ (u) =
{
u2 if |u| ≤ c
c |u| if |u| > c

These two estimators are less sensitive to outliers than the OLS estimator. This is why we
call them robust estimators.

Quantile regression Let us consider a random variable Y with probability distribution
F. The quantile of order α of Y is defined by:

Q (α) = inf {y | F (y)≥ α}

The estimator q̂α of Q (α) is given by:

q̂α = arg min
q∈R

∑
yi≥q

α |yi − q|+
∑
yi<q

(1− α) |yi − q|

or:

q̂α = arg min
q∈R

n∑
i=1

χα (yi − q)
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where3 χα (u) = u · (α− 1 {u < 0}). If we consider the Gaussian linear model Y = Xβ +U

and apply the previous approach to the random variable U , the estimator β̂α of the quantile
regression of order α is:

β̂α = arg min
β∈RK

n∑
i=1

χα
(
yi − x>i β

)
In the case α = 50%, we obtain the median regression:

β̂50% = arg min
β∈RK

n∑
i=1

∣∣yi − x>i β∣∣
It consists in minimizing the sum of absolute values of residuals.

Since we have:

yi = x>i βα + ui

= x>i
(
β+
α − β−α

)
+ u+

i − u
−
i

we obtain the linear programming problem:

z? = arg min c>z

s.t.
{
Az = b
z ≥ 0

where Y and X are the vector of yi’s and the matrix of xi,k’s, z =
(
β+
α β−α U+ U−

)>,
A =

(
X −X In −In

)
, b = Y and c =

(
0n 0n α1n (1− α) 1n

)>. The standard
approach to find the estimator β̂α = β̂+

α − β̂−α is to solve this LP program using interior
points methods (Koenker, 2005).

An alternative method is to use the robust regression with:

ρ (u) = χα (u) = u · (α− 1 {u < 0})

and:
ψ (u) = α− 1 {u < 0}

In the case α = 50%, we obtain ρ (u) = u · (0.5− 1 {u < 0}) = 0.5 · |u|. The estimator of
the median regression is then the LAD estimator.

10.1.2 Maximum likelihood estimation
10.1.2.1 Definition of the estimator

We consider a sample Y = (y1, . . . , yn) of n observations. We assume that the probability
of the sample may be written as a parametric function:

Pr {Y1 = y1, . . . , Yn = yn} = L (Y | θ)
= L (θ | Y)

3Because we have:

χα (u) = u · (α− 1 {u < 0})

=
{

(1− α) · |u| if u < 0
α · |u| if u ≥ 0

= α · |u| · 1 {u ≥ 0}+ (1− α) · |u| · 1 {u < 0}
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where θ is a K × 1 vector of parameters to estimate. The function L is called the likelihood
function whereas the maximum likelihood estimator (MLE) is defined as follows:

θ̂ = arg max
θ∈Θ

L (θ | Y) (10.10)

where Θ is the parameter space4. The principle of maximum likelihood is to find the value
of θ that maximizes the probability of the sample data Y. This is an inverse probability
problem because we do not want to calculate the probability L (Y | θ) of the sample given
a model and a parameter vector θ, but we want to estimate the implicit parameter θ given
the sample and the model.

We have:

Pr {Y1 = y1, . . . , Yn = yn} = Pr {Y1 = y1} ·
Pr {Y2 = y2 | Y1 = y1} ·
· · · ·

Pr {Yn = yn | Y1 = y1, . . . , Yn−1 = yn−1}

Assuming that the observations are independent simplifies the computation of the likelihood
function:

L (θ | Y) =
n∏
i=1

Pr {Yi = yi}

≡
n∏
i=1

Li (θ | yi)

where Li (θ | yi) = Pr {Yi = yi}. Li is called the likelihood of the observation i and cor-
responds to its density. Generally, the optimization problem (10.10) is replaced by the
following which is more tractable:

θ̂ = arg max
θ∈Θ

` (θ | Y) (10.11)

where `i (θ | Yi) ≡ lnLi (θ | Yi) is the log-likelihood function for the observation i and
` (θ | Y) =

∑n
i=1 `i (θ | Yi). The gradient of the log-likelihood function is called the score

function:
S (θ) = ∂ ` (θ | Y)

∂ θ

At the optimum, we have S
(
θ̂
)

= 0.

Example 103 (Bernoulli distribution) We consider the sample Y = {y1, . . . , yn} where
yi takes the value 1 with probability p or 0 with probability 1 − p. We note n0 and n1 the
number of observations, whose values are respectively equal to 0 and 1. We have n0+n1 = n.

We have:
Pr {Yi = yi} = (1− p)1−yi · pyi

4It is generally equal to RK .
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It follows that the log-likelihood function is:

` (p) =
n∑
i=1

ln Pr {Yi = yi}

=
n∑
i=1

(1− yi) · ln (1− p) + yi · ln p

= n0 · ln (1− p) + n1 · ln p

The first-order condition is:

∂ ` (p)
∂ p

= 0⇔ n1

p
− n0

1− p = 0

We deduce the expression of the MLE:

p̂ = n1

n0 + n1
= n1

n

In Figure 10.2, we have represented the log-likelihood function ` (p) with respect to the
parameter p when n0 = 46 and n1 = 74. We verify that the maximum is reached when p
takes the value 74/120 ≈ 0.6167.

FIGURE 10.2: Log-likelihood function of the Bernoulli distribution

10.1.2.2 Asymptotic distribution

Let θ̂n denote the maximum likelihood estimator obtained with a sample of n observa-
tions. We can show that θ̂n is asymptotically normally distributed, unbiased and efficient:

√
n
(
θ̂n − θ0

)
→ N

(
0,J−1 (θ0)

)
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where θ0 is the true value and J (θ0) is the Fisher information matrix for an observation:

J (θ0) = −E
[
∂2`i (θ0)
∂ θ ∂ θ>

]
Another useful result is the information matrix property:

I (θ0) = nJ (θ0)

= −E
[
∂2` (θ0)
∂θ ∂θ>

]
= E

[
∂ ` (θ0)
∂ θ

∂ ` (θ0)
∂ θ>

]
This identity comes from the fact that we have:

E [S (θ0)] = E
[
∂ ` (θ0)
∂ θ

]
= 0

and:
var (S (θ0)) = E

[
(S (θ0)− E [S (θ0)]) (S (θ0)− E [S (θ0)])>

]
= E

[
∂ ` (θ0)
∂ θ

∂ ` (θ0)
∂ θ

>
]

= I (θ0)
Remark 121 Let θ̃ be an unbiased estimator of θ0. The Cramer-Rao theorem states that
the variance of θ̃ is bounded below by the inverse of the information matrix:

var
(
θ̃
)
≥ I (θ0)−1

It follows that the ML estimator is BUE (best unbiased estimator).
Let h (θ) be a function of the parameter vector θ. The invariance property states that

h
(
θ̂n

)
converges almost surely to h (θ0) and we have:

√
n
(
h
(
θ̂n

)
− h (θ0)

)
→ N

(
0, ∂ h (θ0)

∂ θ>
J−1 (θ0) ∂ h (θ0)

∂ θ

)
Let us consider again the Bernoulli distribution (Example 103 on page 615). We recall

that:
∂ ` (p)
∂ p

=
∑n
i=1 yi
p

−
∑n
i=1 (1− yi)

1− p
It follows that:

∂2 ` (p)
∂ p2 = −

∑n
i=1 yi
p2 −

∑n
i=1 (1− yi)
(1− p)2

We have:

I (p) = −E

[
−
∑n
i=1 Yi
p2 −

∑n
i=1 (1− Yi)
(1− p)2

]

=
∑n
i=1 p

p2 +
∑n
i=1 (1− p)
(1− p)2

= n

p (1− p)
and:

I (p)−1 = p (1− p)
n
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10.1.2.3 Statistical inference

Estimating the covariance matrix In practice, the covariance matrix of θ̂ is calculated
as I

(
θ̂
)−1

=
(
nJ

(
θ̂
))−1

. Most of the time, the information matrix is however difficult
to calculate analytically, and we prefer to estimate the covariance matrix as the inverse of
the opposite of the Hessian matrix var

(
θ̂
)

=
(
−H

(
θ̂
))−1

where:

H
(
θ̂
)

=
∂2 `

(
θ̂
)

∂ θ ∂ θ>

Two other estimators are very popular (Davidson and MacKinnon, 2004). The first one is
the outer product of gradients (OPG) estimator:

var
(
θ̂
)

=
(
J
(
θ̂
)>

J
(
θ̂
))−1

where J
(
θ̂
)
is the Jacobian matrix of the log-likelihood function:

J
(
θ̂
)

=
(
∂ `i (θ | yi)

∂ θ

)
The second estimator is the sandwich estimator:

var
(
θ̂
)

= H
(
θ̂
)−1

J
(
θ̂
)>

J
(
θ̂
)
H
(
θ̂
)−1

If the model is well-specified, the three estimators of the covariance matrix are equivalent.
If it is not the case, it is better to use the sandwich estimator which is more robust to model
misspecification.

From the covariance matrix var
(
θ̂
)
, we estimate the standard error of θ̂k by calculating

the square root of the kth diagonal element:

σ
(
θ̂k

)
=
√(

var
(
θ̂
))

k,k

We can then test the hypothesis H0 : θ̂k = ξk by computing the t-statistic:

t = θ̂k − ξk
σ
(
θ̂k

)
Asymptotically, we have t ∼ N (0, 1). In practice, we assume that t ∼ tn−K in the case of
small samples.

Example 104 (Modeling LGD with the beta distribution) We consider the follow-
ing sample Y = (y1, . . . , yn) of loss given default:

{68%, 90%, 22%, 45%, 17%, 25%, 89%, 65%, 75%, 56%, 87%, 92%, 46%}

We assume that the LGD parameter follows a beta distribution B (α, β).
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We have:

` (α, β) = (α− 1)
n∑
i=1

ln yi + (b− 1)
n∑
i=1

ln (1− yi)−

n lnB (α, β)

The first-order conditions are:

∂ ` (α, β)
∂ α

= −n∂aB (α, β)
B (α, β) +

n∑
i=1

ln yi = 0

and:
∂ ` (α, β)
∂ β

= −n∂βB (α, β)
B (α, β) +

n∑
i=1

ln (1− yi) = 0

Therefore, it is not possible to find the analytical expression of α̂ and β̂. However, we can use
numerical optimization for optimizing the log-likelihood function and we obtain α̂ = 1.836,
β̂ = 1.248 and `

(
α̂, β̂

)
= 1.269 The computation of the Hessian matrix gives:

H
(
θ̂
)

=
(

∂2
α ` (α, β) ∂2

α,β ` (α, β)
∂2
α,β ` (α, β) ∂2

β ` (α, β)

)
=

(
−4.3719 4.9723

4.9723 −10.6314

)
We deduce the covariance matrix:

var
(
θ̂
)

= −H
(
θ̂
)−1

=
(

0.4887 0.2286
0.2286 0.2010

)
Finally, we obtain the results reported in Table 10.4.

TABLE 10.4: Results of the maximum likelihood estimation

Parameter Estimate Standard
t-statistic p-valueerror

α 1.8356 0.6990 2.6258 0.0236
β 1.2478 0.4483 2.7834 0.0178

Hypothesis testing We now consider the general hypothesis H0 : C (θ) = c where C (θ)
is a non-linear function from RK to Rg, c is a vector of dimension g and g is the number of
restrictions. We note θ̂ the unconstrained estimator and θ̂c the constrained estimator:

θ̂c = arg max ` (θ)
s.t. C (θ) = c

H0 can be tested using Wald, likelihood ratio (LR) and Lagrange multiplier (LM) tests.
The Wald statistic is defined as:

W =
(
C
(
θ̂
)
− c
)>∂ C

(
θ̂
)

∂ θ>
var
(
θ̃
) ∂ C (θ̂)>

∂ θ


−1 (

C
(
θ̂
)
− c
)
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Under H0, the Wald test is:
W ∼ χ2 (g)

The second approach is based on the likelihood ratio:

Λ =
L
(
θ̂c | Y

)
L
(
θ̂ | Y

)
Under H0, the LR test is:

−2 ln Λ = −2
(
`
(
θ̂c | Y

)
− `

(
θ̂ | Y

))
∼ χ2 (g)

The third approach uses the Lagrange multiplier statistic:

LM =
∂ `
(
θ̂c

)
∂ θ>

I
(
θ̂c

)−1 ∂ `
(
θ̂c

)
∂ θ

Under H0, the distribution of the LM statistic is the chi-squared distribution χ2 (g). We
notice that the Wald test uses the unconstrained estimator θ̂ whereas the LM test uses the
restricted estimator θ̂c.

10.1.2.4 Some examples

Multivariate normal distribution We assume that Yi ∼ Np (µ,Σ). We have:

` (µ,Σ) = −np2 ln (2π)− n

2 ln |Σ| − 1
2

n∑
i=1

(Yi − µ)>Σ−1 (Yi − µ)

The first-order condition with respect to µ is:

∂µ ` (µ,Σ) =
n∑
i=1

Σ−1 (Yi − µ) = 0

Since
∑n
i=1 Σ−1 (Yi − µ) = Σ−1∑n

i=1 (Yi − µ), we deduce that µ̂ is the empirical mean:

µ̂ = Ȳ =

 n−1∑n
i=1 Yi,1
...

n−1∑n
i=1 Yi,p


By using the properties of the trace function, the concentrated log-likelihood function be-
comes:

` (µ̂,Σ) = −np2 ln (2π)− n

2 ln |Σ| − 1
2

n∑
i=1

(
Yi − Ȳ

)> Σ−1 (Yi − µ̂)

= −np2 ln (2π)− n

2 ln |Σ| − 1
2

n∑
i=1

tr
((
Yi − Ȳ

)> Σ−1 (Yi − µ̂)
)

= −np2 ln (2π)− n

2 ln |Σ| − 1
2

n∑
i=1

tr
(

Σ−1 (Yi − Ȳ ) (Yi − Ȳ )>)
= −np2 ln (2π)− n

2 ln |Σ| − 1
2 tr

(
Σ−1S

)
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where S is the p× p matrix defined in the following way:

S =
n∑
i=1

(
Yi − Ȳ

) (
Yi − Ȳ

)>
We deduce the first-order condition:

∂ ` (µ̂,Σ)
∂ Σ−1 = n

2 Σ− 1
2S = 0

It follows that the ML estimator of Σ is the empirical covariance matrix:

Σ̂ = 1
n
S = 1

n

n∑
i=1

(
Yi − Ȳ

) (
Yi − Ȳ

)>
Extension of the linear regression By assuming that yi = x>i β + ui with ui ∼
N
(
0, σ2

i

)
, we obtain:

` (β, σ) =
n∑
i=1

ln Pr {Yi = yi}

=
n∑
i=1

ln
(

1√
2πσi

· exp
(
−1

2

(
yi − x>i β

σi

)2))

= −n2 ln 2π − 1
2

n∑
i=1

ln σ2
i −

1
2

n∑
i=1

(
yi − x>i β

σi

)2

In the homoscedastic case σi = σ, we can show that the estimators β̂ML and β̂OLS are the
same5. Let us now assume that:

σ2
i = σ2 + z>i γ

We obtain:

` (β, σ, γ) = −n2 ln 2π − 1
2

n∑
i=1

ln
(
σ2 + z>i γ

)
− 1

2

n∑
i=1

(
yi − x>i β

)2
σ2 + z>i γ

This is an example of linear models with heteroscedastic residuals.
When the model is non-linear yi = g (xi, β)+ui where ui ∼ N

(
0, σ2), the log-likelihood

function becomes:

` (β, σ) = −n2 ln 2π − n

2 ln σ2 − 1
2

n∑
i=1

(yi − g (xi, β))2

σ2

Some examples of non-linear models are given in Table 10.5.

10.1.2.5 EM algorithm

The expectation–maximization (EM) algorithm is an iterative method to find the maxi-
mum likelihood estimate when the statistical model depends on unobserved latent variables.

5See Exercise 10.3.4 on page 706.
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TABLE 10.5: Non-linear models
Model Function g (x, β)
Exponential (gowth) yi = β1e

β2xi + ui
Exponential (decay) yi = y− + (y+ − y−) e−βxi + ui
Hyperbola yi = (β1xi) / (β2 + xi)
Sine yi = β1 + β2 sin (β3xi + β4) + ui

Boltzmann yi = y− + (y+ − y−)/
(

1 + e
β1−xi
β2

)
Damped sine yi = β1e

−β2xi sin (β3xi + β4) + ui

We note Y the sample of observed data and Z the sample of unobservable data. We have:

` (Y,Z; θ) =
n∑
i=1

ln f (yi, zi; θ)

=
n∑
i=1

ln (f (yi; θ) f (zi | yi; θ))

=
n∑
i=1

ln f (yi; θ) +
n∑
i=1

ln f (zi | yi; θ)

= ` (Y; θ) +
n∑
i=1

ln f (zi | yi; θ)

We deduce that:

` (Y; θ) = ` (Y,Z; θ)−
n∑
i=1

ln f (zi | yi; θ)

Dempster et al. (1977) define the expected value of the log likelihood function as follows:

Q
(
θ; θ(k)

)
= E

[
` (Y,Z; θ)| θ(k)

]
where θ(k) is the vector of parameters at iteration k. They show that under some conditions
the sequence of maxima θ(k+1) = arg maxθ Q

(
θ; θ(k)) tends to a global maximum θ̂EM =

θ(∞) implying that `
(
Y; θ̂EM

)
≥ ` (Y; θ) for all θ ∈ Θ. The EM algorithm consists in

iteratively applying the two steps:

(E-Step) we calculate the expected value of the log-likelihood function E
[
` (Y,Z; θ)| θ(k)] with

respect to the parameter vector θ(k);

(M-Step) we estimate θ(k+1) by maximizing Q
(
θ; θ(k)):

θ(k+1) = arg max
θ

Q
(
θ; θ(k)

)
The EM algorithm is used to solve many statistical problems: missing data, grouping,
censoring and truncation models, finite mixtures, variance components, factor analysis,
hidden Markov models, switching Markov processes, etc.
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TABLE 10.6: Insulation life in hours at various test temperatures
Motorette 1 2 3 4 5

150◦ 8 064∗ 8 064∗ 8 064∗ 8 064∗ 8 064∗
170◦ 1 764 2 772 3 444 3 542 3 780
190◦ 408 408 1 344 1 344 1 440
220◦ 408 408 504 504 504

Motorette 6 7 8 9 10
150◦ 8 064∗ 8 064∗ 8 064∗ 8 064∗ 8 064∗
170◦ 4 860 5 196 5 448∗ 5 448∗ 5 448∗
190◦ 1 680∗ 1 680∗ 1 680∗ 1 680∗ 1 680∗
220◦ 528∗ 528∗ 528∗ 528∗ 528∗

Source: Schmee and Hahn (1979).
An asterisk ∗ indicates that the test has been stopped without the failure of the motorette,
implying that the observation is censored.

Censored data Table 10.6 gives the results of temperature accelerated life tests on elec-
trical insulation in 40 motorettes. Ten motorettes were tested at each of four temperatures
(150◦, 170◦, 190◦ and 220◦). The results are the following: all 10 motorettes at 150◦ are
still on test without failure at 8 064 hours; 3 motorettes at 170◦ are still on test without
failure at 5 448 hours; 5 motorettes at 190◦ are still on test without failure at 1 680 hours;
5 motorettes at 220◦ are still on test without failure at 528 hours. We assume the following
model:

yi = β0 + β1xi + σεi

where yi = log10 di, di is the failure time, xi = 1 000/ (ti + 273.2◦), ti is the temperature and
εi ∼ N (0, 1). We cannot use the linear regression because some values of yi are censured. Let
A and B be the sets of non-censored and censored data. The expression of the log-likelihood
function is then:

` (θ) = −n2 ln 2π − n

2 ln σ2 −

1
2σ2

(∑
i∈A

(yi − β0 − β1xi)2 +
∑
i∈B

(Zi − β0 − β1xi)2

)

where Zi is the failure time of the motorette i that we do not have observed. However, we
know that Zi ≥ ci where ci is the censured failure time. We deduce that:

` (θ) = −n2 ln 2π − n

2 ln σ2 − 1
2σ2

∑
i∈A

(yi − β0 − β1xi)2

− 1
2σ2

∑
i∈B

E
[
(Zi − β0 − β1xi)2 | Zi ≥ ci

]
(10.12)

where:

E
[
(Zi − β0 − β1xi)2 | Zi ≥ ci

]
= E

[
Z2
i | Zi ≥ ci

]
−

2 (β0 + β1xi)E [Zi | Zi ≥ ci] +
(β0 + β1xi)2 (10.13)
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Tanner (1993) showed that:

E [Zi | Zi ≥ ci] = µi + σ
φ
(
σ−1 (ci − µi)

)
1− Φ(σ−1 (ci − µi))

and:
E
[
Z2
i | Zi ≥ ci

]
= µ2

i + σ2 + σ (ci + µi)
φ
(
σ−1 (ci − µi)

)
1− Φ(σ−1 (ci − µi))

where µi = β0 + β1xi. The EM algorithm is then:

(E-Step) we calculate E
[
Z2
i | Zi ≥ ci

]
and E [Zi | Zi ≥ ci] using the values β(k)

0 , β(k)
1 and σ(k);

we deduce the conditional expectation (10.13);

(M-Step) we estimate β(k+1)
0 , β(k+1)

1 and σ(k+1) by maximizing the conditional log-likelihood
function (10.12).

Starting from the initial values β(0)
0 = β

(0)
1 = σ(0) = 1, we obtain β(1)

0 = −5.087, β(1)
1 = 4.008

and σ(1) = 0.619 at the first iteration, β(2)
0 = −6.583, β(2)

1 = 4.670 and σ(2) = 0.515 at
the second iteration, etc. Finally, the algorithm converges after 33 iterations and the EM
estimates are β̂0 = −6.019, β̂1 = 4.311 and σ̂ = 0.259. In Table 10.7, we also report the
value taken by the expected failure time E [Zi | Zi ≥ ci] at the last iteration.

TABLE 10.7: Expected failure time E [Zi | Zi ≥ ci] obtained with the EM algorithm

Motorette 1 2 3 4 5
150◦ 17 447∗ 17 447∗ 17 447∗ 17 447∗ 17 447∗
170◦ 1 764 2 772 3 444 3 542 3 780
190◦ 408 408 1 344 1 344 1 440
220◦ 408 408 504 504 504

Motorette 6 7 8 9 10
150◦ 17 447∗ 17 447∗ 17 447∗ 17 447∗ 17 447∗
170◦ 4 860 5 196 8 574∗ 8 574∗ 8 574∗
190◦ 2 862∗ 2 862∗ 2 862∗ 2 862∗ 2 862∗
220◦ 850∗ 850∗ 850∗ 850∗ 850∗

The censored data represented by an asterisk ∗ are replaced by the value of E [Zi | Zi ≥ ci]
calculated by the EM algorithm at the last iteration.

Multivariate Gaussian mixture model The probability density function of the ran-
dom vector Y of dimension K is defined as a weighted sum of Gaussian distributions:

f (y) =
m∑
j=1

πjφK (y;µj ,Σj)

where m is the number of mixture components, µj and Σj are the mean vector and the
covariance matrix of the Gaussian distribution associated with the jth component, and πj
is the mixture weight such that

∑m
j=1 πj = 1. The log-likelihood function of the sample

Y = {Y1, . . . , Yn} is:

` (θ) =
n∑
i=1

ln
m∑
j=1

πjφK (Yi;µj ,Σj)
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The derivative of ` (θ) with respect to µj is equal to:

∂ ` (θ)
∂ µj

=
n∑
i=1

πjφK (Yi;µj ,Σj)∑m
s=1 πsφK (Yi;µs,Σs)

Σ−1
j (Yi − µj)

Therefore, the first-order condition is:
n∑
i=1

πj,iΣ−1
j (Yi − µj) = 0

where:
πj,i = πjφK (Yi;µj ,Σj)∑m

s=1 πsφK (Yi;µs,Σs)
We deduce the expression of the estimator µ̂j :

µ̂j =
∑n
i=1 πj,iYi∑n
i=1 πj,i

(10.14)

For the derivative with respect to Σj , we consider the function g
(
Σ−1
j

)
defined as follows:

g
(
Σ−1
j

)
= 1

(2π)K/2 |Σj |1/2
e−

1
2 (Yi−µj)>Σ−1

j
(Yi−µj)

=
∣∣Σ−1
j

∣∣1/2
(2π)K/2

e−
1
2 trace(Σ−1

j
(Yi−µj)(Yi−µj)>)

We note:
ϕ
(
Σ−1
j

)
= exp

(
−1

2 trace
(

Σ−1
j (Yi − µj) (Yi − µj)>

))
It follows that6:

∂ g
(
Σ−1
j

)
∂ Σ−1

j

= 1
2

∣∣Σ−1
j

∣∣−1/2 ∣∣Σ−1
j

∣∣Σj
(2π)K/2

ϕ
(
Σ−1
j

)
−1

2 (Yi − µj) (Yi − µj)>
∣∣Σ−1
j

∣∣1/2
(2π)K/2

ϕ
(
Σ−1
j

)
= 1

(2π)K/2 |Σj |1/2
ϕ
(
Σ−1
j

) (Σj − (Yi − µj) (Yi − µj)>
)

2

= 1
2g
(
Σ−1
j

) (
Σj − (Yi − µj) (Yi − µj)>

)
We deduce that:

∂ ` (θ)
∂ Σ−1

j

= 1
2

n∑
i=1

πjφK (Yi;µj ,Σj)∑m
s=1 πsφK (Yi;µs,Σs)

(
Σj − (Yi − µj) (Yi − µj)>

)
6We use the following results:

∂ |A|
∂ A

= |A|
(
A−1

)>
∂ trace

(
A>B

)
∂ A

= B
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The first-order condition is then:
n∑
i=1

πj,i

(
Σj − (Yi − µj) (Yi − µj)>

)
= 0

It follows that the estimator Σ̂j is equal to:

Σ̂j =
∑n
i=1 πj,i (Yi − µj) (Yi − µj)>∑n

i=1 πj,i
(10.15)

Regarding the mixture probabilities πj , the first-order condition implies:

n∑
i=1

φK (Yi;µj ,Σj)∑m
s=1 πsφK (Yi;µs,Σs)

= λ

where λ is the Lagrange multiplier associated to the constraint
∑m
j=1 πj = 1. We deduce

that λ = n. We conclude that it is not possible to directly define the estimator π̂j . This is
why we have to use another route to obtain the ML estimator.

We introduce the estimator π̂j,i:

π̂j,i = πjφK (Yi;µj ,Σj)∑m
s=1 πsφK (Yi;µs,Σs)

(10.16)

π̂j,i is the posterior probability of the regime index for the observation i. Knowing π̂j,i, the
estimator π̂j is given by:

π̂j = 1
n

n∑
i=1

π̂j,i (10.17)

The EM algorithm consists in the following iterations:

1. we set k = 0 and initialize the algorithm with starting values π(0)
j , µ(0)

j and Σ(0)
j ;

2. using Equation (10.16), we calculate the posterior probabilities πj,i:

π
(k)
j,i =

π
(k)
j φK

(
Yi;µ(k)

j ,Σ(k)
j

)
∑m
s=1 π

(k)
s φK

(
Yi;µ(k)

s ,Σ(k)
s

)
3. using Equations (10.14), (10.15) and (10.17), we update the estimators π̂j , µ̂j and Σ̂j :

π
(k+1)
j =

∑n
i=1 π

(k)
j,i

n

µ
(k+1)
j =

∑n
i=1 π

(k)
j,i Yi∑n

i=1 π
(k)
j,i

Σ(k+1)
j =

∑n
i=1 π

(k)
j,i

(
Yi − µ(k+1)

j

)(
Yi − µ(k+1)

j

)>
∑n
i=1 π

(k)
j,i
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4. we iterate steps 2 and 3 until convergence;

5. finally, we have π̂j = π
(∞)
j , µ̂j = π

(∞)
j and Σ̂j = Σ(∞)

j .

Let us consider the monthly returns of the S&P 500 index from January 2000 to De-
cember 2015. Using a Gaussian model, we obtain µ̂ = 0.49% and σ̂ = 4.90%. If we consider
a bivariate mixture model, we obtain the following estimates:

Regime π̂j µ̂j σ̂j
j = 1 72.01% 1.40% 3.13%
j = 2 27.99% −1.84% 7.28%

We have represented the corresponding probability density functions in Figure 10.3. We
notice that the Gaussian and mixture pdfs are very different, even if they have the same
mean and variance7. However, the skewness coefficients are very different. For the Gaussian
distribution, γ1 is equal to zero, whereas we have γ1 = −0.745 for the mixture distribution8.

FIGURE 10.3: Probability density function of the monthly returns of the S&P 500 index

7The first two moments of the mixture distribution are:

E [Y ] = π1µ1 + π2µ2

and:
var (Y ) = π1σ

2
1 + π2σ

2
2 + π1π2 (µ1 − µ2)2

8The expression of the skewness coefficient is:

γ1 (Y ) =
π1π2

(
(π2 − π1) (µ1 − µ2)3 + 3 (µ1 − µ2)

(
σ2

1 − σ
2
2
))(

π1σ2
1 + π2σ2

2 + π1π2 (µ1 − µ2)2)3/2
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10.1.3 Generalized method of moments
The method of moments is another approach for estimating a statistical model. While

the objective of the method of maximum likelihood is to maximize the probability of the
sample data, the method of moments estimates the parameters by fitting the empirical
moments of the sample data. The choice of one approach rather than another generally
depends on the computational facilities associated to the probability density function and
the statistical moments. The method of moments is particularly suitable for some financial
models that cannot be described by an analytical probability distribution.

10.1.3.1 Method of moments

Let Y be a random variable, whose probability distribution F (y; θ) depends on some
parameters θ. We assume that we can calculate the first m statistical moments:

mj (θ) = E
[
Y j
]

=
∫
yj dF (y; θ)

We consider a sample Y = {y1, . . . , yn} and we note g (θ) the m× 1 vector, whose elements
are equal to:

gj (θ) = 1
n

n∑
i=1

(
yji −mj (θ)

)
=

(
1
n

n∑
i=1

yji

)
−mj (θ)

Let K be the dimension of θ. If K is exactly equal to m, the method of moments (MM)
estimator is defined by:

g
(
θ̂
)

= 0

If K < m, the MM estimator minimizes the quadratic criterion:

θ̂ = arg minQ (θ)

where:
Q (θ) = g (θ)>Wg (θ)

and W is a m×m matrix.

Example 105 We assume that Y ∼ N
(
µ, σ2).

We have:
m1 (θ) = E [Y ] = µ

and:
m2 (θ) = E

[
Y 2] = µ2 + σ2

It follows that the MM estimator θ̂ = (µ̂, σ̂) satisfies:{
n−1∑n

i=1 yi − µ̂ = 0
n−1∑n

i=1 y
2
i −

(
µ̂2 + σ̂2) = 0

We deduce that:

µ̂ = 1
n

n∑
i=1

yi = ȳ
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and:

σ̂2 = 1
n

n∑
i=1

y2
i − µ̂2 = 1

n

n∑
i=1

(yi − ȳ)2

The MM estimators µ̂ and σ̂ correspond to the empirical mean and the empirical standard
deviation.

Example 106 We now assume that Y = X · U where X ∼ N
(
µ, σ2), U ∼ U[0,1]

and X ⊥ U . We want to estimate the parameters µ and σ for the sample Y =
{−0.320,−0.262,−0.284,−0.296, 0.636, 0.547, 0.024, 0.483,−1.045,−0.030}.

We have:
E [Y ] = E [X · U ] = E [X] · E [U ] = µ

2
and:

E
[
Y 2] = E

[
X2] · E [U2] =

(
µ2 + σ2)( 1

12 + 1
22

)
= 1

3
(
σ2 + µ2)

We deduce that the MM estimators µ̂ and σ̂ are:

µ̂ = 2
n

n∑
i=1

yi = 2ȳ

and:

σ̂2 = 3
n

n∑
i=1

y2
i − µ̂2 = 3

n

n∑
i=1

y2
i − 4ȳ2

Using the sample Y, we obtain µ̂ = −0.109 and σ̂ = 0.836.

Example 107 (Modeling LGD with the beta distribution) We consider Example
104 on page 618, but we now want to estimate the parameters of the beta distribution by the
method of moments.

If Y ∼ B (α, β), we have:
E [Y ] = α

α+ β

and:
var (Y ) = αβ

(α+ β)2 (α+ β + 1)
Let µ̂LGD and σ̂LGD be the empirical mean and standard deviation of the LGD sample. We
deduce that the MM estimators are:

α̂ = µ̂2
LGD (1− µ̂LGD)

σ̂2
LGD

− µ̂LGD

and:

β̂ = µ̂LGD (1− µ̂LGD)2

σ̂2
LGD

− (1− µ̂LGD)

Using our sample, we obtain µ̂LGD = 59.77% and σ̂LGD = 27.02%. Therefore, the MM
estimates are α̂MM = 1.371 and β̂MM = 0.923. We recall that the ML estimates were
α̂ML = 1.836 and β̂ML = 1.248. If we compare the two calibrated probability distributions,
we observe that their shape is very different (see Figure 10.4).
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FIGURE 10.4: Calibrated density function of the loss given default

Let us assume that Y ∼ E (λ). We have m1 (λ) = λ−1 and m2 (λ) = 2λ−2. We deduce
that:

Q (λ) = w1

(
1
n

n∑
i=1

yi −
1
λ

)2

+

2w2

(
1
n

n∑
i=1

yi −
1
λ

)(
1
n

n∑
i=1

y2
i −

2
λ2

)
+

w3

(
1
n

n∑
i=1

y2
i −

2
λ2

)2

where:
W =

(
w1 w2
w2 w3

)
If w2 = w3 = 0, the MM estimator is:

λ̂ = n∑n
i=1 yi

= 1
ȳ

If w1 = w2 = 0, the MM estimator becomes:

λ̂ =
√

n

2
∑n
i=1 y

2
i

In the other cases, we have to use a numerical optimization algorithm to find λ̂. We consider
the following sample: 0.08, 0.14, 0.00, 0.06, 0.11, 0.22, 0.11, 0.09, 0.02 and 0.26. Using the
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weighting scheme w1 = w2, w2 = w (1− w) and w3 = (1− w)2 where w ∈ [0, 1], we obtain
the following MM estimates:

w 0.00 0.20 0.50 0.70 1.00
λ̂ 10.59 9.99 9.54 9.35 9.17

10.1.3.2 Extension to the GMM approach

The classical method of moments assumes that the number m of moments is equal to
the number K of parameters and the weight matrix W is the identity matrix. Hansen
(1982) extends this approach in two ways. First, he assumes that g (θ) does not necessarily
correspond to the first m statistical moments, but can also include orthogonal conditions.
Second, the matrix W is chosen in order to obtain an estimate θ̂ with the smallest variance.
Therefore, the generalized method of moments (GMM) is a direct extension of the method
of moments.

Statistical inference Like the MM approach, the GMM approach considers m empirical
centered moments that depend on the parameter vector θ. We note hi,j (θ) the jth moment
condition for the observation i such that E [hi,j (θ0)] = 0 where θ0 is the true parameter
vector. We note g (θ) the vector whose elements are:

gj (θ) = 1
n

n∑
i=1

hi,j (θ)

The GMM estimator is defined as:

θ̂ = arg min g (θ)>Wg (θ)

where W is the weighting symmetric matrix. Hansen (1982) shows that θ̂ is asymptotically
normally distributed: √

n
(
θ̂ − θ0

)
→ N (0, V )

where:
V =

(
D>WD

)−1
D>WSWD

(
D>WD

)−1

D is the Jacobian matrix of g (θ), and S is the covariance matrix of empirical moments:

S = lim
n→∞

n · E
[
g (θ0) g (θ0)>

]
= lim

n→∞
E
[
h (θ0)h (θ0)>

]
We can also show that the optimal weighting matrix corresponds to the caseW = S−1. The
underlying idea is that moments with small variance are more informative than moments
with high variance. Therefore, they should have a larger weight. We then deduce that
V =

(
D>S−1D

)−1 and var
(
θ̂
)

=
(
nD>S−1D

)−1.

We notice that the quadratic form Q (θ) = g (θ)>Wg (θ) is particular since the weighting
matrix W = S−1 depends on the parameter vector θ. A direct optimization of Q (θ) does
not generally converge. This is why we can use the following iterative algorithm:

1. let W (0) be the initial weighting matrix;

2. at iteration k, we find the optimal value θ̂(k):

θ̂(k) = arg min g (θ)>W (k−1)g (θ)
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3. we update the weighting matrix W (k) = S(k)−1 where:

S(k) = E
[
h
(
θ̂(k)

)
h
(
θ̂(k)

)>]

4. we repeat steps 2 and 3 until convergence:
∣∣∣θ̂(k) − θ̂(k−1)

∣∣∣ ≤ ε.
Remark 122 The two-step GMM procedure of Hansen (1982) consists in setting W (0) to
the identity matrix and to stop at the second iteration. In this case, we obtain θ̂GMM = θ̂(2).

We consider the previous example. We have hi,1 (λ) = yi−λ−1 and hi,2 (λ) = y2
i −2λ−2.

At the first iteration, we set W (0) = I2 and we obtain λ̂(1) = 9.36. We deduce that:

S(1) = 1
n
h
(
λ̂(1)

)
h
(
λ̂(1)

)>
= 10−4 ·

(
59.54 15.55
15.55 4.78

)
At the second iteration, the weighting matrix becomes W (1) = S(1)−1 , implying that the
solution is λ̂(2) = 11.49. Finally, we obtain λ̂(3) = 12.04, λ̂(4) = 12.13, λ̂(5) = 12.14 and
λ̂(6) = 12.14. The algorithm has then converged after 6 iterations and we have λ̂GMM =
12.14. We also obtain:

D =
(

67.87
22.36

)
and

S = 1
n
h
(
λ̂GMM

)
h
(
λ̂GMM

)>
= 10−4 ·

(
66.57 16.79
19.79 4.71

)
It follows that the standard deviation of λ̂GMM is equal to 2.81.

Ifm > K, then there are more orthogonality conditions than parameters to estimate. We
don’t have g

(
θ̂
)

= 0, meaning that the model is over-identified. In order to test the over-

identifying constraints, we consider the J-test. Under the null hypothesisH0 : E
[
hi,j

(
θ̂
)]

=
0, we have:

J = nQ
(
θ̂
)

= ng
(
θ̂
)>

Wg
(
θ̂
)
→ χ2 (g)

where g = m−K is the number of over-identifying conditions. In the case of the previous
example, we have Q

(
θ̂
)

= 0.2336 and J = 2.336. It follows that the p-value is equal to
12.64%. At the 90% confidence level, we then reject the null hypothesis.

The method of instrumental variables Let us consider the linear regression:

yi =
K∑
k=1

βkxi,k + ui

Since we have E [ui] = 0 and var (ui) = σ2, we deduce that:

hi,1 (θ) = ui = yi −
K∑
k=1

βkxi,k (10.18)

and:

hi,2 (θ) = u2
i − σ2 =

(
yi −

K∑
k=1

βkxi,k

)2

− σ2 (10.19)



Statistical Inference and Model Estimation 633

where the vector of parameters is equal to (β, σ). The number of parameters is then equal
to K + 1. If K > 1, we need to find other orthogonal conditions. We recall that the linear
model assumes that the residuals are orthogonal to exogenous variables. This implies that:

hi,2+k (θ) = uixi,k =
(
yi −

K∑
k=1

βkxi,k

)
xi,k (10.20)

We obtain a system of K + 2 moments for K + 1 parameters. The model is over-identified
except if the linear model contains an intercept. In this case, the first and third moments
are the same because xi,1 = 1, and we obtain:

θ̂GMM = θ̂ML =
(
β̂OLS
σ̂ML

)
If the assumption E [u | X = x] = 0 is not verified – or E

[
X>U

]
= 0, we estimate the

parameter β by the method of instrumental variables (IV). The underlying idea is to find a
set of variables Z such that E [u | Z = z] = 0. Since we have:

Z>Y = Z>Xβ + Z>U

where Z is the n×K matrix of instrumental variables zi,k, we deduce that:

β̂IV =
(
Z>X

)−1 Z>Y

If follows that the estimator β̂IV is unbiased:

E
[
β̂IV

]
= E

[(
Z>X

)−1 Z>Y
]

= E
[(

Z>X
)−1 Z> (Xβ + U)

]
= β +

(
Z>X

)−1 E
[
Z>U

]
= β

and the expression of its variance is:

var
(
β̂IV

)
=

(
Z>X

)−1 Z>σ2InZ
(
Z>X

)−1

= σ2 (Z>X
)−1 Z>Z

(
Z>X

)−1

Let us now consider the GMM estimator θ̂GMM defined by the two moments (10.18) and
(10.19) and the following orthogonality conditions:

hi,2+k (θ) = uizi,k =
(
yi −

K∑
k=1

βkxi,k

)
zi,k (10.21)

We can show that β̂GMM = β̂IV. The method of instrumental variables is then a special case
of the generalized method of moments9.

9We also notice that the previous analysis is also valid for non-linear models:

yi = f (xi, β) + ui

We just have to replace ui by the expression yi − f (xi, β) in Equations (10.18), (10.19) and (10.21).
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Some examples The general form of a ARCH model is (Engle, 1982):

Φ (L) yt = x>t β + ut

where ut ∼ N
(
0, h2

t

)
and h2

t = α0 +
∑q
j=1 αju

2
t−j . The conditional variance is then an

autoregressive process10. The first two moments are E [ut] = 0 and E
[
u2
t − h2

t

]
= 0. We can

also impose the K orthogonality conditions E [utxt,k] = 0 for all k = 1, . . . ,K. However,
these different moments are not enough for estimating the parameters αj . This is why we
have to impose the q orthogonality conditions between the centered innovations u2

t −h2
t and

the lagged residuals u2
t−j :

E
[(
u2
t − h2

t

)
u2
t−j
]

= 0

for j = 1, . . . , q. This estimation method based on GMM has been suggested by Mark
(1988).

In the standard linear time series model yt = x>t β + ut, we assume that ut ∼ N
(
0, σ2).

If we also assume that the residuals are autocorrelated, we obtain:

E [utut−1] = E [(ρut−1 + εt)ut−1]
= ρE

[
u2
t−1
]

+ E [εtut−1]
= ρσ2

The GMM estimator consists in using Equations (10.18), (10.19) and (10.20) and adding
the following orthogonality moment:

ht,K+3 (θ) = utut−1 − ρσ2

where the vector of parameters θ becomes (β, σ, ρ).
Let ht (θ) = (ht,1 (θ) , . . . , ht,m (θ)) be the m × 1 vector of empirical moments for the

observation date t. We have seen that the estimate of S = E
[
h
(
θ̂
)
h
(
θ̂
)>]

is equal to:

Ŝ = 1
T

T∑
t=1

ht

(
θ̂
)
ht

(
θ̂
)>

This implies the assumption that the empirical moments are not autocorrelated. However,
when dealing with time series, this hypothesis is generally not satisfied and it is better to
use a heteroscedasticity and autocorrelation consistent (HAC) estimator:

Ŝ = Γ (0) +
∑̀
j=1

wj

(
Γ (j) + Γ (j)>

)
where:

Γ (j) = 1
T

T∑
t=j+1

ht

(
θ̂
)
ht−j

(
θ̂
)>

and wj is the weight function. Newey and West (1987) showed that the Bartlett kernel
defined as wj = 1 − j/ (`+ 1) is a simple method that is consistent under fairly general
conditions.

10The term ARCH means autoregressive conditional heteroscedasticity.
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10.1.3.3 Simulated method of moments

When a model is complex, it may be difficult to find an analytical expression for each
moment condition. The basic idea behind the simulated method of moments (SMM) is then
to simulate the model and to replace the theoretical moments by the simulated moments.
The theory of SMM has been formulated by McFadden (1989), Pakes and Pollard (1989)
and Duffie and Singleton (1993), and this approach is particularly popular for dynamic asset
pricing models.

If we consider the method of moments, we have:

gj (θ) = 1
n

n∑
i=1

(
yji − m̂j (θ)

)
where m̂j (θ) is the jth simulated moment computed with nS simulations. For the generalized
method of moments, we obtain:

gj (θ) = 1
n

n∑
i=1

ĥi,j (θ)

where ĥi,j (θ) is the jth simulated orthogonal condition for the ith observation. The SMM
estimator is then defined exactly as the GMM estimator:

θ̂ = arg min g (θ)>Wg (θ)

Like the GMM estimator, the SMM estimator θ̂ is asymptotically normally distributed
(Duffie and Singleton, 1993):

√
n
(
θ̂ − θ0

)
→ N

(
0,
(

1 + n

nS

)
V

)
where V =

(
D>S−1D

)−1 is the GMM covariance matrix and nS is the number of simula-
tions. Therefore, the covariance matrix of θ̂ depends on the ratio τ = n/nS :

var
(
θ̂
)

= 1 + τ

n

(
D>S−1D

)−1 (10.22)

This implies that the number of simulations nS must be larger than the number of obser-
vations:

nS � n

Remark 123 The key point when considering the simulated method of moments is to use
the same random numbers at each iteration of the optimization algorithm in order to ensure
the convergence of the SMM estimator.

In order to illustrate the simulated method of moments, we consider Example 106 on
page 629. The simulated moments are:

g1 (θ) = 1
n

n∑
i=1

(
yi −

1
ns

ns∑
s=1

y(s)

)

and:

g2 (θ) = 1
n

n∑
i=1

(
y2
i −

1
ns

ns∑
s=1

y2
(s)

)
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TABLE 10.8: Comparison of GMM and SMM estimates
Method nS µ̂ σ̂ σ̂ (µ̂) σ̂ (σ̂) σ̂MC (µ̂) σ̂MC (σ̂)
GMM −0.109 0.836 0.306 0.165
SMM 25 −0.115 0.880 0.373 0.218 0.214 0.340
SMM 200 −0.102 0.847 0.315 0.172 0.070 0.062

where y(s) is a simulated value of Y = XU where X ∼ N
(
µ, σ2), U ∼ U[0,1] and X ⊥ U .

We have:
y(s) = x(s) · u(s) =

(
µ+ σn(s)

)
· u(s)

where u(s) and n(s) are uniform and standard normal random numbers. In Table 10.8, we
compare the results obtained with the GMM and the SMM approaches. For the simulated
method of moments, we consider 20 000 Monte Carlo replications and report the average
values. We notice that when the number of simulations is low, the estimator can be biased.
For example, σ̂ is equal to 0.880 on average when nS is equal to 25, whereas the GMM
estimate is equal to 0.836. We also notice that the standard errors σ̂ (µ̂) and σ̂ (σ̂) of the
estimated parameters are higher for the SMM estimator than for the GMM estimator be-
cause of the factor τ . However, these results are based on the asymptotic theory. When
the number of observations is low (n = 10), the approximation of the covariance matrix
by Equation (10.22) is not valid. For instance, if we calculate the standard errors by cal-
culating the standard deviation of the MC estimates, we obtain the values σ̂MC (µ̂) and
σ̂MC (σ̂) given in the last two columns. When the number of simulations is large and the
number of observations is small, the asymptotic theory then overestimates the standard
errors. Indeed, in the case where nS = 200, the MC standard errors are σ̂MC (µ̂) = 0.070
and σ̂MC (σ̂) = 0.062 whereas we obtain σ̂ (µ̂) = 0.315 and σ̂ (σ̂) = 0.172 calculated with
Equation (10.22).

In Chapter 5 dedicated to the operational risk, we have seen how to estimate the parame-
ters θ of the severity distribution with the method of maximum likelihood or the generalized
method of moments. We recall that {x1, . . . , xT } is the sample of losses collected for a given
cell of the operational risk matrix. If we assume that the losses are log-normal distributed,
the orthogonal conditions are: hi,1 (θ) = xi − eµ+ 1

2σ
2

hi,2 (θ) =
(
xi − eµ+ 1

2σ
2
)2
− e2µ+σ2

(
eσ

2 − 1
)

Let us now assume that we do not collect individual losses but aggregated losses. In this
case, the sample is defined by {(n1, x1) , . . . , (nT , xT )} where ni is the number of individual
losses and xi is the aggregated loss for the ith observation. Since the individual losses are
independent, the orthogonal conditions become: hi,1 (θ) = xi − nieµ+ 1

2σ
2

hi,2 (θ) =
(
xi − nieµ+ 1

2σ
2
)2
− nie2µ+σ2

(
eσ

2 − 1
)

We have seen that data collection in operational risk is impacted by truncation, because
data are recorded only when their amounts are higher than a threshold H. On page 320, we
were able to calculate the theoretical moments of truncated individual losses. However, it
is impossible to find the theoretical moments of truncated aggregated losses and the gener-
alized method of moments cannot be applied. Nevertheless, we can consider the simulated
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method of moments with the following orthogonal conditions:{
hi,1 (θ) = xi − m̂i,1 (θ)
hi,2 (θ) = (xi − m̂i,1 (θ))2 − m̂i,2 (θ)

where:

m̂i,1 (θ) = 1∑nS
s=1 1 {Xi (s) ≥ H}

nS∑
s=1

1 {Xi (s) ≥ H} ·Xi (s)

and:

m̂i,2 (θ) = 1∑nS
s=1 1 {Xi (s) ≥ H}

nS∑
s=1

1 {Xi (s) ≥ H} ·X2
i (s)− m̂2

i,1 (θ)

In the case of the log-normal distribution, each aggregated loss is simulated as follows:

Xi (s) =
ni∑
j=1

eµ+σ·u(s)

where u(s) ∼ N (0, 1). Let us consider an example with 20 observations: 1 404, 1 029, 2 607,
2 369, 2 163, 2 730, 4 045, 1 147, 2 319, 2 521, 2 021, 1 528, 1 715, 2 547, 1 039, 1 853, 3 515,
1 273, 2 048 and 2 744. Each observation corresponds to an aggregated sum of 5 individual
losses11. If individual losses are log-normal distributed, we obtain the following results:
µ̂GMM = 5.797, σ̂GMM = 0.718, µ̂SMM = 5.796 and σ̂SMM = 0.722. We notice that the
SMM estimates are close to the GMM estimates12. If we now assume that the aggregated
losses have been collected above the threshold H = 1 000, we obtain µ̂SMM = 5.763 and
σ̂SMM = 0.745. Therefore, the effect of truncation has changed the estimated parameters.

10.1.4 Non-parametric estimation
In the previous paragraphs, we specify a parametric model, that is a statistical model

which depends on a parameter vector θ. Therefore, the estimation of the model consists in
estimating the parameter vector θ. Using θ̂, we can determine some quantity of interest, for
example probabilities, quantiles and expectations. In the case of non-parametric models, we
directly estimate the quantity of interest without specifying a probability distribution or a
statistical model.

10.1.4.1 Non-parametric density estimation

Histogram estimator Let X be a random variable with continuous distribution function
F (x). Using the sample {x1, . . . , xn}, we can estimate F (x) by the empirical distribution
function:

F̂ (x) = 1
n

n∑
i=1

1 {xi ≤ x}

where F̂ (x) is the percentage of observations that are lower than x. If we now consider the
estimation of the density f (x) from a sample {x1, . . . , xn}, we have dF̂ (x) = f̂ (x) dx and

11We have ni = 5.
12Of course, the SMM estimates depend on the number of simulations and the seed of the random number

generators. Here, the results have been obtained with 2 000 simulations.
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we deduce that:

f̂ (x) = dF̂ (x)
dx

' F̂ (x+ h)− F̂ (x− h)
2h

= 1
n

n∑
i=1

1
2h · 1 {x− h ≤ xi ≤ x+ h}

The density estimator f̂ (x) is known as the histogram. It counts the percentage of obser-
vations that belong to the interval [x− h, x+ h]. The issue with the histogram estimator is
that the density function f̂ (x) is not smooth and is sensitive to the bandwidth h. To obtain
a continuous density, we can specify a parametric density function f (x; θ), estimate the
parameter θ by maximum likelihood and assume that f̂ (x) = f

(
x; θ̂ML

)
. By construction,

the estimator f
(
x; θ̂ML

)
is continuous, but it is biased because the statistical model f (x; θ)

is not necessarily the right model.

Kernel estimator We notice that the previous estimator f̂ (x) can be written as:

f̂ (x) = 1
nh

n∑
i=1
K
(
x− xi
h

)
(10.23)

where K is the uniform density function on [−1, 1]:

K (u) = 1
2 · 1 {−1 ≤ u ≤ 1}

K is also called a rectangular kernel. The idea is then to replace this function by other
window functions that are sufficiently smoothed and satisfy some properties (Silverman,
1986):

• K (u) ≥ 0 to ensure the positivity of the density;

•
∫∞
−∞K (u) du = 1 to verify that F̂ (∞) = 1.

Moreover, the symmetry property K (u) = K (−u) is generally added. We can then show
that:

E
[
f̂n (x)− f (x)

]
≈ h2

2 f
′′ (x)

∫ ∞
−∞

u2K (u) du

and:
var
(
f̂n (x)

)
≈ 1
nh
f (x)

∫ ∞
−∞
K2 (u) du

The bias of f̂n (x) depends then on the second moment of the kernel µ′2 (K) =∫∞
−∞ u2K (u) du whereas the variance of f̂n (x) is related to the roughness of the kernel
R (K) =

∫∞
−∞K

2 (u) du. We also notice that the bias is proportional to the curvature
f ′′ (x) and the variance is inversely proportional to the number of observations n. The
most popular kernel functions are the Gaussian kernel — we have K (u) = φ (u) and
I (u) = Φ (u) — and the Epanechnikov kernel13 — we have K (u) = 3

4 ·
(
1− u2) ·1 {|u| ≤ 1}

13The Epanechnikov kernel is often called the optimal kernel because it minimizes the mean squared error.
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and I (u) = min
( 1

4 ·
(
3u− u3 + 2

)
· 1 {u > −1} , 1

)
. The difficulty is the choice of the band-

width h since there is an arbitrage between bias and variance (Jones et al., 1996). For the
Gaussian kernel, a rule-of-thumb is h = 1.06 · σ̂ · n−1/5 where σ̂ is the standard deviation of
the sample {x1, . . . , xn}.

Remark 124 From Equation (10.23), we deduce that:

F̂ (x) =
∫ x

−∞

1
nh

n∑
i=1
K
(
t− xi
h

)
dt

= 1
n

n∑
i=1
I
(
x− xi
h

)
(10.24)

where I (u) =
∫ u
−∞K (t) dt is the integrated kernel.

In the case of a multivariate distribution function, we have:

f̂ (x1, . . . , xm) = 1
nhm

n∑
i=1
K
(
x1 − x1,i

h
, . . . ,

xm − xm,i
h

)
where K (u) is now a multidimensional kernel function14 that satisfies K (u) ≥ 0,∫
K (u) du = 1,

∫
uK (u) du = 0 and

∫
uu>K (u) du = Im. Generally, the multidimen-

sional kernel K (u) is defined as the product of univariate kernels K (u) =
∏m
j=1Kj (uj)

where Kj is the kernel for the jth marginal distribution.

FIGURE 10.5: Histogram of the weekly returns of the S&P 500 index

14We have u = (u1, . . . , um).
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An example In Figure 10.5, we have reported the histogram of weekly returns Rt of the
S&P 500 index15 for different values of h. We verify that the histogram is very sensitive to
the parameter h. We now consider the estimation of the probability density function of Rt.
For that, we consider 4 statistical models:

1. the first model assumes that weekly returns are Gaussian;

2. the second model assumes that weekly returns are distributed according to the Stu-
dent’s t4 distribution;

3. the third model is a variant of the second model, but the Student’s t distribution has
2 degrees of freedom;

4. finally, we use a Gaussian kernel with h = 1% for the fourth model.

Results are reported in Figure 10.6. In order to illustrate the model choice on distribution
tails, we consider the order statistic 1 : 52, meaning that we estimate the density function of
the worst weekly return over one year. On page 755, we show that the distribution function
of the random variable X1:n is equal to F1:n (x) = 1 − (1− F (x))n. We deduce that the
estimated probability density function is equal to:

f̂1:n (x) = n
(

1− F̂ (x)
)n−1

f̂ (x)

Results are given in Figure 10.7. We notice that we observe significant differences between
the four models. Since the non-parametric estimation is less biased, we conclude that the
Student’s t4 distribution is the more appropriate parametric distribution function.

FIGURE 10.6: Density estimation of the weekly returns of the S&P 500 index

15The study period is January 2000 – December 2015.
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FIGURE 10.7: Density estimation of the worst weekly return over one year

10.1.4.2 Non-parametric regression

Nadaraya-Watson regression On page 603, we have shown that the conditional expec-
tation problem is to find the function m (x) such that:

y = E [Y | X = x] = m (x)

In the case where X is a scalar random variable, it follows that:

m (x) =
∫
R
yfy|x (y;x) dy

=
∫
R
y
fx,y (x, y)
fx (x) dy

=
∫
R yfx,y (x, y) dy

fx (x)

where fx,y is the joint density of (X,Y ), fx is the density of X and fy|x is the conditional
density of Y given that X = x. We deduce that an estimator of m (x) is:

m̂ (x) =
∫
R y f̂x,y (x, y) dy

f̂x (x)

=

∑n

i=1
Kx
(
x− xi
h

)
yi∑n

i=1
Kx
(
x− xi
h

)
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because we have:∫
R
yf̂x,y (x, y) dy = 1

nh2

∫
R
y

n∑
i=1
Kx,y

(
x− xi
h

,
y − yi
h

)
dy

= 1
nh2

∫
R
y

n∑
i=1
Kx
(
x− xi
h

)
Ky
(
y − yi
h

)
dy

= 1
nh

n∑
i=1
Kx
(
x− xi
h

)
1
h

∫
R
yKy

(
y − yi
h

)
dy

= 1
nh

n∑
i=1
Kx
(
x− xi
h

)
yi

and:

f̂x (x) = 1
nh

n∑
i=1
Kx
(
x− xi
h

)
Finally, we deduce that m̂ (x) is a weighted sum of the sample data {y1, . . . , yn} of Y :

m̂ (x) =
∑n
i=1 wi · yi∑n
i=1 wi

where the weights are the kernel values applied to the sample data {x1, . . . , xn} of X:

wi = Kx
(
x− xi
h

)
Local polynomial regression We consider the following least squares problem:

β̂0 (x) = arg min
β0∈R

n∑
i=1
Kx
(
x− xi
h

)
(yi − β0)2

The first-order condition is:
n∑
i=1
Kx
(
x− xi
h

)
(yi − β0) = 0

It follows that β̂0 (x) = m̂ (x). Therefore, the Nadaraya-Watson regression is a weighted
regression with a constant:

yi = β0 + ui

where wi (x) = Kx
(
x− xi
h

)
. Since the weights wi (x) depend on the value x, β̂0 depends

also on the value x and we use the notation β̂0 (x).
We can extend the local constant model to the local polynomial model:

yi = β0 +
p∑
j=1

βj (xi − x)j + ui

The least squares problem becomes:

β̂ (x) = arg min
n∑
i=1
Kx
(
x− xi
h

)yi − β0 −
p∑
j=1

βj (xi − x)j
2
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We know that the WLS estimate is:

β̂ (x) =
(
X>WX

)−1 X>Y

where W is a diagonal matrix with Wi,i = wi (x), Y is the column vector (y1, . . . , yn) and
X is the design matrix:

X =


1 (x1 − x) (x1 − x)2 · · · (x1 − x)p

1 (x2 − x) (x2 − x)2 (x2 − x)p
. . .

1 (xn − x) (xn − x)2 (xn − x)p


Moreover, we have:

E [Y | X = x] = E

β0 +
p∑
j=1

βj (X − x)j + U

∣∣∣∣∣∣X = x


= β0

We deduce that the conditional expectation is again equal to the intercept of the weighted
polynomial regression:

m̂ (x) = β̂0 (x)

Application to quantile regression On page 613, we have seen that the quantile re-
gression:

Pr {Y ≤ qα (x) | X = x} = α

can be formulated as a M -estimator:

q̂α (x) = β̂0 + β̂x

where: (
β̂0, β̂

)
= arg min

n∑
i=1

ρ (yi − β0 − βxi)

and ρ (u) = χα (u) = u · (α− 1 {u < 0}). Let us consider the local polynomial regression:

β̂ (x) = arg min
n∑
i=1
Kx
(
x− xi
h

)
ρ

yi − β0 −
p∑
j=1

βj (xi − x)j


We deduce that:
q̂α (x) = β̂0 (x)

To estimate the conditional quantile q̂α (x), we can then use a classical quantile regression
procedure by considering the regressor values (xi − x)j for j = 1, . . . , p and the weighting
matrix based on the kernel function.

Examples We consider the additive noise model:

y = sin (9x) + u (10.25)

where u ∼ U[−0.5,0.5]. The conditional expectation function is then m (x) = sin (9x) whereas
the conditional quantile function is qα (x) = sin (9x) +α− 1

2 . We simulate 1 000 realizations
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of Model (10.25) and estimate the functions m (x) and qα (x). In Figure 10.8, we have
reported the estimated functions m̂ (x) and q̂α (x) for different models. We notice that the
Nadaraya-Watson estimator is less efficient than the local quadratic estimator. In the case
of the quantile regression, we find that the local linear regression gives correct results when
the function is quasi-affine. When the second derivative is high enough, results are much
more questionable, and local quadratic regression seems more suitable. We obtain a similar
conclusion with the multiplicative noise model:

y = (cos (2πx− π) + 1)u (10.26)

where u ∼ U[0,1]. We have m (x) = 1
2 (cos (2πx− π) + 1) and qα (x) = α (cos (2πx− π) + 1).

In Figure 10.9, we report the estimates of the quantile regression based on 1 000 simulations.
We notice that the local quadratic quantile regression may also present some bias. This is
due to the small size of the sample (n = 1 000) compared to the quantile level (α = 90%).
Indeed, non-parametric quantile regression may need a big sample size to converge.

FIGURE 10.8: Non-parametric regression of the additive model

10.2 Time series modeling
10.2.1 ARMA process
10.2.1.1 The VAR(1) process

Let yt be a n-dimensional process and εt ∼ N (0,Σ). We define the vector autoregression
model (VAR) of order one as follows:

yt = µ+ Φyt−1 + εt (10.27)
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FIGURE 10.9: Non-parametric regression of the multiplicative model

The VaR(1) model is very interesting from a computational viewpoint because matrix cal-
culus is simple. Moreover, the computations done in this paragraph are straightforward to
extend to more complex processes like VARMA or state space models.

We say that the process is stable if the eigenvalues of Φ have modulus less than one or the
characteristic polynomial of |In − Φz| has its roots outside the unit circle. Under the stability
assumption16, the process has an infinite vector moving average (VMA) representation17:

yt = (In − Φ)−1
µ+

∞∑
i=0

Φiεt−i

To compute the covariance matrix Γy (k) = E
[
yty
>
t−k
]
− E [yt]E

[
y>t−k

]
, we first calculate

Γy (0) by using the relationship:

vec (Γy (0)) = (In2 − Φ⊗ Φ)−1 vec (Σ)

Then, we calculate Γy (k) by recursion:

Γy (k) = E
[
yty
>
t−k
]
− E [yt]E

[
y>t−k

]
= E

[
µy>t−k + Φyt−1y

>
t−k + εty

>
t−k
]
− µµ>

= ΦE
[
yt−1y

>
t−k
]

= ΦΓy (k − 1)

16We can show that the stability assumption implies the stationarity assumption (Lütkepohl, 2005).
17We have:

lim
i→∞

Φi = (In − Φ)−1
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Impulse response analysis describes the dynamic evolution of the system after a shock in
one variable. For instance, the responses to forecast errors are “the effect of an innovation of
one variable to another variable” (Lütkepohl, 2005). The matrix of responses after k periods
is Λk = Φk and we note Ψk =

∑k
j=0 Λj the matrix of cumulated responses. Sometimes, it

is better to consider normalized innovations than forecast errors. In this case, we define the
responses to orthogonal impulses by ∆k = ΦkP (Σ) and the matrix of cumulated responses
by Ξk =

∑k
j=0 ∆k where P (Σ) is the Cholesky decomposition matrix of Σ.

10.2.1.2 Extension to ARMA models

A vector ARMA(p,q) process is defined by:

yt −
p∑
i=1

Φiyt−i = βxt + εt −
q∑
i=1

Θiεt−i (10.28)

where yt is a process of dimension n and εt ∼ N (0,Σ). xt is a K × 1 vector of exogenous
variables. The dimension of matrices Φi and Θi is n×n whereas β is a matrix with dimension
n × K. The parameters p and q are the orders of the autoregressive and moving average
polynomials.

Remark 125 In the econometric literature, the process (10.28) is known as the VARMAX
model because it is a vector process and it contains exogenous variables. If the order q is
equal to zero – or Θi = 0, then we obtain a VARX model. A VMAX model corresponds to
the case p = 0 or Φi = 0. When there is no exogenous variable except a constant, we use
the terms VARMA, VAR and VMA. The terms ARMAX, ARMA, AR and MA are often
reserved for the one-dimensional case n = 1.

Let us consider the case where exogenous variables reduce to a constant. We have:(
In −

p∑
i=1

ΦiLi
)
yt = µ+

(
In −

q∑
i=1

ΘiL
i

)
εt (10.29)

where L is the lag operator. We can write this process as a VAR(1) model:

αt = c+ Tαt−1 + ut (10.30)

where αt = (yt, . . . , yt−p+1, εt, . . . , εt−q+1) is a process of dimension n (p+ q). The residuals
ut are equal to Rεt where the matrix R is equal to

(
In 0 · · · 0 In 0 · · · 0

)>
and has the dimension n (p+ q) × n. The vector c is equal to

(
µ 0 · · · 0

)>. The
dimension of the matrix T is n (p+ q)× n (p+ q) and we have:

T =



Φ1 · · · Φp−1 Φp Θ1 · · · Θq−1 Θq

In 0 0 0
. . .

...
... 0

0 · · · In 0 0
0 · · · 0 0 0 0 · · · 0

0 In 0 0

0
...

. . .
...

0 0 In 0
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We also notice that yt = Zαt where the matrix Z =
(
In 0 · · · 0

)
has the dimension

n× n (p+ q). Using the VAR(1) representation, we deduce easily the expression of autoco-
variance matrices, the responses to forecast errors or the responses to orthogonal impulses
of αt and yt.

We can also write the previous VARMA process as a state space model:{
yt = Zαt
αt = Tαt−1 + c+Rεt

(10.31)

This representation is very useful since the analysis of state space models also applies to
VARMA process. For instance, it is standard to estimate the parameters of VARMA models
by using the Kalman filter, which is presented below. For a VAR(p) process, it is better to
use closed-form formulas. The VAR(p) process is defined as follows:

yt = µ+ Φ1yt−1 + . . .+ Φpyt−p + εt

Using the notations Y =
(
y1 · · · yT

)
, B =

(
µ Φ1 · · · Φp

)
, Xt =

(1, yt, . . . , yt−p+1) and X =
(
X0 X1 · · · XT−1

)
, Lütkepohl (2005) showed that:

B̂ = Y X>
(
XX>

)−1

and:
Σ̂ = 1

T −Kp− 1Y
(
IT −X>

(
XX>

)−1
X
)
Y >

10.2.2 State space models
10.2.2.1 Specification and estimation of state space models

A state space model (SSM) includes a measurement equation and a transition equation.
In the measurement equation, we define the relationship between an observable system and
state variables, whereas the transition equation describes the dynamics of state variables.
Generally, the state vector αt is generated by a Markov linear process18:

αt = Ttαt−1 + ct +Rtηt (10.32)

where αt is a m × 1 vector, Tt is a m ×m matrix, ct is a m × 1 vector and Rt is a m × p
matrix. In the case of a linear SSM, the measurement equation is given by:

yt = Ztαt + dt + εt (10.33)

where yt is a n-dimensional time series, Zt is a n×m matrix, dt is a n× 1 vector. We also
assume that ηt and εt are two independent white noise processes of dimension p and n with
covariance matrices Qt and Ht.

Kalman filtering In the state space model, the variable yt is observable, but it is generally
not the case of the state vector αt. The Kalman filter is a statistical tool to estimate the
distribution function of αt. Let α0 ∼ N (α̂0, P0) the initial position of the state vector. We
note α̂t|t (or α̂t) and α̂t|t−1 the optimal estimators of αt given the available information
until time t and t− 1:

α̂t|t = E [αt | Ft]
α̂t|t−1 = E [αt | Ft−1]

18The presentation is based on the book of Harvey (1990).
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Pt|t (or Pt) and Pt|t−1 are the covariance matrices associated to α̂t|t and α̂t|t−1:

Pt|t = E
[(
α̂t|t − αt

) (
α̂t|t − αt

)>]
Pt|t−1 = E

[(
α̂t|t−1 − αt

) (
α̂t|t−1 − αt

)>]
These different quantities are calculated thanks to the Kalman filter, which consists in a
recursive algorithm19 (Harvey, 1990):

α̂t|t−1 = Ttα̂t−1|t−1 + ct
Pt|t−1 = TtPt−1|t−1T

>
t +RtQtR

>
t

ŷt|t−1 = Ztα̂t|t−1 + dt
vt = yt − ŷt|t−1
Ft = ZtPt|t−1Z

>
t +Ht

α̂t|t = α̂t|t−1 + Pt|t−1Z
>
t F
−1
t vt

Pt|t =
(
Im − Pt|t−1Z

>
t F
−1
t Zt

)
Pt|t−1

where ŷt|t−1 = E [yt | Ft−1] is the best estimator of yt given the available information until
time t− 1, vt is the innovation process and Ft is the associated covariance matrix.

Remark 126 Harvey (1990) showed that we can directly calculate α̂t+1|t from α̂t|t−1:

α̂t+1|t = (Tt+1 −KtZt) α̂t|t−1 +Ktyt + ct+1 −Ktdt

where Kt = Tt+1Pt|t−1Z
>
t F
−1
t is the gain matrix. It follows that:

α̂t+1|t = Tt+1α̂t|t−1 + ct+1 +Kt

(
yt − Ztα̂t|t−1 − dt

)
By recognizing the innovation process vt, we obtain the following innovation representation:{

yt = Ztα̂t|t−1 + dt + vt
α̂t+1|t = Tt+1α̂t|t−1 + ct+1 +Ktvt

Kalman smoothing Let t? ≤ T be a date before the final observation of the sample. We
note:

α̂t|t? = E [αt | Ft? ]
and:

Pt|t? = E
[(
α̂t|t? − αt

) (
α̂t|t? − αt

)>]
for all t ≤ t?. By construction, α̂t?|t? and Pt?|t? are exactly equal to the quantities calculated
with the Kalman filter. We can show that the smoothed estimates for t < t? are given by
the Kalman smoother algorithm:

S = Pt|tT
>
t+1P

−1
t+1|t

α̂t|t? = α̂t|t + S
(
α̂t+1|t? − α̂t+1|t

)
Pt|t? = Pt|t + S

(
Pt+1|t? − Pt+1|t

)
S>

While the Kalman filter is a forward algorithm20, the Kalman smoother is a backward
algorithm21.

19The algorithm is initialized with values α̂0|0 = α̂0 and P0|0 = P0.
20The algorithm proceeds recursively, starting with values α̂0 and P0 at the starting date t0, and moving

forward in time toward the ending date.
21The algorithm proceeds recursively, starting with values α̂t?|t? and Pt?|t? at the ending date t?, and

moving backward in time toward the initial date.
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Estimation of unknown parameters In many cases, the state space model depends on
certain parameters that are unknown. Given a set θ of values for these unknown parameters,
the Kalman filter may be applied to estimate the state vector αt. We have:

vt ∼ N (0, Ft)

where vt = yt− ŷt|t−1 is the innovation at time t and Ft = ZtPt|t−1Z
>
t +Ht is the covariance

matrix. If we change θ and we run the Kalman filter, we will obtain other values of vt and
Ft, meaning that vt and Ft depend on θ. This is why we can write vt (θ) and Ft (θ). We
deduce that the likelihood function of the sample {y1, . . . , yT } is equal to:

` (θ) = −nT2 ln (2π)− 1
2

T∑
t=1

(
ln |Ft (θ)|+ vt (θ)> Ft (θ)−1

vt (θ)
)

We can then estimate the vector θ of unknown parameters by the method of maximum
likelihood:

θ̂ = arg max ` (θ)

Once the ML estimate θ̂ is found, we can run again22 the Kalman filter to estimate the
other quantities α̂t|t−1, α̂t|t, Pt|t−1 and Pt|t.

Time-invariant state space model We consider the time-invariant model:{
yt = Zαt + d+ εt
αt = Tαt−1 + c+Rηt

(10.34)

where εt ∼ N (0, H) and ηt ∼ N (0, Q). If the state space model converges to a steady
state, the estimators (α̂∞, P∞) must satisfy the following equations:{

α̂∞ = T α̂∞ + c
P∞ = TP∞T

> +RQR>

It follows that the solution is:{
α̂∞ = (Im − T )−1

c

vec (P∞) = (Im2 − T ⊗ T )−1 vec
(
RQR>

) (10.35)

where α̂∞ and P∞ are the unconditional mean and covariance matrix of αt. Without any
knowledge of the initial position α0, the best way to define α̂0 and P0 is then to use the
steady state: {

α̂0 = α̂∞
P0 = P∞

In many state space models, the matrices T , c, R and Q depend on unknown parameters
θ, implying that α̂∞ and P∞ also depend on θ. This means that when maximizing the
log-likelihood function, the Kalman filter is initialized by values of α̂0 and P0 that depend
on θ. This is the main difference with time-varying state space model since the Kalman
filter is initialized by fixed values of α̂0 and P0.

We consider the AR(1) process yt = µ + φ1yt−1 + εt where εt ∼ N
(
0, σ2

ε

)
. The state

space form is: {
yt = Zαt
αt = Tαt−1 + c+Rηt

22We say again, because computing the log-likelihood function requires one Kalman filter run, implying
that many Kalman filter runs are used for maximizing the log-likelihood function.
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where αt = (yt, εt), Z =
(

0 1
)
, T =

(
φ1 0
0 0

)
, c =

(
µ
0

)
, R =

(
1
1

)
and Q = σ2

ε .

It follows that:

α̂∞ = (I2 − T )−1
c

=
(

1− φ1 0
0 1

)−1(
µ
0

)
= 1

1− φ1

(
µ
0

)
and:

vec (P∞) = (I4 − T ⊗ T )−1 vec
(
RQR>

)
=


1− φ2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1

σ2
ε

σ2
ε

σ2
ε

σ2
ε



=


(
1− φ2

1
)−1

σ2
ε

σ2
ε

σ2
ε

σ2
ε


We deduce that the Kalman filter must be initialized with:

α̂0 =
( µ

1− φ1
0

)

and:

P0 = σ2
ε

 1
1− φ2

1
1

1 1


More generally, for an ARMA(p,q) process, we calculate α̂0 and P0 by using Equation
(10.35) with the SSM form given on page 647.

Since the SSM (10.34) can be viewed as a VaR(1) process, we can easily calculate the
autocovariance matrices Γy (k) = cov (yt, yt−k). We have Γy (k) = ZT kΓy (0)Z> where
Γy (0) = P∞. We also deduce that the responses to forecast errors and orthogonal impulses
are equal to Λk = ZT kR and ∆k = ZT kRP (Q) where P (Q) is the Cholesky decomposition
matrix of Q. It follows that the long-term multipliers are Ψ∞ = Z (I − T )−1

R and Ξ∞ =
Z (I − T )−1

RP (Q).

10.2.2.2 Some applications

The recursive least squares We consider the linear model yt = x>t β + ut where xt
is a vector of K exogenous variables and ut ∼ N

(
0, σ2). This model corresponds to the

following state space model: {
yt = x>t βt + ut
βt = βt−1

where βt is the state vector. Using the Kalman filter, we obtain β̂t|t−1 = β̂t−1|t−1, Pt|t−1 =
Pt−1|t−1, ŷt|t−1 = x>t β̂t|t−1, vt = yt − ŷt|t−1 and Ft = x>t Pt|t−1xt + σ2. The updating
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equations are: {
β̂t|t = β̂t|t−1 + Pt|t−1xtF

−1
t vt

Pt|t =
(
IK − Pt|t−1xtF

−1
t x>t

)
Pt|t−1

We consider the t × 1 vector Yt = (y1, . . . , yt) and the t × K matrix Xt =
(
x>1 , . . . , x

>
t

)
.

We have X>t Xt = X>t−1Xt−1 + xtx
>
t and X>t Yt = X>t−1Yt−1 + xtyt. If we assume that

Pt−1|t−1 = σ2 (X>t−1Xt−1
)−1, we deduce that:

Ft = σ2
(

1 + x>t
(
X>t−1Xt−1

)−1
xt

)
It follows that23:

Pt|t =
(
IK − Pt|t−1xtF

−1
t x>t

)
Pt|t−1

= σ2 (X>t−1Xt−1
)−1 −

σ2 (X>t−1Xt−1
)−1

xtx
>
t

(
X>t−1Xt−1

)−1
σ2

σ2
(

1 + x>t
(
X>t−1Xt−1

)−1
xt

)
= σ2

((
X>t−1Xt−1

)−1 − λtλ
>
t

1 + λ>t xt

)
= σ2 (X>t Xt

)−1

where λt =
(
X>t−1Xt−1

)−1
xt. This proves that the assumption Pt = σ2 (X>t Xt

)−1 is true.
Since we have:

β̂t|t = β̂t|t−1 +
(
X>t−1Xt−1

)−1
xt

vt
1 + λ>t xt

the Kalman filter reduces to the following set of equations:

vt = yt − x>t β̂t−1

λt =
(
X>t−1Xt−1

)−1
xt

Ft = σ2 (1 + λ>t xt
)

β̂t = β̂t−1 + Pt−1xtF
−1
t vt

Pt = Pt−1 −
(
1 + λ>t xt

)−1
λtλ
>
t

where β̂t = β̂t|t and Pt = Pt|t. These equations define exactly the system of the recursive
least squares (Spanos, 1986) and avoid the inversion of matrices X>t Xt to compute the RLS
estimates β̂t =

(
X>t Xt

)−1
X>t Yt for t = 1, . . . , T .

At the terminal date, we have:

β̂T = β̂T |T = β̂OLS

Since we have S = Pt|tT
>
t+1P

−1
t+1|t = PtP

−1
t+1|t = IK , the Kalman smoother gives:

β̂t|T = β̂t|t +
(
β̂t+1|T − β̂t+1|t

)
= β̂t+1|T

and:
Pt|T = Pt|t +

(
Pt+1|T − P t+1|t

)
= Pt+1|T

23The last identity is obtained thanks to the Sherman-Morrison-Woodbury formula. We have:(
X>t Xt

)−1
=
(
X>t−1Xt−1

)−1
−

λtλ>t
1 + λ>t xt
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We conclude that β̂t|T = β̂OLS =
(
X>T XT

)−1
X>T YT and Pt|T = cov

(
β̂OLS

)
=

σ2 (X>T XT

)−1. These results are easy to understand because the best estimator given all
the information is the OLS estimator applied to the full sample.

In order to illustrate the benefits of recursive least squares, we simulate the following
model:

yt =
{

2 + t+ 3xt + ut if t ≤ 100
10 + t+ 3xt + ut if t > 100

where εt ∼ N (0, 1). The exogenous variable xt is simulated from the distribution function
U[0,5]. In Figure 10.10, we report the RLS estimated values of the constant ct of the linear
model yt = ct + βtxt + ut. We observe a behavioral change of the estimate when t > 100. If
we consider the evolution of the innovation process vt and the corresponding 99% confidence
interval, we verify a structural change in the model. We generally identify trend breaks by
using CUSUM and CUSUMSQ tests (Brown et al., 1975). Let wt =

(
1 + λ>t xt

)−1/2
vt be the

normalized innovation. Under the assumption H0 : βt = βt−1, the CUSUM statistic defined
by Wt = s−1∑t

i=1 wi where s2 = (T −K)−1∑T
t=1

(
yt − x>t β̂t

)2
follows the distribution

function N (0, t−K). The CUSUMSQ statistic corresponds to Vt =
∑t
i=1 w

2
i

/∑T
i=1 w

2
i

and has a beta distribution B ((T − t) /2, (t−K) /2) under H0.

FIGURE 10.10: CUMSUM test and recursive least squares

Structural time series models With the Kalman filter, we can estimate unobserved
components. Let us consider the deterministic trend model:{

yt = µt + εt
µt = β · t
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where εt ∼ N
(
0, σ2

ε

)
. Estimating the trend µt is equivalent to estimate the parameter β by

ordinary least squares and set µ̂t = β̂ · t. We notice that the previous model can be written
as: {

yt = µt + εt
µt = µt−1 + β

A way to introduce a stochastic trend is to add a noise ηt in the trend equation:{
yt = µt + εt
µt = µt−1 + β + ηt

where ηt ∼ N
(
0, σ2

η

)
. This model is called the local level (LL) model. Using the SSM

notations, we have the following correspondence: Zt = 1, dt = 0, Ht = σ2
ε , αt = µt, Tt = 1,

ct = β and Qt = σ2
η. Once the parameters β, σε and ση are estimated by the method of

maximum likelihood, we estimate µ̂t|t and µ̂t|t−1 by using the Kalman filter. Let us now
assume that the slope of the trend is also stochastic:{

µt = µt−1 + βt−1 + ηt
βt = βt−1 + ζt

where ζt ∼ N
(

0, σ2
ζ

)
. We obtain the local linear trend (LLT) model. The corresponding

SSM form is:
yt =

(
1 0

)( µt
βt

)
+
(

0
0

)
+ εt(

µt
βt

)
=
(

1 1
0 1

)(
µt−1
βt−1

)
+
(

0
0

)
+
(

1 0
0 1

)(
ηt
ζt

)
where Ht = σ2

ε and Qt = diag
(
σ2
η, σ

2
ζ

)
. With the Kalman filter, we both estimate the

stochastic trend µt and the stochastic slope βt. We now consider that two ARMA(1,1) time
series y1,t and y2,t have a common component ct: y1,t = φ1y1,t−1 + β1ct−1 + ε1,t − θ1ε1,t−1

y2,t = φ2y2,t−1 + β2ct−1 + ε2,t − θ2ε2,t−1
ct = ct−1 + ε3,t

We obtain the following state space model:

(
y1,t
y2,t

)
=
(

1 0 0 0 0
0 1 0 0 0

)
y1,t
y2,t
ct
ε1,t
ε2,t


where: 

y1,t
y2,t
ct
ε1,t
ε2,t

 =


φ1 0 β1 −θ1 0
0 φ2 β2 0 −θ2
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




y1,t−1
y2,t−1
ct−1
ε1,t−1
ε2,t−1

+


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0


 ε1,t

ε2,t
ε3,t
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We notice that the state vector contains two observed variables (y1,t and y2,t) and three
unobserved variables (ct, ε1,t and ε2,t).

Remark 127 These different models have been popularized by Harvey (1990) and are
known as structural time series model (STSM). The reader will find additional materials
on these models on page 679.

Time-varying parameters If we assume that the beta coefficients are time-varying, the
linear regression model has the following SSM form:{

yt = x>t βt + ut
βt = βt−1 + ηt

where ut ∼ N
(
0, σ2

u

)
and ηt ∼ N (0,Σ). When the initial position is β0 ∼ N

(
β̂0, P0

)
, the

Kalman filter equations are β̂t|t−1 = β̂t−1|t−1, Pt|t−1 = Pt−1|t−1 + Σ, vt = yt − x>t β̂t|t−1,
Ft = x>t Pt|t−1xt + σ2

u, β̂t|t = β̂t|t−1 +
(
Pt|t−1
Ft

)
xtvt and Pt|t =

(
Im −

(
Pt|t−1
Ft

)
xtx
>
t

)
Pt|t−1.

Let us now multiply the parameters σ2
u, Σ and P0 by the scalar λ. The Kalman filter becomes:

β̂′t|t−1 = β̂′t−1|t−1, P ′t|t−1 = P ′t−1|t−1 + λΣ, v′t = yt − x>t β̂
′
t|t−1, F ′t = x>t P

′
t|t−1xt + λσ2

u,

β̂′t|t = β̂′t|t−1 +
(
P ′t|t−1
F ′t

)
xtv
′
t, P ′t|t =

(
Im −

(
P ′t|t−1
F ′t

)
xtx
>
t

)
P ′t|t−1. We obtain the following

matching: β̂′t|t−1 = β̂t|t−1, P ′t|t−1 = λPt|t−1, v′t = vt, F ′t = λFt, β̂′t|t = β̂t|t and P ′t|t = λPt|t.
This means that the scaling parameter λ has no impact on the state estimates β̂t|t−1 and
β̂t|t.

In this model, the parameters σ2
u and Σ are unknown and can be estimated by the

method of maximum likelihood. The log-likelihood function is equal to:

` (θ) = −nT2 ln (2π)− 1
2

T∑
t=1

(
lnFt + v2

t

Ft

)
where θ =

(
σ2,Σ

)
. Maximizing the log-likelihood function requires specifying the initial

conditions β̂0 and P0, which are not necessarily known. It is a bad idea to consider that
β̂0 and P0 are also unknown parameters and to perform the maximization with respect to
θ =

(
σ2,Σ, β̂0, P0

)
. Generally, this approach does not converge. It is better to try different

initial conditions and to test their impact on the ML estimates.
Let us consider an illustration provided by Roncalli and Weisang (2009). They suppose

that a fund manager allocates between the MSCI USA index and the MSCI EMU index.
The monthly performance Rt of his portfolio is equal to:

Rt = w
(USA)
t ·R(USA)

t +
(

1− w(USA)
t

)
·R(EMU)

t

where R(USA)
t and R

(EMU)
t are the monthly returns of MSCI USA and EMU indices, and

w
(USA)
t and w

(EMU)
t = 1 − w

(USA)
t are the corresponding monthly allocations. In Figure

10.11, we report an example of the dynamic allocation and the cumulative performance of
the portfolio. The investor generally does not know the allocation process

(
w

(USA)
t , w

(EMU)
t

)
since he only observes the performance of the fund and the different components. Estimating
the implied exposures is known as a tracking problem. In our example, we can specify the
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following state space model:
Rt =

(
R

(USA)
t R

(EMU)
t

)( β
(USA)
t

β
(EMU)
t

)
+ ut(

β
(USA)
t

β
(EMU)
t

)
=
(

β
(USA)
t−1

β
(EMU)
t−1

)
+ ηt

where ut ∼ N
(
0, σ2

u

)
and ηt ∼ N (0,Σ). Since we have simulated the allocation model in

Figure 10.11, we can estimate the parameters σ2
u and Σ. By construction, σ̂2

u is equal to zero
and Σ̂ is the empirical covariance matrix24 between w(USA)

t −w(USA)
t−1 and w(EMU)

t −w(EMU)
t−1 .

In the first panel in Figure 10.12, we have reported the allocation β̂(USA)
t estimated by the

Kalman filter25. Generally, Σ is specified as a diagonal matrix implying that the parameter
changes are independent:

E [(βj,t − βj,t−1) (βk,t − βk,t−1)] = 0 if j 6= k

This is the standard approach when specifying a time-varying parameter model. In this
case, we obtain the second panel. The results are less precise, because we don’t take into
account the negative correlation between w

(USA)
t − w(USA)

t−1 and w
(EMU)
t − w(EMU)

t−1 . In the
third panel, we estimate σ2

u and Σ by the method of maximum likelihood. Again, the results
are less robust because we specify a diagonal matrix for Σ. In the last panel, we consider a
variant of the previous model:{

Rt −R(EMU)
t =

(
R

(USA)
t −R(EMU)

t

)
β

(USA)
t + ut

β
(USA)
t = β

(USA)
t−1 + ηt

The idea is to transform the set of correlated exogenous variables into a set of quasi-
independent exogenous variables. This technique is frequently used in financial tracking
problems. In this case, the results are very good (see the fourth panel in Figure 10.12).

10.2.3 Cointegration and error correction models
10.2.3.1 Nonstationarity and spurious regression

Let us consider a random walk process:

yt = yt−1 + εt

where εt ∼ N
(
0, σ2

ε

)
. yt is a nonstationary AR(1) process. Since the lag polynomial of yt

is equal to A (L) = 1− L, we deduce that the root associated to the equation A (z) = 0 is
equal to one, and we say that yt has a unit root. We also note yt ∼ I (1).

Let us now consider two time series (xt, yt) generated by the following bivariate process:{
xt = xt−1 + ηt
yt = yt−1 + εt

24We obtain:
Σ̂ =

(
57.9848 −57.9848
−57.9848 57.9848

)
× 10−4

25We assume that the initial conditions are β̂0 = (50%, 50%) and P0 = 0.
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FIGURE 10.11: The tracking problem

FIGURE 10.12: Estimation of the dynamic allocation by Kalman filtering
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where εt ∼ N
(
0, σ2

ε

)
and ηt ∼ N

(
0, σ2

η

)
are two independent white noise processes. We are

interested in the linear regression:

yt = β0 + β1xt + ut

By construction, we know that β1 is equal to zero because xt and yt are two independent
processes. We can also consider the alternative linear model:

yt − yt−1 = β0 + β1 (xt − xt−1) + ut

In Figure 10.13, we have reported the probability density function26 of the OLS estimator
β̂1. We notice that the linear regression using the level or the first-difference does not lead
to the same results. For instance, there is a 20% probability that β̂1 exceeds 0.5 when
using variables in levels. In these cases, we can conclude that yt is related to xt, but this
relationship is spurious (Granger and Newbold, 1974). More generally, we can have the
impression that there is a strong relationship between xt and yt because they both exhibit
a trend even if they are not correlated. The spurious regression phenomenon particularly
occurs when the processes are not stationary.

FIGURE 10.13: Probability density function of β̂1 in the case of a spurious regression

10.2.3.2 The concept of cointegration

Nonstationary processes are not limited to the random walk without drift. For example,
the process can incorporate a deterministic or a stochastic trend. If we consider the previous
process yt = yt−1+εt, the first difference yt−yt−1 is stationary and we will say that yt−yt−1

26We simulate (xt, yt) for t = 1, . . . , 100 by assuming that x0 = y0 = 100, and σ2
ε = σ2

η = 1. For each
simulation, we compute the OLS estimate for the two models. We run 5 000 Monte Carlo replications and
estimate the probability density function of β̂1 by using the non-parametric kernel approach.
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is integrated of order zero: yt−yt−1 ∼ I (0). More generally, a process yt is called integrated
of order one if yt − yt−1 is stationary. Therefore, we have the following property:

yt ∼ I (1)⇒ yt − yt−1 ∼ I (0)

We can extend the concept of integration to an order d > 1:

yt ∼ I (d)⇒ (1− L)d yt ∼ I (0)

For instance, yt is integrated of order two if yt − yt−1 is integrated of order one and
(yt − yt−1)− (yt−1 − yt−2) is integrated of order zero.

A n-dimensional time series yt = (y1,t, . . . , yn,t) is said to be cointegrated of order (d1, d2)
and we note yt ∼ CI (d1, d2) if each component is I (d1) and there are linear combinations27
β>yt that are integrated of an order d2 where d2 < d1. In what follows, we restrict the
analysis to d1 = 1 and d2 = 0, which is the most frequent case in econometrics:{

yt ∼ I (1)
β>yt ∼ I (0) ⇒ yt ∼ CI (1, 0)

From an economic point of view, this implies that β>yt forms a long-run equilibrium: the
variables yt are nonstationary, but are related because a linear combination is stationary.
An example is given in Figure 10.14. The three variables y1,t, y2,t and y3,t are integrated of
order one and exhibit some trends. However, the linear combination zt = 2y1,t − y2,t − y3,t
is stationary and moves around its mean, which is equal to 10. Therefore, it is certainly
difficult to predict the three univariate time series, because they are nonstationary. It is
easier to forecast the combination zt, because it is stationary and returns to its mean in the
long-run.

Let us consider the bivariate process (xt, yt) where xt ∼ I (1) and yt ∼ I (1). The linear
regression yt = β0 + β1xt + ut implies that zt = yt − β1xt = β0 + ut can be integrated
of order zero or one. If zt ∼ I (1), there is no long-run relationship between xt and yt
because zt is nonstationary. The knowledge of the process xt does not help to understand
where the process yt is located. On the contrary, if zt ∼ I (0), there is a long-run stationary
relationship between xt and yt. On the long-run, shocks to xt and yt have permanent effects,
but zt can only deviate far from its mean in the short-run. zt is also called the equilibrium
error. In economics, a famous example is the theory of the purchasing power parity (PPP).
According to the law of one price, commodity prices must be the same in two different
countries:

Pi = SP ?i

where Pi and P ?i are the price of commodity i in the home and foreign economy, and S
is the nominal exchange rate. Purchasing power parity is the application of the law of one
price to a large basket of goods:

Pt = StP
?
t

where Pt and P ?t are the domestic and foreign prices of the basket, and St is the nominal
exchange rate at time t. By taking the logarithm, we obtain:

pt = st + p?t

where pt = lnPt, p?t = lnP ?t and st = lnSt. In practice, market frictions, transportation
costs, taxes, etc. explain that short-run deviations from PPP are large, but exchange rates
tend toward PPP in the long run. To test this theory, econometricians demonstrate that
pt ∼ I (1), st ∼ I (1), and p?t ∼ I (1), but (pt, st, p?t ) is cointegrated.

27We have β 6= 0.
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FIGURE 10.14: Illustration of the cointegration

Remark 128 If yt has n > 2 components, we can have several cointegration relationships.
If there are r independent cointegrated vectors with r ≤ n− 1, yt is said to be cointegrated
of order r. β is then a matrix of dimension n× r, whose columns form a basis for the space
of cointegrating vectors. We consider the following process: y1,t = y2,t − 0.5 · y3,t + ε1,t

y2,t = 0.4 · y3,t + ε2,t
y3,t = y3,t−1 + ε3,t

where ε1,t, ε2,t and ε3,t are three independent white noise processes. It is obvious that y1,t ∼
I (1), y2,t ∼ I (1), and y3,t ∼ I (1). Moreover, we have:

z1,t = y1,t − y2,t + 0.5 · y3,t ∼ I (0)

and:
z2,t = y2,t − 0.4 · y3,t ∼ I (0)

The rank r is then equal to 2 and we have:

β =

 1 0
−1 1

0.5 −0.4


10.2.3.3 Error correction model

We consider the bivariate example:

yt = a1yt−1 + a2yt−2 + µ+ b1xt + b2xt−1 + εt
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where yt is an AR(2) process that depends on the lags of xt. We deduce that:

∆yt = (a1 − 1) yt−1 + a2yt−2 + µ+ b1xt + b2xt−1 + εt

= (a1 + a2 − 1) yt−1 − a2∆yt−1 + µ+ b1∆xt + (b1 + b2)xt−1 + εt

= −a2∆yt−1 + µ+ b1∆xt +

(a1 + a2 − 1)
(
yt−1 −

(b1 + b2)
1− a1 − a2

xt−1

)
+ εt

= −a2∆yt−1 + µ+ b1∆xt + αzt−1 + εt

where α = a1 + a2 − 1 and zt−1 = yt−1 + α−1 (b1 + b2)xt−1. We notice that the short-
run dynamics of yt depends on the long-run equilibrium zt. More generally, if A′(L)yt =
µ+B′ (L)xt + εt, Engle and Granger (1987) show that:

A(L)∆yt = µ+B (L) ∆xt + α (yt−1 − β0 − β1xt−1) + εt

where α < 0. This model incorporates an error correction mechanism (Salmon, 1982):

• if zt−1 > 0, then yt−1 is greater than its long-run target β0 + β1xt−1, which implies
that the error correction is negative (αzt−1 < 0) and yt tends to decrease;

• if zt−1 < 0, then yt−1 is less than its long-run target β0 + β1xt−1, which implies that
the error correction is positive (αzt−1 > 0) and yt tends to increase.

The Engle-Granger model assumes that the variable yt is endogenous and the other
variable xt is exogenous. This is a restricted hypothesis. In the general n-dimensional case,
we have yt ∼ I (1) and ∆yt ∼ I (0). The vector error correction model (VECM) defines
the short-run dynamics of yt and corresponds to a VAR process that incorporates an error
correction mechanism28:

Φ (L) ∆yt = µt + αzt−1 + εt (10.36)

where zt = β>yt is the long-run equilibrium.

10.2.3.4 Estimation of cointegration relationships

The first step before estimating cointegration relationships is to verify that all the com-
ponents of yt are integrated of order one. The second step consists in testing the existence
of cointegration relationships between the different components of yt. In few cases, the coin-
tegration vector β is known and given by the economic theory. If we reject the assumption
that the residuals zt = β>yt are integrated of order one, we can then conclude that the
process yt is cointegrated and β is a cointegration vector. In other cases, we have to estimate
the cointegration relationships using the least squares approach or the method of maximum
likelihood.

28Suppose that yt is a VAR(p) process:

Φ′ (L) yt = µt + εt

If yt has a unit root, we have Φ′ (L) = Φ′ (1) + (1− L) Φ (L) and:

Φ (L) ∆yt = µt − Φ′ (1) yt−1 + εt

We deduce that αzt−1 = −Φ′ (1) yt−1 or αβ> = −Φ′ (1). This result is known as the Granger representation
theorem.
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Unit root tests The most popular test is the augmented Dickey-Fuller test (ADF) pro-
posed by Dickey and Fuller (1979, 1981). It consists in estimating the following regression
model:

∆yt = ct + φyt−1 +
p∑
k=1

φk∆yt−k + εt (10.37)

where εt is a white noise process. The original Dickey-Fuller test (DF) corresponds to the
case p = 0 whereas the ADF test includes an autoregressive component (p ≥ 1). Generally,
we consider three specifications of Equation (10.37):

1. the linear regression does not include the term ct;

2. ct is a constant: ct = µ;

3. ct is a constant plus a deterministic trend: ct = µ+ λt.

The hypotheses are H0 : φ = 0 (yt ∼ I (1)) and H1 : φ < 0 (yt ∼ I (0)). It is important
to test the three models and to specify the null and alternative hypotheses appropriately.
For instance, the third specification means that the null hypothesis is yt ∼ I (1) and the
alternative hypothesis is yt ∼ I (0) with a deterministic trend. The ADF test is a Student’s
t test:

ADF = tφ = φ̂

σ
(
φ̂
)

Depending on the specification, the critical values are noted τ (no ct), τµ (ct = µ) and
ττ (ct = µ + λt). In Table 10.9, we report the Monte Carlo critical values obtained by
David Dickey in his Ph.D. dissertation. We notice that they are different than the values
obtained for the standard t statistic. Today, critical values are calculated using the response
surface estimation approach proposed by MacKinnon (1996). This approach is very fast,
very accurate for small sample size and implemented in most econometric softwares.

TABLE 10.9: Critical values of the ADF test
Significance level 10% 5% 1%

τ −1.62 −1.94 −2.56
τµ −2.57 −2.86 −3.43
ττ −3.13 −3.41 −3.96

Remark 129 The unit root tests above are only valid if εt is white noise. The purpose of
the ADF test (p ≥ 1) is then to correct the DF test (p = 0) when the residuals are correlated
and heteroscedastic. An alternative to the ADF test is to consider the Phillips-Perron test
(PP), which is based on the linear regression associated to the Dickey-Fuller test:

∆yt = ct + φyt−1 + εt (10.38)

Phillips and Perron (1988) propose a modified statistic Zt of the Student’s t statistic that
takes into account the Newey-West long-run standard error of εt.

While ADF and PP unit root tests consider that the null hypothesis is yt ∼ I (1), the
KPSS test supposes that the null hypothesis is yt ∼ I (0). This stationary test is based on
the state space model: {

yt = ct + µt + εt
µt = µt−1 + ωt
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where ωt ∼ N
(
0, σ2

ω

)
. In this case, the stationary hypothesis is H0 : σ2

ω = 0. The KPSS
test is given by:

KPSS = T−2
∑T
t=1 S

2
t

s2 (l)

where St =
∑t
j=1 ε̂t, s2 (l) is the Newey-West long-run variance of εt with lag number l

and ε̂t is the residual yt − ĉt. As for the ADF test, Kwiatkowski et al. (1992) propose two
tests ηµ and ητ depending on the specification of ct. The critical values of these tests are
reported in Table 10.10.

TABLE 10.10: Critical values of the KPSS test
Significance level 10% 5% 1%

ηµ 0.347 0.463 0.739
ητ 0.119 0.146 0.216

Least squares estimation If the n-dimensional process yt is cointegrated, there exists
a non-zero vector β = (β1, . . . , βn) such that β>yt is stationary. Without loss of generality,
we can assume that β1 is not equal to zero, implying that β/β1 is also a cointegration
vector. Therefore, we can estimate the cointegration relationship with the following linear
regression:

y1,t = ct + β2y2,t + · · ·+ βnyn,t + ut (10.39)
and verifying the integration order of the residuals. If ut ∼ I (1), then yt is not coin-
tegrated. In the other cases, ut ∼ I (0) and the normalized cointegration vector is
β̂ =

(
1,−β̂2, . . . ,−β̂n

)
. We can then estimate the associated ECM:

Φ(1) (L) ∆y1,t = µt +
n∑
j=2

Φ(j) (L) ∆yj,t + αẑt−1 + εt

where ẑt = β̂>yt. As said previously, this two-step approach (also called the Engle-Granger
method) has two main limitations. First, it implicitly assumes that y1,t is endogenous and
(y2,t, . . . , yn,t) are exogenous. Second, it is not valid if there are multiple cointegration
relationships.

Maximum likelihood estimation If yt is a VAR (p) process:

yt = µt +
p∑
i=1

Φ′iyt−i + εt

the associated VECM is:

∆yt = µt + Πyt−1 +
p−1∑
i=1

Φi∆yt−i + εt (10.40)

where εt ∼ N (0,Σ), µt is the vector component containing deterministic terms29 (constant
and/or trends) and:

Π
(n×n)

= α
(n×r)

β>

(r×n)
(10.41)

29We have µt = µ0 or µt = µ0 + µ1 · t where µ0 and µ1 are n× 1 vectors.
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Since 0 < r = rank Π < n, yt is I (1) with r linearly independent cointegrating relationships
and n−r common stochastic trends. Given a sample {y1, . . . , yT }, the log-likelihood function
is:

` (θ) = −nT2 ln 2π − T

2 ln |Σ| − 1
2

T∑
t=1

ε>t Σ−1εt (10.42)

The ML estimate θ̂ =
(
µ̂0, µ̂1, Φ̂1, . . . , Φ̂p−1, Σ̂, Π̂

)
is obtained by maximizing the objective

function (10.42) under the constraints (10.41).
Johansen (1988, 1991) proposes two tests to determine the rank of Π. These tests are

based on the eigenvalues λ̂1 > λ̂2 > · · · > λ̂n of Π̂. Let H0 be the null hypothesis that there
are r cointegration relationships (rank Π = r) and H1 be the alternative hypothesis that
there are more than r cointegration relationships (rank Π > r). The trace test of Johansen
is defined by the likelihood ratio test:

LRtrace (r) = −2 ln Λ

= −2 ln
supH0 ` (θ)

sup ` (θ)

= −T
n∑

i=r+1
ln
(

1− λ̂i
)

where λ̂i is the ith eigenvalue of Π̂. The underlying idea is the following: if rank Π = r,
then λ̂r+1, . . . , λ̂n should be close to zero and the trace test has a small value. In contrast,
if rank Π > r, the likelihood ratio should be large. Like the ADF tests, the likelihood ratio
has not a standard chi-squared distribution and critical values must be calculated by Monte
Carlo simulations. If we would like to test the existence of r versus r + 1 cointegration
relationships, Johansen considers the maximum eigenvalue test:

LRmax (r) = −2 ln Λ

= −2 ln
supH0 ` (θ)
supH1

` (θ)

= −T ln
(

1− λ̂r+1

)
Again, Johansen (1988) provides critical values calculated by Monte Carlo simulations.

Remark 130 There are different ways to estimate the eigenvalues λ̂1 > λ̂2 > · · · > λ̂n of Π̂
(Johansen, 1988, 1991). It is interesting to notice that they are equal to the square of partial
correlations ρ̂2

1, . . . , ρ̂
2
n between ∆yt and yt−1 conditionally to ∆yt−i for i = 1, . . . , p−1 such

that ρ̂2
1 ≥ ρ̂2

2 ≥ · · · ≥ ρ̂2
n. Indeed, if we consider the two linear regressions:

∆yt = a0 +
p−1∑
i=1

Ai∆yt−i + ε0,t

and:

yt−1 = b0 +
p−1∑
i=1

Bi∆yt−i + ε1,t

we deduce from the Frish-Waugh theorem that Equation (10.40) can be written as:
ε0,t = Πε1,t + εt

Let S0,0 = T−1∑T
t=1 ε̂0,tε̂

>
0,t, S0,1 = T−1∑T

t=1 ε̂1,tε̂
>
1,t, and S1,1 = T−1∑T

t=1 ε̂1,tε̂
>
1,t be the

sample covariance matrices of var (ε0,t), cov (ε0,t, ε1,t) and var (ε1,t). Johansen (1988) shows
that the eigenvalues are the solutions of the matrix equation

∣∣λS1,1 − S>0,1S−1
0,0S0,1

∣∣ = 0.
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10.2.4 GARCH and stochastic volatility models
One of the main assumptions when estimating the time series model yt = x>t β + εt is

that the residuals have a constant variance. However, this hypothesis is not verified when
we consider economic and financial time series. For example, Figure 10.15 represents the
monthly returns Rt of the S&P 500 index between 1950 and 2017, and the square R2

t of
these returns. It is obvious that the volatility is not constant and homogenous during this
period.

FIGURE 10.15: Monthly returns of the S&P 500 index (in %)

10.2.4.1 GARCH models

Definition We consider the linear regression model:

yt = x>t β + εt

where εt = σtet and et is a centered standardized random variable N (0, 1), which is inde-
pendent from the past values εt−i. Moreover, we have:

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q (10.43)

where αi ≥ 0 for all i ≥ 0. We notice that the process εt is not autocorrelated and the
conditional variance vart−1 (εt) = E

[
ε2
t | Ft−1

]
is equal to σ2

t . Therefore, this variance
depends on the square of the past values εt−i, and is time-varying: an important shock
will increase the current conditional variance, and the probability to have high magnitude
shocks in the future. This process reproduces the stylized facts that are often observed in
financial time series, and has been introduced by Engle (1982) under the name autoregressive
conditional heteroscedasticity (or ARCH) model.
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A natural extension of the ARCH(q) model is to consider that the conditional variance
also depends on its past values:

σ2
t = α0 + γ1σ

2
t−1 + γ2σ

2
t−2 + · · ·+ γpσ

2
t−p +

α1ε
2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q (10.44)

where the polynomial (1− γ1L− · · · − γpLp) has its roots outside the unit circle. To ensure
that σ2

t > 0, wa can impose that αi ≥ 0 and γi ≥ 0. This model has been first formulated
by Bollerslev (1986), and is known as a GARCH(p,q) process. The process yt is stationary
if the following condition holds: ∑q

i=1
αi +

∑p

i=1
γi < 1

We can then show that the unconditional mean E [εt] is equal to zero, whereas the uncon-
ditional variance has the expression:

E
[
ε2
t

]
= α0

1− (
∑q
i=1 αi +

∑p
i=1 γi)

If we set ηt = ε2
t − σ2

t , we get:

ε2
t = α0 +

m∑
i=1

(αi + γi) ε2
t−i + ηt −

p∑
i=1

γiηt−i (10.45)

where m = max (p, q), γi = 0 for i > p and αi = 0 for i > q. Since we have:
E [ηt | Ft−1] = E

[
ε2
t − σ2

t | Ft−1
]

= 0
and for s 6= t:

E [ηsηt] = E
[(
ε2
s − σ2

s

) (
ε2
t − σ2

t

)]
= E

[(
σ2
se

2
s − σ2

s

) (
σ2
t e

2
t − σ2

t

)]
= E

[
σ2
sσ

2
t

(
e2
s − 1

) (
e2
t − 1

)]
= 0

we deduce that a GARCH(p,q) process for εt is equivalent to an ARMA(m,q) process for
ε2
t , where ηt is the innovation. Using the formulation (10.45), we retrieve the formula of the
unconditional variance since we have:

E
[
ε2
t

]
= α0 +

m∑
i=1

(αi + γi)E
[
ε2
t−i
]

+ E [ηt]−
p∑
i=1

γiE [ηt−i]

and E
[
ε2
t−i
]

= E
[
ε2
t

]
.

If
∑m
i=1 (αi + γi) =

∑q
i=1 αi +

∑p
i=1 γi = 1, then the process ε2

t has a unit root and
we obtain an integrated GARCH (or IGARCH) process (Engle and Bollerslev, 1986). For
instance, the IGARCH(1,1) process is equal to:

σ2
t = α0 + γ1σ

2
t−1 + α1ε

2
t−1

= α0 +
(
1 + α1

(
e2
t−1 − 1

))
σ2
t−1

If we assume that α0 = 0, we obtain:

σ2
t = σ2

0

t−1∏
i=0

(
1 + α1

(
e2
i − 1

))
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and:

ln σ2
t = ln σ2

0 +
t−1∑
i=0

ln
(
1 + α1

(
e2
i − 1

))
We deduce that if E

[
ln
(
1 + α1

(
e2
i − 1

))]
> 0, then σ2

t tends to +∞. If
E
[
ln
(
1 + α1

(
e2
i − 1

))]
< 0, σ2

t goes to 0. While shocks are persistent in unit root pro-
cesses (e.g. the random walk), we see here that a shock in an IGARCH process may be
persistent or not. Therefore, the concept of volatility persistence is not obvious and de-
pends on the parameter values. Another important property of GARCH models is that
they are heavy-tailed processes, meaning that the kurtosis (and even statistical moments)
are greater than that of the normal distribution.

Remark 131 GARCH models have been extended to multivariate processes, non-normal
distributions (EGARCH), etc. In practice, these models are not very useful, because they
are not tractable and difficult to calibrate. Only ARCH(p) and GARCH(p,q) models are used
by professionals with low orders of p and q.

Estimation If we make the approximation yt ∼ N
(
x>t β, σ

2
t

)
, the log-likelihood of the tth

observation is:
`t (θ) = −1

2 ln (2π)− 1
2 ln σ2

t −
1
2
ε2
t

σ2
t

where εt = yt − x>t β is the residual. The vector of parameters is θ = (β, α, γ) where
α = (α0, α1, . . . , αq) and γ = (γ1, . . . , γp). We then define the estimator by maximizing the
log-likelihood function:

θ̂QML = arg max
T∑
t=1

`t (θ)

This estimator is called the quasi-maximum likelihood estimator, because we have assumed
that εt is Gaussian. Of course, this is not true because σ2

t depends on past values of εt.
However, we can show that this approach is consistent and defines a ‘good’ estimator.

Application to the S&P 500 index We consider the monthly returns Rt of the S&P 500
index that have been plotted on page 664. To understand the dependence structure, we have
reported in Figure 10.16 the autocorrelation function30 (ACF), the partial autocorrelation
function31 (PACF) and the 95% significance test32 of Rt and R2

t . We deduce that the
hypothesis that Rt is not autocorrelated is accepted, but the hypothesis that R2

t is not
autocorrelated is rejected. This suggests that Rt is an heteroscedastic process. Since the

30Let yt be a discrete-time series process. We reiterate that the autocorrelation function for lag k is

defined by ρy (k) =
γy (k)
γy (0)

where γy (k) = cov (yt, yt−k).
31Partial autocorrelation is the autocorrelation between yt and yt−k after removing any linear dependence

on yt−1, . . . , yt−k+1. It is denoted by φy (k, k) and corresponds to the coefficient φk,k of the linear regression:

yt − ȳ =
k∑
i=1

φk,i (yt−i − ȳ) + ut

32The standard deviation of ρy (k) and φy (k, k) is approximatively equal to 1/
√
T where T is the number

of observations in the sample.
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Ljung-Box test33 is not rejected for large lag values – QR2
t

(100) = 126.99 and the p-value
is 3.5%, we can assume that Rt is a GARCH process:{

Rt = c+ εt
εt ∼ GARCH (p, q)

Using p = q = 1, the quasi-maximum likelihood estimation gives:{
Rt = 69 · 10−4 + εt
σ2
t = 8.3 · 10−5 + 0.838 · σ2

t−1 + 0.120 · ε2
t−1

All the parameters are statistically significant at the 99.9% confidence level. The annualized
value of σ2

t is given in Figure 10.17. We notice that it varies between 9% and 33.3%, whereas
the mean is equal to 14.15%. This value is close to the long-run volatility calculated with the
full period, which is equal to 14.30%. In Figure 10.17, we have also reported the standardized
residuals et = σ−1

t εt. The ACF and PACF values of e2
t show that e2

t is not autocorrelated,
and validate the choice of the GARCH(1,1) model.

Remark 132 We have not discussed the choice of the lags p and q of the GARCH model.
However, the estimation of higher order GARCH models does not improve the results of
the GARCH(1,1) model. For example, if we consider a GARCH(2,2) model, we obtain the
following results:{

Rt = 66 · 10−4 + εt
σ2
t = 8.5 · 10−5 + 0.812 · σ2

t−1 + 0.073 · ε2
t−1 + 0.077 · ε2

t−2

The estimate γ̂2 is equal to 0, and the p-values of α̂1 and α̂2 are equal to 16.3% and 3.4%.
Therefore, this model is less convincing than the GARCH(1,1) model, where all the param-
eters are statistically significant at the 99.9% confidence level.

10.2.4.2 Stochastic volatility models

The Kalman filter approach A stochastic volatility model can be viewed as a GARCH
model, where an innovation process is introduced in the equation of the conditional variance
σ2
t :

γ (L)σ2
t = α (L) εt + ηt (10.46)

where εt is a process with zero mean and unit variance, and ηt is the innovation process
with E [ηt] = 0 and E

[
η2
t

]
= σ2

η. The parameter ση is known as the volatility of the volatility
or vovol34. We have γ (L) = 1 − γ1L − · · · − γpLp and α (L) = α0 + α1L + · · · + αqL

q. In
order to ensure the positivity of the conditional variance, we may prefer to use an EGARCH
parametrization ht = ln σ2

t :
yt = x>t β + εt

where: {
εt = exp

( 1
2ht
)
· εt

ht = α0 +
∑p
i=1 γiht−i +

∑q
i=1 αiεt−i + ηt

33The Ljung-Box test is a statistical test of randomness based on a number s of lags:

Qy (s) = T (T + 2)
s∑

k=1

ρ̂2
y (k)
T − k

Under the null hypothesis that the data are independently distributed, we have Qy (s) ∼ χ2 (s).
34See page 570 for its definition.
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FIGURE 10.16: ACF and PACF of Rt and R2
t

FIGURE 10.17: Diagnostic checking of the GARCH(1,1) model
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The processes εt and ηt are not necessarily normal, and we can use heavy-tail probability
distributions. However, the estimation of the model by the method of maximum likelihood
is complex because the log-likelihood is a mixture of conditional log-variances ht.

If we consider the canonical stochastic volatility model (p = 1 and q = 0), we have:{
yt = exp

( 1
2ht
)
· εt

ht = α0 + γ1ht−1 + ηt
(10.47)

Since ht is an AR(1) process, we deduce that:

E [ht] = α0

1− γ1

and:
var (ht) =

σ2
η

1− γ2
1

Harvey et al. (1994) propose to define the measurement variable as ln y2
t instead of yt. We

obtain the state space model representation:{
ln y2

t = c+ ht + ξt
ht = α0 + γ1ht−1 + ηt

(10.48)

where ht is the state variable, c = E
[
ln ε2

t

]
and35 ξt = ln ε2

t − E
[
ln ε2

t

]
. If we approximate

ξt as a Gaussian random variable, we can estimate ht by using the Kalman filter with the

initialization h0 ∼ N

(
α0

1− γ1
,

σ2
η

1− γ2
1

)
.

An alternative model of Process (10.47) is:{
yt = exp

( 1
2ht
)
· εt

ht = α0 + γ1 (ht−1 − α0) + ηt

or equivalently: {
yt = exp

( 1
2α0

)
· exp

( 1
2ht
)
· εt

ht = γ1ht−1 + ηt
(10.49)

We deduce the following state space model representation:{
ln y2

t = c+ ht + ξt
ht = γ1ht−1 + ηt

(10.50)

where c = α0 + E
[
ln ε2

t

]
and ξt = ln ε2

t − E
[
ln ε2

t

]
. Again, we can estimate ht by using the

Kalman filter with the initialization h0 ∼ N

(
0,

σ2
η

1− γ2
1

)
.

Using the monthly returns of the S&P 500 index, we estimate the model (10.50) by
maximum likelihood: {

ln
(
Rt − R̄

)2 = −7.86 + ht + ξt
ht = 0.93 · ht−1 + ηt

where ση = 21%. All the coefficients are significant at the 99% confidence level. In Figure
10.18, we report the annualized volatility estimated by Kalman filter and smoother. We can
compare these values with those obtained with the GARCH(1,1) model and the 12-month
historical volatilities. We notice that the stochastic volatility model produces “less noisy”
volatilities, because large shocks may be due to an increase of ht, but also to a shock on εt.

35Since εt ∼ N (0, 1), Abramowitz and Stegun (1970) showed that ln ε2t has a log-chi-squared distribution
with mean ψ(1)− ln 2 and variance π2/2, where ψ(x) is the digamma function.
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FIGURE 10.18: Estimation of the stochastic volatility model

Remark 133 The canonical stochastic volatility model has been extended in many direc-
tions, such as asymmetric or fat-tailed distributions (Harvey and Shephard, 1996; Broto
and Ruiz, 2004).

The MCMC approach Kim et al. (1998) suggest to use Markov Chain Monte Carlo
(MCMC) approach for estimating the previous model. This method is more flexible than
the Kalman filter, but it also more time-consuming and complex. In Figure 10.19, we report
the estimates of the stochastic volatility for 4 algorithms: griddy Gibbs sampler, Random
Walk Metropolis algorithm, Metropolis-Hastings method, and Metropolis-Hastings algo-
rithm within griddy Gibbs. We notice that these MCMC estimates are close to the KF
estimates.

10.2.5 Spectral analysis
Until now, we have analyzed stochastic processes in the time domain. In this section, we

focus on the frequency domain or the spectral analysis. We do not present the time-frequency
(or wavelet) analysis since this approach has not been successful to solve financial problems.

10.2.5.1 Fourier analysis

Let (yt, t ∈ Z) be a centered stationary process. The (discrete) Fourier transform of yt
is equal to:

y (λ) = 1
2π

∞∑
t=−∞

yte
−iλt
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FIGURE 10.19: MCMC estimates of the stochastic volatility model

where λ ∈ [0, 2π]. We define the inverse Fourier transform as follows:

yt =
∫ π

−π
y (λ) eiλt dλ

The idea of Fourier analysis is to approximate the process yt by a weighted finite sum of
sine and cosine functions:

yt ≈
n∑
j=0

αj cos (λjt) +
n∑
j=0

βj sin (λjt)

where αj and βj are the Fourier coefficients. Under some technical assumptions, we can
show that36:

yt = lim
n→∞

 n∑
j=0

αj cos (λjt) +
n∑
j=0

βj sin (λjt)


=

∫ π

0
cos (λt) dA (λ) +

∫ π

0
sin (λt) dB (λ)

As noticed by Pollock (1999), the Fourier analysis is made under the assumptions that A (λ)
and B (λ) are two independent stochastic processes with zero mean, and non-overlapping
increments of each process are uncorrelated37. Moreover, we have:

var (dA (λ)) = var (dB (λ)) = 2 · dFy (λ)

36We have the correspondence dA (λj) = αj and dB (λj) = βj .
37This means that E [dA (λ)] = E [dB (λ)] = 0, E [dA (λ) · dB (λ′)] = 0 for all (λ, λ′) and

E [dA (λ) · dA (λ′)] = E [dB (λ) · dB (λ′)] = 0 if λ 6= λ′.
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Fy (λ) is called the spectral distribution function, and its derivative fy (λ) is the spectral
density function. Pollock (1999) shows that:

yt =
∫ π

0
eiλt dZ (λ) +

∫ π

0
e−iλt dZ? (λ)

=
∫ π

−π
eiλt dZ (λ)

where:
dZ (λ) = dA (λ)− idB (λ)

2
and:

dZ? (λ) = dA (λ) + idB (λ)
2

The decomposition yt =
∫ π
−π e

iλt dZ (λ) is the spectral representation of yt. We notice that
the processes Z (λ) and Z? (λ) are not independent:

E [dZ (λ) dZ? (λ)] = 1
2 var (dA (λ))

= fy (λ) dλ

but we verify that E [dZ (λ) dZ? (λ′)] = 0 if λ 6= λ′.

10.2.5.2 Definition of the spectral density function

Let (yt, t ∈ Z) be a centered stationary process. We denote by γy (k) the autocovariance
function. We can show that there is a function fy (λ) such that:

γy (k) =
∫ π

−π
fy (λ) eiλk dλ (10.51)

The function fy (λ) is called the spectral density of the process yt. We can demonstrate that
the two following conditions are equivalent:

1. yt has the spectral density fy (λ).

2. There is a white noise (εt, t ∈ Z) and a sequence (ψs, s ∈ Z) satisfying
∑∞
s=−∞ ψ2

s <∞
such that:

yt =
∞∑

s=−∞
ψsεt−s (10.52)

In this case, the spectral density function fy (λ) is defined by:

fy (λ) = 1
2π

∞∑
k=−∞

γy (k) e−iλk (10.53)

= γy (0)
2π + 1

π

∞∑
k=1

γy (k) cos (λk)

= 1
2π

∞∑
k=−∞

γy (k) cos (λk)
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Therefore, the spectral density function contains the same information that the autoco-
variance function. We can use both fy (λ) or γy (k) to characterize a stationary stochastic
process. The only difference is that the autocovariance function is a representation in the
time domain whereas the spectral density function is a representation in the frequency do-
main. This result is not surprising if we refer to the Fourier analysis of time series. Indeed,
the spectral density function is also the variance of the processes Z (λ) and Z? (λ).

Remark 134 We verify that:∫ π

−π
fy (λ) eiλk dλ =

∫ π

−π

(
1

2π

∞∑
h=−∞

γy (h) e−iλh
)
eiλk dλ

=
∞∑

h=−∞

γy (h)
2π

∫ π

−π
eiλ(k−h) dλ

= γy (k) +
∑
h6=k

γy (h)
2π

[
eiλ(k−h)

i (k − h)

]π
−π

= γy (k) +
∑
h6=k

γy (h)
2π

(
eiπ(k−h) − e−iπ(k−h)

i (k − h)

)

= γy (k) +
∑
h6=k

γy (h) sin (π (k − h))
π (k − h)

= γy (k)

because sin (π (k − h)) = 0.

10.2.5.3 Frequency domain localization

The information contained in the autocovariance function is encoded differently in the
spectral density. Consider the white noise process εt ∼ N

(
0, σ2). We have γε (0) = σ2 and

γε (k) = 0 for k 6= 0. We deduce that:

fε (λ) = 1
2πγε (0) cos (λ0)

= σ2

2π

The spectral density of the white noise process is then a constant. It is the worst localized
signal in the frequency domain. Consider now the process ηt such that fη (λc) = c and
fη (λ) = 0 for λ 6= λc. It is the best localized signal in the frequency domain. Let us analyze
the cycle signal:

yt = 2 sin
(

2π
p
t

)
In Figures 10.20 and 10.21, we represent this cycle for different periods p and the corre-
sponding autocorrelation function ρy (k) = γy (k) /γy (0). We calculate the spectral density
as follows:

fy (λ) ≈ γ (0)
2π + 1

π

10000∑
k=1

γy (k) cos (λk)

In Figure 10.22, we notice that the function fy (λ) can be approximated by fη (λ) where
the frequency λc is equal to 2π/p. This is then the inverse of the period p (normalized by
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FIGURE 10.20: Time representation of the process xt

FIGURE 10.21: Autocorrelation representation of the process xt
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2π). We recall that 1/p is also the number of cycle per time unit. Suppose that we calculate
the spectral density of an economic cycle using monthly data, for example the business
cycle that has a 7-year period. Then the spectral density must have a high value c at the
frequency λc:

λc = 2π
7× 12 = 0.0748

The localization of low frequency phenomena will be at λ close to 0 whereas the localization
of high frequency phenomena will be at higher frequencies λ (close to π). λ is also called
the harmonic frequency. Low harmonic frequencies corresponds to long-term components
while high harmonic frequencies are more focused on short-term components.

FIGURE 10.22: Spectral representation of the process xt

10.2.5.4 Main properties

Independent processes Let xt and yt be two centered and independent stationary pro-
cesses. If we consider the process zt = xt + yt, we have:

γx+y (k) = E [ztzt−k]
= E [xtxt−k] + E [ytyt−k] + E [xtyt−k] + E [ytxt−k]
= γx (k) + γy (k)

It follows that:

fz (λ) = 1
2π

∞∑
k=−∞

γz (k) cos (λk)

= 1
2π

∞∑
k=−∞

γx (k) cos (λk) + 1
2π

∞∑
k=−∞

γy (k) cos (λk)

= fx (λ) + fy (λ)
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The spectral density function of the sum of independent processes is then the sum of their
spectral density functions:

fx+y (λ) = fx (λ) + fy (λ)

Linear filtering Equation (10.51) shows that the autocovariance function γy (k) is the
inverse Fourier transform of the spectral density function fy (λ), whereas Equation (10.53)
means that the spectral density function fy (λ) is the Fourier transform of the autocovariance
function γy (k). However, we may wonder what the implication of Equation (10.52) is. We
recognize the Wold decomposition yt = ψ (L) εt where ψ (L) =

∑∞
s=−∞ ψsL

s. It follows
that the autocovariance function of yt is equal to:

γy (k) = E [ytyt−k]

= E

[( ∞∑
r=−∞

ψrεt−r

)( ∞∑
s=−∞

ψsεt−s−k

)]

=
∞∑

r=−∞

∞∑
s=−∞

ψrψsγε (s+ k − r)

We deduce that the spectral density function is:

fy (λ) = 1
2π

∞∑
k=−∞

γy (k) e−iλk

= 1
2π

∞∑
k=−∞

( ∞∑
r=−∞

∞∑
s=−∞

ψrψsγε (s+ k − r)
)
e−iλk

We introduce the index h = s+ k − r:

fy (λ) = 1
2π

∞∑
h=−∞

( ∞∑
r=−∞

∞∑
s=−∞

ψrψsγε (h)
)
e−iλ(h−s+r)

=
∞∑

r=−∞
ψre
−iλr

∞∑
s=−∞

ψse
iλs

(
1

2π

∞∑
h=−∞

γε (h) e−iλh
)

= ψ
(
e−iλ

)
ψ
(
eiλ
)
fε (λ)

= ψ
(
e−iλ

)
ψ∗
(
e−iλ

)
fε (λ)

=
∣∣ψ (e−iλ)∣∣2 fε (λ)

= σ2

2π
∣∣ψ (e−iλ)∣∣2

This result is important because we obtain an analytical expression of fy (λ) that does not
need to use the Fourier transform of the autocovariance function γy (k). Moreover, we can
generalize this calculus based on the Wold decomposition to any linear filter ϕ (L):

yt = ϕ (L)xt

where xt is a stationary centered process. By using the same approach, we obtain:

fy (λ) =
∣∣ϕ (e−iλ)∣∣2 fx (λ)
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Therefore, Fourier analysis transforms convolutions into multiplications. We can write the
complex transfer function z = ϕ

(
e−iλ

)
in the polar form ϕ

(
e−iλ

)
= r (λ) eiθ(λ) where

r (λ) = |z| and θ (λ) = atan2 (Im (z) ,Re (z)). We deduce that:

yt =
∫ π

−π
eiλt dZy (λ)

=
∫ π

−π
r (λ) ei(λt−θ(λ)) dZx (λ)

r (λ) and θ (λ) are called the power-shift and phase-shift of the filter since they impact
respectively the amplitude and the period of the cyclical components.

Spectral density of some useful processes Let us first consider the AR(1) process
yt = φyt−1 + εt where εt ∼ N

(
0, σ2). We recall that the autocovariance function is equal

to:
γy (k) = σ2φ|k|

1− φ2

The Fourier transform of γy (k) gives:

fy (λ) = 1
2π

∞∑
k=−∞

γy (k) e−iλk

= 1
2π

(
σ2

1− φ2

) ∞∑
k=−∞

φ|k|e−iλk

= 1
2π

(
σ2

1− φ2

)(
1 +

∞∑
k=1

φkeiλk +
∞∑
k=1

φke−iλk

)

= 1
2π

(
σ2

1− φ2

)(
1 + φeiλ

1− φeiλ + φe−iλ

1− φe−iλ

)
= 1

2π

(
σ2

1− φ2

)(
1− φeiλφe−iλ

(1− φeiλ) (1− φe−iλ)

)
= σ2

2π
1

(1− 2φ cosλ+ φ2)

To calculate the spectral density function, we can also use the result obtained for linear
filters. We have:

fy (λ) =
∣∣φ (e−iλ)∣∣2 fε (λ)

where φ (L) = 1− φL. We deduce that:∣∣φ (e−iλ)∣∣2 =
∣∣1− φe−iλ∣∣2

= |1− φ (cosλ− i sinλ)|2

= (1− φ cosλ)2 + φ2 sin2 λ

= 1− 2φ cosλ+ φ2

We obtain the same expression of the spectral density function:

fy (λ) = σ2

2π
1

(1− 2φ cosλ+ φ2)
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More generally, the spectral density function of the ARMA model Φ (L) yt = Θ (L) εt is
given by:

fy (λ) = σ2

2π

∣∣Θ (e−iλ)∣∣2
|Φ (e−iλ)|2

In the case of the MA(1) process yt = εt − θεt−1, we have:

fy (λ) = σ2

2π
(
1− 2θ cosλ+ θ2)

For an ARMA(1,1) process yt = φyt−1 + εt − θεt−1, we combine the AR(1) and MA(1)
filters and we obtain:

fy (λ) = σ2

2π

(
1− 2θ cosλ+ θ2)

(1− 2φ cosλ+ φ2)
We now consider the process zt = xt + yt, where xt = φ1xt−1 + ut is an AR(1) process and
yt = vt − θ1vt−1 is an MA(1) process that is independent from x. We have:

fz (λ) = fx (λ) + fy (λ)

= σ2
u

2π
1

(1− 2φ1 cosλ+ φ2
1) + σ2

v

2π
(
1− 2θ1 cosλ+ θ2

1
)

In Figure 10.23, we represent the spectral density function of different process38:

• a white noise process yt = εt;

• an AR(p) process yt =
∑p
i=1 φiyt−i + εt;

• a MA(q) process yt = εt −
∑q
j=1 θjεt−j ;

• an ARMA(p,q) process yt =
∑p
i=1 φiyt−i + εt−

∑q
j=1 θjεt−j ; ARMA #1 corresponds

to the set of parameters φ1 = 0.75, φ2 = −0.5, θ1 = 0.75, θ2 = −0.5 and θ3 = 0.25
whereas ARMA #2 corresponds to φ1 = 0.5, φ2 = 0.15, θ1 = 0.75, θ2 = −0.1 and
θ3 = 0.15 .

We notice that some processes are well-located in the frequency domain, meaning that they
are more ‘cyclical’. On the contrary, MA processes are more ‘flat’.

We now introduce the notion of stationary form, which is an important concept in
spectral analysis. Consider the following model: zt = xt + yt

xt = xt−1 + ut − θ1ut−1
yt = vt

where ut ∼ N
(
0, σ2

u

)
and vt ∼ N

(
0, σ2

v

)
. It is obvious that zt is not stationary, implying

that there is no spectral density function associated to the process zt. However, we notice
that (1− L) zt is stationary because we have:

zt − zt−1 = (1− θ1L)ut + (1− L) vt

S (zt) = zt − zt−1 is called the ‘stationary form’ of zt and we have:

fS(z) (λ) =
(
1− 2θ1 cosλ+ θ2

1
) σ2

u

2π + 2 (1− cosλ) σ
2
v

2π
38The standard deviation σ of the noise εt is set to 20%.
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FIGURE 10.23: Spectral density function of ARMA processes

In the general case, if xt has a stationary form, there is a lag polynomial ϕ (L) such that
S (xt) = ϕ (L)xt.

On page 652, we have already studied structural time series models (STSM) with un-
observable components (Harvey, 1990). They generally have a state space representation.
Since they are non stationary, we have to find the corresponding stationary form. Let us
consider the ‘local level’ model (LL):{

yt = µt + εt
µt = µt−1 + ηt

where εt ∼ N
(
0, σ2

ε

)
and ηt ∼ N

(
0, σ2

η

)
. The stationary form of yt is:

S (yt) = yt − yt−1

= ηt + (1− L) εt

We deduce that:
fS(y) (λ) =

σ2
η + 2 (1− cosλ)σ2

ε

2π
The ‘local linear trend’ model (LLT) is given by: yt = µt + εt

µt = µt−1 + βt−1 + ηt
βt = βt−1 + ζt

where εt ∼ N
(
0, σ2

ε

)
, ηt ∼ N

(
0, σ2

η

)
and ζt ∼ N

(
0, σ2

ζ

)
. The stationary form of yt is:

S (yt) = (1− L)2
yt

= ζt−1 + (1− L) ηt + (1− L)2
εt
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whereas the spectral density function is:

fS(y) (λ) =
σ2
ζ + 2 (1− cosλ)σ2

η + 4 (1− cosλ)2
σ2
ε

2π
The ‘basic structural model’ (BSM) has the following expression:

yt = µt + γt + εt
µt = µt−1 + βt−1 + ηt
βt = βt−1 + ζt
s−1∑
i=0

γt−i = ωt

where εt ∼ N
(
0, σ2

ε

)
, ηt ∼ N

(
0, σ2

η

)
, ζt ∼ N

(
0, σ2

ζ

)
and ωt ∼ N

(
0, σ2

ω

)
. The stationary

form of yt is:

S (yt) = (1− L) (1− Ls) yt

= (1− L) (1− Ls) εt + (1− Ls) ηt +
(

s∑
i=1

Ls

)
ζt−i +(

1− 2L+ L2)ωt
It follows that the spectral density function is equal to:

fS(y) (λ) = g(1−L)(1−Ls) (λ) σ
2
ε

2π + g(1−Ls) (λ)
σ2
η

2π +

g(
∑s

i=1
Ls) (λ)

σ2
ζ

2π + g(1−2L+L2) (λ) σ
2
ω

2π
where:

g(1−Ls) (λ) = 2 (1− cos sλ)
g(1−2L+L2) (λ) = 6− 8 cosλ+ 2 cos 2λ

g(
∑s

i=1
Ls) (λ) = s+ 2

∑s−1

j=1
(s− j) cos jλ

g(1−L)(1−Ls) (λ) = 4 (1− cos sλ) (1− cosλ)

We now consider a variant of the basic structural model:

yt = µt + βt + γt + εt

where µt is the long-run component, βt is the mean-reverting component and γt is the
seasonal component: 

µt = µt−1 + ηt
βt = φβt−1 + ζt∑s−1
i=0 γt−i = ωt

where ηt, ζt and ωt are independent white noise processes with variance σ2
η, σ2

ζ and σ2
ω.

µt is then a random walk, βt is an AR(1) process and γt is a stochastic seasonal process
because we have γt = γt−s + ωt − ωt−1. If σ2

ω = 0, the seasonal component is deterministic
(γt = γt−s). As for the basic structural model, the stationary form is:

S (yt) = (1− L) (1− Ls) yt
= (1− L) (1− Ls) εt + (1− Ls) ηt +(

1− L− Ls + Ls+1

1− φL

)
ζt +

(
1− 2L+ L2)ωt
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We deduce that:

fS(y) (λ) = g(1−L)(1−Ls) (λ) · σ
2
ε

2π + g(1−Ls) (λ) ·
σ2
η

2π +

g( 1−L−Ls+Ls+1
1−φL

) (λ) ·
σ2
ζ

2π + g(1−2L+L2) (λ) · σ
2
ω

2π

where:
g( 1−L−Ls+Ls+1

1−φL

) (λ) =
g(1−L−Ls+Ls+1) (λ)

g(1−φL) (λ)

and39:

g(1−L−Ls+Ls+1) (λ) = 4− 4 cosλ− 4 cos sλ+ 2 cos (s− 1)λ+ 2 cos (s+ 1)λ

The ‘cycle model’ (CM) is defined by the following state space model: yt = ψt(
ψt
ψ?t

)
= ρ

(
cosλc sinλc
− sinλc cosλc

)(
ψt−1
ψ?t−1

)
+
(
κt
κ?t

)
where κt ∼ N

(
0, σ2) and κ?t ∼ N (0, σ2). Harvey (1990) showed that:

yt =
(

1− ρ cosλcL
1− 2ρ cosλcL+ ρ2L2

)
κt +

(
ρ sinλcL

1− 2ρ cosλcL+ ρ2L2

)
κ?t

and:
fy (λ) =

(
1 + ρ2 − 2ρ cosλc cosλ

1 + ρ4 + 4ρ2 cos2 λc − 4ρ (1 + ρ2) cosλc cosλ+ 2ρ2 cos 2λ

)
σ2

2π

We have represented the spectral density function of the previous structural time series
models in Figures 10.24 and 10.25. The set of parameters are the following:

• local level model: σε = 0.20, ση = 0.10 for Model #1, ση = 0.20 for Model #2 and
ση = 0.30 for Model #3;

• local linear trend model: σε = 0.20, σζ = 0.10, ση = 0.10 for Model #4, ση = 0.20 for
Model #5 and ση = 0.30 for Model #6;

• basic structural model: σε = 0.10, ση = 0.10, σζ = 0.10, σω = 0.10, s = 4 for Model
#7 and s = 12 for Model #9; for Model #8, we have σε = 0.20, ση = 0.30, σζ = 0.10,
σω = 0.10 and s = 4 whereas for Model #10 we have σε = 0.10, ση = 0.10, σζ = 0.10,
σω = 0.20 and s = 12;

• cycle model: σ = 0.10.

In the case of the cycle model, we verify that we obtain the spectral density function of a
pure deterministic cycle with λ? = λc when ρ→ 1. When ρ is small, the process is not well
localized in the frequency domain (see Figure 10.25).

39We recall that g(1−φL) (λ) = 1− 2φ cosλ+ φ2.
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FIGURE 10.24: Spectral density function of LL, LLT and BSM

FIGURE 10.25: Spectral density function of the stochastic cycle model
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10.2.5.5 Statistical estimation in the frequency domain

The periodogram The periodogram is an estimate of the spectral density function. For
that, we define the discrete Fourier transform (DFT) of the time series {yt, t = 1, . . . , n} as
follows40:

dy (λj) =
n∑
t=1

yte
−iλjt

where λj = 2π (j − 1) /n and j ∈ {1, . . . , n}. The periodogram Iy (λj) for the frequency λj
is then equal to:

Iy (λj) = |dy (λj)|2

2πn = 1
2πn

∣∣∣∣∣
n∑
t=1

yte
−iλjt

∣∣∣∣∣
2

(10.54)

Under some conditions41, we can show that:

lim
n→∞

E [Iy (λ)] = fy (λ)

It follows that Iy (λ) is a natural estimator f̂y (λ) of the spectral density function42. Indeed,
we have:

dy (λj) =
n∑
t=1

yte
−iλjt

=
n∑
t=1

yt cos (λjt)− i
n∑
t=1

yt sin (λjt)

and:

|dy (λj)|2 =
(

n∑
t=1

yt cos (λjt)
)2

+
(

n∑
t=1

yt sin (λjt)
)2

=
n∑
s=1

n∑
t=1

ysyt cos (λjs) cos (λjt) +

n∑
s=1

n∑
t=1

ysyt sin (λjs) sin (λjt)

Since we have cos (a− b) = cos a cos b+ sin a sin b, it follows that:

|dy (λj)|2 =
n∑
s=1

n∑
t=1

ysyt cos (λj (t− s))

40We define the Fourier transform for some particular frequencies λj because we generally use the FFT
algorithm to compute it (see Remark 135 on page 684). However, we can also define the Fourier transform
for all λ ∈ [0, 2π].

41In particular, we reiterate that the process must be stationary and centered.
42In many textbooks, the normalization factor 2π in the periodogram formula is omitted implying that

f̂y (λ) = (2π)−1 Iy (λ). We prefer to adopt the convention to include the scaling factor.
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We recall that the empirical covariance function is γ̂y (k) = n−1∑n
t=1 yt−kyt. Finally, we

obtain:

Iy (λj) = 1
2πn

n∑
s=1

n∑
t=1

ysyt cos (λj (t− s))

= 1
2πn

n−1∑
k=−(n−1)

n∑
t=1

yt−kyt cos (λjk)

= 1
2π

n−1∑
k=−(n−1)

γ̂y (k) cos (λjk)

This formula is similar to Equation (10.53) where the theoretical autocovariance function
is replaced by the empirical autocovariance function and the sum of the infinite series is
replaced by the truncated sum. Therefore, the periodogram of the time series yt contains the
same information than the empirical autocovariance function. This is why we can retrieve
it using the inverse discrete Fourier transform (DFT):

γ̂ (k) = 1
n

n∑
j=1

I (λj) eiλjk

Remark 135 In practice, we use the fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) to compute I (λj) and γ̂ (k). These algorithms assume that the length n
of the time series is a power of 2 and take the advantage of many symmetries of cosine and
sine functions43.

More generally, the asymptotic probability distribution of the periodogram is a chi-
squared distribution under some assumptions44:

lim
n→∞

2 Iy (λ)
fy (λ) ∼ χ

2
2

We retrieve the previous result:

lim
n→∞

E [Iy (λ)] = fy (λ)
2 · E

[
χ2

2
]

= fy (λ)

One of the drawbacks of the estimator (10.54) is its high variance:

lim
n→∞

var (Iy (λ)) =
f2
y (λ)
4 · var

(
χ2

2
)

= f2
y (λ)

In particular, the variance does not go to zero when n tends to ∞. This is why we use in
practice the smoothed periodogram defined by:

I?y (λj) =
s=m∑
s=−m

wm (s) · Iy (λj)

where wm (s) is a smoothed window function and m is the bandwidth. The function wm (s)
is equal to W (s/m) where W (u) is a normalized function, which is also called the spectral
window function (see Table 10.11).
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FIGURE 10.26: Estimation of the spectral density function

FIGURE 10.27: Estimation of the autocorrelation function



686 Handbook of Financial Risk Management

TABLE 10.11: Spectral window functions
Name W (u)
Bartlett 1− |u|
Parzen

(
1− 6 |u|2 + 6 |u|3

)
· 1
{
|u| < 1

2
}

+
2 (1− |u|)3 · 1

{
|u| ≥ 1

2
}

Tukey 1− 2a+ 2a cos (πu)
Rectangular 1

Daniell (πu)−1 sin (πu)
Priestley 3

(
(πu)−3 sin (πu)− (πu)−1 cos (πu)

)
In Figure 10.26, we consider an AR(1) process yt with φ = 0.5 and σ = 20%. We

represent its spectral density function fy (λ), and then simulate the process with 1 000
observations. We calculate the periodogram, but we notice that Iy (λ) is noisy. This is why
we estimate the smoothed periodogram I? (λj) with the Tukey window, whose parameters
are a = 0.25 and m = 50. We obtain a less noisy estimator. In order to illustrate the impact
of smoothing, we estimate the autocorrelation function. We first apply the inverse discrete
Fourier transform to I (λj) and I? (λj) in order to obtain the autocovariance functions
γ̂y (k) = n−1∑n

j=1 Iy (λj) eiλjk and γ̂?y (k) = n−1∑n
j=1 I

?
y (λj) eiλjk and then normalize:

ρ̂y (k) = γ̂y (k)
γ̂ (1) or ρ̂?y (k) =

γ̂?y (k)
γ̂?y (1)

In Figure 10.27, we compare these functions with the theoretical autocorrelation function
ρy (k) = φk. We also report the empirical autocovariance function calculated directly by
the means of convolution. We verify that it is exactly equal to the inverse discrete Fourier
transform of the periodogram. However, we notice that the function ρ̂y (k) does not converge
to zero when the lag k is large. This is not the case with the smoothed periodogram, that
is less biased in finite samples.

The Whittle estimator Whittle (1953) proposes an original method to estimate the
parameters θ of stationary Gaussian models in the frequency domain. Let us consider the
process yt and we note Y = (y1, . . . , yn) the vector of joint observations. Since yt is centered,
we have Y ∼ N (0,Σ) where Σ is the Toeplitz covariance matrix. The log-likelihood function
is then:

` (θ) = −n2 ln 2π − 1
2 ln |Σ| − 1

2Y
>Σ−1Y (10.55)

Gray (2006) shows that the eigendecomposition UΛU∗ of Σ can be approximated by V ΛV ∗
where V is a circulant matrix. In this case, the eigenvalue Λj,j is equal to 2πfy (λj), whereas
the eigenvector Vj is related to the Fourier coefficients:

Vt,j ∝ n−1/2e−iλjt

Since V is an unitary matrix, we have:

ln |Σ| ' ln |V ΛV ∗| = ln (|V | |Λ| |V ∗|) = ln |Λ| = n ln 2π +
n∑
j=1

ln fy (λj)

43If it is not the case, yt is padded with trailing zeros to length 2m where m is the nearest integer greater
than or equal to lnn/ ln 2.

44For example, this result is valid if yt is a Gaussian process or if the autocovariance function decreases
rapidly. If λ = 0, the chi-squared distribution has one degree of freedom (see Exercise 10.3.14 on page 712).
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and:

Y >Σ−1Y ' Y > (V ΛV ∗)−1
Y

= Z>Λ−1Z

=
n∑
j=1

|zj |2

2πfy (λj)

where Z = (z1, . . . , zn) = V Y . We notice that:

z2
j =

∣∣∣∣∣
n∑
t=1

n−1/2yte
−iλjt

∣∣∣∣∣
2

= 2πIy (λj)

We deduce that the log-likelihood function can be written as:

` (θ) ' −n ln 2π − 1
2

n∑
j=1

ln fy (λj)−
1
2

n∑
j=1

Iy (λj)
fy (λj)

(10.56)

There is a fundamental difference between time domain maximum likelihood (TDML) and
frequency domain maximum likelihood (FDML). Indeed, in the time domain, we can define
the log-likelihood for a given observation date t. In the frequency domain, defining the
log-likelihood for a given frequency λj does not make sense.

In practice, we may observe a significant difference between the values given by Equations
(10.55) and (10.56). Nevertheless, TDML and FDML estimators are generally very close. For
example, we consider the AR(1) process yt = φyt−1 + εt where εt ∼ N

(
0, σ2), φ = 0.5 and

σ = 20%. In Figure 10.28, we report the probability density function of the two estimators
φ̂TDML and φ̂FDML when the sample is equal to 300. We verify that they are very close.

10.2.5.6 Extension to multidimensional processes

The previous results can be generalized to the multivariate case. Let us now consider
the m-dimensional time series yt = (yt,1, . . . , yt,m). Since yt is centered, the autocovariance
matrix is defined as Γy (k) = E

[
yy>t−k

]
. We notice that Γy (k) is not necessarily a symmetric

matrix45, but we have Γy (k)> = Γy (−k). The m×m spectral matrix fy (λ) is then defined
by:

fy (λ) = 1
2π

∞∑
k=−∞

Γy (k) e−iλk (10.57)

It follows that fy (λ) is an Hermitian matrix. Moreover, the diagonal elements are real, but
the off-diagonal elements are complex. Similarly, the multivariate periodogram is equal to:

Iy (λj) = dy (λj) dy (λj)∗

2πn (10.58)

where λj = 2π (j − 1) /n, j = {1, . . . , n} and dy (λj) is the multidimensional discrete Fourier
transform46 of the time series yt:

dy (λj) =
n∑
t=1

yte
−iλjk

45Because we generally have E [xtyt−k] 6= E [ytxt−k] for two unidimensional time series xt and yt.
46dy (λj) is a vector of dimension m.
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FIGURE 10.28: PDF of TDML and FDML estimators

The main properties obtained in the case m = 1 are also valid in the case m > 1. For
instance, we have:

1. the spectral matrix of the multidimensional white noise process εt ∼ N (0,Σ) is equal
to fη (λ) = (2π)−1 Σ;

2. limn→∞ E [Iy (λ)] = fy (λ);

3. limn→∞ var (Iy (λ)) = fy (λ)� fy (λ)∗;

4. if xt and yt are two independent multidimensional stochastic processes, then
fx+y (λ) = fx (λ) + fy (λ);

5. if zt = Ayt and A is a real matrix, then fz (λ) = Afy (λ)A>;

6. the spectral density function of the linear filter yt = Ψ (L)xt is given by:

fy (λ) = Ψ
(
e−iλ

)
fx (λ) Ψ

(
e−iλ

)∗
The parameters θ of a stationary centered Gaussian model can also be estimated using

the FDML method with the following Whittle log-likelihood function:

` (θ) ∝ −1
2

n∑
j=0

ln |fy (λj)| −
1
2

n∑
j=1

trace
(
fy (λj)−1

Iz (λj)
)

(10.59)

These models can generally be written as a stationary state space model:{
yt = Zαt + εt
αt = Tαt−1 +Rηt
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where εt ∼ N (0, H) and ηt ∼ N (0, Q). It follows that:

yt = Z (I − TL)−1
Rηt + εt

where L is the lag operator and I is the identity matrix, whose dimension is equal to the
size of the state vector αt. Using the above properties, we deduce that the spectral density
function of yt is:

fy (λ) = Z
(
I − Te−iλ

)−1
Rfη (λ)R>

((
I − Te−iλ

)−1)∗
Z> + fε (λ)

=
Z
(
I − Te−iλ

)−1
RQR>

((
I − Te−iλ

)−1
)∗
Z> +H

2π (10.60)

For instance, Roncalli (1996) extensively used the Whittle method to estimate VARMA,
SSM and complex Gaussian models.

We now consider the special case m = 2 and we note zt = (xt, yt) the bivariate process.
The autocovariance matrix Γz (k) becomes:

Γz (k) =
(

γx (k) γx,y (k)
γy,x (k) γy (k)

)
where γx,y (k) is the autocovariance function between xt and yt. For the spectral matrix
fz (λ), we have:

fz (λ) =
(

fx (λ) fx,y (λ)
fy,x (λ) fy (λ)

)
where fx (λ) and fy (λ) are the spectral density functions of the stochastic processes xt and
yt, and fx,y (λ) is the cross spectrum:

fx,y (λ) = 1
2π

∞∑
k=−∞

γx,y (k) e−iλk

Similarly, the bivariate periodogram of the process zt takes the following form:

Iz (λj) =
(

Ix (λj) Ix,y (λj)
Iy,x (λjλ) Iy (λjλ)

)
where Ix (λj) and Iy (λj) are the periodograms of the stochastic processes xt and yt, and
Ix,y (λj) is the cross periodogram:

Ix,y (λj) = dx (λj) dy (λj)∗

2πn

Let us consider the bivariate process zt = (xt, yt), which has the following SSM form:

(
xt
yt

)
=
(

1 0 0
0 1 0

) α1,t
α2,t
α3,t

+ εt α1,t
α2,t
α3,t

 =

 0.9 0 0
0.5 −0.1 0
0 0 0.3

 α1,t−1
α2,t−1
α3,t−1

+

 1 0
0 1
0 1

 ηt
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where εt ∼ N (0,diag (0.5, 0.2)) and ηt ∼ N (0,diag (1.0, 1.0)). We also have:{
xt = α1,t + ε1,t
yt = α2,t + ε2,t

and:  α1,t = 0.9 · α1,t−1 + η1,t
α2,t = 0.5 · α1,t−1 − 0.1 · α2,t−1 + η2,t
α3,t = 0.3 · α3,t−1 − η2,t

Therefore, the bivariate process (xt, yt) can be viewed as a noisy restricted VAR(1) model
where the residuals of the second VAR component follow a MA(1) process47. Below, we give
the values of fz (λ) calculated with Equation (10.60):

λ fx (λ) fy (λ) fx,y (λ) fy,x (λ)
0 15.995 3.452 7.234 7.234

0.5 0.770 0.312 0.285 + 0.140i 0.285− 0.140i
pi/4 0.376 0.234 0.104 + 0.091i 0.104− 0.091i
pi/2 0.168 0.211 0.004 + 0.044i 0.004− 0.044i
pi 0.124 0.242 −0.024 −0.024

We verify that fx (λ) and fy (λ) are real numbers, fx,y (λ) and fy,x (λ) are complex numbers,
and fy,x (λ) is the complex conjugate of fx,y (λ).

In order to interpret the cross spectrum, we can write fx,y (λ) in the complex form:

fx,y (λ) = csx,y (λ) + i qsx,y (λ)

where csx,y (λ) = (2π)−1∑∞
k=−∞ γx,y (k) cos (λk) is the cospectrum and qsx,y (λ) =

(2π)−1∑∞
k=−∞ γx,y (k) sin (−λk) is the quadrature spectrum. The cospectrum is the si-

multaneous covariance between xt and yt at frequency λ, whereas the quadrature spectrum
is the lagged covariance48 by the phase π/2. Alternatively, we can write fx,y (λ) in the polar
form:

fx,y (λ) = rx,y (λ) eiθx,y(λ)

where rx,y (λ) is the gain and θx,y (λ) is the phase spectrum (Engle, 1976). We have:

r2
x,y (λ) = |fx,y (λ)|2

= cs2
x,y (λ) + qs2

x,y (λ)

It follows that the squared gain function r2
x,y (λ) is a dependence measure between xt and

yt. On the contrary, θx,y (λ) determine the lead-lag relationship between xt and yt.
We consider the linear filtering model:

yt =
∞∑

k=−∞
ϕkL

kxt + εt

= ϕ (L)xt + εt

47We have η2,t = α3,t − 0.3α3,t−1.
48Because we have:

qsx,y (λ) = (2π)−1
∞∑

k=−∞

γx,y (k) cos
(
π

2
+ λk

)
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where xt and εt are two independent stochastic processes and εt ∼ N
(
0, σ2

ε

)
. We have

γy,x (k) =
∑∞
s=−∞ ϕsγx (k − s) and:

fy,x (λ) = 1
2π

∞∑
k=−∞

∞∑
s=−∞

ϕsγx (k − s) e−iλk

=
∞∑

s=−∞
ϕse
−iλs

(
1

2π

∞∑
k=−∞

γx (k − s) e−iλ(k−s)

)

=
∞∑

s=−∞
ϕse
−iλsfx (λ)

= ϕ
(
e−iλ

)
fx (λ)

We have seen that fy (λ) =
∣∣ϕ (e−iλ)∣∣2 fx (λ) + fε (λ). It follows that:

fy (λ) =
∣∣ϕ (e−iλ)∣∣2 fx (λ) + fε (λ)

=
∣∣∣∣fy,x (λ)
fx (λ)

∣∣∣∣2 fx (λ) + fε (λ)

=
r2
y,x (λ)
fx (λ) + fε (λ)

= fy|x (λ) + fε (λ) (10.61)

We have decompose the spectral density function of yt into two terms: the first term fy|x (λ)
can be seen as the conditional expectation of fy (λ) with respect to fx (λ) while the second
term fε (λ) is the component due to the noise process. Equation (10.61) is close to the
Gaussian conditional expectation formula or the linear regression of yt on xt. The fraction
of the variance of fy (λ) explained by the linear filter – or the coefficient of determination
R2 – is equal to:

R2 =
fy|x (λ)
fy (λ)

= |fy,x (λ)|2

fy (λ) fx (λ)
= c2y,x (λ)

cy,x (λ) is called the coherency function. If the two processes xt and yt are uncorrelated,
then fy,x (λ) = 0 and c2y,x (λ) = 0. If σε = 0, then fε (λ) = 0, |fy,x (λ)|2 = fy (λ) fx (λ)
and c2y,x (λ) = 1. We deduce that 0 ≤ R2 ≤ 1 and 0 ≤ c2y,x (λ) ≤ 1. On page 610, we have
seen that the coefficient of determination R2 in the time domain associated to the linear
regression yt = β0 + βxt + ut is equal to the square of the cross-correlation ρ2

y,x between xt
and yt. By analogy, the coherence function cy,x (λ) can be viewed as the cross-correlation
between xt and yt in the frequency domain (Engle, 1976). Moreover, we have:

cy,x (λ) = fx,y (λ)√
fy (λ) fx (λ)

= rx,y (λ)√
fy (λ) fx (λ)

eiθx,y(λ)

= r̃x,y (λ) eiθx,y(λ)
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Since cy,x (λ) is a complex function, it is less easy to manipulate than a correlation function.
This is why r̃x,y (λ) may be preferred to define the cross-correlation between xt and yt in
the frequency domain. For example, we consider the bivariate process:(

xt
yt

)
=
(

0.5 ϕx,y
ϕy,x 0.5

)(
xt−1
yt−1

)
+
(
εt
ηt

)
where εt and ηt are two uncorrelated white noise processes with same variance. In Figure
10.29, we represent cy,x (λ) in polar coordinates.

FIGURE 10.29: Coherency function cy,x (λ)

10.2.5.7 Some applications

White noise testing There are many spectral procedures for testing the white noise hy-
pothesis. For instance, we have shown that the asymptotic distribution of 2fy (λ)−1

Iy (λ)
is a chi-squared distribution χ2

2. The hypothesis H0 : yt ∼ N
(
0, σ2) implies that

4πσ−2Iy (λ) ∼ χ2
2. Therefore, it suffices to estimate the empirical volatility and use goodness

of fit tests like the Kolmogorov-Smirnov statistic or a QQ plot (Pawitan and O’Sullivan,
1994) for testing the null hypothesis:

H0 : 4π
σ̂2 Iy (λ) ∼ χ2

2

Another idea is to verify that the periodogram does not contain a value significantly larger
than the other values. Since the cumulative distribution function of χ2

2 is F (x) = 1−e−x2/2,
we deduce that:

Pr
{

4π
σ̂2 Iy (λ) ≤ x

}
= F (x) = 1− e−x

2/2

Let I+
y be the maximum periodogram ordinate:

I+
y = sup {Iy (λj) : j = 1, . . . , q}
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where q = bn/2c is the largest integer less than n/2. We note:

ξ = 4π
σ̂2 I

+
y

If j 6= j′, then Iy (λj) and Iy (λj′) are independent and we have:

Pr {ξ ≤ x} = F (x)q =
(

1− e−x
2/2
)q

Rejecting the null hypothesis at the confidence level α is equivalent to verify that ξ is too
large or F (ξ)q ≥ α. Therefore, we deduce that H0 is rejected if the following condition is
satisfied:

ξ >

√
ln 1(

1− α1/q
)2

Remark 136 We can also test the presence of a unit root by considering the null hypothesis
H0 : S (xt) = yt − yt−1 ∼ N

(
0, σ2).

Cycle identification Cycle testing can be viewed as the contrary of white noise testing.
Indeed, if the process yt contains a cycle at frequency λc, we must observe a peak in the
periodogram. Fisher (1929) defined the g statistic:

g = Iy (λc)∑q
j=1 Iy (λj)

where q = bn/2c is the largest integer less than n/2. Under the hypothesis that the process yt
contains a cycle at frequency λc, Fisher showed that the distribution function of g satisfies49:

Pr {g ≥ x} = 1−
q∑
j=1

(−1)j
(
q

j

)
(1− jx)q−1

+

If this probability is lower than the level α, then we accept the presence of a cycle. In
practice, the frequency λc is unknown and is estimated by the largest periodogram value:

λc = {λ : sup Iy (λj)}

We consider the famous example of Canadian lynx data set, which collects the annual
record of the number of the Canadian lynx ‘trapped’ in the Mackenzie River district of the
North-West Canada for the period 1821–1934 (Tong, 1990). In the first panel in Figure
10.30, we represent the time series yt = log xt where xt is the number of lynx. We also
report the periodogram Iy (λ) in the second panel and we observe a peak at the frequency
λc = 0.6614. The Fisher test is equal to g = 0.59674 whereas the p-value is close to zero.
We deduce that the cycle period is equal to p = 2π/λc = 9.5 years. In the third and fourth
panels, we have represented the cycle ct and the residuals εt = yt − ct. Finally, we obtain
the following model:

yt = ct + εt

= 2.904 + 0.607 · sin
(

2π
9.5 · t− 1.138

)
+ εt

49When the number of observations n is large, Priestley (1981) showed that the probability distribution
of the statistic g? = 2ng is Pr {g? ≥ x} = ne−x/2.
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FIGURE 10.30: Detection of the cycle in the Canadian lynx data set

Long memory time series and fractional processes The fractional white noise
(FWN) process is defined as:

(1− L)d yt = εt

where εt ∼ N
(
0, σ2) and50 |d| < 1/2. Granger and Joyeux (1980) and Hosking (1981)

showed that yt has an infinite moving average process:

yt = (1− L)−d εt =
∞∑
k=0

θkεt−k

where51:
θk = Γ (k + d)

Γ (d) Γ (k + 1)
We can also write yt as an infinite auto-regressive process:

∞∑
k=0

φkyt−k = εt

where:
φk = Γ (k − d)

Γ (−d) Γ (k + 1)
In Figure 10.31, we report the function φk for several values of d. If d < 0 (respectively

50This condition implies that yt is stationary.
51If α > 0, the gamma function Γ (α) is equal to

∫∞
0 tα−1e−t dt. We also have Γ (0) =∞ and Γ (α+ 1) =

αΓ (α). This last property is used to calculate Γ (α) when α is negative. For instance, Γ (−0.5) = −2Γ (0.5) '
7.0898.
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FIGURE 10.31: AR representation of the fractional process

d > 0), then φk is negative (respectively positive) for k ≥ 1. Hosking (1981) showed that52:

γy (k) = σ2 Γ (1− 2d) Γ (k + d)
Γ (d) Γ (1− d) Γ (k − d+ 1)

and:
ρy (k) = Γ (1− d) Γ (k + d)

Γ (d) Γ (k − d+ 1)
We verify that ρy (k) < 0 if d < 0 and ρy (k) if d > 0. In the case of the AR(1) process
yt = φyt−1 + εt, we recall that the autocorrelation function is ρy (k) = φk. When d < 0,
there is a big difference between FWN and AR(1) processes, because ρy (k) is an oscillating
function in the case of the AR(1) process. When d > 0, the tappering pattern is more
pronounced for the AR(1) than for the FWN process. In order to understand this difference,
we give here the asymptotic behavior of the coefficients (Baillie, 1996):

lim
k→∞

θk = 1
Γ (d)k

d−1

lim
k→∞

φk = 1
Γ (−d)k

−(d+1)

lim
k→∞

γy (k) = Γ (1− 2d)
Γ (d) Γ (1− d)k

2d−1

lim
k→∞

ρy (k) = Γ (1− d)
Γ (d) k2d−1

52The variance of yt is infinite when the fractional differencing parameter d is equal to 1/2.



696 Handbook of Financial Risk Management

We deduce that these coefficients decline at a slower rate than for the AR(1) process53. For
instant, if d = 1/2, then ρy (k) = 1. In Table 10.12, we calculate ρy (k) for different values of d.
When we compare these results with the ones obtained for an AR(1) process with parameter
φ, we observe the hyperbolic decay for the FWN process. For instance, for the FWN process
with d = 0.45, ρy (10) and ρy (10000) are respectively equal to 99.15% and 97.79%. For the
AR(1) process with φ = 0.999, we obtain ρy (10) = 99% but54 ρy (10000) = 0%. We also
obtain the following paradox: the autocorrelation function ρy (10000) is higher for the FWN
process with d = 0.20 than for the AR(1) process with φ = 0.999!

TABLE 10.12: Autocorrelation function ρy (k) (in %) of FWN and AR(1) processes

k FWN process AR(1) process
d / φ 0.2 0.45 0.499 0.50 0.90 0.999

0 100.00 100.00 100.00 100.00 100.00 100.00
1 25.00 81.82 99.60 50.00 90.00 99.90
5 9.65 69.90 99.29 3.13 59.05 99.50
10 6.37 65.22 99.15 0.10 34.87 99.00
100 1.60 51.81 98.69 0.00 0.00 90.48
500 0.61 44.11 98.38 0.00 0.00 60.64
1000 0.40 41.15 98.24 0.00 0.00 36.77
5000 0.15 35.04 97.93 0.00 0.00 0.67
10000 0.10 32.69 97.79 0.00 0.00 0.00

Since yt = (1− L)−d εt is a stationary process, we deduce that its spectral density
function is:

fy (λ) =
∣∣∣(1− L)−d

∣∣∣2 fε (λ)

=
∣∣1− e−iλ∣∣−2d σ2

2π

= σ2

2π

(
2 sin λ2

)−2d
(10.62)

In Figure 10.32, we represent the function fy (λ) for different values of d, and we compare
fy (λ) with the spectral density function obtained for the AR(1) process. We notice that
the high frequency components dominate when d is negative, whereas the spectral density
function is concentrated at low frequencies when d is positive. In particular, we have fy (0) =
+∞ when d > 0.

Granger and Joyeux (1980) extended the FWN process to a more larger class of station-
ary processes called autoregressive fractionally integrated moving average (or ARFIMA)
models. The ARFIMA(p,d,q) is defined by:

Φ (L) (1− L)d yt = Θ (L) εt

where εt ∼ N
(
0, σ2). This model can be seen as an extension of ARMA models by intro-

ducing a fractional unit root. This is why yt is said to be fractionally integrated and we
note yt ∼ I (d) where |d| < 1/2. The properties of the FWN process can be generalized

53Fractional white noise processes are also called hyperbolic decay time series, whereas autoregressive
processes are called geometric decay time series.

54In fact, the non-rounding autocorrelation is equal to ρy (10000) = 0.0045%.
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FIGURE 10.32: Spectral density function of the FWN process

to the ARFIMA process. For instance, the stationary ARFIMA(p,d,q) process possesses
long memory if d > 0 and short memory if d < 0. The AR(∞) and MA(∞) represen-
tation are Φ? (L) yt = εt and yt = Θ? (L) εt where Φ? (L) = Φ (L) (1− L)d Θ (L)−1 and
Θ? (L) = Φ (L)−1 (1− L)−d Θ (L). The coefficients of Φ? (L) and Θ? (L) can be calculated
numerically using truncated convolutions. Sowell (1992) also provides exact formulations of
the autocovariance function. Concerning the spectral density function, we obtain:

fy (λ) = σ2

2π

(
2 sin λ2

)−2d ∣∣Θ (e−iλ)∣∣2
|Φ (e−iλ)|2

If we consider the ARFIMA(1,d,1) model defined by (1− φL) (1− L)d yt = (1− θL) εt, we
obtain:

fy (λ) = σ2

2π

(
2 sin λ2

)−2d (1− 2θ cosλ+ θ2)
(1− 2φ cosλ+ φ2)

We consider the ARMA processes represented in Figure 10.23 by adding a long memory
component. Results are given in Figure 10.33. We notice how the function

(
2 sin λ

2
)−2d

impacts the white noise process. When d < 0 (respectively d > 0), the spectral density
function becomes an increasing (respectively decreasing) function. This function is equal to
1 for λ? = 2 arcsin 1/2 = 1.047 radians. When d < 0, the short memory part reduces low
frequency components and magnifies high frequency components. We observe the contrary
when d > 0. This is coherent with the previous analysis since the ARFIMA process is
persistent when d > 0 while it is mean-reverting when d < 0.

There are different approaches for estimating the ARFIMA(p,d,q) model. Sowell (1992)
derives the exact ML estimator by considering the joint distribution of the sample Y =
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FIGURE 10.33: Spectral density function of the ARFIMA process

(y1, . . . , yn). We recall that the log-likelihood function is:

` (θ) = −n2 ln 2π − 1
2 ln |Σ| − 1

2Y
>ΣY

where Σ is the covariance matrix of Y :

Σ =


γy (0) γy (1) γy (n− 1)
γy (1) γy (0) γy (n− 2)

. . .
γy (n− 1) γy (n− 2) γy (0)


However, this approach may be time-consuming because it requires the inverse of the n×n
matrix Σ, where the elements Σi,j = γy (|i− j|) are themselves complicated to calculate55.
This is why it is better to estimate the vector θ of parameters by considering the FDML
approach. The whittle log-likelihood is:

` (θ) ∝ −n2 ln σ2 + d

2

n∑
j=1

ln
(

4 sin2 λ

2

)
−

n∑
j=1

ln
∣∣Θ (e−iλ)∣∣
|Φ (e−iλ)| −

1
2n

n∑
j=1

∣∣∑n
t=1 yte

−iλjt
∣∣2 ∣∣Φ (e−iλ)∣∣2

σ2
(
2 sin λ

2
)−2d |Θ (e−iλ)|2

Another famous approach is the semiparametric estimation proposed by Geweke and Porter-
Hudak (1983). When d > 0, we have seen that the low frequency part dominates the
spectrum:

fy (λ) ' σ2

2π

(
2 sin λ2

)−2d

55Sowell (1992) shows that they are function of the hypergeometric function.
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when λ→ 0. We deduce that:

ln fy (λ) '
(
ln σ2 − ln 2π

)
− d ln

(
4 sin2 λ

2

)
Geweke and Porter-Hudak (1983) estimate the parameters d and σ by considering the
following linear regression:

ln Iy (λj) = c− d ln
(

4 sin2 λj
2

)
+ uj

where56 λ ≤ λmin.
The fractional white noise process is related to the Hurst exponent H, which can be

characterized in several ways:

1. let c > 0 be a scalar; the probability distribution of yt at the date ct is equal to the
probability distribution of yt at the time t multiplied by cH :

yct
D∼ cHyt

we say that the process yt is H self-similar or has the self-similarity property;

2. if we consider the asymptotic distribution of ρy (k), we verify that:

ρy (k) ∼ |k|2(H−1)

3. for the spectral generating function, we obtain57:

fy (λ) ∼ |λ|−(2H+1)

4. the Hurst exponent is related to the fractional differencing parameter since we have:

H = d+ 1
2

From the previous properties, we notice that H ∈ [0, 1].
For estimating H, we generally use the R/S (or rescaled range) statistic. Let St and Rt

be the standard deviation and the range of the sample {y1, . . . , yt}. We have:

Rt = max
k≤t

k∑
j=1

(yj − ȳ)−min
k≤t

k∑
j=1

(yj − ȳ)

where ȳ = n−1∑n
t=1 yt. Lo (1991) defines the rescaled range statistic called Qt as:

Qt = Rt
St

We can show that Qt ∼ ctH when t → ∞. We can then estimate the Hurst exponent by
performing the linear regression:

logQt = a+H · log t+ ut

56Generally, λmin is set to 2π
√
n.

57Since we have c−Hyct
D∼ yt, the spectrum satisfies the equation c−(2H+1)fy

(
c−1λ

)
= fy (λ).
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Lo (1991) proposes to test the null hypothesis H0 : H = 0.5 by considering the statistic
Vt = Qt/

√
t. Under the null hypothesis, the 95% confidence interval is [0.809, 1.862].

We consider the daily return of the S&P 500 index and the daily variation of the VIX
index from January 2007 to December 2017. In Figure 10.34, we report the estimated
relationship logQt = â + Ĥ log t for the two time series. We obtained Ĥ = 0.56 for the
S&P 500 index and Ĥ = 0.41 for the VIX index. If we use the statistic Vt, we do not refuse
the null hypothesis H0 at the 95% confidence level. However, we see that Vt reaches the
lower bound in the case of the VIX index, whereas it can be higher than the upper bound
in the case of the S&P 500 index. The S&P 500 could then exhibit long-range dependence,
whereas the VIX index may be more mean-reverting. However, the whittle estimate d̂ is
respectively equal to −0.09 and −0.16 and is significant at the 99% confidence level. This
confirms that the VIX index has short memory, but it contradicts that the S&P 500 index
has long memory.

FIGURE 10.34: R/S analysis and estimation of the Hurst exponent

Signal decomposition On page 693, we do not explain how the cyclical component ct is
calculated. We reiterate that the Fourier transform of the logarithm of the number of lynx
yt is given by dy (λj) =

∑n
t=1 yte

−iλjt. To recover the signal, we use the inverse Fourier
transform yt = n−1∑n

j=1 dy (λj) eiλjt. If we define dcy (λ) as follows:

dcy (λ) =
{
d (λc) if λ = λc or λ = 2π − λc
0 otherwise

the cyclical component is equal to:

ct = ȳ + 1
n

n∑
j=1

dcy (λj) eiλjt
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Estimating the cyclical component is equivalent to apply the inverse Fourier transform to
the Fourier coefficient corresponding to the cycle frequency λc.

The previous method can be generalized to the partition Λ = {λ1, . . . , λn}:

Λ =
m⋃
k=1

Λk

where Λk
⋂

Λk′ = ∅. We define the component ykt as the inverse Fourier transform of the
coefficients dky (λ):

dky (λ) =
{
d (λ) if λ ∈ Λk
0 otherwise

It follows that we have decomposed the original signal yt into m signals58:

yt =
m∑
k=1

ykt

This method allows to extract given frequency components. It is related to Parseval’s the-
orem, which states that the sum of squares of a time series is equal to the sum of squares
of its Fourier transform:

n∑
t=1
|yt|2 = 1

n

n∑
j=1
|dy (λj)|2

We consider the time series yt = ct + ut, which is the sum of a long-term cyclical
component and a residual component. The long-term component is the sum of three cycles
ckt , whose periods are larger than 5 years. The residual component is the sum of a white
noise process and 5 short-term cycles, whose periods are lower than 1 year. We represent yt
and the components ckt , ct and ut in Figure 10.35 for the 2 500 dates59. Then, we consider
the signal reconstruction based on the m most significant frequencies:

ymt = 1
n

n∑
j=1

dmy (λj) eiλjt

where dmy (λj) is equal to zero for the 2 500 frequencies except for the m frequencies with
the highest values of |dy (λj)|. Figure 10.36 shows the reconstructed signal ymt for different
values of m. We notice that we may describe the dynamics of yt with very few Fourier
coefficients. Using the Parseval’s theorem, we define the energy ratio as follows:

ERm =
∑n
t=1 |ymt |

2∑n
t=1 |yt|

2 =
∑m
k=1 |δk:n|2∑n

j=1 |dy (λj)|2

where δk:n is the kth reverse order statistic of dy (λj). Results in Table 10.13 shows that one
Fourier frequency explains 35% of the total variance of yt, two Fourier frequencies explain
70% of the total variance of yt, etc. With 50 Fourier frequencies, that is 2% of all the Fourier
frequencies, we explain more than 96% of the total variance of yt.

58This approach is also called subband coding or subband decomposition.
59We assume that each year is composed of 250 trading days.
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FIGURE 10.35: Spectral decomposition of the signal yt

FIGURE 10.36: Reconstructed signal ymt
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TABLE 10.13: Value of the energy ratio ERm (in %)

m 1 2 3 4 5 10 25 50 75 100 2 500
ERm 34.8 69.5 73.8 78.1 79.9 87.4 94.4 96.5 97.3 97.5 100.0

Filtering theory Previously, we have implicitly used the concept of filtering in order to
extract the cycle component. More generally, the filtering technique consists in removing
some undesired frequencies. From a given signal xt, we build another signal yt such that:

yt = ϕ (L)xt

xt is also called the input process, whereas yt is the output process. Since ϕ (L) is inde-
pendent from time t, ϕ (L) is a time-invariant filter. We distinguish four families of such
filters:

1. low-pass filters reduce components of high frequencies in order to get the dynamics
due to low frequencies; a famous example is the moving average:

yt = 1
m

m−1∑
k=0

xt−k

2. high-pass filters reduce components of low frequencies in order to get the dynamics
due to high frequencies; the linear difference yt = xt−xt−1 is an example of high-pass
filters;

3. band-pass filters combine a low-pass filter with a high-pass filter; they can be used to
study the dynamics due to medium frequencies;

4. band-stop filters are the opposite of band-pass filters; therefore, they remove medium
frequencies.

We also make the distinction between causal and non-causal filters. In the case of a causal
filter, ϕ (L) can be written as

∑m−1
k=0 ϕkL

k meaning that yt does not depend on the future
values of xt. If ϕ (L) is linear, it is said linear time-invariant or LTI filter.

We recall that the spectral density function of yt is:

fy (λ) =
∣∣ϕ (e−iλ)∣∣2 fx (λ) (10.63)

The function ϕ
(
e−iλ

)
is known as the frequency response or transfer function. Equation

(10.63) can be seen as the frequency-domain version of the time-domain equality var (Y ) =
var (aX + b) = a2 var (X). Let us consider the unit signal:

xt =
{

1 if t = 0
0 otherwise

We can then calculate the impulse response yt = ϕ (L)xt. If yt = 0 for any date t ≥ t?,
the impulse response is finite, and the filter is known as a finite impulse response (or FIR)
filter. An example is the moving average filter:

ϕ (L) = L0 + L1

2 ⇒

{
y0 = y1 = 1

2
yt = 0 for t > 1
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Otherwise, we have an infinite impulse response (or IIR) filter. For instance, this is the case
of the AR(1) filter:

ϕ (L) = (1− φL)−1 ⇒ yt = φt > 0

The output signal yt is the discrete convolution of the input signal xt and the vector ϕt
of the filter coefficients:

yt = ϕt ∗ xt
Using the Fourier transform, we deduce that:

dy (λ) = dϕ (λ) dx (λ)

We can then obtain the output signal yt by multiplying the discrete Fourier transforms of
ϕt and xt, and taking the inverse Fourier transform of the product. For extracting a cycle,
we use the following transfer function:

dϕ (λ) =
{

1 if λ = λc
0 otherwise

For a low-pass filter, we can consider a transfer function such that:

dϕ (λ) =
{

1 if λ ∈ [0, λ?[
0 if λ ∈ [λ?, π]

Of course, we can specify more complicated filters. For example, the Hodrick-Prescott and
Baxter-King filters that are used for estimating the business cycle are respectively a high-
pass filter and a band-pass filter.

Remark 137 Time domain analysis consists in localizing common and residual patterns
associated to a signal in the time scale. Frequency domain analysis (or spectral analysis)
does the same job by considering a frequency scale. The wavelet analysis combines the two
approaches to study the signal in the time-frequency domain.

10.3 Exercises
10.3.1 Probability distribution of the t-statistic in the case of the linear

regression model
We consider the linear regression model:

yi = x>i β + ui

where yi is a scalar, xi is a K × 1 vector and ui is a random variable. By considering a
sample of n observations, the matrix form of the linear regression model is:

Y = Xβ + U

We assume the standard assumptions: H1 : U ∼ N
(
0, σ2In

)
, H2 : X is a n × K matrix

of known values, H3 : rank (X) = K and H4 : limn−1 (X>X
)

= Q. We note β̂ the OLS
estimator and H = X

(
X>X

)−1 X> the hat matrix.
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1. Show that the matrices H and L = In −H are symmetric and idempotent.

2. Show that LX = 0 and X>L = 0. Deduce that Û = LU.

3. Calculate trace (L) and rank (L).

4. We note RSS (β) the residual sum of squares. Show that σ̂2 = (n−K)−1 RSS
(
β̂
)
is

an unbiased estimator of σ2.

5. By considering the normalized random vector V = (σIn)−1 U, find the probability
distribution of σ̂2.

6. Show that β̂ and Û are independent.

7. Find the probability distribution of t
(
β̂j

)
:

t
(
β̂j

)
= β̂j − βj
σ̂
(
β̂j

)
10.3.2 Linear regression without a constant

We consider the linear model yi = x>i β + εi where εi ∼ N
(
0, σ2) and E [εiεj ] = 0.

1. Write this model in the matrix form: Y = Xβ + ε. Compute the sum of squared
residuals ε>ε. Deduce that the least squares estimator β̂ = arg min ε>ε is the solution
of a quadratic programming problem.

2. We assume that the linear model does not contain an intercept.

(a) Show that the residuals are not centered.
(b) Write the quadratic programming problem associated to the least squares esti-

mator if we impose that the residuals are centered.
(c) Transform the previous optimization problem with explicit constraints into an

optimization problem with implicit constraints. Deduce the analytical solution.

10.3.3 Linear regression with linear constraints
1. We consider the linear regression:

Y = Xβ + U

(a) Let RSS (β) = U>U denote the residual sum of squares. Calculate RSS (β) with
respect to Y, X and β.

(b) Deduce the OLS estimator:

β̂ = arg min RSS (β)

(c) We assume that U ∼ N
(
0, σ2In

)
. Show that β̂ is an unbiased estimator. Deduce

the variance of β̂.

2. We now introduce a system C of constraints defined by:

C =
{
Aβ = B
Cβ ≥ D
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TABLE 10.14: Numerical example

X>X =


28.88 23.15 20.75 21.60 22.97
23.15 35.01 24.73 25.14 24.73
20.75 24.73 28.23 22.42 21.63
21.60 25.14 22.42 32.22 24.17
22.97 24.73 21.63 24.17 33.10

 X>Y =


100.53
136.62
128.20
146.07
117.01



(a) Show that the constrained estimator β̃ is the solution of a quadratic programming
problem.

(b) We consider the numerical example given in Table 10.14.

i. Calculate β̃ when
∑5
i=1 βi = 1.

ii. Calculate β̃ when β1 = β2 = β5.
iii. Calculate β̃ when β1 ≥ β2 ≥ β3 ≥ β4 ≥ β5.
iv. We assume that β1 ≤ β2 ≤ β3 ≤ β4 ≤ β5 and

∑5
i=1 βi = 1. Verify that:

β̃ =


−2.6276

0.9069
0.9069
0.9069
0.9069


Deduce the values of the Lagrange coefficients for the inequality constraints
given that the Lagrange coefficient of the equality constraint is equal to
−192.36304.

3. We assume that Aβ = B.

(a) Write the Lagrange function and deduce the constrained OLS estimator β̃.
(b) Show that we can write the explicit constraints Aβ = B into implicit constraints

β = Cγ+D. Write the constrained residual sum of squares RSS (γ). Deduce the
expressions of the estimator γ̂ and the constrained estimator β̃.

(c) Verify the coherence between the two estimators.
(d) Verify that we obtain the same estimates in the case β1 = β2 and β1 = β5 + 1.

10.3.4 Maximum likelihood estimation of the Poisson distribution
We consider a sample Y = {y1, . . . , yn} generated by the Poisson distribution P (λ).

1. Find the MLE of λ.

2. Calculate the information matrix I (λ). Deduce the variance of λ̂. Compare this ex-
pression with the direct computation based on the Hessian matrix.
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10.3.5 Maximum likelihood estimation of the exponential distribution
We consider a sample Y = {y1, . . . , yn} generated by the Exponential distribution E (λ).

1. Find the MLE of λ.

2. Calculate the information matrix I (λ). Deduce the variance of λ̂. Compare this ex-
pression with the direct computation based on the Hessian matrix.

10.3.6 Relationship between the linear regression and the maximum like-
lihood method

We consider the standard linear regression model:

yi = x>i β + ui

where ui ∼ N
(
0, σ2).

1. Write the log-likelihood function ` (θ) associated to the sample Y = (y1, . . . , yn).

2. Find the ML estimator θ̂. What is the relationship between θ̂ML and θ̂OLS?

3. Compute var
(
θ̂ML

)
.

10.3.7 The Gaussian mixture model
We consider the mixture Y of two independent Gaussian random variables Y1 and Y2.

The distribution function of Y is:

f (y) = π1f1 (y) + π2f2 (y)

where Y1 ∼ N
(
µ1, σ

2
1
)
, Y2 ∼ N

(
µ2, σ

2
2
)
and π1 + π2 = 1.

1. Show that:
E
[
Y k
]

= π1E
[
Y k1
]

+ π2E
[
Y k2
]

2. Deduce E [Y ] and var (Y ).

3. Find the expression of the skewness coefficient γ1 (Y ).

10.3.8 Parameter estimation of diffusion processes
We consider a sample X = {x0, x1, . . . , xT } of the diffusion process X (t), which is

observed at irregular times t = {t0, t1, . . . , tT }. Therefore, we have xi = X (ti).

1. Find the expression of the log-likelihood function associated to the geometric Brownian
motion:

dX (t) = µX (t) dt+ σX (t) dW (t)

2. Same question with the Ornstein-Uhlenbeck process:

dX (t) = a (b−X (t)) dt+ σ dW (t)
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3. We consider the general SDE:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)

Calculate the log-likelihood function associated to the Euler-Maruyama scheme. Apply
this result to the Cox-Ingersoll-Ross process:

dX (t) = a (b−X (t)) dt+ σ
√
X (t) dW (t)

Compare this approach with the quasi-maximum likelihood (QML) estimation by
assuming conditional normality of innovation processes.

4. Find the orthogonality conditions of the GMM approach for the GBM, OU and CIR
processes.

5. Same question if we consider the CKLS process (Chan et al., 1992):

dX (t) = a (b−X (t)) dt+ σ |X (t)|γ dW (t)

10.3.9 The Tobit model
1. Give the first two moments of the truncated random variable X | X ≥ c where
X ∼ N

(
µ, σ2).

2. Calculate the first two moments of the censored random variable Ỹ = max (X, c).

3. Illustrate the difference between truncation and censoring when the parameters are
µ = 2, σ = 3 and c = 1.

We consider the Tobit model defined as follows:{
yi = max (0, y?i )
y?i = x>i β + ui

where ui ∼ N
(
0, σ2). We have a linear model between the latent variable y?i and K ex-

planatory variables xi. However, we do not directly observe the data {xi, y?i }. Indeed, we
observe the data {xi, yi}, implying that the dependent variable yi is censored.

4. Write the log-likelihood function ` (θ) where θ =
(
β, σ2).

5. Find the first-order conditions of the ML estimator θ̂.

6. Calculate the Hessian matrix H (θ) associated to the log-likelihood function ` (θ).

7. Show that the information matrix has the following representation (Amemiya, 1973):

I (θ) =
( ∑n

i=1 aixix
>
i

∑n
i=1 bixi∑n

i=1 bixi
∑n
i=1 ci

)
where ai, bi and ci are three scalars to define.

8. Show that the OLS estimator based on non-censored data is biased.

9. Compute the conditional expectations E [yi | yi > 0] and E [yi | yi ≤ 0], and the un-
conditional expectation E [yi]. Propose an OLS estimator β̃ and compare it with the
ML estimator β̂.



Statistical Inference and Model Estimation 709

10. We consider the data given in Table 10.15. Using the method of maximum likelihood,
estimate the Tobit model:{

yi = max (0, y?i )
y?i = β0 + β1xi,1 + β2x2,1 + ui

where ui ∼ N
(
0, σ2). Calculate the OLS estimates based on the non-censored data.

Verify that:
β̂(OLS) − σ̂(ML) (X>1 X1

)−1 X>0 Λ(ML)
0 = β̂(ML)

and:
β̂(OLS) − σ̂(ML) (X>1 X1

)−1 X>1 Λ(ML)
1 6= β̂(ML)

Comment on these results.

11. How to calculate the predicted value y̆?i given that we know if the observation is
censured or not? Compare the numerical value of y̆?i with the unconditional predicted
value ŷ?i .

TABLE 10.15: Data of the Tobit example
i 1 2 3 4 5 6 7 8 9 10
yi 4.0 0.0 0.5 0.0 0.0 17.4 18.0 0.0 0.0 9.7
x1,i −4.3 −9.2 −2.8 −2.7 −8.4 2.0 5.3 −8.1 0.9 −7.8
x2,i −1.2 −5.5 1.8 −3.4 2.9 9.3 9.1 6.8 −6.3 4.3
i 11 12 13 14 15 16 17 18 19 20
yi 9.7 1.8 6.5 26.1 0.0 5.0 21.6 6.2 9.9 1.4
x1,i 0.5 6.7 −0.9 4.0 −8.6 2.3 7.1 7.3 9.3 −0.2
x2,i 5.3 −8.6 2.1 9.2 −8.7 −7.9 9.2 −7.5 −4.4 1.7
i 21 22 23 24 25 26 27 28 29 30
yi 5.0 0.0 0.0 18.1 0.0 7.7 0.0 0.0 0.0 4.0
x1,i −3.5 −1.5 −2.6 8.4 8.6 5.8 −7.9 0.9 −7.3 2.3
x2,i 0.1 −4.5 −8.9 3.8 −8.5 8.3 1.8 −6.2 8.4 6.7

10.3.10 Derivation of Kalman filter equations
We consider the standard state space model described on page 647:{

yt = Ztαt + dt + εt
αt = Ttαt−1 + ct +Rtηt

1. Show that the prior estimates are given by the following relationships:

α̂t|t−1 = Ttα̂t−1|t−1 + ct

Pt|t−1 = TtPt−1|t−1T
>
t +RtQtR

>
t

2. Deduce that the innovation vt = yt − Et−1 [yt] is a centered Gaussian random vector,
whose covariance matrix Ft is equal to:

Ft = ZtPt|t−1Z
>
t +Ht
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3. Show that the joint distribution of the random vector (αt, vt) conditionally to the
filtration Ft−1 is equal to:(

αt
vt

)
∼ N

((
α̂t|t−1

0

)
,

(
Pt|t−1 Pt|t−1Z

>
t

ZtPt|t−1 Ft

))
4. Deduce that:

α̂t|t = E
[
Et−1 [αt] | vt = yt − Ztα̂t|t−1 − dt

]
and:

α̂t|t = α̂t|t−1 + Pt|t−1Z
>
t F
−1
t

(
yt − Ztα̂t|t−1 − dt

)
Pt|t = Pt|t−1 − Pt|t−1Z

>
t F
−1
t ZtPt|t−1

5. Summarize the equations of the Kalman filter. Deduce that there exists a matrix Kt

such that:
α̂t+1|t = Tt+1α̂t|t−1 + ct+1 +Ktvt

Rewrite the state space model as an innovation process. What is the interpretation of
Kt?

6. Show that the state space model can be written as:{
yt = Z?t α

?
t

α?t = T ?t α
?
t−1 +R?t η

?
t

Define the state vector α?t , the matrices Z?t , T ?t and R?t , and the random vector η?t .

7. Deduce the Kalman filter when the white noise process εt and ηt are correlated:

E
[
εtη
>
t

]
= Ct

10.3.11 Steady state of time-invariant state space model
We note εt ∼ N

(
0, σ2

ε

)
.

1. Calculate the steady state of the SSM associated to the AR(1) process:

yt = µ+ φ1yt−1 + εt

2. Calculate the steady state of the SSM associated to the MA(1) process:

yt = µ+ εt − θ1εt−1

3. Calculate the steady state of the SSM associated to the ARMA(1,1) process:

yt = µ+ φ1yt−1 + εt − θ1εt−1

4. Calculate the steady state of the SSM associated to the process:

yt = µ+ ut

ut = θ1ut−1 + εt
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10.3.12 Kalman information filter versus Kalman covariance filter
We assume that all square matrices are invertible and all non-square matrices have a

Moore-Penrose pseudo-inverse. We note A, B, C and D four matrices of dimension m×m,
n×m, n× n and m×m.

1. Show that: (
Im +AB>C−1B

)−1
A =

(
A−1 +B>C−1B

)−1

2. Verify the following relationship:(
Im +AB>C−1B

)−1 = Im −AB>
(
C +BAB>

)−1
B

3. Deduce that: (
Im +AB>C−1B

)−1
AB>C−1 = AB>

(
C +BAB>

)−1

4. Calculate
(
Im +D−1A

)
(A+D)−1.

We consider the following state space model:{
yt = Ztαt + εt
αt = Ttαt−1 +Rtηt

It correspond to a special case of the model described on page 647 when there are no
constants ct and dt in state and measurement equations.

5. Define the concept of information matrix.

6. We introduce the notations It|t = P−1
t|t , It|t−1 = P−1

t|t−1, α̂
?
t|t = It|tα̂t|t and α̂?t|t−1 =

It|t−1α̂t|t−1. How do you interpret the vectors α̂?t|t and α̂?t|t−1?

7. By using the results of Questions 1-4, show that:

It|tPt|t−1 = Im + Z>t H
−1
t ZtPt|t−1

Deduce that:
It|tPt|t−1Z

>
t

(
ZtPt|t−1Z

>
t +Ht

)−1 = Z>t H
−1
t

8. Verify that the recursive equations of the information filter are:
It|t−1 =

(
TtI−1

t−1|t−1T
>
t +RtQtR

>
t

)−1

α̂?t|t−1 = It|t−1TtI−1
t−1|t−1α̂

?
t−1|t−1

It|t = It|t−1 + Z>t H
−1
t Zt

α̂?t|t = α̂?t|t−1 + Z>t H
−1
t yt

What advantages would you see in using the Kalman information filter rather than
the Kalman covariance filter?

9. We assume that the probability distribution of α0 is diffuse. Give the log-likelihood
function of the sample {y1, . . . , yT } when considering the Kalman information filter.
How to take into account the diffuse assumption when considering the Kalman co-
variance filter?
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10.3.13 Granger representation theorem
We assume that yt is a VaR(p) process:

Φ′ (L) yt = µt + εt

where:
Φ′ (L) = In − Φ′1L− . . .− Φ′pLp

1. We consider the case p = 1. Show that:

∆yt = µt + (Φ′1 − In) yt−1 + εt

2. We consider the case p = 2. Show that:

∆yt = µt + (Φ′1 + Φ′2 − In) yt−1 − Φ′2∆yt−1 + εt

3. Verify that the expression of ∆yt in the general case is equal to:

∆yt = µt + Πyt−1 +
p−1∑
i=1

Φi∆yt−i + εt

where Π = −Φ′ (1) =
∑p
i=1 Φ′i − In and Φi = −

∑p
j=i+1 Φ′j .

10.3.14 Probability distribution of the periodogram
Let yt be a stationary centered process. We decompose the periodogram as the sum of

two parts:

Iy (λ) = 1
2πn

∣∣∣∣∣
n∑
t=1

yte
−iλjt

∣∣∣∣∣
2

= a2 (λj) + b2 (λj)
2π

where a (λj) = n−1/2∑n
t=1 yt cos (λjt) and b (λj) = n−1/2∑n

t=1 yt sin (λjt).

1. We assume that yt ∼ N
(
0, σ2). Show that60:

lim
n→∞

an (λj) ∼ N
(

0, σ
2

2

)
and:

lim
n→∞

bn (λj) ∼ N
(

0, σ
2

2

)
2. Verify that a (λj) and b (λj) are asymptotically independent. Deduce the probability

distribution of Iy (λj).

60We recall that:

lim
n→∞

(
1
n

n∑
t=1

cos (αt)

)
= 0

when α 6= 0.



Statistical Inference and Model Estimation 713

3. More generally, we assume that limn→∞ 2f−1
y (λj) Iy (λj) ∼ χ2

2 for any stationary
centered process yt. Calculate the first two moments of Iy (λj) and the 95% confidence
interval of fy (λj).

4. We consider Question 2 when λj = 0. What is the probability distribution of Iy (0)?
Formulate an hypothesis about the probability distribution of Iy (0) for all stationary
centered process yt. Show that limn→∞ E [Iy (0)] = fy (0) and limn→∞ var (Iy (0)) =
2f2
y (0).

10.3.15 Spectral density function of structural time series models
We consider the following models:

(M1) {
yt = µt + εt
µt = µt−1 + ηt

(M2)  yt = µt + εt
µt = µt−1 + βt−1 + ηt
βt = βt−1 + ζt

(M3) 
yt = µt + βt + γt + εt
µt = µt−1 + ηt
βt = φβt−1 + ζt
s−1∑
i=0

γt−i = ωt

where εt, ηt, ζt and ωt are independent white noise processes with variances σ2
ε , σ2

η, σ2
ζ and

σ2
ω.

1. Write Models (M1) and (M2) in the state space form.

2. Find the stationary form of these two processes and calculate their spectral density
function.

3. Illustrate graphically the difference between these spectral density functions.

4. We consider Model (M3). Give an interpretation of the components µt, βt and γt.

5. Show that a stationary form of yt is:

zt = (1− L) (1− Ls) yt

6. Give another stationary form of yt.

7. Find the spectral density function of zt.
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10.3.16 Spectral density function of some processes
Calculate the spectral density function of the following processes:

1. yt is a periodic random walk process:

yt = yt−s + εt

where s > 1 and εt ∼ N
(
0, σ2

ε

)
.

2. yt is a fractional white noise process:

(1− L)d yt = εt

where εt ∼ N
(
0, σ2

ε

)
.

3. zt is the sum of an AR(1) process and a MA(1) process: zt = xt + yt
xt = φxt−1 + ut
yt = vt − θvt−1

where ut ∼ N
(
0, σ2

u

)
, vt ∼ N

(
0, σ2

v

)
and ut ⊥ vt.

(a) Simulate a sample z of 1 000 observations with the following parameter: φ = 0.75,
θ = 0.2, σu = 1 and σv = 0.5. Draw the periodogram of z.

(b) Estimate the parameters φ, σu, θ and σv by using the method of Whittle. Com-
pare the estimated spectral density function with the periodogram of z and the
theoretical spectral density function.



Chapter 11
Copulas and Dependence Modeling

One of the main challenges in risk management is the aggregation of individual risks. We can
move the issue aside by assuming that the random variables modeling individual risks are
independent or are only dependent by means of a common risk factor. The problem becomes
much more involved when one wants to model fully dependent random variables. Again a
classic solution is to assume that the vector of individual risks follows a multivariate normal
distribution. However, all risks are not likely to be well described by a Gaussian random
vector, and the normal distribution may fail to catch some features of the dependence
between individual risks.

Copula functions are a statistical tool to solve the previous issue. A copula function is
nothing else but the joint distribution of a vector of uniform random variables. Since it is
always possible to map any random vector into a vector of uniform random variables, we
are able to split the marginals and the dependence between the random variables. There-
fore, a copula function represents the statistical dependence between random variables, and
generalizes the concept of correlation when the random vector is not Gaussian.

11.1 Canonical representation of multivariate distributions
The concept of copula has been introduced by Sklar in 1959. During a long time, only

a small number of people have used copula functions, more in the field of mathematics
than this of statistics. The publication of Genest and MacKay (1986b) in the American
Statistician marks a breakdown and opens areas of study in empirical modeling, statistics
and econometrics. In what follows, we intensively use the materials developed in the books
of Joe (1997) and Nelsen (2006).

11.1.1 Sklar’s theorem
Nelsen (2006) defines a bi-dimensional copula (or a 2-copula) as a function C which

satisfies the following properties:

1. Dom C = [0, 1]× [0, 1];

2. C (0, u) = C (u, 0) = 0 and C (1, u) = C (u, 1) = u for all u in [0, 1];

3. C is 2-increasing:

C (v1, v2)−C (v1, u2)−C (u1, v2) + C (u1, u2) ≥ 0

for all (u1, u2) ∈ [0, 1]2, (v1, v2) ∈ [0, 1]2 such that 0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤
1.

715
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This definition means that C is a cumulative distribution function with uniform marginals:

C (u1, u2) = Pr {U1 ≤ u1, U2 ≤ u2}

where U1 and U2 are two uniform random variables.

Example 108 Let us consider the function C⊥ (u1, u2) = u1u2. We have C⊥ (0, u) =
C⊥ (u, 0) = 0 and C⊥ (1, u) = C⊥ (u, 1) = u. Since we have v2 − u2 ≥ 0 and v1 ≥ u1, it
follows that v1 (v2 − u2) ≥ u1 (v2 − u2) and v1v2 + u1u2 − u1v2 − v1u2 ≥ 0. We deduce that
C⊥ is a copula function. It is called the product copula.

Let F1 and F2 be any two univariate distributions. It is obvious that F (x1, x2) =
C (F1 (x1) ,F2 (x2)) is a probability distribution with marginals F1 and F2. Indeed,
ui = Fi (xi) defines a uniform transformation (ui ∈ [0, 1]). Moreover, we verify that
C (F1 (x1) ,F2 (∞)) = C (F1 (x1) , 1) = F1 (x1). Copulas are then a powerful tool to build a
multivariate probability distribution when the marginals are given. Conversely, Sklar (1959)
proves that any bivariate distribution F admits such a representation:

F (x1, x2) = C (F1 (x1) ,F2 (x2)) (11.1)

and that the copula C is unique provided the marginals are continuous. This result is
important, because we can associate to each bivariate distribution a copula function. We
then obtain a canonical representation of a bivariate probability distribution: on one side,
we have the marginals or the univariate directions F1 and F2; on the other side, we have the
copula C that links these marginals and gives the dependence between the unidimensional
directions.

Example 109 The Gumbel logistic distribution is the function F (x1, x2) = (1 + e−x1 + e−x2)−1

defined on R2. We notice that the marginals are F1 (x1) ≡ F (x1,∞) = (1 + e−x1)−1 and
F2 (x2) ≡ (1 + e−x2)−1. The quantile functions are then F−1

1 (u1) = ln u1 − ln (1− u1) and
F−1

2 (u2) = ln u2 − ln (1− u2). We finally deduce that:

C (u1, u2) = F
(
F−1

1 (u1) ,F−1
2 (u2)

)
= u1u2

u1 + u2 − u1u2

is the Gumbel logistic copula.

11.1.2 Expression of the copula density
If the joint distribution function F (x1, x2) is absolutely continuous, we obtain:

f (x1, x2) = ∂1,2 F (x1, x2)
= ∂1,2 C (F1 (x1) ,F2 (x2))
= c (F1 (x1) ,F2 (x2)) · f1 (x1) · f2 (x2) (11.2)

where f (x1, x2) is the joint probability density function, f1 and f2 are the marginal densities
and c is the copula density:

c (u1, u2) = ∂1,2 C (u1, u2)

We notice that the condition C (v1, v2) − C (v1, u2) − C (u1, v2) + C (u1, u2) ≥ 0 is then
equivalent to ∂1,2 C (u1, u2) ≥ 0 when the copula density exists.

Example 110 In the case of the Gumbel logistic copula, we obtain c (u1, u2) =
2u1u2/ (u1 + u2 − u1u2)3. We easily verify the 2-increasing property.
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From Equation (11.2), we deduce that:

c (u1, u2) =
f
(
F−1

1 (u1) ,F−1
2 (u2)

)
f1
(
F−1

1 (u1)
)
· f2

(
F−1

2 (u2)
) (11.3)

We obtain a second canonical representation based on density functions. For some copulas,
there is no explicit analytical formula. This is the case of the Normal copula, which is
equal to C (u1, u2; ρ) = Φ

(
Φ−1 (u1) ,Φ−1 (u2) ; ρ

)
. Using Equation (11.3), we can however

characterize its density function:

c (u1, u2; ρ) =
2π
(
1− ρ2)−1/2 exp

(
− 1

2(1−ρ2)
(
x2

1 + x2
2 − 2ρx1x2

))
(2π)−1/2 exp

(
− 1

2x
2
1
)
· (2π)−1/2 exp

(
− 1

2x
2
2
)

= 1√
1− ρ2

exp
(
−1

2

(
x2

1 + x2
2 − 2ρx1x2

)
(1− ρ2) + 1

2
(
x2

1 + x2
2
))

where x1 = F−1
1 (u1) and x2 = F−1

2 (u2). It is then easy to generate bivariate non-normal
distributions.

Example 111 In Figure 11.1, we have built a bivariate probability distribution by consid-
ering that the marginals are an inverse Gaussian distribution and a beta distribution. The
copula function corresponds to the Normal copula such that its Kendall’s tau is equal to
50%.

FIGURE 11.1: Example of a bivariate probability distribution with given marginals

11.1.3 Fréchet classes
The goal of Fréchet classes is to study the structure of the class of distributions with

given marginals. These latter can be unidimensional, multidimensional or conditional. Let
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us consider the bivariate distribution functions F12 and F23. The Fréchet class F (F12,F23)
is the set of trivariate probability distributions that are compatible with the two bivari-
ate marginals F12 and F23. In this handbook, we restrict our focus on the Fréchet class
F (F1, . . . ,Fn) with univariate marginals.

11.1.3.1 The bivariate case

Let us first consider the bivariate case. The distribution function F belongs to the Fréchet
class (F1,F2) and we note F ∈ F (F1,F2) if and only if the marginals of F are F1 and F2,
meaning that F (x1,∞) = F1 (x1) and F (∞, x2) = F2 (x2). Characterizing the Fréchet
class F (F1,F2) is then equivalent to find the set C of copula functions:

F (F1,F2) = {F : F (x1, x2) = C (F1 (x1) ,F2 (x2)) ,C ∈ C}

Therefore this problem does not depend on the marginals F1 and F2.
We can show that the extremal distribution functions F− and F+ of the Fréchet class

F (F1,F2) are:
F− (x1, x2) = max (F1 (x1) + F2 (x2)− 1, 0)

and:
F+ (x1, x2) = min (F1 (x1) ,F2 (x2))

F− and F+ are called the Fréchet lower and upper bounds. We deduce that the correspond-
ing copula functions are:

C− (u1, u2) = max (u1 + u2 − 1, 0)

and:
C+ (u1, u2) = min (u1, u2)

Example 112 We consider the Fréchet class F (F1,F2) where F1 ∼ N (0, 1) and F2 ∼
N (0, 1). We know that the bivariate normal distribution with correlation ρ belongs to
F (F1,F2). Nevertheless, a lot of bivariate non-normal distributions are also in this Fréchet
class. For instance, this is the case of this probability distribution:

F (x1, x2) = Φ (x1) Φ (x2)
Φ (x1) + Φ (x2)− Φ (x1) Φ (x2)

We can also show that1:

F− (x1, x2) := Φ (x1, x2;−1) = max (Φ (x1) + Φ (x2)− 1, 0)

and:
F+ (x1, x2) := Φ (x1, x2; +1) = min (Φ (x1) ,Φ (x2))

Therefore, the bounds of the Fréchet class F (N (0, 1) ,N (0, 1)) correspond to the bivariate
normal distribution, whose correlation is respectively equal to −1 and +1.

1We recall that:

Φ (x1, x2; ρ) =
∫ x1

−∞

∫ x2

−∞
φ (y1, y2; ρ) dy1 dy2
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11.1.3.2 The multivariate case

The extension of bivariate copulas to multivariate copulas is straightforward. Thus, the
canonical decomposition of a multivariate distribution function is:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

We note CE the sub-copula of C such that arguments that are not in the set E are equal to 1.
For instance, with a dimension of 4, we have C12 (u, v) = C (u, v, 1, 1) and C124 (u, v, w) =
C (u, v, 1, w). Let us consider the 2-copulas C1 and C2. It seems logical to build a copula of
higher dimension with copulas of lower dimensions. In fact, the function C1 (u1,C2 (u2, u3))
is not a copula in most cases (Quesada Molina and Rodríguez Lallena, 1994). For instance,
we have:

C−
(
u1,C− (u2, u3)

)
= max (u1 + max (u2 + u3 − 1, 0)− 1, 0)
= max (u1 + u2 + u3 − 2, 0)
= C− (u1, u2, u3)

However, the function C− (u1, u2, u3) is not a copula.
In the multivariate case, we define:

C− (u1, . . . , un) = max
(

n∑
i=1

ui − n+ 1, 0
)

and:
C+ (u1, . . . , un) = min (u1, . . . , un)

As discussed above, we can show that C+ is a copula, but C− does not belong to the set
C. Nevertheless, C− is the best-possible bound, meaning that for all (u1, . . . , un) ∈ [0, 1]n,
there is a copula that coincide with C− (Nelsen, 2006). This implies that F (F1, . . . ,Fn) has
a minimal distribution function if and only if max (

∑n
i=1 Fi (xi)− n+ 1, 0) is a probability

distribution (Dall’Aglio, 1972).

11.1.3.3 Concordance ordering

Using the result of the previous paragraph, we have:

C− (u1, u2) ≤ C (u1, u2) ≤ C+ (u1, u2)

for all C ∈ C. For a given value α ∈ [0, 1], the level curves of C are then in the triangle
defined as follows:

{(u1, u2) : max (u1 + u2 − 1, 0) ≤ α,min (u1, u2) ≥ α}

An illustration is shown in Figure 11.2. In the multidimensional case, the region becomes a
n-volume.

We now introduce a stochastic ordering on copulas. Let C1 and C2 be two copula
functions. We say that the copula C1 is smaller than the copula C2 and we note C1 ≺ C2
if we verify that C1 (u1, u2) ≤ C2 (u1, u2) for all (u1, u2) ∈ [0, 1]2. This stochastic ordering
is called the concordance ordering and may be viewed as the first order of the stochastic
dominance on probability distributions.
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FIGURE 11.2: The triangle region of the contour lines C (u1, u2) = α

Example 113 This ordering is partial because we cannot compare all copula functions. Let
us consider the cubic copula defined by C (u1, u2; θ) = u1u2+θ [u(u− 1)(2u− 1)] [v(v − 1)(2v − 1)]
where θ ∈ [−1, 2]. If we compare it to the product copula C⊥, we have:

C
(

3
4 ,

3
4 ; 1
)

= 0.5712 ≥ C⊥
(

3
4 ,

3
4

)
= 0.5625

but:
C
(

3
4 ,

1
4 ; 1
)

= 0.1787 ≤ C⊥
(

3
4 ,

1
4

)
= 0.1875

Using the Fréchet bounds, we always have C− ≺ C⊥≺ C+. A copula C has a positive
quadrant dependence (PQD) if it satisfies the inequality C⊥ ≺ C ≺ C+. In a similar way, C
has a negative quadrant dependence (NQD) if it satisfies the inequality C− ≺ C ≺ C⊥. As
it is a partial ordering, there exist copula functions C such that C � C⊥ and C ⊀ C⊥. A
copula function may then have a dependence structure that is neither positive or negative.
This is the case of the cubic copula given in the previous example. In Figure 11.3, we report
the cumulative distribution function (above panel) and its contour lines (right panel) of the
three copula functions C−, C⊥ and C+, which plays an important role to understand the
dependance between unidimensional risks.

Let Cθ (u1, u2) = C (u1, u2; θ) be a family of copula functions that depends on the
parameter θ. The copula family {Cθ} is totally ordered if, for all θ2 ≥ θ1, Cθ2 � Cθ1

(positively ordered) or Cθ2 ≺ Cθ1 (negatively ordered). For instance, the Frank copula
defined by:

C (u1, u2; θ) = −1
θ

ln
(

1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
where θ ∈ R is a positively ordered family (see Figure 11.4).
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FIGURE 11.3: The three copula functions C−, C⊥ and C+

FIGURE 11.4: Concordance ordering of the Frank copula
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Example 114 Let us consider the copula function Cθ = θ ·C− + (1− θ) ·C+ where 0 ≤
θ ≤ 1. This copula is a convex sum of the extremal copulas C− and C+. When θ2 ≥ θ1, we
have:

Cθ2 (u1, u2) = θ2 ·C− (u1, u2) + (1− θ2) ·C+ (u1, u2)
= Cθ1 (u1, u2)− (θ2 − θ1) ·

(
C+ (u1, u2)−C− (u1, u2)

)
≤ Cθ1 (u1, u2)

We deduce that Cθ2 ≺ Cθ1 . This copula family is negatively ordered.

11.2 Copula functions and random vectors
Let X = (X1, X2) be a random vector with distribution F. We define the copula of

(X1, X2) by the copula of F:

F (x1, x2) = C 〈X1, X2〉 (F1 (x1) ,F2 (x2))

In what follows, we give the main results on the dependence of the random vector X found
in Deheuvels (1978), Schweizer and Wolff (1981), and Nelsen (2006).

11.2.1 Countermonotonicity, comonotonicity and scale invariance prop-
erty

We give here a probabilistic interpretation of the three copula functions C−, C⊥ and
C+:

• X1 and X2 are countermonotonic – or C 〈X1, X2〉 = C− – if there exists a random
variable X such that X1 = f1 (X) and X2 = f2 (X) where f1 and f2 are respectively
decreasing and increasing functions2;

• X1 and X2 are independent if the dependence function is the product copula C⊥;

• X1 are X2 are comonotonic – or C 〈X1, X2〉 = C+ – if there exists a random variable
X such that X1 = f1 (X) and X2 = f2 (X) where f1 and f2 are both increasing
functions3.

Let us consider a uniform random vector (U1, U2). We have U2 = 1 − U1 when
C 〈X1, X2〉 = C− and U2 = U1 when C 〈X1, X2〉 = C+. In the case of a standardized
Gaussian random vector, we obtain X2 = −X1 when C 〈X1, X2〉 = C− and X2 = X1
when C 〈X1, X2〉 = C+. If the marginals are log-normal, it follows that X2 = X−1

1 when
C 〈X1, X2〉 = C− and X2 = X1 when C 〈X1, X2〉 = C+. For these three examples, we verify
that X2 is a decreasing (resp. increasing) function of X1 if the copula function C 〈X1, X2〉 is
C− (resp. C+). The concepts of counter- and comonotonicity concepts generalize the cases
where the linear correlation of a Gaussian vector is equal to −1 or +1. Indeed, C− and C+

define respectively perfect negative and positive dependence.

2We also have X2 = f (X1) where f = f2 ◦ f−1
1 is a decreasing function.

3In this case, X2 = f (X1) where f = f2 ◦ f−1
1 is an increasing function.
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We now give one of the most important theorems on copulas. Let (X1, X2) be a random
vectors, whose copula is C 〈X1, X2〉. If h1 and h2 are two increasing functions on ImX1 and
ImX2, then we have:

C 〈h1 (X1) , h2 (X2)〉 = C 〈X1, X2〉
This means that copula functions are invariant under strictly increasing transformations of
the random variables. To prove this theorem, we note F and G the probability distributions
of the random vectors (X1, X2) and (Y1, Y2) = (h1 (X1) , h2 (X2)). The marginals of G are:

G1 (y1) = Pr {Y1 ≤ y1}
= Pr {h1 (X1) ≤ y1}
= Pr

{
X1 ≤ h−1

1 (y1)
}

(because h1 is strictly increasing)
= F1

(
h−1

1 (y1)
)

and G2 (y2) = F2
(
h−1

2 (y2)
)
. We deduce that G−1

1 (u1) = h1
(
F−1

1 (u1)
)
and G−1

2 (u2) =
h2
(
F−1

2 (u2)
)
. By definition, we have:

C 〈Y1, Y2〉 (u1, u2) = G
(
G−1

1 (u1) ,G−1
2 (u2)

)
Moreover, it follows that:

G
(
G−1

1 (u1) ,G−1
2 (u2)

)
= Pr

{
Y1 ≤ G−1

1 (u1) , Y2 ≤ G−1
2 (u2)

}
= Pr

{
h1 (X1) ≤ G−1

1 (u1) , h2 (X2) ≤ G−1
2 (u2)

}
= Pr

{
X1 ≤ h−1

1
(
G−1

1 (u1)
)
, X2 ≤ h−1

2
(
G−1

2 (u2)
)}

= Pr
{
X1 ≤ F−1

1 (u1) , X2 ≤ F−1
2 (u2)

}
= F

(
F−1

1 (u1) ,F−1
2 (u2)

)
Because we have C 〈X1, X2〉 (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
, we deduce that C 〈Y1, Y2〉 =

C 〈X1, X2〉.
Example 115 If X1 and X2 are two positive random variables, the previous theorem im-
plies that:

C 〈X1, X2〉 = C 〈lnX1, X2〉
= C 〈lnX1, lnX2〉
= C 〈X1, expX2〉

= C
〈√

X1, expX2

〉
Applying an increasing transformation does not change the copula function, only the
marginals. Thus, the copula of the multivariate log-normal distribution is the same than
the copula of the multivariate normal distribution.

The scale invariance property is perhaps not surprising if we consider the canonical
decomposition of the bivariate probability distribution. Indeed, the copula C 〈U1, U2〉 is
equal to the copula C 〈X1, X2〉 where U1 = F1 (X1) and U2 = F2 (X2). In some sense, Sklar’s
theorem is an application of the scale invariance property by considering h1 (x1) = F1 (x1)
and h2 (x2) = F2 (x2).
Example 116 We assume that X1 ∼ N

(
µ1, σ

2
1
)
and X2 ∼ N

(
µ2, σ

2
2
)
. If the copula of

(X1, X2) is C−, we have U2 = 1− U1. This implies that:

Φ
(
X2 − µ2

σ2

)
= 1− Φ

(
X1 − µ1

σ1

)
= Φ

(
−X1 − µ1

σ1

)
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We deduce that X1 and X2 are countermonotonic if:

X2 = µ2 −
σ2

σ1
(X1 − µ1)

By applying the same reasoning to the copula function C+, we show that X1 and X2 are
comonotonic if:

X2 = µ2 + σ2

σ1
(X1 − µ1)

We now consider the log-normal random variables Y1 = exp (X1) and Y2 = exp (X2). For
the countermonotonicity case, we obtain:

lnY2 = µ2 −
σ2

σ1
(lnY1 − µ1)

or:
Y2 = exp

(
µ2 + σ2

σ1
µ1

)
· Y −σ2/σ1

1

For the comonotonicity case, the relationship becomes:

Y2 = exp
(
µ2 −

σ2

σ1
µ1

)
· Y σ2/σ1

1

If we assume that µ1 = µ2 and σ1 = σ2, the log-normal random variables Y1 and Y2 are
countermonotonic if Y2 = Y −1

1 and comonotonic if Y2 = Y1.

11.2.2 Dependence measures
We can interpret the copula function C 〈X1, X2〉 as a standardization of the joint dis-

tribution after eliminating the effects of marginals. Indeed, it is a comprehensive statistic
of the dependence function between X1 and X2. Therefore, a non-comprehensive statistic
will be a dependence measure if it can be expressed using C 〈X1, X2〉.

11.2.2.1 Concordance measures

Following Nelsen (2006), a numeric measure m of association between X1 and X2 is a
measure of concordance if it satisfies the following properties:

1. −1 = m 〈X,−X〉 ≤ m 〈C〉 ≤ m 〈X,X〉 = 1;

2. m
〈
C⊥
〉

= 0;

3. m 〈−X1, X2〉 = m 〈X1,−X2〉 = −m 〈X1, X2〉;

4. if C1 ≺ C2, then m 〈C1〉 ≤ m 〈C2〉;

Using this last property, we have: C ≺ C⊥ ⇒ m 〈C〉 < 0 and C � C⊥ ⇒ m 〈C〉 > 0. The
concordance measure can then be viewed as a generalization of the linear correlation when
the dependence function is not normal. Indeed, a positive quadrant dependence (PQD)
copula will have a positive concordance measure whereas a negative quadrant dependence
(NQD) copula will have a negative concordance measure. Moreover, the bounds −1 and +1
are reached when the copula function is countermonotonic and comonotonic.

Among the several concordance measures, we find Kendall’s tau and Spearman’s rho,
which play an important role in non-parametric statistics. Let us consider a sample of
n observations {(x1, y1) , . . . , (xn, yn)} of the random vector (X,Y ). Kendall’s tau is the
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probability of concordance – (Xi −Xj)·(Yi − Yj) > 0 – minus the probability of discordance
– (Xi −Xj) · (Yi − Yj) < 0:

τ = Pr {(Xi −Xj) · (Yi − Yj) > 0} − Pr {(Xi −Xj) · (Yi − Yj) < 0}

Spearman’s rho is the linear correlation of the rank statistics (Xi:n, Yi:n). We can also show
that Spearman’s rho has the following expression:

% = cov (FX (X) ,FY (Y ))
σ (FX (X)) · σ (FY (Y ))

Schweizer and Wolff (1981) showed that Kendall’s tau and Spearman’s rho are concordance
measures and have the following expressions:

τ = 4
∫∫

[0,1]2
C (u1, u2) dC (u1, u2)− 1

% = 12
∫∫

[0,1]2
u1u2 dC (u1, u2)− 3

From a numerical point of view, the following formulas should be preferred (Nelsen, 2006):

τ = 1− 4
∫∫

[0,1]2
∂u1C (u1, u2) ∂u2C (u1, u2) du1 du2

% = 12
∫∫

[0,1]2
C (u1, u2) du1 du2 − 3

For some copulas, we have analytical formulas. For instance, we have:

Copula % τ
Normal 6π−1 arc sin (ρ/2) 2π−1 arc sin (ρ)
Gumbel X (θ − 1) /θ
FGM θ/3 2θ/9
Frank 1− 12θ−1 (D1 (θ)−D2 (θ)) 1− 4θ−1 (1−D1 (θ))

where Dk (x) is the Debye function. The Gumbel (or Gumbel-Hougaard) copula is equal to:

C (u1, u2; θ) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
for θ ≥ 1, whereas the expression of the Farlie-Gumbel-Morgenstern (or FGM) copula is:

C (u1, u2; θ) = u1u2 (1 + θ (1− u1) (1− u2))

for −1 ≤ θ ≤ 1.
For illustration, we report in Figures 11.5, 11.6 and 11.7 the level curves of several density

functions built with Normal, Frank and Gumbel copulas. In order to compare them, the
parameter of each copula is calibrated such that Kendall’s tau is equal to 50%. This means
that these 12 distributions functions have the same dependence with respect to Kendall’s
tau. However, the dependence is different from one figure to another, because their copula
function is not the same. This is why Kendall’s tau is not an exhaustive statistic of the
dependence between two random variables.

We could build bivariate probability distributions, which are even less comparable. In-
deed, the set of these three copula families (Normal, Frank and Gumbel) is very small
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FIGURE 11.5: Contour lines of bivariate densities (Normal copula)

FIGURE 11.6: Contour lines of bivariate densities (Frank copula)
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FIGURE 11.7: Contour lines of bivariate densities (Gumbel copula)

compared to the set C of copulas. However, there exist other dependence functions that are
very far from the previous copulas. For instance, we consider the region B (τ, %) defined by:

(τ, %) ∈ B (τ, %)⇔
{

(3τ − 1) /2 ≤ % ≤
(
1 + 2τ − τ2) /2 if τ ≥ 0(

τ2 + 2τ − 1
)
/2 ≤ % ≤ (1 + 3τ) /2 if τ ≤ 0

Nelsen (2006) shows that these bounds cannot be improved and there is always a copula
function that corresponds to a point of the boundary B (τ, %). In Figure 11.8 we report
the bounds B (τ, %) and the area reached by 8 copula families (Normal, Plackett, Frank,
Clayton, Gumbel, Galambos, Hüsler-Reiss, FGM). These copulas covered a small surface
of the τ − % region. These copula families are then relatively similar if we consider these
concordance measures. Obtaining copulas that have a different behavior requires that the
dependence is not monotone4 on the whole domain [0, 1]2.

11.2.2.2 Linear correlation

We recall that the linear correlation (or Pearson’s correlation) is defined as follows:

ρ 〈X1, X2〉 = E [X1 ·X2]− E [X1] · E [X2]
σ (X1) · σ (X2)

Tchen (1980) showed the following properties of this measure:

• if the dependence of the random vector (X1, X2) is the product copula C⊥, then
ρ 〈X1, X2〉 = 0;

• ρ is an increasing function with respect to the concordance measure:

C1 � C2 ⇒ ρ1 〈X1, X2〉 ≥ ρ2 〈X1, X2〉
4For instance, the dependence can be positive in one region and negative in another region.
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FIGURE 11.8: Bounds of (τ, %) statistics

• ρ 〈X1, X2〉 is bounded:

ρ− 〈X1, X2〉 ≤ ρ 〈X1, X2〉 ≤ ρ+ 〈X1, X2〉

and the bounds are reached for the Fréchet copulas C− and C+.

However, a concordance measure must satisfy m 〈C−〉 = −1 and m 〈C+〉 = +1. If we use
the stochastic representation of Fréchet bounds, we have:

ρ− 〈X1, X2〉 = ρ+ 〈X1, X2〉 = E [f1 (X) · f2 (X)]− E [f1 (X)] · E [f2 (X)]
σ (f1 (X)) · σ (f2 (X))

The solution of the equation ρ− 〈X1, X2〉 = −1 is f1 (x) = a1x + b1 and f2 (x) = a2x + b2
where a1a2 < 0. For the equation ρ+ 〈X1, X2〉 = +1, the condition becomes a1a2 > 0.
Except for Gaussian random variables, there are few probability distributions that can
satisfy these conditions. Moreover, if the linear correlation is a concordance measure, it is
an invariant measure by increasing transformations:

ρ 〈X1, X2〉 = ρ 〈f1 (X1) , f2 (X2)〉

Again, the solution of this equation is f1 (x) = a1x + b1 and f2 (x) = a2x + b2 where
a1a2 > 0. We now have a better understanding why we say that this dependence measure
is linear. In summary, the copula function generalizes the concept of linear correlation in a
non-Gaussian non-linear world.

Example 117 We consider the bivariate log-normal random vector (X1, X2) where X1 ∼
LN

(
µ1, σ

2
1
)
, X2 ∼ LN

(
µ2, σ

2
2
)
and ρ = ρ 〈lnX1, lnX2〉.

We can show that:

E [Xp1
1 ·X

p2
2 ] = exp

(
p1µ1 + p2µ2 + p2

1σ
2
1 + p2

2σ
2
2

2 + p1p2ρσ1σ2

)
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It follows that:
ρ 〈X1, X2〉 = exp (ρσ1σ2)− 1√

exp (σ2
1)− 1 ·

√
exp (σ2

2)− 1

We deduce that ρ 〈X1, X2〉 ∈ [ρ−, ρ+], but the bounds are not necessarily −1 and +1. For
instance, when we use the parameters σ1 = 1 and σ2 = 3, we obtain the following results:

Copula ρ 〈X1, X2〉 τ 〈X1, X2〉 % 〈X1, X2〉
C− −0.008 −1.000 −1.000

ρ = −0.7 −0.007 −0.494 −0.683
C⊥ 0.000 0.000 0.000

ρ = 0.7 0.061 0.494 0.683
C+ 0.162 1.000 1.000

When the copula function is C−, the linear correlation takes a value close to zero! In
Figure 11.9, we show that the bounds ρ− and ρ+ of ρ 〈X1, X2〉 are not necessarily −1 and
+1. When the marginals are log-normal, the upper bound ρ+ = +1 is reached only when
σ1 = σ2 and the lower bound ρ− = −1 is never reached. This poses a problem to interpret
the value of a correlation. Let us consider two random vectors (X1, X2) and (Y1, Y2). What
could we say about the dependence function when ρ 〈X1, X2〉 ≥ ρ 〈Y1, Y2〉? The answer is
nothing if the marginals are not Gaussian. Indeed, we have seen previously that a 70%
linear correlation between two Gaussian random vectors becomes a 6% linear correlation if
we apply an exponential transformation. However, the two copulas of (X1, X2) and (Y1, Y2)
are exactly the same. In fact, the drawback of the linear correlation is that this measure
depends on the marginals and not only on the copula function.

FIGURE 11.9: Bounds of the linear correlation between two log-normal random variables
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11.2.2.3 Tail dependence

Contrary to concordance measures, tail dependence is a local measure that charac-
terizes the joint behavior of the random variables X1 and X2 at the extreme points
x− = inf {x : F (x) > 0} and x+ = sup {x : F (x) < 1}. Let C be a copula function such
that the following limit exists:

λ+ = lim
u→1−

1− 2u+ C (u, u)
1− u

We say that C has an upper tail dependence when λ+ ∈ (0, 1] and C has no upper tail
dependence when λ+ = 0 (Joe, 1997). For the lower tail dependence λ−, the limit becomes:

λ− = lim
u→0+

C (u, u)
u

We notice that λ+ and λ− can also be defined as follows:

λ+ = lim
u→1−

Pr {U2 > u | U1 > u}

and:
λ− = lim

u→0+
Pr {U2 < u | U1 < u}

To compute the upper tail dependence, we consider the joint survival function C̄ defined
by:

C̄ (u1, u2) = Pr {U1 > u1, U2 > u2}
= 1− u1 − u2 + C (u1, u2)

The expression of the upper tail dependence is then equal to:

λ+ = lim
u→1−

C̄ (u, u)
1− u

= − lim
u→1−

dC̄ (u, u)
du

= − lim
u→1−

(−2 + ∂1C (u, u) + ∂2C (u, u))

= lim
u→1−

(Pr {U2 > u | U1 = u}+ Pr {U1 > u | U2 = u})

By assuming that the copula is symmetric, we finally obtain:

λ+ = 2 lim
u→1−

Pr {U2 > u | U1 = u}

= 2− 2 lim
u→1−

Pr {U2 < u | U1 = u}

= 2− 2 lim
u→1−

C2|1 (u, u) (11.4)

In a similar way, we find that the lower tail dependence of a symmetric copula is equal to:

λ− = 2 lim
u→0+

C2|1 (u, u) (11.5)

For the copula functions C− and C⊥, we have λ− = λ+ = 0. For the copula C+, we
obtain λ− = λ+ = 1. However, there exist copulas such that λ− 6= λ+. This is the case of the
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Gumbel copula C (u1, u2; θ) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
, because we have λ− =

0 and λ+ = 2− 21/θ. The Gumbel copula has then an upper tail dependence, but no lower
tail dependence. If we consider the Clayton copula C (u1, u2; θ) =

(
u−θ1 + u−θ2 − 1

)−1/θ, we
obtain λ− = 2−1/θ and λ+ = 0.

Coles et al. (1999) define the quantile-quantile dependence function as follows:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
It is the conditional probability that X2 is larger than the quantile F−1

2 (α) given that X1
is larger than the quantile F−1

1 (α). We have:

λ+ (α) = Pr
{
X2 > F−1

2 (α) | X1 > F−1
1 (α)

}
=

Pr
{
X2 > F−1

2 (α) , X1 > F−1
1 (α)

}
Pr
{
X1 > F−1

1 (α)
}

=
1− Pr

{
X1 ≤ F−1

1 (α)
}
− Pr

{
X2 ≤ F−1

2 (α)
}

1− Pr
{
X1 ≤ F−1

1 (α)
} +

Pr
{
X2 ≤ F−1

2 (α) , X1 ≤ F−1
1 (α)

}
1− Pr {F1 (X1) ≤ α}

= 1− 2α+ C (α, α)
1− α

The tail dependence λ+ is then the limit of the conditional probability λ+ (α) when the
confidence level α tends to 1. It is also the probability of one variable being extreme given
that the other is extreme. Because λ+ (α) is a probability, we verify that λ+ ∈ [0, 1]. If
the probability is zero, the extremes are independent. If λ+ is equal to 1, the extremes
are perfectly dependent. To illustrate the measures5 λ+ (α) and λ− (α), we represent their
values for the Gumbel and Clayton copulas in Figure 11.10. The parameters are calibrated
with respect to Kendall’s tau.

Remark 138 We consider two portfolios, whose losses correspond to the random variables
L1 and L2 with probability distributions F1 and F2. The probability that the loss of the
second portfolio is larger than its value-at-risk knowing that the value-at-risk of the first
portfolio is exceeded is exactly equal to the quantile-quantile dependence measure λ+ (α):

λ+ (α) = Pr
{
L2 > F−1

2 (α) | L1 > F−1
1 (α)

}
= Pr {L2 > VaRα (L2) | L1 > VaRα (L1)}

11.3 Parametric copula functions
In this section, we study the copula families, which are commonly used in risk man-

agement. They are parametric copulas, which depend on a set of parameters. Statistical
inference, in particular parameter estimation, is developed in the next section.

5We have λ− (α) = Pr
{
X2 < F−1

2 (α) | X1 < F−1
1 (α)

}
and limα→0 λ− (α) = λ−.
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FIGURE 11.10: Quantile-quantile dependence measures λ+ (α) and λ− (α)

11.3.1 Archimedean copulas
11.3.1.1 Definition

Genest and MacKay (1986b) define Archimedean copulas as follows:

C (u1, u2) =
{
ϕ−1 (ϕ (u1) + ϕ (u2)) if ϕ (u1) + ϕ (u2) ≤ ϕ (0)
0 otherwise

where ϕ a C2 is a function which satisfies ϕ (1) = 0, ϕ′ (u) < 0 and ϕ′′ (u) > 0 for all
u ∈ [0, 1]. ϕ (u) is called the generator of the copula function. If ϕ (0) = ∞, the generator
is said to be strict. Genest and MacKay (1986a) link the construction of Archimedean
copulas to the independence of random variables. Indeed, by considering the multiplicative
generator λ (u) = exp (−ϕ (u)), the authors show that:

C (u1, u2) = λ−1 (λ (u1)λ (u2))

This means that:

λ (Pr {U1 ≤ u1, U2 ≤ u2}) = λ (Pr {U1 ≤ u1})× λ (Pr {U2 ≤ u2})

In this case, the random variables (U1, U2) become independent when the scale of probabil-
ities has been transformed.

Example 118 If ϕ (u) = u−1 − 1, we have ϕ−1 (u) = (1 + u)−1 and:

C (u1, u2) =
(
1 +

(
u−1

1 − 1 + u−1
2 − 1

))−1 = u1u2

u1 + u2 − u1u2

The Gumbel logistic copula is then an Archimedean copula.
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Example 119 The product copula C⊥ is Archimedean and the associated generator is
ϕ (u) = − ln u. Concerning Fréchet copulas, only C− is Archimedean with ϕ (u) = 1− u.

In Table 11.1, we provide another examples of Archimedean copulas6.

TABLE 11.1: Archimedean copula functions
Copula ϕ (u) C (u1, u2)
C⊥ − ln u u1u2

Clayton u−θ − 1
(
u−θ1 + u−θ2 − 1

)−1/θ

Frank − ln e
−θu − 1
e−θ − 1 −1

θ
ln
(

1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
Gumbel (− ln u)θ exp

(
−
(
ũθ1 + ũθ2

)1/θ)
Joe − ln

(
1− (1− u)θ

)
1−

(
ūθ1 + ūθ2 − ūθ1ūθ2

)1/θ

11.3.1.2 Properties

Archimedean copulas play an important role in statistics, because they present many
interesting properties, for example:

• C is symmetric, meaning that C (u1, u2) = C (u2, u1);

• C is associative, implying that C (u1,C (u1, u3)) = C (C (u1, u2) , u3) ;

• the diagonal section δ (u) = C (u, u) satisfies δ (u) < u for all u ∈ (0, 1);

• if a copula C is associative and δ (u) < u for all u ∈ (0, 1), then C is Archimedean.

Genest and MacKay (1986a) also showed that the expression of Kendall’s tau is:

τ 〈C〉 = 1 + 4
∫ 1

0

ϕ (u)
ϕ′ (u) du

whereas the copula density is:

c (u1, u2) = −ϕ
′′ (C (u1, u2))ϕ′ (u1)ϕ′ (u2)

[ϕ′ (C (u1, u2))]3

Example 120 With the Clayton copula, we have ϕ (u) = u−θ − 1 and ϕ′ (u) = −θu−θ−1.
We deduce that:

τ = 1 + 4
∫ 1

0

1− u−θ

θu−θ−1 du

= θ

θ + 2
6We use the notations ū = 1− u and ũ = − lnu.



734 Handbook of Financial Risk Management

11.3.1.3 Two-parameter Archimedean copulas

Nelsen (2006) showed that if ϕ (t) is a strict generator, then we can build two-parameter
Archimedean copulas by considering the following generator:

ϕα,β (t) = (ϕ (tα))β

where α > 0 and β > 1. For instance, if ϕ (t) = t−1 − 1, the two-parameter generator is
ϕα,β (t) = (t−α − 1)β . Therefore, the corresponding copula function is defined by:

C (u1, u2) =
([(

u−α1 − 1
)β +

(
u−α2 − 1

)β]1/β + 1
)−1/α

This is a generalization of the Clayton copula, which is obtained when the parameter β is
equal to 1.

11.3.1.4 Extension to the multivariate case

We can build multivariate Archimedean copulas in the following way:

C (u1, . . . , un) = ϕ−1 (ϕ (u1) + . . .+ ϕ (un))

However, C is a copula function if and only if the function ϕ−1 (u) is completely monotone
(Nelsen, 2006):

(−1)k dk

dukϕ
−1 (u) ≥ 0 ∀ k ≥ 1

For instance, the multivariate Gumbel copula is defined by:

C (u1, . . . , un) = exp
(
−
(

(− ln u1)θ + . . .+ (− ln un)θ
)1/θ

)

The previous construction is related to an important class of multivariate distributions,
which are called frailty models (Oakes, 1989). Let F1, . . . ,Fn be univariate distribution
functions, and let G be an n-variate distribution function with univariate marginals Gi,
such that Ḡ (0, . . . , 0) = 1. We denote by ψi the Laplace transform of Gi. Marshall and
Olkin (1988) showed that the function defined by:

F (x1, . . . , xn) =
∫
· · ·
∫

C
(
Ht1

1 (x1) , . . . ,Htn
n (xn)

)
dG (t1, . . . , tn)

is a multivariate probability distribution with marginals F1, . . . ,Fn if Hi (x) =
exp

(
−ψ−1

i (Fi (x))
)
. If we assume that the univariate distributions Gi are the same and

equal to G1, G is the upper Fréchet bound and C is the product copula C⊥, the previous
expression becomes:

F (x1, . . . , xn) =
∫ n∏

i=1
Ht1
i (xi) dG1 (t1)

=
∫

exp
(
−t1

n∑
i=1

ψ−1 (Fi (xi))
)

dG1 (t1)

= ψ
(
ψ−1 (F1 (x1)) + . . .+ ψ−1 (Fn (xn))

)
The corresponding copula is then given by:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
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This is a special case of Archimedean copulas where the generator ϕ is the inverse of
a Laplace transform. For instance, the Clayton copula is a frailty copula where ψ (x) =
(1 + x)−1/θ is the Laplace transform of a Gamma random variable. The Gumbel-Hougaard
copula is frailty too and we have ψ (x) = exp

(
−x1/θ). This is the Laplace transform of a

positive stable distribution.
For frailty copulas, Joe (1997) showed that upper and lower tail dependence measures

are given by:

λ+ = 2− 2 lim
x→0

ψ′ (2x)
ψ′ (x)

and:
λ− = 2 lim

x→∞

ψ′ (2x)
ψ′ (x)

Example 121 In the case of the Clayton copula, the Laplace transform is ψ (x) =
(1 + x)−1/θ. We have:

ψ′ (2x)
ψ′ (x) = (1 + 2x)−1/θ−1

(1 + x)−1/θ−1

We deduce that:

λ+ = 2− 2 lim
x→0

(1 + 2x)−1/θ−1

(1 + x)−1/θ−1

= 2− 2
= 0

and:

λ− = 2 lim
x→∞

(1 + 2x)−1/θ−1

(1 + x)−1/θ−1

= 2× 2−1/θ−1

= 2−1/θ

11.3.2 Normal copula
The Normal copula is the dependence function of the multivariate normal distribution

with a correlation matrix ρ:

C (u1, . . . , un; ρ) = Φn
(
Φ−1 (u1) , . . . ,Φ−1 (un) ; ρ

)
By using the canonical decomposition of the multivariate density function:

f (x1, . . . , xn) = c (F1 (x1) , . . . ,Fn (xn))
n∏
i=1

fi (xi)

we deduce that the probability density function of the Normal copula is:

c (u1, . . . , un, ; ρ) = 1
|ρ|

1
2

exp
(
−1

2x
> (ρ−1 − In

)
x

)
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where xi = Φ−1 (ui). In the bivariate case, we obtain7:

c (u1, u2; ρ) = 1√
1− ρ2

exp
(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2) + x2
1 + x2

2
2

)
It follows that the expression of the bivariate Normal copula function is also equal to:

C (u1, u2; ρ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
φ2 (x1, x2; ρ) dx1 dx2 (11.6)

where φ2 (x1, x2; ρ) is the bivariate normal density:

φ2 (x1, x2; ρ) = 1
2π
√

1− ρ2
exp

(
−x

2
1 + x2

2 − 2ρx1x2

2 (1− ρ2)

)
Example 122 Let (X1, X2) be a standardized Gaussian random vector, whose cross-
correlation is ρ. Using the Cholesky decomposition, we write X2 as follows:

X2 = ρX1 +
√

1− ρ2X3

where X3 ∼ N (0, 1) is independent from X1 and X2. We have:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1, X2 ≤ x2}

= E
[
Pr
{
X1 ≤ x1, ρX1 +

√
1− ρ2X3 ≤ x2 | X1

}]
=

∫ x1

−∞
Φ
(
x2 − ρx√

1− ρ2

)
φ (x) dx

It follows that:

C (u1, u2; ρ) =
∫ Φ−1(u1)

−∞
Φ
(

Φ−1 (u2)− ρx√
1− ρ2

)
φ (x) dx

We finally obtain that the bivariate Normal copula function is equal to:

C (u1, u2; ρ) =
∫ u1

0
Φ
(

Φ−1 (u2)− ρΦ−1 (u)√
1− ρ2

)
du (11.7)

This expression is more convenient to use than Equation (11.6).

Like the normal distribution, the Normal copula is easy to manipulate for computational
purposes. For instance, Kendall’s tau and Spearman’s rho are equal to:

τ = 2
π

arcsin ρ

and:
% = 6

π
arcsin ρ2

7In the bivariate case, the parameter ρ is the cross-correlation between X1 and X2, that is the element
(1, 2) of the correlation matrix.
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The conditional distribution C2|1 (u1, u2) has the following expression:

C2|1 (u1, u2) = ∂1C (u1, u2)

= Φ
(

Φ−1 (u2)− ρΦ−1 (u1)√
1− ρ2

)
To compute the tail dependence, we apply Equation (11.4) and obtain:

λ+ = 2− 2 lim
u→1−

Φ
(

Φ−1 (u)− ρΦ−1 (u)√
1− ρ2

)

= 2− 2 lim
u→1−

Φ
(√

1− ρ√
1 + ρ

Φ−1 (u)
)

We finally deduce that:

λ+ = λ− =
{

0 if ρ < 1
1 if ρ = 1

In Figure 11.11, we have represented the quantile-quantile dependence measure λ+ (α) for
several values of the parameter ρ. When ρ is equal to 90% and α is close to one, we notice
that λ+ (α) dramatically decreases. This means that even if the correlation is high, the
extremes are independent.

FIGURE 11.11: Tail dependence λ+ (α) for the Normal copula

11.3.3 Student’s t copula
In a similar way, the Student’s t copula is the dependence function associated with the

multivariate Student’s t probability distribution:

C (u1, . . . , un; ρ, ν) = Tn

(
T−1
ν (u1) , . . . ,T−1

ν (un) ; ρ, ν
)
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By using the definition of the cumulative distribution function:

Tn (x1, . . . , xn; ρ, ν) =
∫ x1

−∞
· · ·
∫ xn

−∞

Γ
(
ν+n

2
)
|ρ|−

1
2

Γ
(
ν
2
)

(νπ)
n
2

(
1 + 1

ν
x>ρ−1x

)− ν+n
2

dx

we can show that the copula density is then:

c (u1, . . . , un, ; ρ, ν) = |ρ|−
1
2

Γ
(
ν+n

2
) [

Γ
(
ν
2
)]n[

Γ
(
ν+1

2
)]n Γ

(
ν
2
) (1 + 1

νx
>ρ−1x

)− ν+n
2∏n

i=1

(
1 + x2

i

ν

)− ν+1
2

where xi = T−1
ν (ui). In the bivariate case, we deduce that the t copula has the following

expression:

C (u1, u2; ρ, ν) =
∫ T−1

ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1
2π
√

1− ρ2
·

(
1 + x2

1 + x2
2 − 2ρx1x2

ν (1− ρ2)

)− ν+2
2

dx1 dx2

Like the Normal copula, we can obtain another expression, which is easier to manipulate. Let
(X1, X2) be a random vector whose probability distribution is T2 (x1, x2; ρ, ν). Conditionally
to X1 = x1, we have: (

ν + 1
ν + x2

1

)1/2
X2 − ρx1√

1− ρ2
∼ Tν+1

The conditional distribution C2|1 (u1, u2) is then equal to:

C2|1 (u1, u2; ρ, ν) = Tν+1

( ν + 1
ν +

[
T−1
ν (u1)

]2
)1/2

T−1
ν (u2)− ρT−1

ν (u1)√
1− ρ2


We deduce that:

C (u1, u2; ρ, ν) =
∫ u1

0
C2|1 (u, u2; ρ, ν) du

We can show that the expression of Kendall’s tau for the t copula is the one obtained
for the Normal copula. In the case of Spearman’s rho, there is no analytical expression.
We denote by %t (ρ, ν) and %n (ρ) the values of Spearman’s rho for Student’s t and Normal
copulas with same parameter ρ. We can show that %t (ρ, ν) > %n (ρ) for negative values of
ρ and %t (ρ, ν) < %n (ρ) for positive values of ρ. In Figure 11.12, we report the relationship
between τ and % for different degrees of freedom ν.

Because the t copula is symmetric, we can apply Equation (11.4) and obtain:

λ+ = 2− 2 lim
u→1−

Tν+1

( ν + 1
ν +

[
T−1
ν (u)

]2
)1/2

T−1
ν (u)− ρT−1

ν (u)√
1− ρ2


= 2− 2 ·Tν+1

((
(ν + 1) (1− ρ)

(1 + ρ)

)1/2
)

We finally deduce that:

λ+ =
{

0 if ρ = −1
> 0 if ρ > −1
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FIGURE 11.12: Relationship between τ and % of the Student’s t copula

Contrary to the Normal copula, the t copula has an upper tail dependence. In Figures 11.13
and 11.14, we represent the quantile-quantile dependence measure λ+ (α) for two degrees
of freedom ν. We observe that the behavior of λ+ (α) is different than the one obtained
in Figure 11.11 with the Normal copula. In Table 11.2, we give the numerical values of
the coefficient λ+ for various values of ρ and ν. We notice that it is strictly positive for
small degrees of freedom even if the parameter ρ is negative. For instance, λ+ is equal to
13.40% when ν and ρ are equal to 1 and −50%. We also observe that the convergence to
the Gaussian case is low when the parameter ρ is positive.

TABLE 11.2: Values in % of the upper tail dependence λ+ for the Student’s t copula

ν
Parameter ρ (in %)

−70.00 −50.00 0.00 50.00 70.00 90.00
1 7.80 13.40 29.29 50.00 61.27 77.64
2 2.59 5.77 18.17 39.10 51.95 71.77
3 0.89 2.57 11.61 31.25 44.81 67.02
4 0.31 1.17 7.56 25.32 39.07 62.98
6 0.04 0.25 3.31 17.05 30.31 56.30

10 0.00 0.01 0.69 8.19 19.11 46.27
∞ 0.00 0.00 0.00 0.00 0.00 0.00

Remark 139 The Normal copula is a particular case of the Student’s t copula when ν tends
to ∞. This is why these two copulas are often compared for a given value of ρ. However, we
must be careful because the previous analysis of the tail dependence has shown that these two
copulas are very different. Let us consider the bivariate case. We can write the Student’s t
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FIGURE 11.13: Tail dependence λ+ (α) for the Student’s t copula (ν = 1)

FIGURE 11.14: Tail dependence λ+ (α) for the Student’s t copula (ν = 4)
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random vector (T1, T2) as follows:

(T1, T2) = (N1, N2)√
X/ν

=
(

N1√
X/ν

, ρ
N1√
X/ν

+
√

1− ρ2 N3√
X/ν

)

where N1 and N3 are two independent Gaussian random variables and X is a random
variable, whose probability distribution is χ2 (ν). This is the introduction of the random
variable X that produces a strong dependence between T1 and T2, and correlates the extremes.
Even if the parameter ρ is equal to zero, we obtain:

(T1, T2) =
(

N1√
X/ν

,
N3√
X/ν

)

This implies that the product copula C⊥ can never be attained by the t copula.

11.4 Statistical inference and estimation of copula functions
We now consider the estimation problem of copula functions. We first introduce the

empirical copula, which may viewed as a non-parametric estimator of the copula function.
Then, we discuss the method of moments to estimate the parameters of copula functions.
Finally, we apply the method of maximum likelihood and show the different forms of im-
plementation.

11.4.1 The empirical copula
Let F̂ be the empirical distribution associated to a sample of T observations of the

random vector (X1, . . . , Xn). Following Deheuvels (1979), any copula Ĉ ∈ C defined on the
lattice L:

L =
{(

t1
T
, . . . ,

tn
T

)
: 1 ≤ j ≤ n, tj = 0, . . . , T

}
by the function:

Ĉ
(
t1
T
, . . . ,

tn
T

)
= 1
T

T∑
t=1

n∏
i=1

1 {Rt,i ≤ ti}

is an empirical copula. Here Rt,i is the rank statistic of the random variable Xi meaning
that XRt,i:T,i = Xt,i. We notice that Ĉ is the copula function associated to the empirical
distribution F̂. However, Ĉ is not unique because F̂ is not continuous. In the bivariate case,
we obtain:

Ĉ
(
t1
T
,
t2
T

)
= 1

T

T∑
t=1

1 {Rt,1 ≤ t1,Rt,2 ≤ t2}

= 1
T

T∑
t=1

1 {xt,1 ≤ xt1:T,1, xt,2 ≤ xt2:T,2}
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where {(xt,1, xt,2) , t = 1, . . . , T} denotes the sample of (X1, X2). Nelsen (2006) defines the
empirical copula frequency function as follows:

ĉ

(
t1
T
,
t2
T

)
= Ĉ

(
t1
T
,
t2
T

)
− Ĉ

(
t1 − 1
T

,
t2
T

)
−

Ĉ
(
t1
T
,
t2 − 1
T

)
+ Ĉ

(
t1 − 1
T

,
t2 − 1
T

)
= 1

T

T∑
t=1

1 {xt,1 = xt1:T,1, xt,2 = xt2:T,2}

We have then:

Ĉ
(
t1
T
,
t2
T

)
=

t1∑
j1=1

t2∑
j2=1

ĉ

(
j1
T
,
j2
T

)
We can interpret ĉ as the probability density function of the sample.

Example 123 We consider the daily returns of European (EU) and American (US) MSCI
equity indices from January 2006 to December 2015. In Figure 11.15, we represent the level
lines of the empirical copula and compare them with the level lines of the Normal copula.
For this copula function, the parameter ρ is estimated by the linear correlation between the
daily returns of the two MSCI equity indices. We notice that the Normal copula does not
exactly fit the empirical copula.
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FIGURE 11.15: Comparison of the empirical copula (solid line) and the Normal copula
(dashed line)
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Like the histogram of the empirical distribution function F̂, it is difficult to extract
information from Ĉ or ĉ, because these functions are not smooth8. It is better to use a
dependogram. This representation has been introduced by Deheuvels (1981), and consists
in transforming the sample {(xt,1, xt,2) , t = 1, . . . , T} of the random vector (X1, X2) into a
sample {(ut,1, ut,2) , t = 1, . . . , T} of uniform random variables (U1, U2) by considering the
rank statistics:

ut,i = 1
T
Rt,i

FIGURE 11.16: Dependogram of EU and US equity returns

The dependogram is then the scatter plot between ut,1 and ut,2. For instance, Figure 11.16
shows the dependogram of EU and US equity returns. We can compare this figure with
the one obtained by assuming that equity returns are Gaussian. Indeed, Figure 11.17 shows
the dependogram of a simulated bivariate Gaussian random vector when the correlation is
equal to 57.8%, which is the estimated value between EU and US equity returns during the
study period.

11.4.2 The method of moments
When it is applied to copulas, this method is different than the one presented in Chapter

10. Indeed, it consists in estimating the parameters θ of the copula function from the
population version of concordance measures. For instance, if τ = fτ (θ) is the relationship
between θ and Kendall’s tau, the MM estimator is simply the inverse of this relationship:

θ̂ = f−1
τ (τ̂)

8This is why they are generally coupled with approximation methods based on Bernstein polynomials
(Sancetta and Satchell, 2004).
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FIGURE 11.17: Dependogram of simulated Gaussian returns

where τ̂ is the estimate of Kendall’s tau based on the sample9. For instance, in the case of
the Gumbel copula, we obtain:

θ̂ = 1
1− τ̂

Remark 140 This approach is also valid for other concordance measures like Spearman’s
rho. We have then:

θ̂ = f−1
% (%̂)

where %̂ is the estimate10 of Spearman’s rho and f% is the theoretical relationship between θ
and Spearman’s rho.

Example 124 We consider the daily returns of 5 asset classes from January 2006 to De-
cember 2015. These asset classes are represented by the European MSCI equity index, the
American MSCI equity index, the Barclays sovereign bond index, the Barclays corporate
investment grade bond index and the Bloomberg commodity index. In Table 11.3, we report
the correlation matrix. In Tables 11.4 and 11.5, we assume that the dependence function is a
Normal copula and give the matrix ρ̂ of estimated parameters using the method of moments
based on Kendall’s tau and Spearman’s rhorho. We notice that these two matrices are very
close, but we also observe some important differences with the correlation matrix reported
in Table 11.3.

9We have:
τ̂ =

c− d
c+ d

where c and d are respectively the number of concordant and discordant pairs.
10It is equal to the linear correlation between the rank statistics.
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TABLE 11.3: Matrix of linear correlations ρ̂i,j
EU Equity US Equity Sovereign Credit Commodity

EU Equity 100.0
US Equity 57.8 100.0
Sovereign −34.0 −32.6 100.0
Credit −15.1 −28.6 69.3 100.0
Commodity 51.8 34.3 −22.3 −14.4 100.0

TABLE 11.4: Matrix of parameters ρ̂i,j estimated using Kendall’s tau

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 57.7 100.0
Sovereign −31.8 −32.1 100.0
Credit −17.6 −33.8 73.9 100.0
Commodity 43.4 30.3 −19.6 −15.2 100.0

TABLE 11.5: Matrix of parameters ρ̂i,j estimated using Spearman’s rho

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 55.4 100.0
Sovereign −31.0 −31.3 100.0
Credit −17.1 −32.7 73.0 100.0
Commodity 42.4 29.4 −19.2 −14.9 100.0

11.4.3 The method of maximum likelihood
Let us denote by {(xt,1, . . . , xt,n) , t = 1 . . . , T} the sample of the random vector

(X1, . . . , Xn), whose multivariate distribution function has the following canonical decom-
position:

F (x1, . . . , xn) = C (F1 (x1; θ1) , . . . ,Fn (xn; θn) ; θc)

This means that this statistical model depends on two types of parameters:

• the parameters (θ1, . . . , θn) of univariate distribution functions;

• the parameters θc of the copula function.

The expression of the log-likelihood function is:

` (θ1, . . . , θn, θc) =
T∑
t=1

ln c (F1 (xt,1; θ1) , . . . ,Fn (xt,n; θn) ; θc) +

T∑
t=1

n∑
i=1

ln fi (xt,i; θi)

where c is the copula density and fi is the probability density function associated to Fi.
The ML estimator is then defined as follows:(

θ̂1, . . . , θ̂n, θ̂c

)
= arg max ` (θ1, . . . , θn, θc)
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The estimation by maximum likelihood method can be time-consuming when the num-
ber of parameters is large. However, the copula approach suggests a two-stage parametric
method (Shih and Louis, 1995):

1. the first stage involves maximum likelihood from univariate marginals, meaning that
we estimate the parameters θ1, . . . , θn separately for each marginal:

θ̂i = arg max
T∑
t=1

ln fi (xt,i; θi)

2. the second stage involves maximum likelihood of the copula parameters θc with the
univariate parameters θ̂1, . . . , θ̂n held fixed from the first stage:

θ̂c = arg max
T∑
t=1

ln c
(
F1

(
xt,1; θ̂1

)
, . . . ,Fn

(
xt,n; θ̂n

)
; θc
)

This approach is known as the method of inference functions for marginals or IFM (Joe,
1997). Let θ̂IFM be the IFM estimator obtained with this two-stage procedure. We have:

T 1/2
(
θ̂IFM − θ0

)
→ N

(
0,V−1 (θ0)

)
where V (θ0) is the Godambe matrix (Joe, 1997).

Genest et al. (1995) propose a third estimation method, which consists in estimating
the copula parameters θc by considering the non-parametric estimates of the marginals
F1, . . . ,Fn:

θ̂c = arg max
T∑
t=1

ln c
(
F̂1 (xt,1) , . . . , F̂n (xt,n) ; θc

)
In this case, F̂i (xt,i) is the normalized rank Rt,i/T . This estimator called omnibus or OM
is then the ML estimate applied to the dependogram.

Example 125 Let us assume that the dependence function of asset returns (X1, X2) is the
Frank copula whereas the marginals are Gaussian. The log-likelihood function for observation
t is then equal to:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(yt,1)+Φ(yt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(yt,1)
)(

1− e−θcΦ(yt,2)
))2
−(

1
2 ln 2π + 1

2 ln σ2
1 + 1

2y
2
t,1

)
−(

1
2 ln 2π + 1

2 ln σ2
2 + 1

2y
2
t,2

)
where yt,i = σ−1

i (xt,i − µi) is the standardized return of asset i for the observation t. The
vector of parameters to estimate is θ = (µ1, σ1, µ2, σ2, θc). In the case of the IFM approach,
the parameters (µ1, σ1, µ2, σ2) are estimated in a first step. Then, we estimate the copula
parameter θc by considering the following log-likelihood function:

`t = ln
(
θc
(
1− e−θc

)
e−θc(Φ(ŷt,1)+Φ(ŷt,2))

)
−

ln
((

1− e−θc
)
−
(

1− e−θcΦ(ŷt,1)
)(

1− e−θcΦ(ŷt,2)
))2
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where ŷt,i is equal to σ̂−1
i (xt,i − µ̂i). Finally, the OM approach uses the uniform variates

ut,i = Rt,i/T in the expression of the log-likelihood function function:

`t = ln
(
θc
(
1− e−θc

)
e−θc(ut,1+ut,2)

)
−

ln
((

1− e−θc
)
−
(
1− e−θcut,1

) (
1− e−θcut,2

))2
Using the returns of MSCI Europe and US indices for the last 10 years, we obtain the

following results for the parameter θc of the Frank copula:

ML IFM OM Method of Moments
Kendall Spearman

θ̂c 6.809 6.184 4.149 3.982 3.721

τ̂ 0.554 0.524 0.399 0.387 0.367
%̂ 0.754 0.721 0.571 0.555 0.529

We obtain θ̂c = 6.809 for the method of maximum likelihood and θ̂c = 6.184 for the IFM
approach. These results are very close, that is not the case with the omnibus approach
where we obtain θ̂c = 4.149. This means that the assumption of Gaussian marginals is far
to be verified. The specification of wrong marginals in ML and IFM approaches induces
then a bias in the estimation of the copula parameter. With the omnibus approach, we do
not face this issue because we consider non-parametric marginals. This explains that we
obtain a value, which is close to the MM estimates (Kendall’s tau and Spearman’s rho).

For IFM and OM approaches, we can obtain a semi-analytical expression of θ̂c for some
specific copula functions. In the case of the Normal copula, the matrix ρ of the parameters
is estimated with the following algorithm:

1. we first transform the uniform variates ut,i into Gaussian variates:

nt,i = Φ−1 (ut,i)

2. we then calculate the correlation matrix of the Gaussian variates nt,i.
For the Student’s t copula, Bouyé et al. (2000) suggest the following algorithm:

1. let ρ̂0 be the estimated value of ρ for the Normal copula;

2. ρ̂k+1 is obtained using the following equation:

ρ̂k+1 = 1
T

T∑
t=1

(ν + n) ςtς>t
ν + ς>t ρ̂

−1
k ςt

where:

ςt =

 t−1
ν (ut,1)

...
t−1
ν (ut,n)


3. repeat the second step until convergence: ρ̂k+1 = ρ̂k := ρ̂∞.
Let us consider Example 124. We have estimated the parameter matrix ρ of Normal

and Student’s t copulas using the omnibus approach. Results are given in Tables 11.6, 11.7
and 11.8. We notice that these matrices are different than the correlation matrix calculated
in Table 11.3. The reason is that we have previously assumed that the marginals were
Gaussian. In this case, the ML estimate introduced a bias in the copula parameter in order
to compensate the bias induced by the wrong specification of the marginals.
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TABLE 11.6: Omnibus estimate ρ̂ (Normal copula)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 56.4 100.0
Sovereign −32.5 −32.1 100.0
Credit −16.3 −30.3 70.2 100.0
Commodity 46.5 30.7 −21.1 −14.7 100.0

TABLE 11.7: Omnibus estimate ρ̂ (Student’s t copula with ν = 1)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 47.1 100.0
Sovereign −20.3 −18.9 100.0
Credit −9.3 −22.1 57.6 100.0
Commodity 28.0 17.1 −7.4 −6.2 100.0

TABLE 11.8: Omnibus estimate ρ̂ (Student’s t copula with ν = 4)

EU Equity US Equity Sovereign Credit Commodity
EU Equity 100.0
US Equity 59.6 100.0
Sovereign −31.5 −31.9 100.0
Credit −18.3 −32.9 71.3 100.0
Commodity 43.0 30.5 −17.2 −13.4 100.0

Remark 141 The discrepancy between the ML or IFM estimate and the OM estimate is
interesting information for knowing if the specification of the marginals are right or not.
In particular, a large discrepancy indicates that the estimated marginals are far from the
empirical marginals.

11.5 Exercises
11.5.1 Gumbel logistic copula

1. Calculate the density of the Gumbel logistic copula.

2. Show that it has a lower tail dependence, but no upper tail dependence.

11.5.2 Farlie-Gumbel-Morgenstern copula
We consider the following function:

C (u1, u2) = u1u2 (1 + θ (1− u1) (1− u2)) (11.8)
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1. Show that C is a copula function for θ ∈ [−1, 1].

2. Calculate the tail dependence coefficient λ, the Kendall’s τ statistic and the Spear-
man’s % statistic.

3. Let X = (X1, X2) be a bivariate random vector. We assume that X1 ∼ N
(
µ, σ2)

and X2 ∼ E (λ). Propose an algorithm to simulate (X1, X2) when the copula is the
function (11.8).

4. Calculate the log-likelihood function of the sample
{

(x1,i, x2,i)i=ni=1

}
.

11.5.3 Survival copula
Let S be the bivariate function defined by:

S (x1, x2) = exp
(
−
(
x1 + x2 − θ

x1x2

x1 + x2

))
with θ ∈ [0, 1], x1 ≥ 0 et x2 ≥ 0.

1. Verify that S is a survival function.

2. Define the survival copula associated to S.

11.5.4 Method of moments
Let (X1, X2) be a bivariate random vector such that X1 ∼ N

(
µ1, σ

2
1
)
and X2 ∼

N
(
µ2, σ

2
2
)
. We consider that the dependence function is given by the following copula:

C (u1, u2) = θ ·C− (u1, u2) + (1− θ) ·C+ (u1, u2)

where θ ∈ [0, 1] is the copula parameter.

1. We assume that µ1 = µ2 = 0 and σ1 = σ2 = 1. Find the parameter θ such that the
linear correlation of X1 and X2 is equal to zero. Show that there exists a function f
such that X1 = f (X2). Comment on this result.

2. Calculate the linear correlation of X1 and X2 as a function of the parameters µ1, µ2,
σ1, σ2 and θ.

3. Propose a method of moments to estimate θ.

11.5.5 Correlated loss given default rates
We assume that the probability distribution of the (annual) loss given default rate

associated to a risk class C is given by:

F (x) = Pr {LGD ≤ x}
= xγ

1. Find the conditions on the parameter γ that are necessary for F to be a probability
distribution.

2. Let {x1, . . . , xn} be a sample of loss given default rates. Calculate the log-likelihood
function and deduce the ML estimator γ̂ML.
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3. Calculate the first moment E [LGD]. Then find the method of moments estimator
γ̂MM.

4. We assume that xi = 50% for all i. Calculate the numerical values taken by γ̂ML and
γ̂MM. Comment on these results.

5. We now consider two risk classes C1 and C2 and note LGD1 and LGD2 the correspond-
ing LGD rates. We assume that the dependence function between LGD1 and LGD2
is given by the Gumbel-Barnett copula:

C (u1, u2) = u1u2e
−θ lnu1 lnu2

where θ is the copula parameter. Show that the density function of the copula is equal
to:

c (u1, u2; θ) =
(
1− θ − θ ln (u1u2) + θ2 ln u1 ln u2

)
e−θ lnu1 lnu2

6. Deduce the log-likelihood function of the historical sample
{

(xi, yi)i=ni=1

}
.

7. We note γ̂1, γ̂2 and θ̂ the ML estimators of the parameters γ1 (risk class C1), γ2 (risk
class C2) and θ (copula parameter). Why the ML estimator γ̂1 does not correspond to
the ML estimator γ̂ML except in the case θ̂ = 0? Illustrate with an example.

11.5.6 Calculation of correlation bounds
1. Give the mathematical definition of the copula functions C−, C⊥ and C+. What is

the probabilistic interpretation of these copulas?

2. We note τ and LGD the default time and the loss given default of a counterparty. We
assume that τ ∼ E (λ) and LGD ∼ U[0,1].

(a) Show that the dependence between τ and LGD is maximum when the following
equality holds:

LGD +e−λτ − 1 = 0

(b) Show that the linear correlation ρ (τ ,LGD) verifies the following inequality:

|ρ 〈τ ,LGD〉| ≤
√

3
2

(c) Comment on these results.

3. We consider two exponential default times τ1 and τ2 with parameters λ1 and λ2.

(a) We assume that the dependence function between τ1 and τ2 is C+. Demonstrate
that the following relationship is true:

τ1 = λ2

λ1
τ2

(b) Show that there exists a function f such that τ2 = f (τ2) when the dependence
function is C−.

(c) Show that the lower and upper bounds of the linear correlation satisfy the fol-
lowing relationship:

−1 < ρ 〈τ1, τ2〉 ≤ 1



Copulas and Dependence Modeling 751

(d) In the more general case, show that the linear correlation of a random vector
(X1, X2) cannot be equal to −1 if the support of the random variables X1 and
X2 is [0,+∞].

4. We assume that (X1, X2) is a Gaussian random vector where X1 ∼ N
(
µ1, σ

2
1
)
,

X2 ∼ N
(
µ2, σ

2
2
)

and ρ is the linear correlation between X1 and X2. We note
θ = (µ1, σ1, µ2, σ2, ρ) the set of parameters.

(a) Find the probability distribution of X1 +X2.
(b) Then show that the covariance between Y1 = eX1 and Y2 = eX2 is equal to:

cov (Y1, Y2) = eµ1+ 1
2σ

2
1 · eµ2+ 1

2σ
2
2 · (eρσ1σ2 − 1)

(c) Deduce the correlation between Y1 and Y2.
(d) For which values of θ does the equality ρ 〈Y1, Y2〉 = +1 hold? Same question

when ρ 〈Y1, Y2〉 = −1.
(e) We consider the bivariate Black-Scholes model:{

dS1 (t) = µ1S1 (t) dt+ σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt+ σ2S2 (t) dW2 (t)

with E [W1 (t)W2 (t)] = ρ t. Deduce the linear correlation between S1 (t) and
S2 (t). Find the limit case limt→∞ ρ 〈S1 (t) , S2 (t)〉.

(f) Comment on these results.

11.5.7 The bivariate Pareto copula
We consider the bivariate Pareto distribution:

F (x1, x2) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 + x2

θ2

)−α
+(

θ1 + x1

θ1
+ θ2 + x2

θ2
− 1
)−α

where x1 ≥ 0, x2 ≥ 0, θ1 > 0, θ2 > 0 and α > 0.

1. Show that the marginal functions of F (x1, x2) correspond to univariate Pareto distri-
butions.

2. Find the copula function associated to the bivariate Pareto distribution.

3. Deduce the copula density function.

4. Show that the bivariate Pareto copula function has no lower tail dependence, but an
upper tail dependence.

5. Do you think that the bivariate Pareto copula family can reach the copula functions
C−, C⊥ and C+? Justify your answer.

6. Let X1 and X2 be two Pareto distributed random variables, whose parameters are
(α1, θ1) and (α2, θ2).
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(a) Show that the linear correlation between X1 and X2 is equal to 1 if and only if
the parameters α1 and α2 are equal.

(b) Show that the linear correlation between X1 and X2 can never reached the lower
bound −1.

(c) Build a new bivariate Pareto distribution by assuming that the marginal distri-
butions are P (α1, θ1) and P (α2, θ2) and the dependence function is a bivariate
Pareto copula with parameter α. What is the relevance of this approach for
building bivariate Pareto distributions?



Chapter 12
Extreme Value Theory

This chapter is dedicated to tail (or extreme) risk modeling. Tail risk recovers two notions.
The first one is related to rare events, meaning that a severe loss may occur with a very small
probability. The second one concerns the magnitude of a loss that is difficult to reconciliate
with the observed volatility of the portfolio. Of course, the two notions are connected, but
the second is more frequent. For instance, stock market crashes are numerous since the end
of the eighties. The study of these rare or abnormal events needs an appropriate framework
to analyze their risk. This is the subject of this chapter. In a first section, we consider order
statistics, which are very useful to understand the underlying concept of tail risk. Then, we
present the extreme value theory (EVT) in the unidimensional case. Finally, the last section
deals with the correlation issue between extreme risks.

12.1 Order statistics
12.1.1 Main properties

Let X1, . . . , Xn be iid random variables, whose probability distribution is denoted by
F. We rank these random variables by increasing order:

X1:n ≤ X2:n ≤ · · · ≤ Xn−1:n ≤ Xn:n

Xi:n is called the ith order statistic in the sample of size n. We note xi:n the corresponding
random variate or the value taken by Xi:n. We have:

Fi:n (x) = Pr {Xi:n ≤ x}
= Pr {at least i variables among X1, . . . , Xn are less or equal to x}

=
n∑
k=i

Pr {k variables among X1, . . . , Xn are less or equal to x}

=
n∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k (12.1)

We note f the density function of F. We deduce that the density function of Xi:n has the
following expression:

fi:n (x) =
n∑
k=i

(
n

k

)
kF (x)k−1 (1− F (x))n−k f (x)−

n−1∑
k=i

(
n

k

)
F (x)k (n− k) (1− F (x))n−k−1

f (x) (12.2)

753
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It follows that:

fi:n (x) =
n∑
k=i

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)−

n−1∑
k=i

n!
k! (n− k − 1)!F (x)k (1− F (x))n−k−1

f (x)

=
n∑
k=i

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)−

n∑
k=i+1

n!
(k − 1)! (n− k)!F (x)k−1 (1− F (x))n−k f (x)

= n!
(i− 1)! (n− i)!F (x)i−1 (1− F (x))n−i f (x) (12.3)

Remark 142 When k is equal to n, the derivative of (1− F (x))n−k is equal to zero. This
explains that the second summation in Equation (12.2) does not include the case k = n.

Example 126 If X1, . . . , Xn follow a uniform distribution U[0,1], we obtain:

Fi:n (x) =
n∑
k=i

(
n

k

)
xk (1− x)n−k

= IB (x; i, n− i+ 1)

where IB (x;α, β) is the regularized incomplete beta function1:

IB (x;α, β) = 1
B (α, β)

∫ x

0
tα−1 (1− t)β−1 dt

We deduce that Xi:n ∼ B (i, n− i+ 1). It follows that the expected value of the order statistic
Xi:n is equal to:

E [Xi:n] = E [B (i, n− i+ 1)]

= i

n+ 1
We verify the stochastic ordering:

j > i⇒ Fi:n � Fj:n
Indeed, we have:

Fi:n (x) =
n∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k

=
j−1∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k +

n∑
k=j

(
n

k

)
F (x)k (1− F (x))n−k

= Fj:n (x) +
j−1∑
k=i

(
n

k

)
F (x)k (1− F (x))n−k

meaning that Fi:n (x) ≥ Fj:n (x). In Figure 12.1, we illustrate this property when the
random variables X1, . . . , Xn follow the normal distribution N (0, 1). We verify that Fi:n (x)
increases with the ordering value i.

1It is also the Beta probability distribution IB (x;α, β) = Pr {B (α, β) ≤ x}.
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FIGURE 12.1: Distribution function Fi:n when the random variables X1, . . . , Xn are
Gaussian

12.1.2 Extreme order statistics
Two order statistics are particularly interesting for the study of rare events. They are

the lowest and highest order statistics:

X1:n = min (X1, . . . , Xn)

and:
Xn:n = max (X1, . . . , Xn)

We can find their probability distributions by setting i = 1 and i = n in Formula (12.1).
We can also retrieve their expression by noting that:

F1:n (x) = Pr {min (X1, . . . , Xn) ≤ x} = 1− Pr {min (X1, . . . , Xn) ≥ x}
= 1− Pr {X1 ≥ x,X2 ≥ x, . . . ,Xn ≥ x}

= 1−
n∏
i=1

Pr {Xi ≥ x}

= 1−
n∏
i=1

(1− Pr {Xi ≤ x})

= 1− (1− F (x))n

and:

Fn:n (x) = Pr {max (X1, . . . , Xn) ≤ x} = Pr {X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x}

=
n∏
i=1

Pr {Xi ≤ x}

= F (x)n
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We deduce that the density functions are equal to:

f1:n (x) = n (1− F (x))n−1
f (x)

and
fn:n (x) = nF (x)n−1

f (x)

Let us consider an example with the Gaussian distribution N (0, 1). Figure 12.2 shows the
evolution of the density function fn:n with respect to the sample size n. We verify the
stochastic ordering: n > m⇒ Fn:n � Fm:m.

FIGURE 12.2: Density function fn:n of the Gaussian random variable N (0, 1)

Let us now illustrate the impact of the probability distribution tails on order statistics.
We consider the daily returns of the MSCI USA index from 1995 to 2015. We consider three
hypotheses:

H1 Daily returns are Gaussian, meaning that:

Rt = µ̂+ σ̂Xt

where Xt ∼ N (0, 1), µ̂ is the empirical mean of daily returns and σ̂ is the daily
standard deviation.

H2 Daily returns follow a Student’s t distribution2:

Rt = µ̂+ σ̂

√
ν − 2
ν

Xt

where Xt ∼ tν . We consider two alternative assumptions: H2a : ν = 3 and H2b : ν = 6.

2We add the factor
√

ν − 2
ν

in order to verify that var (Rt) = σ̂2.
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FIGURE 12.3: Density function of the maximum order statistic (daily return of the MSCI
USA index, 1995-2015)

We represent the probability density function of Rn:n for several values of n in Figure
12.3. When n is equal to one trading day, Rn:n is exactly the daily return. We notice that
it is difficult to observe the impact of the probability distribution tail. However, when n
increases, the impact becomes more and more important. Order statistics allow amplifying
local phenomena of probability distributions. In particular, extreme order statistics are a
very useful tool to analyze left and right tails.

Remark 143 The limit distributions of minima and maxima are given by the following
results:

lim
n→∞

F1:n (x) = lim
n→∞

1− (1− F (x))n

=
{

0 if F (x) = 0
1 if F (x) > 0

and:

lim
n→∞

Fn:n (x) = lim
n→∞

F (x)n

=
{

0 if F (x) < 1
1 if F (x) = 1

We deduce that the limit distributions are degenerate as they only take values of 0 and
1. This property is very important, because it means that we cannot study extreme events
by considering these limit distributions. This is why the extreme value theory is based on
another convergence approach of extreme order statistics.



758 Handbook of Financial Risk Management

12.1.3 Inference statistics
The common approach to estimate the parameters θ of the probability density function

f (x; θ) is to maximize the log-likelihood function of a given sample {x1, . . . , xT }:

θ̂ = arg max
T∑
t=1

ln f (xt; θ)

In a similar way, we can consider the sample3
{
x′1, . . . , x

′
nS

}
of the order statistic Xi:n and

estimate the parameters θ by the method of maximum likelihood:

θ̂i:n = arg max `i:n (θ)

where:

`i:n (θ) =
nS∑
s=1

ln fi:n (x′s; θ)

=
nS∑
s=1

ln n!
(i− 1)! (n− i)!F (x′s; θ)

i−1 (1− F (x′s; θ))
n−i

f (x′s; θ)

The computation of the log-likelihood function gives:

`i:n (θ) = nS lnn!− nS ln (i− 1)!− nS ln (n− i)! +

(i− 1)
nS∑
s=1

ln F (x′s; θ) + (n− i)
nS∑
s=1

ln (1− F (x′s; θ)) +

nS∑
s=1

ln f (x′s; θ)

By definition, the traditional ML estimator is equal to new ML estimator when n = 1 and
i = 1:

θ̂ = θ̂1:1

In the other cases (n > 1), there is no reason that the two estimators coincide exactly:

θ̂i:n 6= θ̂

However, if the random variates are drawn from the distribution function X ∼ F (x; θ), we
can test the hypothesis H : θ̂i:n = θ for all n and i ≤ n. If two estimates θ̂i:n and θ̂i′:n′ are
very different, this indicates that the distribution function is certainly not appropriate for
modeling the random variable X.

Let us consider the previous example with the returns of the MSCI USA index. We
assume that the daily returns can be modeled with the Student’s t distribution:

Rt − µ
σ

∼ tν

The vector of parameters to estimate is then θ = (µ, σ). In Tables 12.1, 12.2 and 12.3,
we report the values taken by the ML estimator σ̂i:n obtained by considering several order
statistics and three values of ν. For instance, the ML estimate σ̂1:1 in the case of the t1
distribution is equal to 50 bps. We notice that the values taken by σ̂i:n are not very stable

3The size of the sample nS is equal to the size of the original sample T divided by n.
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TABLE 12.1: ML estimate of σ (in bps) for the probability distribution t1

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 50
2 48 49
3 44 54 44
4 41 53 53 41
5 38 52 55 51 37
6 35 51 56 56 48 33
7 32 49 55 56 55 45 29
8 31 48 53 55 54 50 43 26
9 29 46 55 56 57 55 49 40 25
10 28 43 53 58 57 56 53 48 37 20

TABLE 12.2: ML estimate of σ (in bps) for the probability distribution t6

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 88
2 89 87
3 91 91 85
4 95 92 89 87
5 98 99 87 90 88
6 101 104 95 88 92 89
7 101 112 100 88 94 95 89
8 102 116 103 89 85 89 98 89
9 105 121 117 97 85 86 94 101 88
10 105 123 120 108 91 87 92 99 104 88

TABLE 12.3: ML estimate of σ (in bps) for the probability distribution t∞

Size n Order i
1 2 3 4 5 6 7 8 9 10

1 125
2 125 124
3 136 116 129
4 147 116 112 140
5 155 133 103 114 150
6 163 142 118 107 122 157
7 171 152 125 105 117 134 162
8 175 165 130 106 99 111 139 170
9 180 174 155 122 95 99 128 152 171
10 183 182 162 136 110 100 111 127 155 181
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with respect to i and n. This indicates that the three probability distribution functions
(t1, t6 and t∞) are not well appropriate to represent the index returns. In Figure 12.4, we
have reported the corresponding annualized volatility4 calculated from the order statistics
Ri:10. In the case of the t1 distribution, we notice that it is lower for median order statistics
than extreme order statistics. The t1 distribution has then the property to overestimate
extreme events. In the case of the Gaussian (or t∞) distribution, we obtain contrary results.
The Gaussian distribution has the property to underestimate extreme events. In order to
compensate this bias, the method of maximum likelihood applied to extreme order statistics
will overestimate the volatility.

FIGURE 12.4: Annualized volatility (in %) calculated from the order statistics Ri:10

Remark 144 The approach based on extreme order statistics to calculate the volatility is
then a convenient way to reduce the under-estimation of the Gaussian value-at-risk.

12.1.4 Extension to dependent random variables
Let us now assume that X1, . . . , Xn are not iid. We note C the copula of the correspond-

ing random vector. It follows that:

Fn:n (x) = Pr {Xn:n ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}
= C (F1 (x) , . . . ,Fn (x))

4The annualized volatility takes the value
√

260 · c · σ̂i:n where the constant c is equal to
√
ν/ (ν − 2).

In the case of the t1 distribution, c is equal to 3.2.
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and:

F1:n (x) = Pr {X1:n ≤ x}
= 1− Pr {X1:n ≥ x}
= 1− Pr {X1 ≥ x, . . . ,Xn ≥ x}
= 1− C̆ (1− F1 (x) , . . . , 1− Fn (x))

where C̆ is the survival copula associated to C.

Remark 145 In the case of the product copula and identical probability distributions, we
retrieve the previous results:

Fn:n (x) = C⊥ (F (x) , . . . ,F (x))
= F (x)n

and:

F1:n (x) = 1−C⊥ (1− F (x) , . . . , 1− F (x))
= 1− (1− F (x))n

If we are interested in other order statistics, we use the following formula given in Georges
et al. (2001):

Fi:n (x) =
n∑
k=i

 k∑
l=i

(−1)k−l
(
k

l

) ∑
v(F1(x),...,Fn(x))∈Z(n−k,n)

C (u1, . . . , un)


where:

Z (m,n) =
{

v ∈ [0, 1]n | vi ∈ {ui, 1} ,
n∑
i=1

1 {vi = 1} = m

}
In order to understand this formula, we consider the case n = 3. We have5:

F1:3 (x) = F1 (x) + F2 (x) + F3 (x)−
C (F1 (x) ,F2 (x) , 1)−C (F1 (x) , 1,F3 (x))−C (1,F2 (x) ,F3 (x)) +
C (F1 (x) ,F2 (x) ,F3 (x))

F2:3 (x) = C (F1 (x) ,F2 (x) , 1) + C (F1 (x) , 1,F3 (x)) + C (1,F2 (x) ,F3 (x))−
2C (F1 (x) ,F2 (x) ,F3 (x))

F3:3 (x) = C (F1 (x) ,F2 (x) ,F3 (x))

We verify that:

F1:3 (x) + F2:3 (x) + F3:3 (x) = F1 (x) + F2 (x) + F3 (x)

The dependence structure has a big impact on the distribution of order statistics. For
instance, if we assume that X1, . . . , Xn are iid, we obtain:

Fn:n (x) = F (x)n

5Because C (F1 (x) , 1, 1) = F1 (x).
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If the copula function is the upper Fréchet copula, this result becomes:

Fn:n (x) = C+ (F (x) , . . . ,F (x))
= min (F (x) , . . . ,F (x))
= F (x)

This implies that the occurrence probability of extreme events is lower in this second case.
We consider n Weibull default times τi ∼ W (λi, γi). The survival function is equal

to Si (t) = exp (−λitγi). The hazard rate λi (t) is then λiγitγi−1 and the expression of the
density is fi (t) = λi (t) Si (t). If we assume that the survival copula is the Gumbel-Hougaard
copula with parameter θ ≥ 1, the survival function of the first-to-default time is equal to:

S1:n (t) = exp
(
−
(

(− ln S1 (t))θ + . . .+ (− ln Sn (t))θ
)1/θ

)
= exp

(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
We deduce the expression of the density function:

f1:n (t) =
(∑n

i=1
λθi t

θγi
)1/θ−1

·
(∑n

i=1
γiλ

θ
i t
θγi−1

)
·

exp
(
−
(∑n

i=1
λθi t

θγi
)1/θ

)
In the case where the default times are identically distributed, the first-to-default time is a
Weibull default time: τ1:n ∼ W

(
n1/θλ, γ

)
. In Figure 12.5, we report the density function

f1:10 (t) for the parameters λ = 3% and γ = 2. We notice that the parameter θ of the copula
function has a big influence on the first-to-default time. The case θ = 1 corresponds to the
product copula and we retrieve the previous result:

S1:n (t) = S (t)n

When the Gumbel-Hougaard is the upper Fréchet copula (θ → ∞), we verify that the
density function of τ1:n is this of any default time τi.

12.2 Univariate extreme value theory
The extreme value theory consists in studying the limit distribution of extreme order

statistics X1:n and Xn:n when the sample size tends to infinity. We will see that the limit
distribution converges to three probability distributions. This result will help to evaluate
stress scenarios and to build a stress testing framework.

Remark 146 In what follows, we only consider the largest order statistic Xn:n. Indeed, the
minimum order statistic X1:n can be defined with respect to the maximum order statistic
Yn:n by setting Yi = −Xi:

X1:n = min (X1, . . . , Xn)
= min (−Y1, . . . ,−Yn)
= −max (Y1, . . . , Yn)
= −Yn:n
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FIGURE 12.5: Density function of the first-to-default time τ1:10

12.2.1 Fisher-Tippet theorem
We follow Embrechts et al. (1997) for the formulation of the Fisher-Tippet theorem. Let

X1, . . . , Xn be a sequence of iid random variables, whose distribution function is F. If there
exist two constants an and bn and a non-degenerate distribution function G such that:

lim
n→∞

Pr
{
Xn:n − bn

an
≤ x

}
= G (x) (12.4)

then G can be classified as one of the following three types6:

Type I (Gumbel) Λ (x) = exp (−e−x)

Type II (Fréchet) Φα (x) = 1 (x ≥ 0) · exp (−x−α)

Type III (Weibull) Ψα (x) = 1 (x ≤ 0) · exp (− (−x)α)

The distribution functions Λ, Φα et Ψα are called extreme value distributions. The Fisher-
Tippet theorem is very important, because the set of extreme value distributions is very
small although the set of distribution functions is very large. We can draw a parallel with
the normal distribution and the sum of random variables. In some sense, the Fisher-Tippet
theorem provides an extreme value analog of the central limit theorem.

6In terms of probability density functions, we have:

g (x) =

 exp
(
−x− e−x

)
(Gumbel)

1 (x ≥ 0) · αx−(1+α) · exp
(
−x−α

)
(Fréchet)

1 (x ≤ 0) · α (−x)α−1 · exp (− (−x)α) (Weibull)
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Let us consider the case of exponential random variables, whose probability distribution
is F (x) = 1− exp (−λx). We have7:

lim
n→∞

Fn:n (x) = lim
n→∞

(
1− e−λx

)n
= lim
n→∞

(
1− ne−λx

n

)n
= lim
n→∞

exp
(
−ne−λx

)
= 0

We verify that the limit distribution is degenerate. If we consider the affine transformation
with an = 1/λ et bn = (lnn) /λ, we obtain:

Pr
{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx+ bn}

=
(

1− e−λ(anx+bn)
)n

=
(
1− e−x−lnn)n

=
(

1− e−x

n

)n
We deduce that:

G (x) = lim
n→∞

(
1− e−x

n

)n
= exp

(
−e−x

)
It follows that the limit distribution of the affine transformation is not degenerate. In Figure
12.6, we illustrate the convergence of Fn (anx+ bn) to the Gumbel distribution Λ (x).

Example 127 If we consider the Pareto distribution, we have:

F (x) = 1−
(
x

x−

)−α
The normalizing constants are an = x−n

1/α and bn = 0. We obtain:

Pr
{
Xn:n − bn

an
≤ x

}
=

(
1−

(
x−n

1/αx

x−

)−α)n

=
(

1− x−α

n

)n
We deduce that the law of the maximum tends to the Fréchet distribution:

lim
n→∞

(
1− x−α

n

)n
= exp

(
−x−α

)
7Because we have:

lim
n→∞

(
1 +

x

n

)n
= 1 + x+

x2

2!
+
x3

3!
+ . . .

= exp (x)
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FIGURE 12.6: Max-convergence of the exponential distribution E (1) to the Gumbel dis-
tribution

Example 128 For the uniform distribution, the normalizing constants become an = n−1

and bn = 1 and we obtain the Weibull distribution with α = 1:

lim
n→∞

Pr
{
Xn:n − bn

an
≤ x

}
=

(
1 + x

n

)n
= exp (x)

12.2.2 Maximum domain of attraction
The application of the Fisher-Tippet theorem is limited because it can be extremely

difficult to find the normalizing constants and the extreme value distribution for a given
probability distribution F. However, the graphical representation of Λ, Φα and Ψα given
in Figure 12.7 already provides some information. For instance, the Weibull probability
distribution concerns random variables that are right bounded. This is why it has less
interest in finance than the Fréchet or Gumbel distribution functions8. We also notice some
differences in the shape of the curves. In particular, the Gumbel distribution is more ‘normal’
than the Fréchet distribution, whose shape and tail depend on the parameter α (see Figure
12.8).

We say that the distribution function F belongs to the max-domain of attraction of
the distribution function G and we write F ∈ MDA (G) if the distribution function of
the normalized maximum converges to G. For instance, we have already seen that E (λ) ∈
MDA (Λ). In what follows, we indicate how to characterize the set MDA (G) and which
normalizing constants are9.

8However, the Weibull probability distribution is related to the Fréchet probability distribution thanks
to the relationship Ψα (x) = Φα

(
−x−1

)
.

9Most of the following results come from Resnick (1987).
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FIGURE 12.7: Density function of Λ, Φ1 and Ψ1

FIGURE 12.8: Density function of the Fréchet probability distribution
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12.2.2.1 MDA of the Gumbel distribution

F ∈ MDA (Λ) if and only if there exists a function h (t) such that:

lim
t→x0

1− F (t+ x · h (t))
1− F (t) = exp (−x)

where x0 ≤ ∞. The normalizing constants are then an = h
(
F−1 (1− n−1)) and bn =

F−1 (1− n−1).
The previous characterization of MDA (Λ) is difficult to use because we have to define

the function h (t). However, we can show that if the distribution function F is C2, a sufficient
condition is:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = −1

For instance, in the case of the exponential distribution, we have F (x) = 1 − exp (−λx),
∂x F (x) = λ exp (−λx) and ∂2

x F (x) = −λ2 exp (−λx). We verify that:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = lim
x→∞

exp (−λx) ·
(
−λ2 exp (−λx)

)
(λ exp (−λx))2 = −1

If we consider the Gaussian distribution N (0, 1), we have F (x) = Φ (x), ∂x F (x) = φ (x)
and ∂2

x F (x) = −xφ (x). Using L’Hospital’s rule, we deduce that:

lim
x→∞

(1− F (x)) · ∂2
x F (x)

(∂x F (x))2 = lim
x→∞

−x · Φ (−x)
φ (x) = −1

12.2.2.2 MDA of the Fréchet distribution

We say that a function f is regularly varying with index α and we write f ∈ RVα if we
have:

lim
t→∞

f (t · x)
f (t) = xα

for every x > 0. We can then show the following theorem: F ∈ MDA (Φα) if and only if
1− F ∈ RV−α, and the normalizing constants are an = F−1 (1− n−1) and bn = 0.

Using the previous theorem, we deduce that the distribution function F ∈ MDA (Φα) if
it satisfies the following condition:

lim
t→∞

1− F (t · x)
1− F (t) = x−α

If we apply this result to the Pareto distribution, we obtain:

lim
t→∞

1− F (t · x)
1− F (t) = lim

t→∞

(t · x/x−)−α

(t/x−)−α

= x−α

We deduce that 1−F ∈ RV−α, F ∈ MDA (Φα), an = F−1 (1− n−1) = x−n
1/α and bn = 0.

Remark 147 The previous theorem suggests that:

1− F (t · x)
1− F (t) ≈ x−α
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FIGURE 12.9: Graphical validation of the regular variation property for the normal dis-
tribution N (0, 1)

when t is sufficiently large. This means that we must observe a linear relationship between
ln (x) and ln (1− F (t · x)):

ln (1− F (t · x)) ≈ ln (1− F (t))− α ln (x)

This property can be used to check graphically if a given distribution function belongs or not
to the maximum domain of attraction of the Fréchet distribution. For instance, we observe
that N (0, 1) /∈ MDA (Φα) in Figure 12.9, because the curve is not a straight line.

12.2.2.3 MDA of the Weibull distribution

For the Weibull distribution, we can show that F ∈ MDA (Ψα) if and only if 1 −
F
(
x0 − x−1) ∈ RV−α and x0 <∞. The normalizing constants are an = x0−F−1 (1− n−1)

and bn = x0.
If we consider the uniform distribution with x0 = 1, we have:

F
(
x0 − x−1) = 1− 1

x

and:

lim
t→∞

1− F
(
1− t−1x−1)

1− F (1− t−1) = lim
t→∞

t−1x−1

t−1

= x−1

We deduce that F ∈ MDA (Ψ1), an = 1− F−1 (1− n−1) = n−1 and bn = 1.
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TABLE 12.4: Maximum domain of attraction and normalizing constants of some distri-
bution functions

Distribution G (x) an bn

E (λ) Λ λ−1 λ−1 lnn
G (α, β) Λ β−1 β−1 (lnn+ (α− 1) ln (lnn)− ln Γ (α))

N (0, 1) Λ (2 lnn)−1/2 4 lnn− ln 4π − ln (lnn)
2
√

2 lnn
LN

(
µ, σ2) Λ σ (2 lnn)−1/2

bn exp
(
µ+ σ

(
4 lnn− ln 4π + ln (lnn)

2
√

2 lnn

))

P (α, x−) Φα x−n
1/α 0

LG (α, β) Φβ

(
n (lnn)α−1

)1/β

Γ (α) 0

tν Φν T−1
ν

(
1− n−1) 0

U[0,1] Ψ1 n−1 1

B (α, β) Ψα

(
nΓ (α+ β)

Γ (α) Γ (β + 1)

)−1/β
1

Source: Embrechts et al. (1997).

12.2.2.4 Main results

In Table 12.4, we report the maximum domain of attraction and normalizing constants
of some well-known distribution functions.

Remark 148 Let G (x) be the non-degenerate distribution of Xn:n. We note an and bn
the normalizing constants. We consider the linear transformation Y = cX + d with c > 0.
Because we have Yn:n = cXn:n + d, we deduce that:

G (x) = lim
n→∞

Pr {Xn:n ≤ anx+ bn}

= lim
n→∞

Pr
{
Yn:n − d

c
≤ anx+ bn

}
= lim

n→∞
Pr {Yn:n ≤ ancx+ bnc+ d}

= lim
n→∞

Pr {Yn:n ≤ a′nx+ b′n}

where a′n = anc and b′n = bnc+ d. This means that G (x) is also the non-degenerate distri-
bution of Yn:n, and a′n and b′n are the normalizing constants. For instance, if we consider
the distribution function N

(
µ, σ2), we deduce that the normalizing constants are:

an = σ (2 lnn)−1/2
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and:
bn = µ+ σ

(
4 lnn− ln 4π + ln (lnn)

2
√

2 lnn

)
The normalizing constants are uniquely defined. In the case of the Gaussian distribution

N (0, 1), they are equal to an = h (bn) = bn/
(
1 + b2n

)
and bn = Φ−1 (1− n−1). In Table

12.4, we report an approximation which is not necessarily unique. For instance, Gasull et
al. (2015) propose the following alternative value of bn:

bn ≈

√
ln
(
n2

2π

)
− ln

(
ln
(
n2

2π

))
+ ln (0.5 + lnn2)− 2

lnn2 − ln 2π

and show that this solution is more accurate than the classical approximation.

12.2.3 Generalized extreme value distribution
12.2.3.1 Definition

From a statistical point of view, the previous results of the extreme value theory are
difficult to use. Indeed, they are many issues concerning the choice of the distribution
function, the normalizing constants or the convergence rate as explained by Coles (2001):

“The three types of limits that arise in Theorem 12.2.1 have distinct forms of
behavior, corresponding to the different forms of tail behaviour for the distribu-
tion function F of the Xi. This can be made precise by considering the behavior
of the limit distribution G at x+, its upper end-point. For the Weibull distribu-
tion x+ is finite, while for both the Fréchet and Gumbel distributions x+ =∞.
However, the density of G decays exponentially for the Gumbel distribution and
polynomially for the Fréchet distribution, corresponding to relatively different
rates of decay in the tail of F. It follows that in applications the three different
families give quite different representations of extreme value behavior. In early
applications of extreme value theory, it was usual to adopt one of the three
families, and then to estimate the relevant parameters of that distribution. But
there are two weakness: first, a technique is required to choose which of the three
families is most appropriate for the data at hand; second, once such a decision is
made, subsequent inferences presume this choice to be correct, and do not allow
for the uncertainty such a selection involves, even though this uncertainty may
be substantial”.

In practice, the statistical inference on extreme values takes another route. Indeed, the three
types can be combined into a single distribution function:

G (x) = exp
(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

defined on the support ∆ =
{
x : 1 + ξσ−1 (x− µ) > 0

}
. It is known as the ‘generalized

extreme value’ distribution and we denote it by GEV (µ, σ, ξ). We obtain the following cases:

• the limit case ξ → 0 corresponds to the Gumbel distribution;

• ξ = −α−1 > 0 defines the Fréchet distribution;

• the Weibull distribution is obtained by considering ξ = −α−1 < 0.
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We also notice that the parameters µ and σ are the limits of the normalizing constants bn
and an. The corresponding density function is equal to:

g (x) = 1
σ
·
(

1 + ξ

(
x− µ
σ

))−(1+ξ)/ξ
· exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

It is represented in Figure 12.10 for various values of the parameters. We notice that µ is a
parameter of localization, σ controls the standard deviation and ξ is related to the tail of
the distribution. The parameters can be estimated using the method of maximum likelihood
and we obtain:

`t = − ln σ −
(

1 + ξ

ξ

)
ln
(

1 + ξ

(
xt − µ
σ

))
−
(

1 + ξ

(
xt − µ
σ

))−1/ξ

where xt is the observed maximum for the tth period.
We consider again the example of the MSCI USA index. Using daily returns, we cal-

culate the block maximum for each period of 22 trading days. We then estimate the GEV
distribution using the method of maximum likelihood. For the period 1995-2015, we obtain
µ̂ = 0.0149, σ̂ = 0.0062 and ξ̂ = 0.3736. In Figure 12.11, we compared the estimated GEV
distribution with the distribution function F22:22 (x) when we assume that daily returns are
Gaussian. We notice that the Gaussian hypothesis largely underestimates extreme events
as illustrated by the quantile function in the table below:

α 90% 95% 96% 97% 98% 99%
Gaussian 3.26% 3.56% 3.65% 3.76% 3.92% 4.17%
GEV 3.66% 4.84% 5.28% 5.91% 6.92% 9.03%

For instance, the probability is 1% to observe a maximum daily return during a period of
one month larger than 4.17% in the case of the Gaussian distribution and 9.03% in the case
of the GEV distribution.

12.2.3.2 Estimating the value-at-risk

Let us consider a portfolio w, whose mark-to-market value is Pt (w) at time t. We recall
that the P&L between t and t+ 1 is equal to:

Π (w) = Pt+1 (w)− Pt (w)
= Pt (w) ·R (w)

where R (w) is the daily return of the portfolio. If we note F̂ the estimated probability
distribution of R (w), the expression of the value-at-risk at the confidence level α is equal
to:

VaRα (w) = −Pt (w) · F̂−1 (1− α)

We now estimate the GEV distribution Ĝ of the maximum of −R (w) for a period of
n trading days10. We have to define the confidence level αGEV when we consider block
minima of daily returns that corresponds to the same confidence level α when we consider
daily returns. For that, we assume that the two exception events have the same return
period, implying that:

1
1− α × 1 day = 1

1− αGEV
× n days

10We model the maximum of the opposite of daily returns, because we are interested in extreme losses,
and not in extreme profits.
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FIGURE 12.10: Probability density function of the GEV distribution

FIGURE 12.11: Probability density function of the maximum return R22:22
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We deduce that:
αGEV = 1− (1− α) · n

It follows that the value-at-risk calculated with the GEV distribution is equal to11:

VaRα (w) = P (t) · Ĝ−1 (αGEV)

We consider four portfolios invested in the MSCI USA index and the MSCI EM index:
(1) long on the MSCI USA, (2) long on the MSCI EM index, (3) long on the MSCI USA
and short on the MSCI EM index and (4) long on the MSCI EM index and short on the
MSCI USA index. Using daily returns from January 1995 to December 2015, we estimate
the daily value-at-risk of these portfolios for different confidence levels α. We report the
results in Table 12.5 for Gaussian and historical value-at-risk measures and compare them
with those calculated with the GEV approach. In this case, we estimate the parameters of
the extreme value distribution using block maxima of 22 trading days. When we consider a
99% confidence level, the lowest value is obtained by the GEV method followed by Gaussian
and historical methods. For a higher quantile, the GEV VaR is between the Gaussian VaR
and the historical VaR. The value-at-risk calculated with the GEV approach can therefore
be interpreted as a parametric value-at-risk, which is estimated using only tail events.

TABLE 12.5: Comparing Gaussian, historical and GEV value-at-risk measures

VaR α Long US Long EM Long US Long EM
Short EM Short US

99.0% 2.88% 2.83% 3.06% 3.03%
Gaussian 99.5% 3.19% 3.14% 3.39% 3.36%

99.9% 3.83% 3.77% 4.06% 4.03%
99.0% 3.46% 3.61% 3.37% 3.81%

Historical 99.5% 4.66% 4.73% 3.99% 4.74%
99.9% 7.74% 7.87% 6.45% 7.27%
99.0% 2.64% 2.61% 2.72% 2.93%

GEV 99.5% 3.48% 3.46% 3.41% 3.82%
99.9% 5.91% 6.05% 5.35% 6.60%

12.2.4 Peak over threshold
12.2.4.1 Definition

The estimation of the GEV distribution is a ‘block component-wise’ approach. This
means that from a sample of random variates, we build a sample of maxima by considering
blocks with the same length. This implies a loss of information, because some blocks may
contain several extreme events whereas some other blocks may not be impacted by extremes.
Another approach consists in using the ‘peak over threshold’ (POT) method. In this case,
we are interested in estimating the distribution of exceedance over a certain threshold u:

Fu(x) = Pr {X − u ≤ x | X > u}

11The inverse function of the probability distribution GEV (µ, σ, ξ) is equal to:

G−1 (α) = µ−
σ

ξ

(
1− (− lnα)−ξ

)
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where 0 ≤ x < x0−u and x0 = sup {x ∈ R : F(x) < 1}. Fu(x) is also called the conditional
excess distribution function. It is also equal to:

Fu(x) = 1− Pr {X − u ≤ x | X ≤ u}

= 1−
(

1− F (u+ x)
1− F (u)

)
= F(u+ x)− F(u)

1− F(u)

Pickands (1975) showed that, for very large u, Fu(x) follows a generalized Pareto distribu-
tion (GPD): Fu(x) ≈ H (x) where12:

H (x) = 1−
(

1 + ξx

σ

)−1/ξ

The distribution function GPD (σ, ξ) depends on two parameters: σ is the scale parameter
and ξ is the shape parameter.

Example 129 If F is an exponential distribution E (λ), we have:

1− F (u+ x)
1− F (u) = exp (−λx)

This is the generalized Pareto distribution when σ = 1/λ and ξ → 0.

Example 130 If F is a uniform distribution, we have:

1− F (u+ x)
1− F (u) = 1− x

1− u

It corresponds to the generalized Pareto distribution with the following parameters: σ = 1−u
and ξ = −1.

In fact, there is a strong link between the block maxima approach and the peak over
threshold method. Suppose that Xn:n ∼ GEV (µ, σ, ξ). It follows that:

Fn (x) ≈ exp
{
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
}

We deduce that:

n ln F (x) ≈ −
(

1 + ξ

(
x− µ
σ

))−1/ξ

Using the approximation ln F (x) ≈ − (1− F (x)) for large x, we obtain:

1− F (x) ≈ 1
n

(
1 + ξ

(
x− µ
σ

))−1/ξ

We find that Fu(x) is a generalized Pareto distribution GPD (σ̃, ξ):

Pr {X > u+ x | X > u} = 1− F (u+ x)
1− F (u)

=
(

1 + ξx

σ̃

)−1/ξ

12If ξ → 0, we have H (x) = 1− exp (−x/σ).
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where:
σ̃ = σ + ξ (u− µ)

Therefore, we have a duality between GEV and GPD distribution functions:

“[...] if block maxima have approximating distribution G, then threshold
excesses have a corresponding approximate distribution within the generalized
Pareto family. Moreover, the parameters of the generalized Pareto distribution
of threshold excesses are uniquely determined by those of the associated GEV
distribution of block maxima. In particular, the parameter ξ is equal to that
of the corresponding GEV distribution. Choosing a different, but still large,
block size n would affect the values of the GEV parameters, but not those
of the corresponding generalized Pareto distribution of threshold excesses: ξ is
invariant to block size, while the calculation of σ̃ is unperturbed by the changes
in µ and σ which are self-compensating” (Coles, 2001, page 75).

The estimation of the parameters (σ, ξ) is not obvious because it depends on the value
taken by the threshold u. It must be sufficiently large to apply the previous theorem, but
we also need enough data to obtain good estimates. We notice that the mean residual life
e (u) is a linear function of u:

e (u) = E [X − u | X > u]

= σ + ξu

1− ξ

when ξ < 1. If the GPD approximation is valid for a value u0, it is therefore valid for any
value u > u0. To determine u0, we can use a mean residual life plot, which consists in
plotting u against the empirical mean excess ê (u):

ê (u) =
∑n
i=1 (xi − u)+∑n
i=1 1 {xi > u}

Once u0 is found, we estimate the parameters (σ, ξ) by the method of maximum likelihood
or the linear regression13.

Let us consider our previous example. In Figure 12.12, we have reported the mean
residual life plot for the left tail of the four portfolios14. The determination of u0 consists
in finding linear relationships. We have a first linear relationship between u = −3% and
u = −1%, but it is not valid because it is followed by a change in slope. We prefer to
consider that the linear relationship is valid for u ≥ 2%. By assuming that u0 = 2% for all
the four portfolios, we obtain the estimates given in Table 12.6.

12.2.4.2 Estimating the expected shortfall

We recall that:
Fu(x) = F(u+ x)− F(u)

1− F(u) ≈ H (x)

where H ∼ GPD (σ, ξ). We deduce that:

F (x) = F (u) + (1− F (u)) · Fu (x− u)
≈ F (u) + (1− F (u)) ·H (x− u)

13In this case, we estimate the linear model ê (u) = a+b ·u+ε for u ≥ u0 and deduce that σ̂ = â/
(
1 + b̂

)
and ξ̂ = b̂/

(
1 + b̂

)
.

14This means that ê (u) is calculated using the portfolio loss, that is the opposite of the portfolio return.
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FIGURE 12.12: Mean residual life plot

TABLE 12.6: Estimation of the generalized Pareto distribution

Parameter Long US Long EM Long US Long EM
Short EM Short US

â 0.834 1.029 0.394 0.904
b̂ 0.160 0.132 0.239 0.142
σ̂ 0.719 0.909 0.318 0.792
ξ̂ 0.138 0.117 0.193 0.124

We consider a sample of size n. We note nu the number of observations whose value xi is
larger than the threshold u. The non-parametric estimate of F (u) is then equal to:

F̂ (u) = 1− nu
n

Therefore, we obtain the following semi-parametric estimate of F (x) for x larger than u:

F̂ (x) = F̂ (u) +
(

1− F̂ (u)
)
· Ĥ (x− u)

=
(

1− nu
n

)
+ nu

n

1−
(

1 + ξ̂ (x− u)
σ̂

)−1/ξ̂


= 1− nu
n

(
1 + ξ̂ (x− u)

σ̂

)−1/ξ̂
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We can interpret F̂ (x) as the historical estimate of the probability distribution tail that is
improved by the extreme value theory. We deduce that:

VaRα = F̂−1 (α)

= u+ σ̂

ξ̂

((
n

nu
(1− α)

)−ξ̂
− 1
)

and:

ESα = E [X | X > VaRα]
= VaRα +E [X −VaRα | X > VaRα]

= VaRα + σ̂ + ξ̂ (VaRα−u)
1− ξ̂

= VaRα

1− ξ̂
+ σ̂ − ξ̂u

1− ξ̂

= u− σ̂

ξ̂
+ σ̂(

1− ξ̂
)
ξ̂

(
n

nu
(1− α)

)−ξ̂

We consider again the example of the four portfolios with exposures on US and EM
equities. In the sample, we have 3 815 observations, whereas the value taken by nu when
u is equal to 2% is 171, 161, 174 and 195 respectively. Using the estimates given in Table
12.6, we calculate the daily value-at-risk and expected shortfall of the four portfolios. The
results are reported in Table 12.7. If we compare them with those obtained in Table 12.5
on page 773, we notice that the GPD VaR is close to the GEV VaR.

TABLE 12.7: Estimating value-at-risk and expected shortfall risk measures using the
generalized Pareto distribution

Risk
α Long US Long EM Long US Long EM

measure Short EM Short US
99.0% 3.20% 3.42% 2.56% 3.43%

VaR 99.5% 3.84% 4.20% 2.88% 4.13%
99.9% 5.60% 6.26% 3.80% 6.02%
99.0% 4.22% 4.64% 3.09% 4.54%

ES 99.5% 4.97% 5.52% 3.48% 5.34%
99.9% 7.01% 7.86% 4.62% 7.49%

12.3 Multivariate extreme value theory
The extreme value theory is generally formulated and used in the univariate case. It can

be easily extended to the multivariate case, but its implementation is more difficult. This
section is essentially based on the works of Deheuvels (1978), Galambos (1987) and Joe
(1997).



778 Handbook of Financial Risk Management

12.3.1 Multivariate extreme value distributions
12.3.1.1 Extreme value copulas

An extreme value (EV) copula satisfies the following relationship:

C
(
ut1, . . . , u

t
n

)
= Ct (u1, . . . , un)

for all t > 0. For instance, the Gumbel copula is an EV copula:

C
(
ut1, u

t
2
)

= exp
(
−
((
− ln ut1

)θ +
(
− ln ut2

)θ)1/θ
)

= exp
(
−
(
tθ
(

(− ln u1)θ + (− ln u2)θ
))1/θ

)
=
(

exp
(
−
(

(− ln u1)θ + (− ln u2)θ
)1/θ

))t
= Ct (u1, u2)

but it is not the case of the Farlie-Gumbel-Morgenstern copula:

C
(
ut1, u

t
2
)

= ut1u
t
2 + θut1u

t
2
(
1− ut1

) (
1− ut2

)
= ut1u

t
2
(
1 + θ − θut1 − θut2 + θut1u

t
2
)

6= ut1u
t
2 (1 + θ − θu1 − θu2 + θu1u2)t

6= Ct (u1, u2)

The term ‘extreme value copula’ suggests a relationship between the extreme value
theory and these copula functions. Let X = (X1, . . . , Xn) be a random vector of dimension
n. We note Xm:m the random vector of maxima:

Xm:m =

 Xm:m,1
...

Xm:m,n


and Fm:m the corresponding distribution function:

Fm:m (x1, . . . , xn) = Pr {Xm:m,1 ≤ x1, . . . , Xm:m,n ≤ xn}

The multivariate extreme value (MEV) theory considers the asymptotic behavior of the
non-degenerate distribution function G such that:

lim
m→∞

Pr
(
Xm:m,1 − bm,1

am,1
≤ x1, . . . ,

Xm:m,n − bm,n
am,n

≤ xn
)

= G (x1, . . . , xn)

Using Sklar’s theorem, there exists a copula function C 〈G〉 such that:

G (x1, . . . , xn) = C 〈G〉 (G1 (x1) , . . . ,Gn (xn))

It is obvious that the marginals G1, . . . ,Gn satisfy the Fisher-Tippet theorem, meaning that
the marginals of a multivariate extreme value distribution can only be Gumbel, Fréchet or
Weibull distribution functions. For the copula C 〈G〉, we have the following result: C 〈G〉
is an extreme value copula.
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With the copula representation, we can then easily define MEV distributions. For in-
stance, if we consider the random vector (X1, X2), whose joint distribution function is:

F (x1, x2) = exp
(
−
(

(− ln Φ (x1))θ + (− ln x2)θ
)1/θ

)
we notice that X1 is a Gaussian random variable and X2 is a uniform random variable. We
conclude that the corresponding limit distribution function of maxima is:

G (x1, x2) = exp
(
−
(

(− ln Λ (x1))θ + (− ln Ψ1 (x2))θ
)1/θ

)
In Figure 12.13, we have reported the contour plot of four MEV distribution functions, whose
marginals are GEV (0, 1, 1) and GEV (0, 1, 1.5). For the dependence function, we consider the
Gumbel-Hougaard copula and calibrate the parameter θ with respect to the Kendall’s tau.

FIGURE 12.13: Multivariate extreme value distributions

12.3.1.2 Deheuvels-Pickands representation

Let D be a multivariate distribution function, whose survival marginals are exponen-
tial and the dependence structure is an extreme value copula. By using the relationship15
C (u1, . . . , un) = C

(
e−ũ1 , . . . , e−ũn

)
= D (ũ1, . . . , ũn), we have Dt (ũ) = D (tũ). Therefore,

D is a min-stable multivariate exponential (MSMVE) distribution.
We now introduce the Deheuvels/Pickands MSMVE representation. Let D (ũ) be a

survival function with exponential marginals. D satisfies the relationship:

− ln D (t · ũ) = −t · ln D (ũ) ∀ t > 0

15We recall that ũ = − lnu.
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if and only if the representation of D is:

− ln D (ũ) =
∫
· · ·
∫
Sn

max
1≤i≤n

(qiũi) dS (q) ∀ ũ ≥ 0

where Sn is the n-dimensional unit simplex and S is a finite measure on Sn. This is the
formulation16 given by Joe (1997). Sometimes, the Deheuvels/Pickands representation is
presented using a dependence function B (w) defined by:

D (ũ) = exp
(
−

(
n∑
i=1

ũi

)
B (w1, . . . , wn)

)

B (w) =
∫
· · ·
∫
Sn

max
1≤i≤n

(qiwi) dS (q)

where wi = (
∑n
i=1 ũi)

−1
ũi. Tawn (1990) showed that B is a convex function and satisfies

the following condition:

max (w1, . . . , wn) ≤ B (w1, . . . , wn) ≤ 1 (12.5)

We deduce that an extreme value copula satisfies the PQD property:

C⊥ ≺ C ≺ C+

In the bivariate case, the formulation can be simplified because the convexity of B and
the condition (12.5) are sufficient (Tawn, 1988). We have:

C (u1, u2) = D (ũ1, ũ2)

= exp
(
− (ũ1 + ũ2)B

(
ũ1

ũ1 + ũ2
,

ũ2

ũ1 + ũ2

))
= exp

(
ln (u1u2)B

(
ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

))
= exp

(
ln (u1u2)A

(
ln u1

ln (u1u2)

))
where A (w) = B (w, 1− w). A is a convex function where A (0) = A (1) = 1 and satisfies
max (w, 1− w) ≤ A (w) ≤ 1.

Example 131 For the Gumbel copula, we have:

− ln D (ũ1, ũ2) =
(
ũθ1 + ũθ2

)1/θ
B (w1, w2) =

(
ũθ1 + ũθ2

)1/θ
(ũ1 + ũ2) =

(
wθ1 + wθ2

)1/θ
A (w) =

(
wθ + (1− w)θ

)1/θ

16Note that it is similar to Proposition 5.11 of Resnick (1987), although the author does not use copulas.
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We verify that a bivariate EV copula satisfies the PQD property:

max (w, 1− w) ≤ A (w) ≤ 1

⇔ max
(

ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

)
≤ A

(
ln u1

ln (u1u2)

)
≤ 1

⇔ min (ln u1, ln u2) ≥ ln (u1u2) ·A
(

ln u1

ln (u1u2)

)
≥ ln (u1u2)

⇔ min (u1, u2) ≥ exp
(

ln (u1u2) ·A
(

ln u1

ln (u1u2)

))
≥ u1u2

⇔ C+ � C � C⊥

When the extreme values are independent, we have A (w) = 1 whereas the case of perfect
dependence corresponds to A (w) = max (w, 1− w):

C (u1, u2) = exp
(

ln (u1u2) ·max
(

ln u1

ln (u1u2) ,
ln u2

ln (u1u2)

))
= min (u1, u2)
= C+ (u1, u2)

In Table 12.8, we have reported the dependence function A (w) of the most used EV copula
functions.

TABLE 12.8: List of extreme value copulas
Copula θ C (u1, u2) A (w)
C⊥ u1u2 1
Gumbel [1,∞) exp

(
−
(
ũθ1 + ũθ2

)1/θ) (
wθ + (1− w)θ

)1/θ
Gumbel II [0, 1] u1u2 exp

(
θ
ũ1ũ2

ũ1 + ũ2

)
θw2 − θw + 1

Galambos [0,∞) u1u2 exp
((
ũ−θ1 + ũ−θ2

)−1/θ
)

1−
(
w−θ + (1− w)−θ

)−1/θ

Hüsler-Reiss [0,∞) exp (−ũ1ϑ (u1, u2; θ)− ũ2ϑ (u2, u1; θ)) wκ (w; θ) + (1− w)κ (1− w; θ)
Marshall-Olkin [0, 1]2 u1−θ1

1 u1−θ2
2 min

(
uθ11 , u

θ2
2
)

max (1− θ1w, 1− θ2 (1− w))
C+ min (u1, u2) max (w, 1− w)

ϑ (u1, u2; θ) = Φ
(

1
θ

+ θ
2 ln (lnu1/ lnu2)

)
κ (w; θ) = ϑ (w, 1− w; θ)

Source: Ghoudi et al. (1998).

12.3.2 Maximum domain of attraction
Let F be a multivariate distribution function whose marginals are F1, . . . ,Fn and the

copula is C 〈F〉. We note G the corresponding multivariate extreme value distribution,
G1, . . . ,Gn the marginals of G and C 〈G〉 the associated copula function. We can show that
F ∈ MDA (G) if and only if Fi ∈ MDA (Gi) for all i = 1, . . . , n and C 〈F〉 ∈ MDA (C 〈G〉).
Previously, we have seen how to characterize the max-domain of attraction in the univariate
case and how to calculate the normalizing constants. These constants remains the same in
the multivariate case, meaning that the only difficulty is to determine the EV copula C 〈G〉.
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We can show that C 〈F〉 ∈ MDA (C 〈G〉) if C 〈F〉 satisfies the following relationship:

lim
t→∞

Ct 〈F〉
(
u

1/t
1 , . . . , u1/t

n

)
= C 〈G〉 (u1, . . . , un)

Moreover, if C 〈F〉 is an EV copula, then C 〈F〉 ∈ MDA (C 〈F〉). This important result is
equivalent to:

lim
u→0

1−C 〈F〉 ((1− u)w1 , . . . , (1− u)wn)
u

= B (w1, . . . , wn)

In the bivariate case, we obtain:

lim
u→0

1−C 〈F〉
(

(1− u)1−t
, (1− u)t

)
u

= A (t)

for all t ∈ [0, 1].

Example 132 We consider the random vector (X1, X2) defined by the following distribu-
tion function:

F (x1, x2) =
((

1− e−x1
)−θ + x−θ2 − 1

)−1/θ

on [0,∞] × [0, 1]. The marginals of F (x1, x2) are F1 (x1) = F (x1, 1) = 1 − e−x1 and
F2 (x2) = F (∞, x2) = x2. It follows that X1 is an exponential random variable and X2 is
a uniform random variable. We know that:

lim
n→∞

Pr
(
Xn:n,1 − lnn

1 ≤ x1

)
= Λ (x1)

and:
lim
n→∞

Pr
(
Xn:n,2 − 1

n−1 ≤ x2

)
= Ψ1 (x2)

Since the dependence function of F is the Clayton copula: C 〈F〉 (u1, u2) =(
u−θ1 + u−θ2 − 1

)−1/θ, we have:

lim
u→0

1−C 〈F〉
(

(1− u)t , (1− u)1−t
)

u
= lim

u→0

1− (1 + θu+ o (u))−1/θ

u

= lim
u→0

u+ o (u)
u

= 1

We deduce that C 〈G〉 = C⊥. Finally, we obtain:

G (x1, x2) = lim
n→∞

Pr {Xn:n,1 − lnn ≤ x1, n (Xn:n,2 − 1) ≤ x2}

= Λ (x1) ·Ψ1 (x2)
= exp

(
−e−x1

)
· exp (x2)

If we change the copula C 〈F〉, only the copula C 〈G〉 is modified. For instance, when C 〈F〉
is the Normal copula with parameter ρ < 1, then G (x1, x2) = exp (−e−x1) · exp (x2). When
the copula parameter ρ is equal to 1, we obtain G (x1, x2) = min (exp (−e−x1) , exp (x2)).
When C 〈F〉 is the Gumbel copula, the MEV distribution becomes G (x1, x2) =

exp
(
−
(
e−θx1 + (−x2)θ

)1/θ
)
.
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12.3.3 Tail dependence of extreme values
We can show that the (upper) tail dependence of C 〈G〉 is equal to the (upper) tail

dependence of C 〈F〉:
λ+ (C 〈G〉) = λ+ (C 〈F〉)

This implies that extreme values are independent if the copula function C 〈F〉 has no (upper)
tail dependence.

12.4 Exercises
12.4.1 Uniform order statistics

We assume that X1, . . . , Xn are independent uniform random variables.

1. Show that the density function of the order statistic Xi:n is:

fi:n (x) = Γ (n+ 1)
Γ (i) Γ (n− i+ 1)x

i−1 (1− x)n−i

2. Calculate the mean E [Xi:n].

3. Show that the variance is equal to:

var (Xi:n) = i (n− i+ 1)
(n+ 1)2 (n+ 2)

4. We consider 10 samples of 8 independent observations from the uniform probability
distribution U[0,1]:

Sample Observation
1 2 3 4 5 6 7 8

1 0.24 0.45 0.72 0.14 0.04 0.34 0.94 0.55
2 0.12 0.32 0.69 0.64 0.31 0.25 0.97 0.57
3 0.69 0.50 0.26 0.17 0.50 0.85 0.11 0.17
4 0.53 0.00 0.77 0.58 0.98 0.15 0.98 0.03
5 0.89 0.25 0.15 0.62 0.74 0.85 0.65 0.46
6 0.74 0.65 0.86 0.05 0.93 0.15 0.25 0.07
7 0.16 0.12 0.63 0.33 0.55 0.61 0.34 0.95
8 0.96 0.82 0.01 0.87 0.57 0.11 0.14 0.47
9 0.68 0.83 0.73 0.78 0.27 0.85 0.55 0.57
10 0.89 0.94 0.91 0.28 0.99 0.40 0.99 0.68

For each sample, find the order statistics. Calculate the empirical mean and standard
deviation of Xi:8 for i = 1, . . . , 8 and compare these values with the theoretical results.

5. We assume that n is odd, meaning that n = 2k+ 1. We consider the median statistic
Xk+1:n. Show that the density function of Xi:n is right asymmetric if i ≤ k, symmetric
about .5 if i = k + 1 and left asymmetric otherwise.

6. We now assume that the density function of X1, . . . , Xn is symmetric. How are im-
pacted the results obtained in Question 5?
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12.4.2 Order statistics and return period
1. Let X and F be the daily return of a portfolio and the associated probability distri-

bution. We note Xn:n the maximum of daily returns for a period of n trading days.
Using the standard assumptions, define the cumulative distribution function Fn:n of
Xn:n if we suppose that X ∼ N

(
µ, σ2).

2. How could we test the hypothesis H0 : X ∼ N
(
µ, σ2) using Fn:n?

3. Define the notion of return period. What is the return period associated to the statis-
tics F−1 (99%), F−1

1:1 (99%), F−1
5:5 (99%) and F−1

21:21 (99%)?

4. We consider the random variable X20:20. Find the confidence level α which ensures
that the return period associated to the quantile F−1

20:20 (α) is equivalent to the return
period of the daily value-at-risk with a 99.9% confidence level.

12.4.3 Extreme order statistics of exponential random variables
1. We note τ ∼ E (λ). Show that:

Pr {τ > t | τ > s} = Pr {τ > t− s}

where t > s. Comment on this result.

2. Let τi be the random variable of distribution E (λi). Calculate the probability distri-
bution of min (τ1, . . . , τn) and max (τ1, . . . , τn) in the independent case. Show that:

Pr {min (τ1, . . . , τn) = τi} = λi∑n
j=1 λj

3. Same question if the random variables τ1, . . . , τn are comonotone.

12.4.4 Extreme value theory in the bivariate case
1. What is an extreme value (EV) copula C?

2. Show that C⊥ and C+ are EV copulas. Why C− cannot be an EV copula?

3. We define the Gumbel-Hougaard copula as follows:

C (u1, u2) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
with θ ≥ 1. Verify that it is an EV copula.

4. What is the definition of the upper tail dependence λ? What is its usefulness in
multivariate extreme value theory?

5. Let f (x) and g (x) be two functions such that limx→x0 f (x) = limx→x0 g (x) = 0. If
g′ (x0) 6= 0, L’Hospital’s rule states that:

lim
x→x0

f (x)
g (x) = lim

x→x0

f ′ (x)
g′ (x)

Deduce that the upper tail dependence λ of the Gumbel-Hougaard copula is 2− 21/θ.
What is the correlation of two extremes when θ = 1?
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6. We define the Marshall-Olkin copula as follows:

C (u1, u2) = u1−θ1
1 · u1−θ2

2 ·min
(
uθ11 , u

θ2
2

)
where (θ1, θ2) ∈ [0, 1]2.

(a) Verify that it is an EV copula.
(b) Find the upper tail dependence λ of the Marshall-Olkin copula.
(c) What is the correlation of two extremes when min (θ1, θ2) = 0?
(d) In which case are two extremes perfectly correlated?

12.4.5 Maximum domain of attraction in the bivariate case
1. We consider the following probability distributions:

Distribution F (x)
Exponential E (λ) 1− e−λx
Uniform U[0,1] x

Pareto P (α, θ) 1−
(
θ+x
θ

)−α
For each distribution, we give the normalization parameters an and bn of the Fisher-
Tippet theorem and the corresponding limit probability distribution G (x):

Distribution an bn G (x)
Exponential λ−1 λ−1 lnn Λ (x) = e−e

−x

Uniform n−1 1− n−1 Ψ1 (x− 1) = ex−1

Pareto θα−1n1/α θn1/α − θ Φα

(
1 + x

α

)
= e−(1+ x

α )−α

We note G (x1, x2) the asymptotic distribution of the bivariate random vector
(X1,n:n, X2,n:n) where X1,i (resp. X2,i) are iid random variables.

(a) What is the expression of G (x1, x2) when X1,i and X2,i are independent, X1,i ∼
E (λ) and X2,i ∼ U[0,1]?

(b) Same question when X1,i ∼ E (λ) and X2,i ∼ P (θ, α).
(c) Same question when X1,i ∼ U[0,1] and X2,i ∼ P (θ, α).

2. What happen to the previous results when the dependence function between X1,i and
X2,i is the Normal copula with parameter ρ < 1?

3. Same question when the parameter of the Normal copula is equal to one.

4. Find the expression of G (x1, x2) when the dependence function is the Gumbel-
Hougaard copula.





Chapter 13
Monte Carlo Simulation Methods

Monte Carlo methods consist of solving mathematical problems using random numbers.
The term ‘Monte Carlo’ was apparently coined by physicists Ulam and von Neumann at
Los Alamos in 1940 and refers to gambling casinos in Monaco1. Until the end of the eighties,
Monte Carlo methods were principally used to calculate numerical integration2 including
mathematical expectations. More recently, the Monte Carlo method designates all numer-
ical methods that involves stochastic simulation and consider random experiments on a
computer.

This chapter is divided into three sections. In the first section, we present the different
approaches to generate random numbers. Section two extends simulation methods when we
manipulate stochastic processes. Finally, the last section is dedicated to Monte Carlo and
quasi-Monte Carlo methods.

13.1 Random variate generation
Any Monte Carlo method is based on series of random variates that are independent

and identically distributed (iid) according to a given probability distribution F. As we will
see later, it can be done by generating uniform random numbers. This is why numerical
programming softwares already contain uniform random number generators. However, true
randomness is impossible to simulate with a computer. In practice, only sequences of ‘pseu-
dorandom’ numbers can be produced with statistical properties that are close from those
obtained with iid random variables.

13.1.1 Generating uniform random numbers
A first idea is to build a pseudorandom sequence S and repeat this sequence as often

as necessary. For instance, for simulating 10 uniform random numbers, we can set S =
{0, 0.5, 1} and repeat this sequence four times. In this case, the 10 random numbers are:

{0, 0.5, 1, 0, 0.5, 1, 0, 0.5, 1, 0}

We notice that the period length of this sequence is three. The quality of the pseudorandom
number generator depends on the period length, which should be large in order to avoid
duplication and serial correlation. If we calculate the second moment of S, we do not obtain
the variance of a uniform random variable U[0,1]. A good pseudorandom number generator
should therefore pass standard adequacy tests.

1Monte Carlo is one of the four quarters of Monaco and houses the famous casino.
2In this case, we speak about Monte Carlo integration methods.

787
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The most famous and used algorithm is the linear congruential generator (LCG):

xn = (a · xn−1 + c) modm
un = xn/m

where a is the multiplicative constant, c is the additive constant and m is the modulus
(or the order of the congruence). To initialize the algorithm, we have to define the initial
number x0, called the seed3. {x1, x2, . . . , xn} is a sequence of pseudorandom integer numbers
(0 ≤ xn < m) whereas {u1, u2, . . . , un} is a sequence of uniform random variates. We can
show that the maximum period4 is m and can be only achieved for some specific values of
a, c and m. The quality of the random number generator will then depend on the values of
the parameters.

Example 133 If we consider that a = 3, c = 0, m = 11 and x0 = 1, we obtain the following
sequence:

{1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, . . .}

The period length is only five, meaning that only five uniform random variates can be gen-
erated: 0.09091, 0.27273, 0.81818, 0.45455 and 0.36364.

The minimal standard LCG proposed by Lewis et al. (1969) is defined by a = 75, c = 0
and m = 231 − 1. In Table 13.1, we report two sequences generated with the seed values 1
and 123 456. This generator is widely used in numerical programming languages. However,
its period length is equal to m−1 = 231−2 ≈ 2.15×109, which can be judged as insufficient
for some modern Monte Carlo applications. For instance, if we consider the LDA model in
operational risk with a Poisson distribution P (1 000), we need approximately 1010 random
numbers for drawing the severity loss if the number of Monte Carlo simulations is set to
ten million. Another drawback is that LCG methods may exhibit lattice structures. For
instance, Figure 13.1 shows the dependogram between un−1 and un when a = 10, c = 0
and m = 231 − 1.

TABLE 13.1: Simulation of 10 uniform pseudorandom numbers
n xn un xn un
0 1 0.000000 123 456 0.000057
1 16 807 0.000008 2 074 924 992 0.966212
2 282 475 249 0.131538 277 396 911 0.129173
3 1 622 650 073 0.755605 22 885 540 0.010657
4 984 943 658 0.458650 237 697 967 0.110687
5 1 144 108 930 0.532767 670 147 949 0.312062
6 470 211 272 0.218959 1 772 333 975 0.825307
7 101 027 544 0.047045 2 018 933 935 0.940139
8 1 457 850 878 0.678865 1 981 022 945 0.922486
9 1 458 777 923 0.679296 466 173 527 0.217079
10 2 007 237 709 0.934693 958 124 033 0.446161

Nowadays, with a 64-bit computer, the maximum period of a LCG algorithm is 264−1 ≈
1.85× 1019. To obtain a larger period length, one can use more sophisticated methods. For

3If the seed is not specified, programming softwares generally use the clock of the computer to generate
the initial value.

4It is equal to m− 1 if c = 0.
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FIGURE 13.1: Lattice structure of the linear congruential generator

instance, multiple recursive generators are based on the following transition equation:

xn =
(

k∑
i=1

ai · xn−i + c

)
modm

To obtain a bigger period, we can also combine LCG algorithms with different periods.
For instance, the famous MRG32k3a generator of L’Ecuyer (1999) uses two 32-bit multiple
recursive generators:{

xn = (1403580 · xn−2 − 810728 · xn−3) modm1
yn = (527612 · yn−1 − 1370589 · yn−3) modm2

where m1 = 232− 209 and m2 = 232− 22853. The uniform random variate is then equal to:

un = xn − yn + 1 {xn ≤ yn} ·m1

m1 + 1

L’Ecuyer (1999) showed that the period length of this generator is equal to 2191 ≈ 3× 1057.

13.1.2 Generating non-uniform random numbers
We now consider X a random variable whose distribution function is noted F. There

are many ways to simulate X, but all of them are based on uniform random variates.
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13.1.2.1 Method of inversion

Continuous random variables We assume that F is continuous. Let Y = F (X) be the
integral transform of X. Its cumulative distribution function G is equal to:

G (y) = Pr {Y ≤ y}
= Pr {F (X) ≤ y}
= Pr

{
X ≤ F−1 (y)

}
= F

(
F−1 (y)

)
= y

where G (0) = 0 and G (1) = 1. We deduce that F (X) has a uniform distribution U[0,1]. It
follows that if U is a uniform random variable, then F−1 (U) is a random variable whose
distribution function is F. To simulate a sequence of random variates {x1, . . . , xn}, we
can simulate a sequence of uniform random variates {u1, . . . , un} and apply the transform
xi ← F−1 (ui).

Example 134 If we consider the generalized uniform distribution U[a,b], we have F (x) =
(x− a) / (b− a) and F−1 (u) = a + (b− a)u. The simulation of random variates xi is
deduced from the uniform random variates ui by using the following transform:

xi ← a+ (b− a)ui

Example 135 In the case of the exponential distribution E (λ), we have F (x) = 1 −
exp (−λx). We deduce that:

xi ← −
ln (1− ui)

λ

Since 1− U is also a uniform distributed random variable, we have:

xi ← −
ln (ui)
λ

Example 136 In the case of the Pareto distribution P (α, x−), we have F (x) = 1 −
(x/x−)−α and F−1 (u) = x− (1− u)−1/α. We deduce that:

xi ←
x−

(1− ui)1/α

The method of inversion is easy to implement when we know the analytical expression
of F−1. When it is not the case, we use the Newton-Raphson algorithm:

xm+1
i = xmi + ui − F (xmi )

f (xmi )

where xmi is the solution of the equation F (x) = u at the iteration m. For instance, if we
apply this algorithm to the Gaussian distribution N (0, 1), we have:

xm+1
i = xmi + ui − Φ (xmi )

φ (xmi )
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Discrete random variables In the case of a discrete probability distribution
{(x1, p1) , (x2, p2) , . . . , (xn, pn)} where x1 < x2 < . . . < xn, we have:

F−1 (u) =


x1 if 0 ≤ u ≤ p1
x2 if p1 < u ≤ p1 + p2

...
xn if

∑n−1
k=1 pk < u ≤ 1

In Figure 13.2, we illustrate the method of inversion when the random variable is discrete.
We assume that:

xi 1 2 4 6 7 9 10
pi 10% 20% 10% 5% 20% 30% 5%

F (xi) 10% 30% 40% 45% 65% 95% 100%

Because the cumulative distribution function is not continuous, the inverse function is a
step function. If we suppose that the uniform random number is 0.5517, we deduce that the
corresponding random number for the variable X is equal to 7.

FIGURE 13.2: Inversion method when X is a discrete random variable

Example 137 If we apply the method of inversion to the Bernoulli distribution B (p), we
have:

x←
{

0 if 0 ≤ u ≤ 1− p
1 if 1− p < u ≤ 1

or:
x←

{
1 if u ≤ p
0 if u > p
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Piecewise distribution functions A piecewise distribution function is defined as fol-
lows:

F (x) = Fm (x) if x ∈
]
x?m−1, x

?
m

]
where x?m are the knots of the piecewise function and:

Fm+1 (x?m) = Fm (x?m)

In this case, the simulated value xi is obtained using a search algorithm:

xi ← F−1
m (ui) if F

(
x?m−1

)
< ui ≤ F (x?m)

This means that we have first to calculate the value of F (x) for all the knots in order to
determine which inverse function F−1

m will be apply.
Let us consider the piecewise exponential model described on page 202. We reiterate

that the survival function has the following expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1) if t ∈

]
t?m−1, t

?
m

]
We know that S (τ ) ∼ U . It follows that:

ti ← t?m−1 + 1
λm

ln
S
(
t?m−1

)
ui

if S (t?m) < ui ≤ S
(
t?m−1

)
Example 138 We model the default time τ with the piecewise exponential model and the
following parameters:

λ =

 5% if t is less or equal than one year
8% if t is between one and five years
12% if t is larger than five years

We have S (0) = 1, S (1) = 0.9512 and S (5) = 0.6907. We deduce that:

ti ←

 0 + (1/0.05) · ln (1/ui) if ui ∈ [0.9512, 1]
1 + (1/0.08) · ln (0.9512/ui) if ui ∈ [0.6907, 0.9512[
5 + (1/0.12) · ln (0.6907/ui) if ui ∈ [0, 0.6907[

In Table 13.2, we have reported five simulations ti of the default time τ . For each simulation,
we indicate the values taken by t?m−1, S

(
t?m−1

)
and λm.

TABLE 13.2: Simulation of the piecewise exponential model
ui t?m−1 S

(
t?m−1

)
λm ti

0.9950 0 1.0000 0.05 0.1003
0.3035 5 0.6907 0.12 11.8531
0.5429 5 0.6907 0.12 7.0069
0.9140 1 0.9512 0.08 1.4991
0.7127 1 0.9512 0.08 4.6087
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13.1.2.2 Method of transformation

Let {Y1, Y2, . . .} be a vector of independent random variables. The simulation of the
random variable X = g (Y1, Y2, . . .) is straightforward if we know how to easily simulate
the random variables Yi. We notice that the inversion method is a particular case of the
transform method, because we have:

X = g (U) = F−1 (U)

Example 139 The Binomial random variable is the sum of n iid Bernoulli random vari-
ables:

B (n, p) =
n∑
i=1
Bi (p)

We can therefore simulate the Binomial random variate x using n uniform random numbers:

x =
n∑
i=1

1 {ui ≤ p}

If we would like to simulate the chi-squared random variable χ2 (ν), we can use the
following relationship:

χ2 (ν) =
ν∑
i=1

χ2
i (1) =

ν∑
i=1

(Ni (0, 1))2

We can therefore simulate the χ2 (ν) random variate with ν independent Gaussian random
numbers N (0, 1). For that, we generally use the Box-Muller algorithm, which states that if
U1 and U2 are two independent uniform random variables, then X1 and X2 defined by:{

X1 =
√
−2 lnU1 · cos (2πU2)

X2 =
√
−2 lnU1 · sin (2πU2)

are independent and follow the Gaussian distribution N (0, 1).

Remark 149 To simulate a Student’s t random variate x with ν degrees of freedom, we
need ν + 1 normal independent random variables ni:

x←− nν+1√
ν−1∑ν

i=1 n
2
i

However, this method is not efficient and we generally prefer to use the Bailey algorithm
based on the polar transformation5.

On page 339, we have seen that if Nt is a Poisson process with intensity λ, the duration
T between two consecutive events is an exponential distributed random variable. We have:

Pr (T ≤ t) = 1− e−λt

Since the durations are independent, we have:

T1 + T2 + . . .+ Tn =
n∑
i=1

Ei

5This method is presented on page 887.
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where Ei ∼ E (λ). Because the Poisson random variable is the number of events that occur
in the unit interval of time, we also have:

X = max {n : T1 + T2 + . . .+ Tn ≤ 1}

= max
{
n :

n∑
i=1

Ei ≤ 1
}

We notice that:
n∑
i=1

Ei = − 1
λ

n∑
i=1

lnUi

= − 1
λ

ln
n∏
i=1

Ui

where Ui are iid uniform random variables. We deduce that:

X = max
{
n : − 1

λ
ln

n∏
i=1

Ui ≤ 1
}

= max
{
n :

n∏
i=1

Ui ≥ e−λ
}

We can then simulate the Poisson random variable with the following algorithm:
1. set n = 0 and p = 1;

2. calculate n = n+ 1 and p = p · ui where ui is a uniform random variate;

3. if p ≥ e−λ, go back to step 2; otherwise, return X = n− 1.

13.1.2.3 Rejection sampling

Following Devroye (1986), F (x) and G (x) are two distribution functions such that
f (x) ≤ cg (x) for all x with c > 1. We note X ∼ G and consider an independent uniform
random variable U ∼ U[0,1]. Then, the conditional distribution function of X given that
U ≤ f (X) / (cg (X)) is F (x).

Let us introduce the random variables B and Z:

B = 1

{
U ≤ f (X)

cg (X)

}
Z = X

∣∣∣∣U ≤ f (X)
cg (X)

We have:

Pr {B = 1} = Pr
{
U ≤ f (X)

cg (X)

}
= E

[
f (X)
cg (X)

]
=

∫ +∞

−∞

f (x)
cg (x)g (x) dx

= 1
c

∫ +∞

−∞
f (x) dx

= 1
c
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The distribution function of Z is defined by:

Pr {Z ≤ x} = Pr
{
X ≤ x

∣∣∣∣U ≤ f (X)
cg (X)

}
We deduce that:

Pr {Z ≤ x} =
Pr
{
X ≤ x, U ≤ f (X)

cg (X)

}
Pr
{
U ≤ f (X)

cg (X)

}
= c

∫ x

−∞

∫ f(x)/(cg(x))

0
g (x) du dx

= c

∫ x

−∞

f (x)
cg (x)g (x) dx

=
∫ x

−∞
f (x) dx

= F (x)

This proves that Z ∼ F. From this theorem, we deduce the following acceptance-rejection
algorithm:

1. generate two independent random variates x and u from G and U[0,1];

2. calculate v as follows:
v = f (x)

cg (x)

3. if u ≤ v, return x (‘accept’); otherwise, go back to step 1 (‘reject’).

The underlying idea of this algorithm is then to simulate the distribution function F by
assuming that it is easier to generate random numbers from G, which is called the pro-
posal distribution. However, some of these random numbers must be ‘rejected’, because the
function c · g (x) ‘dominates’ the density function f (x).

Remark 150 We notice that the number of iterations N needed to successfully generate
Z has a geometric distribution G (p), where p = Pr {B = 1} = c−1 is the acceptance ratio.
We deduce that the average number of iterations is equal to E [N ] = 1/p = c. In order to
maximize the efficiency (or the acceptance ratio) of the algorithm, we have to choose the
constant c such that:

c = sup
x

f (x)
g (x)

Let us consider the normal distributionN (0, 1). We use the Cauchy distribution function
as the proposal distribution, whose probability density function is given by:

g (x) = 1
π (1 + x2)

We can show that:
φ (x) ≤

√
2π
e0.5 g (x)
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FIGURE 13.3: Rejection sampling applied to the normal distribution

meaning that c ≈ 1.52. In Figure 13.3, we report the functions f (x) = φ (x) and c · g (x).
The goal of the acceptance-rejection algorithm is to ‘eliminate’ the random numbers, which
are located in the cross-hatched region. Concerning the Cauchy distribution, we have:

G (x) = 1
2 + 1

π
arctan x

and:
G−1 (u) = tan

(
π

(
u− 1

2

))
Therefore, we deduce that the following algorithm for simulating the distribution function
N (0, 1):

1. generate two independent uniform random variates u1 and u2 and set:

x← tan
(
π

(
u1 −

1
2

))
2. calculate v as follows:

v = e0.5φ (x)√
2πg (x)

=
(
1 + x2)

2e(x2−1)/2

3. if u2 ≤ v, accept x; otherwise, go back to step 1.

To illustrate this algorithm, we have simulated six Gaussian distributed random variates in
Table 13.3. We notice that four simulations have been rejected. Using 1 000 simulations of



Monte Carlo Simulation Methods 797

Cauchy random variates, we obtained the density given in Figure 13.4, which is very close
to the exact probability density function. In our case, we accept 683 simulations, meaning
that the acceptance ratio6 is 68.3%.

TABLE 13.3: Simulation of the standard Gaussian distribution using the acceptance-
rejection algorithm

u1 u2 x v test z
0.9662 0.1291 9.3820 0.0000 reject
0.0106 0.1106 −30.0181 0.0000 reject
0.3120 0.8253 −0.6705 0.9544 accept −0.6705
0.9401 0.9224 5.2511 0.0000 reject
0.2170 0.4461 −1.2323 0.9717 accept −1.2323
0.6324 0.0676 0.4417 0.8936 accept 0.4417
0.6577 0.1344 0.5404 0.9204 accept 0.5404
0.1596 0.6670 −1.8244 0.6756 accept −1.8244
0.4183 0.3872 −0.2625 0.8513 accept −0.2625
0.9625 0.0752 8.4490 0.0000 reject

FIGURE 13.4: Comparison of the exact and simulated densities

Remark 151 The discrete case is analogous to the continuous case. Let p (k) and q (k) be
the probability mass function of Z and X such that p (k) ≤ cq (k) for all k with c ≥ 1. We
consider an independent uniform random variable U ∼ U[0,1]. Then, the conditional pmf of
X given that U ≤ p (X) / (cq (X)) is the pmf p (k) of Z.

6The theoretical acceptance ratio is equal to 1/1.52 ≈ 65.8%.
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13.1.2.4 Method of mixtures

A finite mixture can be decomposed as a weighted sum of distribution functions. We
have:

F (x) =
n∑
k=1

πk ·Gk (x)

where πk ≥ 0 and
∑n
k=1 πk = 1. We deduce that the probability density function is:

f (x) =
n∑
k=1

πk · gk (x)

To simulate the probability distribution F, we introduce the random variable B, whose
probability mass function is defined by:

p (k) = Pr {B = k} = πk

It follows that:

F (x) =
n∑
k=1

Pr {B = k} ·Gk (x)

We deduce the following algorithm:

1. generate the random variate b from the probability mass function p (k);

2. generate the random variate x from the probability distribution Gb (x).

Example 140 We assume that the default time τ follows the hyper-exponential model:

f (t) = π · λ1e
−λ1t + (1− π) · λ2e

−λ2t

To simulate this model, we consider the following algorithm:

1. we generate u and v two independent uniform random numbers;

2. we have:
b←

{
1 if u ≤ π
2 otherwise

3. the simulated value of τ is:

t←
{
−λ1 ln v if b = 1
−λ2 ln v if b = 2

Remark 152 The previous approach can be easily extended to continuous mixtures:

f (x) =
∫

Ω
π (ω) g (x;ω) dω

where ω ∈ Ω is a parameter of the distribution G. For instance, we have seen that the
negative binomial distribution is a gamma-Poisson mixture distribution:{

NB (r, p) ∼ P (Λ)
Λ ∼ G (r, (1− p) /p)

To simulate the negative binomial distribution, we first simulate the gamma random variate
g ∼ G (r, (1− p) /p), and then simulate the Poisson random variable, whose parameter7 λ
is equal to g.

7This means that the parameter λ changes at each simulation.
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13.1.3 Generating random vectors
In this section, we consider algorithms for simulating a random vector X = (X1, . . . , Xn)

from a given distribution function F (x) = F (x1, . . . , xn). In fact, the previous methods used
to generate a random variable are still valid in the multidimensional case.

13.1.3.1 Method of conditional distributions

The method of inversion cannot be applied in the multivariate case, because U =
F (X1, . . . , Xn) is not any longer a uniform random variable. However, if X1, . . . , Xn are
independent, we have:

F (x1, . . . , xn) =
n∏
i=1

Fi (xi)

To simulate X, we can then generate each component Xi ∼ Fi individually, for example by
applying the method of inversion. When X1, . . . , Xn are dependent, we have:

F (x1, . . . , xn) = F1 (x1) F2|1 (x2 | x1) F3|1,2 (x3 | x1, x2)× · · · ×
Fn|1,...,n−1 (xn | x1, . . . , xn−1)

=
n∏
i=1

Fi|1,...,i−1 (xi | x1, . . . , xi−1)

where Fi|1,...,i−1 (xi | x1, . . . , xi−1) is the conditional distribution of Xi given X1 =
x1, . . . , Xi−1 = xi−1. Let us denote this ‘conditional’ random variable Yi. We notice that
the random variables (Y1, . . . , Yn) are independent. Therefore, the underlying idea of the
method of conditional distributions is to transform the random vector X by a vector Y of
independent random variables. We obtain the following algorithm:

1. generate x1 from F1 (x) and set i = 2;

2. generate xi from Fi|1,...,i−1 (x | x1, . . . , xi−1) given X1 = x1, . . . , Xi−1 = xi−1 and set
i = i+ 1;

3. repeat step 2 until i = n.

Fi|1,...,i−1 (x | x1, . . . , xi−1) is a univariate distribution function, which depends on the ar-
gument x and parameters x1, . . . , xi−1. To simulate it, we can therefore use the method of
inversion:

xi ← F−1
i|1,...,i−1 (ui | x1, . . . , xi−1)

where F−1
i|1,...,i−1 is the inverse of the conditional distribution function and ui is a uniform

random variate.

Example 141 We consider the bivariate logistic distribution defined as:

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1

We have F1 (x1) = F (x1,+∞) = (1 + e−x1)−1. We deduce that the conditional distribution
of X2 given X1 = x1 is:

F2|1 (x2 | x1) = F (x1, x2)
F1 (x1)

= 1 + e−x1

1 + e−x1 + e−x2
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We obtain:
F−1

1 (u) = ln u− ln (1− u)

and:
F−1

2|1 (u | x1) = ln u− ln (1− u)− ln
(
1 + e−x1

)
We deduce the following algorithm:

1. generate two independent uniform random variates u1 and u2;

2. generate x1 from u1:
x1 ← ln u1 − ln (1− u1)

3. generate x2 from u2 and x1:

x2 ← ln u2 − ln (1− u2)− ln
(
1 + e−x1

)
Because we have (1 + e−x1)−1 = u1, the last step can be replaced by:

3’. generate x2 from u2 and u1:

x2 ← ln
(
u1u2

1− u2

)
The method of conditional distributions can be used for simulating uniform random

vectors (U1, . . . , Un) generated by copula functions. In this case, we have:

C (u1, . . . , un) = C1 (u1) C2|1 (u2 | u1) C3|1,2 (u3 | u1, u2)× · · · ×
Cn|1,...,n−1 (un | u1, . . . , un−1)

=
n∏
i=1

Ci|1,...,i−1 (ui | u1, . . . , ui−1)

where Ci|1,...,i−1 (ui | u1, . . . , ui−1) is the conditional distribution of Ui given U1 =
u1, . . . , Ui−1 = ui−1 By definition, we have C1 (u1) = u1. We obtain the following al-
gorithm:

1. generate n independent uniform random variates v1, . . . , vn;

2. generate u1 ← v1 and set i = 2;

3. generate ui by finding the root of the equation:

Ci|1,...,i−1 (ui | u1, . . . , ui−1) = vi

and set i = i+ 1;

4. repeat step 3 until i = n.

For some copula functions, there exists an analytical expression of the inverse of the condi-
tional copula. In this case, the third step is replaced by:

3’. generate ui by the inversion method:

ui ← C−1
i|1,...,i−1 (vi | u1, . . . , ui−1)
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Remark 153 For any probability distribution, the conditional distribution can be calculated
as follows:

Fi|1,...,i−1 (xi | x1, . . . , xi−1) = F (x1, . . . , xi−1, xi)
F (x1, . . . , xi−1)

In particular, we have:

∂1 F (x1, x2) = ∂1
(
F1 (x1) · F2|1 (x2 | x1)

)
= f1 (x1) · F2|1 (x2 | x1)

For copula functions, the density f1 (x1) is equal to 1, meaning that:

C2|1 (u2 | u1) = ∂1 C (u1, u2)

We can generalize this result and show that the conditional copula given some random
variables Ui for i ∈ Ω is equal to the cross-derivative of the copula function C with respect
to the arguments ui for i ∈ Ω.

We recall that Archimedean copulas are defined as:

C (u1, u2) = ϕ−1 (ϕ (u1) + ϕ (u2))

where ϕ (u) is the generator function. We have:

ϕ (C (u1, u2)) = ϕ (u1) + ϕ (u2)

and:
ϕ′ (C (u1, u2)) · ∂C (u1, u2)

∂ u1
= ϕ′ (u1)

We deduce the following expression of the conditional copula:

C2|1 (u2 | u1) = ∂C (u1, u2)
∂ u1

= ϕ′ (u1)
ϕ′ (ϕ−1 (ϕ (u1) + ϕ (u2)))

The calculation of the inverse function gives:

C−1
2|1 (v | u1) = ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u1)
v

))
− ϕ (u1)

)
We obtain the following algorithm for simulating Archimedean copulas:

1. generate two independent uniform random variates v1 and v2;

2. generate u1 ← v1;

3. generate u2 by the inversion method:

u2 ← ϕ−1
(
ϕ

(
ϕ′−1

(
ϕ′ (u1)
v2

))
− ϕ (u1)

)
Example 142 We consider the Clayton copula:

C (u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
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The Clayton copula is an Archimedean copula, whose generator function is:

ϕ (u) = u−θ − 1

We deduce that:

ϕ−1 (u) = (1 + u)−1/θ

ϕ′ (u) = −θu−(θ+1)

ϕ′−1 (u) = (−u/θ)−1/(θ+1)

After some calculations, we obtain:

C−1
2|1 (v | u1) =

(
1 + u−θ1

(
v−θ/(θ+1) − 1

))−1//θ

In Table 13.4, we simulate five realizations of the Clayton copula using the inverse function
of the conditional copula. In the case θ = 0.01, u2 is close to v2 because the Clayton copula
is the product copula C⊥ when θ tends to 0. In the case θ = 1.5, we note the impact of the
conditional copula on the simulation of u2.

TABLE 13.4: Simulation of the Clayton copula
Random uniform Clayton copula

variates θ = 0.01 θ = 1.5
v1 v2 u1 u2 u1 u2

0.2837 0.4351 0.2837 0.4342 0.2837 0.3296
0.0386 0.2208 0.0386 0.2134 0.0386 0.0297
0.3594 0.5902 0.3594 0.5901 0.3594 0.5123
0.3612 0.3268 0.3612 0.3267 0.3612 0.3247
0.0797 0.6479 0.0797 0.6436 0.0797 0.1704

13.1.3.2 Method of transformation

To simulate a Gaussian random vector X ∼ N (µ,Σ), we consider the following trans-
formation:

X = µ+A ·N
where AA> = Σ and N ∼ N (0, I). Therefore, we can simulate a correlated Gaussian
random vector by using n independent Gaussian random variates N (0, 1) and finding a
square matrix A such that AA> = Σ. Since we know that Σ is a positive definite symmetric
matrix, it has a unique Cholesky decomposition:

Σ = PP>

where P is a lower triangular matrix.

Remark 154 The decomposition AA> = Σ is not unique. For instance, if we use the
eigendecomposition:

Σ = UΛU>

we can set A = UΛ1/2. Indeed, we have:

AA> = UΛ1/2Λ1/2U>

= UΛU>

= Σ



Monte Carlo Simulation Methods 803

To simulate a multivariate Student’s t distribution Y = (Y1, . . . , Yn) ∼ Tn (Σ, ν), we use
the relationship:

Yi = Xi√
Z/ν

where the random vector X = (X1, . . . , Xn) ∼ N (0,Σ) and the random variable Z ∼ χ2 (ν)
are independent.

The transformation method is particularly useful for simulating copula functions. Indeed,
if X = (X1, . . . , Xn) ∼ F, then the probability distribution of the random vector U =
(U1, . . . , Un) defined by:

Ui = Fi (X)
is the copula function C associated to F.

Example 143 To simulate the Normal copula with the matrix of parameters ρ, we simulate
N ∼ N (0, I) and apply the transformation:

U = Φ (P ·N)

where P is the Cholesky decomposition of the correlation matrix ρ.

Example 144 To simulate the Student’s t copula with the matrix of parameters ρ and ν
degrees of freedom, we simulate T ∼ Tn (ρ, ν) and apply the transformation:

Ui = Tv (Ti)

In Figures 13.5 and 13.6, we draw 1 024 simulations of Normal and t1 copulas for different
values of ρ. We notice that the Student’s t copula correlates the extreme values more than
the Normal copula.

On page 735, frailty copulas have been defined as:

C (u1, . . . , un) = ψ
(
ψ−1 (u1) + . . .+ ψ−1 (un)

)
where ψ (x) is the Laplace transform of a random variable X. Using the mixture representa-
tion of frailty copulas, Marshall and Olkin (1988) showed that they can be generated using
the following algorithm:

1. simulate n independent uniform random variates v1, . . . , vn;

2. simulate the frailty random variate x with the Laplace transform ψ;

3. apply the transformation:

(u1, . . . , un)←
(
ψ

(
− ln u1

x

)
, . . . , ψ

(
− ln un

x

))

For instance, the Clayton copula is a frailty copula where ψ (x) = (1 + x)−1/θ is the Laplace
transform of the gamma random variable G (1/θ, 1). Therefore, the algorithm to simulate
the Clayton copula is:

x← G (1/θ, 1)

(u1, . . . , un)←
((

1− ln u1

x

)−1/θ
, . . . ,

(
1− ln un

x

)−1/θ
)

Examples of simulating the Clayton copula using this algorithm is given in Figure 13.7.
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FIGURE 13.5: Simulation of the Normal copula

FIGURE 13.6: Simulation of the t1 copula
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FIGURE 13.7: Simulation of the Clayton copula

Remark 155 For other frailty copulas, the reader can refer to the survey of McNeil (2008)
for the list of Laplace transforms and corresponding algorithms to simulate the frailty random
variable.

We now consider the multivariate distribution F (x1, . . . , xn), whose canonical decom-
position is defined as:

F (x1, . . . , xn) = C (F1 (x1) , . . . ,Fn (xn))

We recall that if (U1, . . . , Un) ∼ C, the random vector (X1, . . . , Xn) =
(
F−1

1 (U1) , . . . ,
F−1
n (Un)

)
follows the distribution function F. We deduce the following algorithm:{

(u1, . . . , un)← C
(x1, . . . , xn)←

(
F−1

1 (u1) , . . . ,F−1
n (un)

)
Let us consider that the default time τ and the loss given default LGD of one counter-

party are distributed according to the exponential distribution E (5%) and the beta distribu-
tion B (2, 2). We also assume that the default time and the loss given default are correlated
and the dependence function is a Clayton copula. In Figure 13.8, we use the Clayton ran-
dom variates generated in Figure 13.7 and apply exponential and beta inverse transforms
to them. For the beta distribution, we use the Newton-Raphson algorithm to generate the
LGD random variable.

The previous algorithms suppose that we know the analytical expression Fi of the uni-
variate probability distributions in order to calculate the quantile function F−1

i . This is not
always the case. For instance, in the operational risk, the loss of the bank is equal to the
sum of aggregate losses:

L =
K∑
k=1

Sk
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FIGURE 13.8: Simulation of the correlated random vector (τ ,LGD)

where Sk is also the sum of individual losses for the kth cell of the mapping matrix. In
practice, the probability distribution of Sk is estimated by the method of simulations. In
this case, we have to use the method of the empirical quantile function. Let Fi,m be the
empirical process of Xi. We know that:

sup
x
|Fi,m (x)− Fi (x)| → 0 when m→∞

We note Um and Fm the empirical processes corresponding to the distribution functions
C (u1, . . . , un) and F (x1, . . . , xn). The Glivenko-Cantelli theorem tells us that:

sup
x1,...,xn

|Fm (x1, . . . , xn)− F (x1, . . . , xn)| → 0 when m→∞

We deduce that:

sup
u1,...,un

∣∣Um2

(
F−1

1,m1
(u1) , . . . ,F−1

n,m1
(un)

)
−C

(
F−1

1 (u1) , . . . ,F−1
n (un)

)∣∣→ 0

when both m1 and m2 tend to ∞. It follows that the method of the empirical quantile
function is implemented as follows:

1. for each random variable Xi, simulate m1 random variates x?i,m and estimate the
empirical distribution F̂i;

2. simulate a random vector (u1, . . . , un) from the copula function C (u1, . . . , un);

3. simulate the random vector (x1, . . . , xn) by inverting the empirical distributions F̂i:

xi ← F̂−1
i (ui)

we also have:
xi ← inf

{
x

∣∣∣∣ 1
m1

∑m1

m=1
1
{
x ≤ x?i,m

}
≥ ui

}
4. repeat steps 2 and 3 m2 times.
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In Figure 13.9, we illustrate this algorithm by assuming that X1 ∼ N (0, 1), X2 ∼ N (0, 1)
and the dependence function of (X1, X2) is the Clayton copula with parameter θ = 3. If we
use m1 = 50 simulations to estimate the quantile function of X1 and X2, the approximation
is not good. However, when we consider a large number of simulations (m1 = 5000), we
obtain simulated values of the random vector (X1, X2) that are close to the simulated values
calculated with the analytical quantile function Φ−1 (u). We now consider a more complex
example. We assume that X1 ∼ N (−1, 2), X2 ∼ N (0, 1), Y1 ∼ G (0.5) and Y2 ∼ G (1, 2)
are four independent random variables. Let (Z1 = X1 + Y1, Z2 = X2 · Y2) be the random
vector, whose dependence function is the t copula with parameters ν = 2 and ρ = −70%. It
is obvious that it is not possible to find an analytical expression of the marginal distributions
of Z1 and Z2. However, the random variables Z1 and Z2 are easy to simulate (Figure 13.10).
This is why we can use the method of the empirical quantile function to simulate the random
vector (Z1, Z2). A sample of 4 000 simulated values of the vector (Z1, Z2) is reported in
Figure 13.11.

FIGURE 13.9: Convergence of the method of the empirical quantile function

13.1.4 Generating random matrices
The simulation of random matrices is a specialized topic, which is generally not covered

by textbooks. However, the tools presented in this section are very useful in finance. This
is particularly true when we would like to measure the correlation risk.

13.1.4.1 Orthogonal and covariance matrices

An orthogonal matrix Q is a square n×n matrix, whose columns and rows are orthonor-
mal vectors:

Q>Q = QQ> = In
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FIGURE 13.10: Simulation of the random variables Z1 and Z2

FIGURE 13.11: Simulation of the random vector (Z1, Z2)
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It follows that Q−1 = Q. Generally, Monte Carlo methods require generation of random
orthogonal matrices distributed according to the Haar measure8. Anderson et al. (1987)
proposed two simple algorithms to generate Q:

1. Let X be a n × n matrix of independent standard Gaussian random variables. Q is
the unitary matrix of the QR factorization of X = QR where R is an upper triangular
factorization.

2. Let X be a n × p matrix of independent standard Gaussian random variables with
p ≥ n. Q corresponds to the matrix V of the eigendecomposition X>X = V ΛV > or
the matrix U of the singular value decomposition X>X = UΣV ∗.

Stewart (1980) proposed another popular algorithm based on the Household transformation.
Let Hx be the symmetric orthogonal matrix defined as:

Hxx = ±‖x‖ · e1

We consider a series of independent Gaussian random vectors: x1 ∼ Nn (0, In), x2 ∼
Nn−1 (0, In−1), etc. We form the matrix H̃k = diag (Ik−1, Hxk). The random orthogonal
matrix Q is then generated by the product:

Q =
(∏n−1

k=1
H̃k

)
D

where D is the diagonal matrix with entries ±1. To illustrate this algorithm, we simulate
random orthogonal matrices Q for different values of n, and we report the distribution of
the eigenvalues of Q in Figure 13.12. We verify that they are almost uniformly distributed
on the unit sphere.

Remark 156 To simulate a random covariance matrix Σ with specified eigenvalues
λ1, . . . , λn, we generate a random orthogonal matrix Q and consider the transformation:

Σ = QΛQ>

where Λ = diag (λ1, . . . , λn).

13.1.4.2 Correlation matrices

A correlation matrix C is a symmetric positive definite matrix, whose diagonal elements
are equal to 1. It follows that the sum of the eigenvalues is exactly equal to n. The previous
algorithm can be used to simulate a random correlation matrix. Indeed, we only need to
transform Σ into C:

Ci,j = Σi,j√
Σi,i · Σj,j

However, this method is not always interesting, because it does not preserve the specified
eigenvalues λ1, . . . , λn. Let us consider an example with λ1 = 0.5, λ2 = 1.00 and λ3 = 1. A
simulation of Σ gives:

Σ =

 1.28570 −0.12868 0.37952
−0.12868 0.89418 0.16377

0.37952 0.16377 0.82012


8Any column or any row of Q has a uniform distribution over the n-dimensional unit sphere.



810 Handbook of Financial Risk Management

FIGURE 13.12: Distribution of the eigenvalues of simulated random orthogonal matrices

We deduce the following random correlation matrix:

C =

 1.00000 −0.12001 0.36959
−0.12001 1.00000 0.19124

0.36959 0.19124 1.00000


If we calculate the eigenvalues of C, we obtain λ1 = 1.378, λ2 = 1.095 and λ3 = 0.527.
The problem comes from the fact that QΛQ> generates a covariance matrix with specified
eigenvalues, but never a correlation matrix even if the sum of the eigenvalues is equal to n.

Bendel and Mickey (1978) proposed an algorithm to transform the matrix Σ into a
correlation matrix C with specified eigenvalues λ1, . . . , λn. The main idea is to perform
Givens rotations9. Let Gc,s (i, j) be the Givens matrix:

Gc,s (i, j) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

0 · · · c · · · s · · · 0
...

. . .
...

0 · · · −s · · · c · · · 0
...

. . .
...

0 · · · 0 · · · 0 · · · 1


such that the (i, j) element10 of Gc,s (i, j)>ΣGc,s (i, j) is equal to 1. By performing n succes-
sive Givens transformations Σ ← Gc,s (i, j)>ΣGc,s (i, j), we obtain a correlation matrix C

9A Givens rotation is a rotation in the plane spanned by two coordinates axes (Golub and Van Loan,
2013). Because Givens matrices are orthogonal, eigenvalues are not changed.

10 We have i < j and Σi,i < 1 < Σj,j (or Σi,i > 1 > Σj,j).
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with eigenvalues λ1, . . . , λn. The previous algorithm has been extensively studied by Davies
and Higham (2000), who showed that:

c = 1√
1 + t2

and s = c · t

where:

t =
Σi,j +

√
Σ2
i,j − (Σi,i − 1) (Σj,j − 1)

(Σj,j − 1)
To show the difference between the Bendel-Mickey algorithm and the previous covariance
algorithm, we simulate a correlation matrix of dimension 20 with specified eigenvalues and
the two algorithms. In Figure 13.13, we compare the eigenvalues calculated with the simu-
lated correlation matrices and compare them with the specified eigenvalues. We verify that
the Bendel-Mickey algorithm preserves the spectrum, which is not the case of the covariance
algorithm11.

FIGURE 13.13: Comparison of the Bendel-Mickey and covariance algorithms

We study the correlation risk of the basket option, whose payoff is equal to:

G = (S1 (T )− S2 (T ) + S3 (T )− S4 (T )−K)+ · 1 {S5 (T ) > L}

where Si (T ) is the price of the ith asset at the maturity T . We assume that the dynamics
of the asset prices follows a Black-Scholes model:

Si (T ) = Si (0) · exp
((

r − 1
2σ

2
i

)
T + σi (Wi (T )−Wi (0))

)
11However, we notice that the eigenvalues are close.
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where r is the risk-free rate, σi is the asset volatility and Wi is a Brownian process. We also
assume that the Brownian processes are correlated:

E [Wi (t)Wj (t)] = ρi,j t

To calculate the price of the basket option, we simulate the terminal value of Si (T ) and
average the simulated payoff Gs:

P = E
[
e−rTG

]
≈ 1
nS

nS∑
s=1

e−rTGs

where nS is the number of simulations. We use the following values: Si (0) = 100, r = 5%,
σi = 20%, T = 0.25, K = 5 and L = 105. We consider that it is difficult to estimate the
correlation matrix and assume that it is unstable. In this case, we have to find an upper
bound for P in order to take into account this correlation risk. Generally, we price the
option by using a constant correlation matrix C5 (ρ) and takes the supremum:

P+ = sup
ρ
P (C5 (ρ))

FIGURE 13.14: Price of the basket option

In the top panel in Figure 13.14, we report the price of the basket option with respect to
the uniform correlation ρ. We notice that the price is a decreasing function of ρ and reaches
its maximum when the uniform correlation is −25%. Therefore, we could suppose that
the upper bound is equal to $2.20. However, if we consider random correlation matrices, we
observe that this price is not conservative (see bottom panels in Figure 13.14). For instance,
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we obtain a price equal to $5.45 with the following correlation matrix:

C =


1.0000 −0.4682 −0.3034 −0.1774 0.1602
−0.4682 1.0000 −0.3297 0.1381 −0.7272
−0.3034 −0.3297 1.0000 −0.3273 0.6106
−0.1774 0.1381 −0.3273 1.0000 −0.1442

0.1602 −0.7272 0.6106 −0.1442 1.0000


This matrix indicates the type of correlation risks we face when we want to hedge this basket
option. Indeed, the correlation risk is maximum when the fifth asset (which activates the
barrier) is positively correlated with the first and third assets and negatively correlated with
the second and fourth assets.

In the Bendel-Mickey algorithm, we control the structure of the random correlation
matrix by specifying the eigenvalues. In Finance, it can be not sufficient. For instance, we
may want to simulate the matrix C such that is expected value is equal to a given correlation
matrix C?:

E [C] = C?

Let A be a random symmetric matrix with zeros on the diagonal and mean E [A] = 0.
Marsaglia and Olkin (1984) showed that C = A + C? is a random correlation matrix with
E [A+ C?] = C? if the 2-norm of A is less than the smallest eigenvalue λmin of C?. There
is a variety of algorithms that uses this result. For instance, Marsaglia and Olkin (1984)
proposed to generate a random correlation matrixR with specified eigenvalues in the interval
[1− λmin, 1 + λmin] and to take C = (R− In) + C?.

13.1.4.3 Wishart matrices

To generate a random Wishart matrix S, we simulate n independent Gaussian random
vectors Xi ∼ Np (0,Σ) and form the n× p matrix X by concatenating the random vectors
in the following way:

X =

 X>1
...

X>n


Then, we have S = X>X. The simulation of an inverse Wishart matrix T is straightforward
by applying the transformation method:

T = S−1

13.2 Simulation of stochastic processes
We distinguish two types of time series models, those based on discrete-time stochastic

processes and those based on continuous-time stochastic processes. Discrete-time models
are easier to simulate, in particular when we consider time-homogeneous Markov processes.
This is not the case of continuous-time models, which are generally approximated by a time-
discretized process. In this case, the convergence of the discrete simulation to the continuous
solution depends on the approximation scheme.
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13.2.1 Discrete-time stochastic processes
13.2.1.1 Correlated Markov chains

We consider a vector R = (R1, . . . ,RM ) of time-homogeneous Markov chains, whose
transition probability matrix is P . The simulation of the Markov chain Rm is given by the
following algorithm:

1. we assume the initial position of the Markov chain:

Rm (0) = i0

2. let u be a random number; we simulate the new position of Rm by inverting the
conditional probability distribution, whose elements are:

Pr (Rm (n+ 1) = in+1 | Rm (n) = in) = pin,in+1 = e>inPein+1

we have:

in+1 =

k :
k−1∑
j=1

pin,j < u ≤
k∑
j=1

pin,j


3. we go back to step 2.

We now assume that the dependence between the Markov chains (R1, . . . ,RM ) is given
by a copula function C, implying that the Markov chains are correlated. The algorithm
becomes:

1. we assume the initial position of the Markov chains:

Rm (0) = im,0

2. let (u1, . . . , uM ) be a vector of correlated uniform random numbers such that:

(u1, . . . , uM ) ∼ C

3. for each Markov chain m, we simulate the new position of Rm by inverting the con-
ditional probability distribution; we have:

im,n+1 =

k :
k−1∑
j=1

pim,n,j < um ≤
k∑
j=1

pim,n,j


and Rm (n+ 1) = im,n+1.

4. we go back to step 2.

We consider four corporate firms, whose initial credit rating is AAA, BBB, B and CCC.
We assume that the rating of each company is a Markov chain Rm described by the credit
migration matrix given on page 208. We also assume that the dependence of the credit
ratings (R1,R2,R3,R4) is a Normal copula with the following matrix of parameters:

ρ1 =


1.00
0.25 1.00
0.75 0.50 1.00
0.50 0.25 0.75 1.00
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In Figures 13.15 and 13.17, we report 10 simulated paths of the ratings for the next 30 years.
We verify that the default rating is an absorbing state. Suppose now that the parameter
matrix of the Normal copula is equal to:

ρ2 =


1.00
−0.25 1.00
−0.75 0.50 1.00
−0.50 0.25 0.75 1.00


Using this correlation matrix ρ2 instead of the previous matrix ρ1, we obtain the results
given in Figures 13.16 and 13.18. If we compare Figures 13.15 and 13.16 (or Figures 13.17
and 13.18), which are based on the same uniform random numbers, we notice that the
simulated paths are not the same. The reason comes from the negative correlation between
the credit rating of the first company and the other credit ratings.

FIGURE 13.15: Simulation of rating dynamics (correlation matrix ρ1)

13.2.1.2 Time series

A state space model (SSM) is defined by a measurement equation and a transition equa-
tion. The measurement equation describes the relationship between the observed variables
yt and the state vector αt:

yt = Ztαt + dt + εt

whereas the transition equation gives the dynamics of the state variables:

αt = Ttαt−1 + ct +Rtηt

The dimension of the vectors yt and αt is respectively n × 1 and m × 1. Zt is a n × m
matrix, dt is a n× 1 vector, Tt is a m×m matrix, ct is a m× 1 vector and Rt is a m× p
matrix. εt ∼ Nn (0, Ht) and ηt ∼ Np (0, Qt) are two independent white noise processes. By
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FIGURE 13.16: Simulation of rating dynamics (correlation matrix ρ2)

FIGURE 13.17: Simulation of rating dynamics (correlation matrix ρ1)
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FIGURE 13.18: Simulation of rating dynamics (correlation matrix ρ2)

construction, there is no special issue to simulate the Markov process αt if we assume that
the initial position is α0 ∼ Nm (a0, P0). Indeed, we obtain the following algorithm:

1. we simulate the initial position:

α0 ∼ Nm (a0, P0)

2. we simulate the position of the state variable at time t:

αt ∼ Nm
(
Ttαt−1 + ct, RtQtR

>
t

)
3. we simulate the space variable at time t:

yt ∼ Nn (Ztαt + dt, Ht)

4. we go back to step 2.

Most of discrete-time stochastic processes are homogeneous, meaning that the parame-
ters of the state space model are time-independent:{

yt = Zαt + d+ εt
αt = Tαt−1 + c+Rηt

where εt ∼ Nn (0, H) and ηt ∼ Np (0, Q). In this case, the stationary solution of the
transition equation is α? ∼ Nm (a?, P ?) where a? is equal to (Im − T )−1

c and P ? satisfies
the matrix equation12:

P ? = TP ?T> +RQR>

12We also have (Harvey, 1990):

vec (P ?) = (Im2 − T ⊗ T )−1 vec
(
RQR>

)
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In practice, we generally use the stationary solution to initialize the state space model:
α0 ∼ Nm (a?, P ?).

State space models can be used to simulate structural models, AR and MA processes,
vector error correction models, VAR processes, etc. For instance, a VARMA(p,q) model
with K endogenous variables is defined by:(

I −
p∑
i=1

ΦiLi
)
yt =

(
I −

q∑
i=1

ΘiL
i

)
ut

where ut is a multidimensional white noise process. Let αt be the vector process
(yt, . . . , yt−p+1, ut, . . . , ut−q+1), whose dimension is K (p+ q). We have:

αt = Tαt−1 +Rut

where R is the K (p+ q) × K matrix
[
IK 0 · · · 0 IK 0 · · · 0

]> and T is the
K (p+ q)×K (p+ q) matrix:

T =



Φ1 · · · Φp−1 Φp Θ1 · · · Θq−1 Θq

IK 0 0 0
. . .

...
... 0

0 · · · IK 0 0
0 · · · 0 0 0 0 · · · 0

0 IK 0 0

0
...

. . .
...

0 0 IK 0


We notice that:

yt = Zαt

where Z is the K × K (p+ q) matrix
[
IK 0 · · · 0

]
. We finally obtain the following

SSM representation13: {
yt = Zαt
αt = Tαt−1 +Rut

13.2.2 Univariate continuous-time processes
13.2.2.1 Brownian motion

A Brownian motion (or a Wiener process) is a stochastic processW (t), whose increments
are stationary and independent:

W (t)−W (s) ∼ N (0, t− s)

Therefore, we have: {
W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ N (0, t− s) are iid random variables. This representation is helpful to
simulateW (t) at different dates t1, t2, . . . If we noteWm the numerical realization ofW (tm),
we have:

Wm+1 = Wm +
√
tm+1 − tm · εm

where εm ∼ N (0, 1) are iid random variables. In the case of fixed-interval times tm+1−tm =
h, we obtain the recursion:

Wm+1 = Wm +
√
h · εm

13We have H = 0, Q = var (ut), d = 0 and c = 0.
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13.2.2.2 Geometric Brownian motion

The geometric Brownian motion is described by the following stochastic differential
equation: {

dX (t) = µX (t) dt+ σX (t) dW (t)
X (0) = x0

Its solution is given by:

X (t) = x0 · exp
((

µ− 1
2σ

2
)
t+ σW (t)

)
= g (W (t))

Therefore, simulating the geometric Brownian motion X (t) can be done by applying the
transform method to the process W (t).

Another approach to simulate X (t) consists in using the following formula:

X (t) = X (s) · exp
((

µ− 1
2σ

2
)

(t− s) + σ (W (t)−W (s))
)

We have:

Xm+1 = Xm · exp
((

µ− 1
2σ

2
)

(tm+1 − tm) + σ
√
tm+1 − tm · εm

)
whereXm = X (tm) and εm ∼ N (0, 1) are iid random variables. If we consider fixed-interval
times, the numerical realization becomes:

Xm+1 = Xm · exp
((

µ− 1
2σ

2
)
h+ σ

√
h · εm

)
(13.1)

Example 145 In Figure 13.19, we simulate 10 paths of the geometric Brownian motion
when µ and σ are equal to 10% and 20%. We consider a period of one year with a financial
calendar of 260 trading days. This means that we use a fixed-interval time with h = 1/260.
In finance, we use the convention that t = 1 corresponds to one year, which implies that µ
and σ are respectively the annual expected return and volatility.

13.2.2.3 Ornstein-Uhlenbeck process

The stochastic differential equation of the Ornstein-Uhlenbeck process is:{
dX (t) = a (b−X (t)) dt+ σ dW (t)
X (0) = x0

We can show that the solution of the SDE is:

X (t) = x0e
−at + b

(
1− e−at

)
+ σ

∫ t

0
ea(θ−t) dW (θ)

We also have:

X (t) = X (s) e−a(t−s) + b
(

1− e−a(t−s)
)

+ σ

∫ t

s

ea(θ−t) dW (θ)

where
∫ t
s
ea(θ−t) dW (θ) is a Gaussian white noise process with variance

(
1− e−2a(t−s)) / (2a).

If we consider fixed-interval times, we obtain the following simulation scheme:

Xm+1 = Xme
−ah + b

(
1− e−ah

)
+ σ

√
1− e−2ah

2a · εm

where εm ∼ N (0, 1) are iid random variables.
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FIGURE 13.19: Simulation of the geometric Brownian motion

Example 146 We assume that a = 2, b = 10% and σ = 1.5%. The initial position of the
process is x0 = 5%. We simulate Xt for two years and report the generated paths in Figure
13.20.

13.2.2.4 Stochastic differential equations without an explicit solution

In the case of the geometric Brownian motion or the Ornstein-Uhlenbeck process, we ob-
tain an exact scheme for simulating these processes, because we know the analytical solution.
In many cases, the solution is not known and can only be simulated using approximation
schemes. Let X (t) be the solution of the following SDE:{

dX (t) = µ (t,X) dt+ σ (t,X) dW (t)
X (0) = x0

The simplest numerical method for simulating X (t) is the Euler-Maruyama scheme, which
uses the following approximation:

X (t)−X (s) ≈ µ (t,X (s)) · (t− s) + σ (t,X (s)) · (W (t)−W (s))

If we consider fixed-interval times, the Euler-Maruyama scheme becomes:

Xm+1 = Xm + µ (tm, Xm)h+ σ (tm, Xm)
√
h · εm

where εm ∼ N (0, 1) are iid random variables.

Remark 157 The accuracy of numerical approximations is evaluated with the strong order
of convergence. Let X(h)

m be the numerical solution of X (tm) computed with the constant
stepwise h. A numerical scheme is said to converge strongly to the exact solution if we have:

lim
h→0

E
[∣∣∣X(h)

m −X (tm)
∣∣∣] = 0
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FIGURE 13.20: Simulation of the Ornstein-Uhlenbeck process

for a time tm. The order of convergence is given by the convergence rate p:

E
[∣∣∣X(h)

m −X (tm)
∣∣∣] ≤ C · hp

where C is a constant and h is sufficiently small (h ≤ h0). In the case of the Euler-
Maruyama method, the strong order of convergence is 0.5.

Example 147 For modeling short-term interest rates, Chan et al. (1992) consider the fol-
lowing SDE:

dX (t) = (α+ βX (t)) dt+ σX (t)γ dW (t) (13.2)
We deduce that the fixed-interval Euler-Maruyama scheme is:

Xm+1 = Xm + (α+ βXm)h+ σXγ
m

√
h · εm

Kloeden and Platen (1992) provided many other approximation schemes, based on Itô-
Taylor expansions of the SDE. For instance, the fixed-interval Milstein scheme is:

Xm+1 = Xm + µ (tm, Xm)h+ σ (tm, Xm)
√
h · εm +

1
2σ (tm, Xm) ∂xσ (tm, Xm)h

(
ε2
m − 1

)
(13.3)

The strong order for the Milstein method is equal to 1, which is better than the Euler-
Maruyama method. In terms of implementation, these two approximation schemes remain
simple, compared to other Taylor schemes that converge more quickly, but generally use
correlated random variables and high order derivatives of the functions µ (t, x) and σ (t, x).
This is why Euler-Maruyama and Milstein schemes are the most frequent methods used in
practice14.

14For instance, one of the most famous methods is the strong order 1.5 Taylor scheme proposed by Platen
and Wagner (1982). It requires the second derivatives ∂2

xµ (t, x) and ∂2
xσ (t, x), and an additional random
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If we consider the geometric Brownian motion, the Euler-Maruyama scheme is:

Xm+1 = Xm + µXmh+ σXm

√
h · εm

whereas the Milstein scheme is:

Xm+1 = Xm + µXmh+ σXm

√
h · εm + 1

2σ
2Xmh

(
ε2
m − 1

)
= Xm +

(
µ− 1

2σ
2
)
Xmh+ σXm

√
h

(
1 + 1

2σ
√
hεm

)
εm

It follows that the Milstein scheme operates two corrections for simulating the GBM process:

• the first correction concerns the drift, which is now correct;

• the second correction applies to the diffusion term, which increases if it is positive and
decreases if it is negative.

In order to illustrate the differences between these two schemes, we compare them using the
same random numbers. A simulation is provided in Figure 13.21 in the case where µ = 10%
and σ = 50%. With a monthly discretization, we notice that the Milstein scheme produces
a better solution than the Euler-Maruyama scheme.

FIGURE 13.21: Comparison of exact, Euler-Maruyama and Milstein schemes (monthly
discretization)

When we don’t know the analytical solution of X (t), it is natural to simulate the
numerical solution of X (t) using Euler-Maruyama and Milstein schemes. However, it may

variable correlated with the increments of the Brownian motion. Even if this scheme is interesting to study
from a theoretical point of view, it is never used by practitioners because it is time-consuming.
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be sometimes more efficient to find the numerical solution of Y (t) = f (t,X (t)) instead of
X (t) itself, in particular when Y (t) is more regular than X (t). By Itô’s lemma, we have:

dY (t) =
(
∂tf (t,X) + µ (t,X) ∂xf (t,X) + 1

2σ
2 (t,X) ∂2

xf (t,X)
)

dt+

σ (t,X) ∂xf (t,X) dW (t)

By using the inverse function X (t) = f−1 (t, Y (t)), we obtain:

dY (t) = µ′ (t, Y ) dt+ σ′ (t, Y ) dW (t)

where µ′ (t, Y ) and σ′ (t, Y ) are functions of µ (t,X), σ (t,X) and f (t,X). We can then
simulate the solution of Y (t) using an approximation scheme and deduce the numerical
solution of X (t) by applying the transformation method:

Xm = f−1 (tm, Ym)

Let us consider the geometric Brownian motion X (t). The solution of Y (t) = lnX (t)
is equal to:

dY (t) =
(
µ− 1

2σ
2
)

dt+ σ dW (t)

We deduce that the Euler-Maruyama (or Milstein15) scheme with fixed-interval times is:

Ym+1 = Ym +
(
µ− 1

2σ
2
)
h+ σ

√
h · εm

It follows that:
lnXm+1 = lnXm +

(
µ− 1

2σ
2
)
h+ σ

√
h · εm (13.4)

We conclude that this numerical solution is the exact solution (13.1) of the geometric
Brownian motion.

The previous application is not interesting, because we know the analytical solution. The
approach is more adapted for stochastic differential equations without explicit solutions, for
example the Cox-Ingersoll-Ross process:

dX (t) = (α+ βX (t)) dt+ σ
√
X (t) dW (t) (13.5)

This process is a special case of the CKLS process (13.2) with γ = 1/2 and can be viewed as
an Ornstein-Uhlenbeck process16 with a reflection at X (t) = 0. Using the transformation
Y (t) =

√
X (t), we obtain the following SDE17:

dY (t) =
(

1
2

(α+ βX (t))√
X (t)

− 1
8
σ2X (t)
X (t)3/2

)
dt+ 1

2
σ
√
X (t)√
X (t)

dW (t)

= 1
2Y (t)

(
α+ βY 2 (t)− 1

4σ
2
)

dt+ 1
2σ dW (t)

15Because ∂yσ′ (t, Y ) = 0.
16The drift can be written as α+βX (t) = −β

(
−αβ−1 −X (t)

)
. We deduce that a = −β and b = −αβ−1.

17We have ∂xf (t, x) = 1
2x
−1/2 and ∂2

xf (t, x) = − 1
4x
−3/2.
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We deduce that the Euler-Maruyama scheme of Y (t) is:

Ym+1 = Ym + 1
2Ym

(
α+ βY 2

m −
1
4σ

2
)
h+ 1

2σ
√
h · εm

It follows that:

Xm+1 =
(√

Xm + 1
2
√
Xm

(
α+ βXm −

1
4σ

2
)
h+ 1

2σ
√
h · εm

)2

We can show that this approximation is better than the Euler-Maruyama or Milstein ap-
proximation directly applied to the SDE (13.5).

Remark 158 Generally, we choose the Lamperti transform Y (t) = f (X (t)) in order to
obtain a constant diffusion term (∂yσ′ (t, y) = 0). This implies that:

f (x) = c

∫ x

a

1
σ (t, u) du

Because we have ∂xf (t, x) = c/σ (t, x) and ∂2
xf (t, x) = −c∂xσ (t, x) /σ2 (t, x), we obtain:

dY (t) = c

(
µ (t,X)
σ (t,X) −

∂xσ (t,X)
2

)
dt+ cdW (t)

In this case, the Euler-Maruyama scheme coincides with the Milstein scheme. Most of the
time, the approximation Xm = f−1 (Ym) gives better results than those obtained with a
Milstein method applied to the process X (t).

13.2.2.5 Poisson processes

We have seen that simulating a Poisson process N (t) with constant intensity λ is
straightforward, because the inter-arrival times are independent and exponentially dis-
tributed with parameter λ. Let tm be the time when the mth event occurs. The numerical
algorithm is then:

1. we set t0 = 0 and N (t0) = 0;

2. we generate a uniform random variate u and calculate the random variate e ∼ E (λ)
with the formula:

e = − ln u
λ

3. we update the Poisson process with:

tm+1 ← tm + e and N (tm+1)← N (tm) + 1

4. we go back to step 2.

We can also use this algorithm to simulate mixed Poisson process (MPP), which are de-
fined as Poisson process with stochastic intensity Λ. In this case, the algorithm is initialized
with a realization λ of the random intensity Λ. On the contrary, this method is not valid
in the case of non-homogenous Poisson process (NHPP), where the intensity λ (t) varies
with time18. However, we can show that the inter-arrival times remain independent and
exponentially distributed with:

Pr {T1 > t} = exp (−Λ (t))

18Indeed, we don’t know the value of the intensity to use at the second step of the algorithm.
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where T1 is the duration of the first event and Λ (t) is the integrated intensity function:

Λ (t) =
∫ t

0
λ (s) ds

It follows that:

Pr
{
T1 > Λ−1 (t)

}
= exp (−t)⇔ Pr {Λ (T1) > t} = exp (−t)

We deduce that if {t1, t2, . . . , tM} are the occurrence times of the NHPP of intensity λ (t),
then {Λ (t1) ,Λ (t2) , . . . ,Λ (tM )} are the occurrence times of the homogeneous Poisson pro-
cess (HPP) of intensity one. Therefore, the algorithm is:

1. we simulate t′m the time arrivals of the homogeneous Poisson process with intensity
λ = 1;

2. we apply the transform tm = Λ−1 (t′m).

To implement this algorithm, we need to compute the inverse function Λ−1 (t). When there
is no analytical expression, this algorithm may be time-consuming, in particular when Λ (t)
is calculated with a method of numerical integration. Another approach consists in using
the acceptance-rejection algorithm for simulating the NHPP over the period [0, T ]:

1. we set λ+ = maxt≤T λ (t), t = 0, t0 = 0 and N (t0) = 0;

2. we generate a uniform random variate u and calculate the random variate e ∼ E (λ+)
with the formula:

e = − ln u
λ+

3. we calculate t = t+ e;

4. if t > T , we stop the algorithm;

5. we generate a uniform random variable v; if v ≤ λ (t) /λ+, then we accept the arrival
time:

tm+1 ← t and N (tm+1)← N (tm) + 1
else we reject it;

6. we go back to step 2.

In Figure 13.22, we simulate a non-homogenous Poisson process with the following in-
tensity function:

λ (t) = 90 + 80 · sin
(

6π
5 · t

)
Since λ (t) is a cyclical function and λ (t) ∈ [10, 170], the intensity function can vary very
quickly. In the bottom/right panel, we draw the histogram of arrival process for the interval
[t, t+ dt] and compare it with the expected arrival frequency, which is equal to:

E [N (t+ dt)−N (t)] =
∫ t+dt

t

λ (s) ds ≈ λ (t) dt

The compound Poisson process Y (t) is defined by:

Y (t) =
N(t)∑
i=1

Xi
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FIGURE 13.22: Simulation of a non-homogenous Poisson process with cyclical intensity

where N (t) is a Poisson process of intensity λ and {Xi}i≥1 is a sequence of iid random
variables with distribution function F. This process is a generalization of the Poisson process
by assuming that jump sizes are not equal to one, but are random. Let {t1, t2, . . . , tM} be
the arrival times of the Poisson process. We have:

Y (t) = Y (tm) if t ∈ [tm, tm+1[

and:
Y (tm+1) = Y (tm) +Xm+1

where Xm+1 is generated from the distribution function F. Another method to simu-
late Y (t) is to use the following property: conditionally to N (T ) = n, the arrival times
{t1, t2, . . . , tn} of the Poisson process on the interval [0, T ] are distributed as n independent
ordered uniform random variables. We deduce this algorithm:

1. we simulate the number n of jumps on the time interval [0, T ] by generating a Poisson
random variable with parameter λT ;

2. we simulate n uniform random variates (u1, . . . , un) and sort them19:

u1:n ≤ u2:n ≤ . . . ≤ un:n

3. we simulate n random variates (x1, . . . , xn) from the probability distribution F;

4. we finally generate the compound Poisson process by:

Y (t) =
n∑
i=1

1

{
ui:n ≤

t

T

}
· xi

19The arrival times are given by the formula: tm = T · um:n.
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13.2.2.6 Jump-diffusion processes

A jump-diffusion model is a process, which is generally defined by:

dX (t) = µ (t,X) dt+ σ (t,X) dW (t) + η
(
t−, X−

)
dJ (t) (13.6)

where J (t) is a jump process. Between two jumps, dJ (t) is equal to zero and the process
X (t) is continuous and evolves according to the SDE:

dX (t) = µ (t,X) dt+ σ (t,X) dW (t)

When a jump occurs, the process is discontinuous and we have:

X (t) = X
(
t−
)

+ η
(
t−, X

(
t−
))

dJ (t)

The jump process may be a Poisson process N (t) with intensity λ or a compound Pois-
son process Y (t) =

∑N(t)
i=1 Zi where {Zi}i≥1 is a sequence of iid random variables with

distribution F.
In the case J (t) = N (t), the Euler scheme is:

X (tm+1) = X (tm) + µ (tm, X (tm)) · (tm+1 − tm) +
σ (tm, X (tm)) · (W (tm+1)−W (tm)) +
η (tm, X (tm)) · (N (tm+1)−N (tm))

We finally obtain:

Xm+1 = Xm + µ (tm, Xm) · (tm+1 − tm) +
σ (tm, Xm) ·

√
tm+1 − tm · εm + η (tm, Xm) · ξm (13.7)

where εm ∼ N (0, 1) and ξm ∼ P (λ (tm+1 − tm)). We have:

Pr {ξm = 0} = e−λ(tm+1−tm)

Pr {ξm = 1} = e−λ(tm+1−tm)λ (tm+1 − tm)
Pr {ξm ≥ 2} = 1− e−λ(tm+1−tm) (1 + λ (tm+1 − tm))

If we assume that the stepsize tm+1−tm is small, we obtain Pr {ξm = 0} ≈ 1−λ (tm+1 − tm),
Pr {ξm = 1} ≈ λ (tm+1 − tm) and Pr {ξm ≥ 2} ≈ 0. Therefore, we can generate ξm by:

ξm =
{

1 if λ (tm+1 − tm) ≤ um
0 otherwise

where um is a uniform random variate. Another way to simulate X (t) is to first simulate the
arrival times of the Poisson process. We denote these times by τ1, τ2, . . . , τN , and combine
this grid with the initial grid t1, t2, . . . , tM . We then apply the Euler scheme (13.7) on the
augmented grid, but we are now sure that we cannot have more than one jump between
two discretization times. We illustrate this algorithm by considering the SDE:

dX (t) = 0.15 ·X (t) dt+ 0.20 ·X (t) dW (t) +
(
30− 0.30 ·X

(
t−
))
· dJ (t)

A simulated path is given in Figure 13.23, where the jumps are indicated by a dashed line.
In the case of the compound Poisson process J (t) = Y (t), we can obtain explicit so-

lutions for some processes. For instance, the model of Merton (1976) considers that the
continuous part is a geometric Brownian motion:

dX (t) = µX (t) dt+ σX (t) dW (t) +X
(
t−
)

dJ (t)
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FIGURE 13.23: Simulation of a jump-diffusion process

If we assume that the ith jump occurs at time t, we obtain20:

X (t) = X
(
t−
)

+X
(
t−
)
Zi

= (1 + Zi)X
(
t−
)

We deduce that:

X (t) = X (0) exp
((

µ− 1
2σ

2
)
t+ σW (t) + J (t)

)

= X (0) e(µ−
1
2σ

2)t+σW (t)
N(t)∏
i=1

(1 + Zi)

In the general case, the Euler scheme is:

Xm+1 = Xm + µ (tm, Xm) · (tm+1 − tm) +
σ (tm, Xm) ·

√
tm+1 − tm · εm + η (tm, Xm) · ξm

where εm ∼ N (0, 1) and ξm = Y (tm+1) − Y (tm). As we have previously presented an
algorithm to generate Y (t), there is no difficulty to simulate X (t).

13.2.2.7 Processes related to Brownian motion

We have previously shown how to simulate a stochastic differential equation by assuming
the initial position of the random process. In finance, we also need to simulate stochastic
processes with other constraints (Brownian bridge, Brownian meander) or statistics of the
SDE (minimum, maximum, stopping time).

20We assume that Zi > −1.



Monte Carlo Simulation Methods 829

FIGURE 13.24: Simulation of the Brownian bridge B1 (t) using the time reversibility
property

A Brownian bridge Br (t) is a Brownian motionW (t) such thatW (0) = 0 andW (1) = r
(Revuz and Yor, 1999). For t ∈ [0, 1], we have21:

Br (t) = W (t) + (r −W (1)) · t

Devroye (2010) noticed that:

W (1) = W (t) + (W (1)−W (t))

The time reversibility property of the Brownian motion implies that W (1) − W (t) L=
W (1− t). It follows that:

Br (t) = W (t) + (r − (W (t) +W ′ (1− t))) · t
= r · t+ (1− t) ·W (t) + t ·W ′ (1− t)

Figure 13.24 illustrates the simulation of B1 (t) by using two simulated paths W (t) and
W ′ (t). We also notice that:

Br (t) = r · t+ (1− t) ·
√
t · ε1 + t ·

√
1− t · ε2

= r · t+ t ·
√
t (1− t) · ε

where ε1, ε2 and ε are standard Gaussian random variables. If we now assume that s ≤ t ≤ u,
W (s) = ws and W (u) = wu, the Brownian bridge becomes:

B (t) = (u− t) · ws + (t− s) · wu
u− s

+
√

(t− s) · (u− t)
u− s

· ε

21We verify that the increments of Br (t) are independent, Br (0) = 0 and Br (1) = r.
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because of the scaling property of the Brownian motion22. If we consider the simulation
of B (t) for different values tm ∈ [s, u], we proceed by filling the path with the iterative
algorithm:

1. we initialize the algorithm with m = 1;

2. we simulate the Brownian bridge B (tm) such that B (s) = ws and B (u) = wu;

3. we set s = tm and B (s) = B (tm);

4. we go back to step 2.

In Figure 13.25, we report 5 simulations of the Brownian Bridge B (t) such that B (0) = 0,
B (1) = 1, B (3) = 3 and B (5) = 2.

FIGURE 13.25: Simulation of the Brownian bridge B (t)

To simulate a process X (t) with fixed values at times τ1, . . . , τp, we assume that we
have an explicit solution X (t) = g (W (t)) implying that W (t) = g−1 (X (t)). Simulating
a diffusion bridge X (t) consists then in generating the Brownian bridge B (t) such that
W (τi) = g−1 (X (τi)), and applying the transformation X (t) = g (B (t)). For instance, if
we consider the geometric Brownian motion, we have:

X (t) = g (W (t)) = x0 · exp
((

µ− 1
2σ

2
)
t+ σW (t)

)
and:

W (t) = g−1 (X (t)) =
lnX (t)− ln x0 −

(
µ− 1

2σ
2) t

σ

22See also Exercise 13.4.8 on page 891 for an alternative proof (Glasserman, 2003).
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We assume that x0 = 100, µ = 0 and σ = 10%. The fixed values of X (t) are given in
the table below. Using the previous formula, we deduce the values taken by the Brownian
bridge:

τj X (τi) W (τi)
0 100 0.0000
1 110 1.0031
3 100 0.1500
5 90 −0.8036

We have reported five simulated path of this diffusion bridge in Figure 13.26.

FIGURE 13.26: Simulation of the diffusion bridge X (t)

Diffusion bridges are important in finance when we would like to study extremes of a
diffusion process. If we want to find the maximum of the stochastic process X (t) over [0, T ],
we can simulate X (t) and take the maximum of the generated path:

M̂ = max
m

Xm

Another approach consists in locating the maximum:

m? = arg max
m

Xm

and simulating the diffusion bridge B (t) such that X (tm?−1) = Xm?−1, X (tm?) = Xm?

and X (tm?+1) = Xm?+1. In this case, we can define another estimator of the maximum:

M̃ = max
t∈[tm?−1,tm?+1]

B (t)

By construction, we always have M̃ ≥ M̂ . For instance, we report the probability density
function of M̂ and M̃ in Figure 13.27 when we consider the geometric Brownian motion
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with x0 = 100, µ = 0, σ = 15% and T = 1. The GBM process has been simulated with
a fixed stepsize h = 0.1, whereas the diffusion bridge has been simulated with h = 0.001.
This implies that each path uses 1/0.1 = 10 discretization points in the first case and
10 + 0.2/0.001 = 210 discretization points in the second case. The estimation based on the
diffusion bridge is then equivalent to consider a scheme with 1/0.001 = 1 000 discretization
points.

FIGURE 13.27: Density of the maximum estimators M̂ and M̃

Remark 159 In the case of the geometric Brownian motion X (t), the distribution function
of the maximum is known. Indeed, we have23:

Pr {M (t) ≥ x} = exp
(

2ηx
σ2

)
Φ
(
−x− ηt
σ
√
t

)
+ Φ

(
−x+ ηt

σ
√
t

)
where M (t) is the maximum of a Brownian motion with a constant drift:

M (t) = max
s≤t

ηt+ σW (t)

We notice that:
ln X (t)
X (0) =

(
µ− 1

2σ
2
)
t+ σW (t)

23In the case of the minimum, we can use the following identity:

m (t) = min
s≤t

ηt+ σW (t) = −max
s≤t
−ηt− σW (t)

It follows that:
Pr {m (t) ≤ x} = exp

(2ηx
σ2

)
Φ
(
x+ ηt

σ
√
t

)
+ Φ

(
x− ηt
σ
√
t

)
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It follows that:

Pr
{

max
s≤t

X (s) ≥ x
}

= Pr
{

max
s≤t

lnX (s) ≥ ln x
}

= Pr {M (t) ≥ ln x− ln x0}

where η = µ− 1
2σ

2.

Remark 160 Diffusion bridges are extensively used when pricing look-back options by
Monte Carlo, but also barrier options. Indeed, we need to locate precisely the stopping time
when the process crosses the barrier. More generally, they may accelerate the convergence
of Monte Carlo methods in the case of path-dependent derivatives (Glasserman, 2003).

13.2.3 Multivariate continuous-time processes
13.2.3.1 Multidimensional Brownian motion

LetW (t) = (W1 (t) , . . . ,Wn (t)), be a n-dimensional Brownian motion. Each component
Wi (t) is a Brownian motion:

Wi (t)−Wi (s) ∼ N (0, t− s)

Moreover, we have:
E [Wi (t)Wj (s)] = min (t, s) · ρi,j

where ρi,j is the correlation between the two Brownian motions Wi and Wj . We deduce
that: {

W (0) = 0
W (t) = W (s) + ε (s, t)

where ε (s, t) ∼ Nn (0, (t− s) ρ) are iid random vectors. It follows that the numerical solu-
tion is:

Wm+1 = Wm +
√
tm+1 − tm · P · εm

where P is the Cholesky decomposition of the correlation matrix ρ and εm ∼ Nn (0, I) are
iid random vectors. In the case of fixed-interval times, the recursion becomes:

Wm+1 = Wm +
√
h · P · εm

In Figures 13.28 and 13.29, we simulate the realization of two-dimensional Brownian
motions. Since the two simulated paths use the same random numbers, the difference comes
from the correlation ρ1,2, which is equal to zero for the first case and 85% for the second
case.

13.2.3.2 Multidimensional geometric Brownian motion

Let us now consider the multidimensional geometric Brownian motion24:{
dX (t) = µ�X (t) dt+ diag (σ �X (t)) dW (t)
X (0) = x0

24The symbol � is the Hadamard product.
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FIGURE 13.28: Brownian motion in the plane (independent case)

FIGURE 13.29: Brownian motion in the plane (ρ1,2 = 85%)
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where X (t) = (X1 (t) , . . . , Xn (t)), µ = (µ1, . . . , µn), σ = (σ1, . . . , σn) and W (t) =
(W1 (t) , . . . ,Wn (t)) is a n-dimensional Brownian motion with E

[
W (t)W (t)>

]
= ρ t. If

we consider the jth component of X (t), we have:

dXj (t) = µjXj (t) dt+ σjXj (t) dWj (t)

The solution of the multidimensional SDE is a multivariate log-normal process with:

Xj (t) = Xj (0) · exp
((

µj −
1
2σ

2
j

)
t+ σjWj (t)

)
where W (t) ∼ Nn (0, ρ t). We deduce that the exact scheme to simulate the multivariate
GBM is:

X1,m+1 = X1,m · exp
((
µ1 − 1

2σ
2
1
)

(tm+1 − tm) + σ1
√
tm+1 − tm · ε1,m

)
...

Xj,m+1 = Xj,m · exp
((
µj − 1

2σ
2
j

)
(tm+1 − tm) + σj

√
tm+1 − tm · εj,m

)
...

Xn,m+1 = Xn,m · exp
((
µn − 1

2σ
2
n

)
(tm+1 − tm) + σn

√
tm+1 − tm · εn,m

)
where (ε1,m, . . . , εn,m) ∼ Nn (0, ρ).

Remark 161 Monte Carlo methods extensively use this scheme for calculating the price of
multi-asset derivatives in the Black-Scholes model.

13.2.3.3 Euler-Maruyama and Milstein schemes

We consider the general SDE:{
dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)
X (0) = x0

where X (t) and µ (t,X (t)) are n × 1 vectors, σ (t,X (t)) is a n × p matrix and W (t) is a
p× 1 vector. We assume that E

[
W (t)W (t)>

]
= ρ t, where ρ is a p× p correlation matrix.

The corresponding Euler-Maruyama scheme is:

Xm+1 = Xm + µ (tm, Xm) · (tm+1 − tm) + σ (tm, Xm)
√
tm+1 − tm · εm

where εm ∼ Np (0, ρ). In the case of a diagonal system25, we retrieve the one-dimensional
scheme:

Xj,m+1 = Xj,m + µj (tm, Xj,m) · (tm+1 − tm) + σj,j (tm, Xj,m) ·
√
tm+1 − tmεj,m

However, the random variables εj,m and εj′,m may be correlated.

Example 148 We consider the Heston model:{
dX (t) = µX (t) dt+

√
v (t)X (t) dW1 (t)

dv (t) = a (b− v (t)) dt+ σ
√
v (t) dW2 (t)

25This means that µj (t, x) = µj (t, xj) and σ (t, x) is a n×n diagonal matrix with σj,j (t, x) = σj,j (t, xj).
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where E [W1 (t)W2 (t)] = ρ t. By applying the fixed-interval Euler-Maruyama scheme to
(lnX (t) , v (t)), we obtain:

lnXm+1 = lnXm +
(
µ− 1

2vm
)
h+

√
vmh · ε1,m

and26:
vm+1 = vm + a (b− vm)h+ σ

√
vmh · ε2,m

Here, ε1,m and ε2,m are two standard Gaussian random variables with correlation ρ.

The multidimensional version of the Milstein scheme is27:

Xj,m+1 = Xj,m + µj (tm, Xm) (tm+1 − tm) +
p∑
k=1

σj,k (tm, Xm) ∆Wk,m +

p∑
k=1

p∑
k′=1
L(k)σj,k′ (tm, Xm) I(k,k′)

where:

L(k)f (t, x) =
n∑

k′′=1
σk′′,k (tm, Xm) ∂ f (t, x)

∂ xk′′

and:
I(k,k′) =

∫ tm+1

tm

∫ s

tm

dWk (t) dWk′ (s)

In the case of a diagonal system, the Milstein scheme may be simplified as follows:

Xj,m+1 = Xj,m + µj (tm, Xj,m) (tm+1 − tm) + σj,j (tm, Xj,m) ∆Wj,m +
L(j)σj,j (tm, Xj,m) I(j,j)

where28:

I(j,j) =
∫ tm+1

tm

∫ s

tm

dWj (t) dWj (s)

=
∫ tm+1

tm

(Wj (s)−Wj (tm)) dWj (s)

= 1
2

(
(∆Wj,m)2 − (tm+1 − tm)

)
We deduce that the Milstein scheme is:

Xj,m+1 = Xj,m + µj (tm, Xj,m) (tm+1 − tm) +
σj,j (tm, Xj,m)

√
tm+1 − tmεj,m +

1
2σj,j (tm, Xj,m) ∂xj σj,j (tm, Xj,m) (tm+1 − tm)

(
ε2
j,m − 1

)
26To avoid that vm+1 is negative, we can use the truncation method:

vm+1 ← max (vm+1, 0)

or the reflection method:
vm+1 ← |vm+1|

27We have ∆Wk,m = Wk (tm+1)−Wk (tm).
28By applying Itô’s lemma to Yt = 1

2

(
Wj (t)2 − t

)
, we obtain dY (t) = Wj (t) dWj (t).
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We obtain the same expression as the formula given by Equation (13.3), except that the
random variables εj,m and εj′,m may now be correlated.

Example 149 If we apply the fixed-interval Milstein scheme to the Heston model, we ob-
tain:

lnXm+1 = lnXm +
(
µ− 1

2vm
)
h+

√
vmh · ε1,m

and:
vm+1 = vm + a (b− vm)h+ σ

√
vmh · ε2,m + 1

4σ
2h
(
ε2

2,m − 1
)

Here, ε1,m and ε2,m are two standard Gaussian random variables with correlation ρ.

Remark 162 The multidimensional Milstein scheme is generally not used, because the
terms L(k)σj,k′ (tm, Xm) I(k,k′) are complicated to simulate. For the Heston model, we obtain
a very simple scheme, because we only apply the Milstein scheme to the process v (t) and
not to the vector process (lnX (t) , v (t)). If we also apply the Milstein scheme to lnX (t),
we obtain:

lnXm+1 = lnXm +
(
µ− 1

2vm
)
h+

√
vmh · ε1,m +Am

where:

Am =
2∑
k=1

2∑
k′=1

( 2∑
k′′=1

σk′′,k (tm, Xm) σ1,k′ (tm, Xm)
∂ xk′′

)
I(k,k′)

= σ
√
v (t) · 1

2
√
v (t)

· I(2,1)

= σ

2 · I(2,1)

Let W2 (t) = ρW1 (t) +
√

1− ρ2W ? (t) where W ? (t) is a Brownian motion independent
from W1 (t). It follows that:

I(2,1) =
∫ tm+1

tm

∫ s

tm

dW2 (t) dW1 (s)

=
∫ tm+1

tm

(
ρW1 (s) +

√
1− ρ2W ? (s)

)
dW1 (s)−∫ tm+1

tm

(
ρW1 (tm) +

√
1− ρ2W ? (tm)

)
dW1 (s)

= ρ

∫ tm+1

tm

(W1 (s)−W1 (tm)) dW1 (s) +

√
1− ρ2

∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)

and:
I(2,1) = 1

2ρ
(

(∆W1,m)2 − (tm+1 − tm)
)

+Bm

We finally deduce that the multidimensional Milstein scheme of the Heston model is:

lnXm+1 = lnXm +
(
µ− 1

2vm
)
h+

√
vmh · ε1,m + 1

4ρσh
(
ε2

1,m − 1
)

+Bm
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and:
vm+1 = vm + a (b− vm)h+ σ

√
vmh · ε2,m + 1

4σ
2h
(
ε2

2,m − 1
)

where Bm is a correction term defined by:

Bm =
√

1− ρ2
∫ tm+1

tm

(W ? (s)−W ? (tm)) dW1 (s)

We notice that Bm cannot be explicitly calculate and requires numerical integration to be
simulated29 .

13.3 Monte Carlo methods
At the beginning, the Monte Carlo method is a numerical tool for computing integrals

based on the simulation of random variables (Metropolis and Ulam, 1949). By extension, it
now defines all numerical methods, which use simulations.

13.3.1 Computing integrals
13.3.1.1 A basic example

One of the early uses of the Monte Carlo method was the numerical calculation of
the number π by Bouffon and Laplace. Suppose we have a circle with radius r and a
2r× 2r square of the same center. Since the area of the circle is equal to πr2, the numerical
calculation of π is equivalent to compute the area of the circle with r = 1. In this case, the
area of the square is 4, and we have30:

π = 4 A (circle)
A (square)

To determine π, we simulate nS random vectors (us, vs) of uniform random variables U[−1,1]
and we obtain:

π = lim
nS→∞

4nc
n

where nc is the number of points (us, vs) in the circle:

nc =
nS∑
s=1

1
{
u2
s + v2

s ≤ r2}
We illustrate this numerical computation in Figure 13.30 with 1 000 simulated points
(us, vs). We indicate by a red cross symbol (resp. by a blue square symbol) the points
which are inside (resp. outside) the circle. In this experiment, we obtain nc = 802 and
π ' 4× 802/1 000 = 3.2080.

29However, Bm is not independent from ε1,m.
30In fact, this relationship holds for all values of r.
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FIGURE 13.30: Computing π with 1 000 simulations

13.3.1.2 Theoretical framework

We consider the multiple integral:

I =
∫
· · ·
∫

Ω
ϕ (x1, . . . , xn) dx1 · · · dxn

Let X = (X1, . . . , Xn) be a uniform random vector with probability distribution U[Ω],
such that Ω is inscribed within the hypercube [Ω]. By construction, the probability density
function is:

f (x1, . . . , xn) = 1

We deduce that:

I =
∫
· · ·
∫

[Ω]
1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn) dx1 · · · dxn

= E [1 {(X1, . . . , Xn) ∈ Ω} · ϕ (X1, . . . , Xn)]
= E [h (X1, . . . , Xn)]

where:
h (x1, . . . , xn) = 1 {(x1, . . . , xn) ∈ Ω} · ϕ (x1, . . . , xn)

Let ÎnS be the random variable defined by:

ÎnS = 1
nS

nS∑
s=1

h (X1,s, . . . , Xn,s)
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where {X1,s, . . . , Xn,s}s≥1 is a sequence of iid random vectors with probability distribution
U[Ω]. Using the strong law of large numbers, we obtain:

lim
ns→∞

Îns = E [h (X1, . . . , Xn)]

=
∫
· · ·
∫

Ω
ϕ (x1, . . . , xn) dx1 · · · dxn

Moreover, the central limit theorem states that:

lim
ns→∞

√
nS

(
Îns − I

σ (h (X1, . . . , Xn))

)
= N (0, 1)

When nS is large, we can deduce the following confidence interval:[
ÎnS − cα ·

ŜnS√
nS
, ÎnS + cα ·

ŜnS√
nS

]

where α is the confidence level, cα = Φ−1 ((1 + α) /2) and ŜnS is the usual estimate of the
standard deviation:

ŜnS =

√√√√ 1
nS − 1

nS∑
s=1

h2 (X1,s, . . . , Xn,s)− Îns

FIGURE 13.31: Density function of π̂nS

We consider again the calculation of π. Previously, we obtain an estimate, which is far
from the true value. In order to obtain a better precision, we can increase the number nS
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of simulations. In Figure 13.31, we report the density function of the estimator π̂nS when
nS is respectively equal to 1 000 and 10 000. We notice that the precision increases by a
factor of

√
10 every time we multiply the number of simulations by ten. More generally, for

a given precision p, we can deduce the sufficient number of simulations:

nS ≥

(
cα
ŜnS
p

)2

In the case of the calculation of π, we have ŜnS ≈ 1.642. To obtain a precision of π with six
digits after the decimal point at a 99% confidence level, we need about 18 trillion simulations:

nS ≥
(

Φ−1 (0.995)× 1.642
10−6

)2

≥ 17.9× 1012

Example 150 We would like to calculate the following integral:

I =
∫∫∫

Ω
(x+ y + z)2 dxdy dz

This integral can be easily evaluated with Gaussian quadrature methods when Ω is a cube.
However, the problem is more tricky when:

Ω =
{

(x, y, z) ∈ R3
+ : x2 + y2 + z2 ≤ 25, x+ y + z ≥ 2

}
Using the Monte Carlo method, we have I = E [h (X,Y, Z)] where X,Y and Z are three
independent uniform random variables with probability distribution U[0,5] and:

h (x, y, z) =
{

(x+ y + z)2 if (x, y, z) ∈ Ω
0 if (x, y, z) /∈ Ω

In Figure 13.32, we report the estimate ÎnS and the corresponding 99% confidence interval
with respect to the number of simulations nS.

13.3.1.3 Extension to the calculation of mathematical expectations

Let X = (X1, . . . , Xn) be a random vector with probability distribution F. We have:

E [ϕ (X1, . . . , Xn)] =
∫
· · ·
∫
ϕ (x1, . . . , xn) dF (x1, · · · , xn)

=
∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, · · · , xn) dx1 · · · dxn

=
∫
· · ·
∫
h (x1, . . . , xn) dx1 · · · dxn

where f is the density function. The Monte Carlo estimator of this integral is:

ÎnS = 1
nS

nS∑
s=1

ϕ (X1,s, . . . , Xn,s)

where {X1,s, . . . , Xn,s}s≥1 is a sequence of iid random vectors with probability distribution
F. Moreover, all the previous results hold in this general case where the random variables
are not uniform.
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FIGURE 13.32: Convergence of the estimator ÎnS

Example 151 In the Black-Scholes model, the price of the look-back option with maturity
T is given by:

C = e−rTE

[(
S (T )− min

0≤t≤T
S (t)

)+
]

where the price S (t) of the underlying asset is given by the following SDE:

dS (t) = rS (t) dt+ σS (t) dW (t)

where r is the interest rate and σ is the volatility of the asset. It is difficult to calculate C
analytically, because it requires the joint distribution of S (T ) and min0≤t≤T S (t). However,
we can easily calculate it using the Monte Carlo method. For a given simulation s, we use
the exact scheme to simulate the geometric Brownian motion:

S
(s)
m+1 = S(s)

m · exp
((

r − 1
2σ

2
)

(tm+1 − tm) + σ
√
tm+1 − tm · ε(s)

m

)
where ε(s)

m ∼ N (0, 1) and T = tM . The Monte Carlo estimator of the option price is then
equal to:

Ĉ = e−rT

nS

nS∑
s=1

(
S

(s)
M −min

m
S(s)
m

)+

We deduce that the precision of the estimate depends on the number nS of simulations,
but also on the number M of discretization points. In Figure 13.33, the option price is
calculated using these parameters: S0 = 100, r = 5%, σ = 20% and T = 3/12. We consider
100 000 simulations whereas the number M of discretization points varies between 5 and
100. We notice that the 99% confidence interval does not really depend on M . However,
the option price increases with the number of discretization points. This is normal because
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FIGURE 13.33: Computing the look-back option price

min0≤t≤T S (t) is always underestimated by minm S(s)
m . This is why we have also reported the

option price using the diffusion bridge approach. This example shows that the MC method
does not always converge when the function ϕ (x1, . . . , xn) is approximated.

Let us consider the following integral:

I =
∫
· · ·
∫
h (x1, . . . , xn) dx1 · · · dxn

We can write it as follows:

I =
∫
· · ·
∫

h (x1, . . . , xn)
f (x1, · · · , xn)f (x1, · · · , xn) dx1 · · · dxn

where f (x1, · · · , xn) is a multidimensional density function. We deduce that:

I = E
[
h (X1, . . . , Xn)
f (X1, . . . , Xn)

]
This implies that we can compute an integral with the MC method by using any multidi-
mensional distribution function. If we apply this result to the calculation of π, we have:

π =
∫∫

x2+y2≤1
dxdy

=
∫∫

1
{
x2 + y2 ≤ 1

}
dxdy

=
∫∫

1
{
x2 + y2 ≤ 1

}
φ (x)φ (y) φ (x)φ (y) dx dy
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We deduce that:

π = E

[
1
{
X2 + Y 2 ≤ 1

}
φ (X)φ (Y )

]
where X and Y are two independent standard Gaussian random variables. We can then
estimate π by:

π̂nS = 1
nS

nS∑
s=1

1
{
x2
s + y2

s ≤ 1
}

φ (xs)φ (ys)

where xs and ys are two independent random variates from the probability distribution
N (0, 1). For instance, we report the points (xs, ys) used to calculate π with 1 000 simulations
in Figure 13.34.

FIGURE 13.34: Computing π with normal random numbers

Remark 163 The previous approach is particularly interesting when the set Ω is not
bounded, which implies that we cannot use uniform random numbers.

13.3.2 Variance reduction
We consider two unbiased estimators Î(1)

nS and Î
(2)
nS of the integral I, meaning that

E
[
Î

(1)
nS

]
= E

[
Î

(2)
nS

]
= I. We will say that Î(1)

nS is more efficient than Î
(2)
nS if the inequal-

ity var
(
Î

(1)
nS

)
≤ var

(
Î

(2)
nS

)
holds for all values of nS that are larger than n?S . Variance

reduction is then the search of more efficient estimators.

13.3.2.1 Antithetic variates

Theoretical aspects We have:

I = E [ϕ (X1, . . . , Xn)] = E [Y ]
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where Y = ϕ (X1, . . . , Xn) is a one-dimensional random variable. It follows that:

ÎnS = ȲnS = 1
nS

nS∑
s=1

Ys

We now consider the estimators ȲnS and Ȳ ′nS based on two different samples and define Ȳ ?
as follows:

Ȳ ? =
ȲnS + Ȳ ′nS

2
We have:

E
[
Ȳ ?
]

= E

[
ȲnS + Ȳ ′nS

2

]
= E

[
ȲnS

]
= I

and:

var
(
Ȳ ?
)

= var
(
ȲnS + Ȳ ′nS

2

)

= 1
4 var

(
ȲnS

)
+ 1

4 var
(
Ȳ ′nS

)
+ 1

2 cov
(
ȲnS , Ȳ

′
nS

)
=

1 + ρ
〈
ȲnS , Ȳ

′
nS

〉
2 var

(
ȲnS

)
= 1 + ρ 〈Ys, Y ′s 〉

2 var
(
ȲnS

)
where31 ρ 〈Ys, Y ′s 〉 is the correlation between Ys and Y ′s . Because we have ρ 〈Ys, Y ′s 〉 ≤ 1, we
deduce that:

var
(
Ȳ ?
)
≤ var

(
ȲnS

)
If we simulate the random variates Ys and Y ′s independently, ρ 〈Ys, Y ′s 〉 is equal to zero and
the variance of the estimator is divided by 2. However, the number of simulations have been
multiplied by two. The efficiency of the estimator has then not been improved.

The underlying idea of antithetic variables is therefore to use two perfectly dependent
random variables Ys and Y ′s :

Y ′s = ψ (Ys)

31We have:

cov
(
ȲnS , Ȳ

′
nS

)
= E

[( 1
nS

∑nS

s=1
Ys − E [Y ]

)
·
( 1
nS

∑nS

s′=1
Y ′s′ − E [Y ]

)]
=

1
n2
S

∑nS

s=1
E
[
(Ys − E [Y ]) ·

(
Y ′s − E [Y ]

)]
+

2
n2
S

∑nS

s>s′
E
[
(Ys − E [Y ]) ·

(
Y ′s′ − E [Y ]

)]
=

1
nS
· cov

(
Ys, Y

′
s

)
+

2
n2
S

· 0

It follows that:

ρ
〈
ȲnS , Ȳ

′
nS

〉
=

cov
(
ȲnS , Ȳ

′
nS

)√
var
(
ȲnS
)
· var

(
Ȳ ′nS

) = ρ
(
Ys, Y

′
s

)
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where ψ is a deterministic function. This implies that:

Ȳ ?nS = 1
nS

nS∑
s=1

Y ?s

where:
Y ?s = Ys + Y ′s

2 = Ys + ψ (Ys)
2

It follows that:
ρ
〈
ȲnS , Ȳ

′
nS

〉
= ρ 〈Y, Y ′〉 = ρ 〈Y, ψ (Y )〉

Minimizing the variance var
(
Ȳ ?
)
is then equivalent to minimize the correlation ρ 〈Y, ψ (Y )〉.

We also know that the correlation reaches its lower bound if the dependence function be-
tween Y and ψ (Y ) is equal to the lower Fréchet copula:

C 〈Y, ψ (Y )〉 = C−

However, ρ 〈Y, ψ (Y )〉 is not necessarily equal to −1 except in some special cases.
We consider the one-dimensional case with Y = ϕ (X). If we assume that ϕ is an

increasing function, it follows that:

C 〈Y, ψ (Y )〉 = C 〈ϕ (X) , ψ (ϕ (X))〉
= C 〈X,ψ (X)〉

To obtain the lower bound C−, X and ψ (X) must be countermonotonic. We know that32:

ψ (X) = F−1 (1− F (X)) (13.8)

where F is the probability distribution of X. For instance, if X ∼ U[0,1], we have X ′ = 1−X.
In the case where X ∼ N (0, 1), we have:

X ′ = Φ−1 (1− Φ (X))
= Φ−1 (Φ (−X))
= −X

Example 152 We consider the following functions:
1. ϕ1 (x) = x3 + x+ 1;

2. ϕ2 (x) = x4 + x2 + 1;

3. ϕ3 (x) = x4 + x3 + x2 + x+ 1;
For each function, we want to estimate I = E [ϕ (N (0, 1))] using the antithetic estimator:

Ȳ ?nS = 1
nS

nS∑
s=1

ϕ (Xs) + ϕ (−Xs)
2

where Xs ∼ N (0, 1). We obtain the following results33:

ϕ (x) ϕ1 (x) ϕ2 (x) ϕ3 (x)
E [ϕ (Xs)] or E [ϕ (−Xs)] 1 5 5

var (ϕ (Xs)) or var (ϕ (−Xs)) 22 122 144
cov (ϕ (Xs) , ϕ (−Xs)) −22 122 100
ρ 〈ϕ (Xs) , ϕ (−Xs)〉 −1 1 25/36

32See Section 11.2.1 on page 722.
33Let X ∼ N (0, 1). We have E

[
X2
]

= 1, E
[
X2m

]
= (2m− 1)E

[
X2m−2

]
and E

[
X2m+1

]
= 0 for

m ∈ N.
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We notice that the antithetic estimator is fully efficient in the first case, because its variance
is equal to zero. In the second case, it is not efficient because we have var

(
Ȳ ?nS

)
= var

(
ȲnS

)
.

Finally, the antithetic estimator reduces the variance by 15.3% in the last case.

To understand these numerical results, we must study the relationship between C 〈X,X ′〉
and C 〈Y, Y ′〉. Indeed, we have:{

C 〈X,X ′〉 = C− ⇒ C 〈Y, Y ′〉 = C−
}
⇔ ϕ′ (x) ≥ 0

We have represented the three functions ϕ1 (x), ϕ2 (x) and ϕ3 (x) in Figure 13.35. Because
ϕ1 (x) is an increasing function, it follows that the copula function between Y and Y ′ reaches
the lower Fréchet bound. The function ϕ2 (x) is perfectly symmetric around x = 0. In this
case, it is impossible to reduce the variance of the MC estimator by the use of antithetic
Gaussian variates. Even if the function ϕ3 (x) is not monotonous, it is however sufficiently
asymmetric to obtain a low but significant reduction of the variance of the MC estimator.

FIGURE 13.35: Functions ϕ1 (x), ϕ2 (x) and ϕ3 (x)

Remark 164 In the case where ϕ is a decreasing function, we can show that the lower
bound C− between Y and Y ′ is also reached when X and ψ (X) are countermonotonic
(Ross, 2012).

The extension of the previous results to the multidimensional case is not straightforward.
Indeed, the copula condition between Y and Y ′ becomes:

C 〈Y, Y ′〉 = C− ⇔ C 〈ϕ (X1, . . . , Xn) , ϕ (X ′1, . . . , X ′n)〉 = C−

where X ′1, . . . , X ′n are the antithetic variates of X1, . . . , Xn. A natural generalization of the
relationship (13.8) is:

X ′i = F−1
i (1− Fi (Xi))
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where Fi is the probability distribution of Xi. By assuming that ϕ is a monotonic function
of each of its arguments, Ross (2012) shows that:

ρ 〈Y, Y ′〉 < 0

where:
Y ′ = ϕ

(
F−1

1 (1− F1 (X1)) , . . . ,F−1
n (1− Fn (Xn))

)
This means that we can reduce the variance of the MC estimator by using the antithetic
variates X ′i = F−1

i (1− Fi (Xi)). However, it does not prove that this approach minimizes
the correlation ρ 〈Y, Y ′〉. Moreover, we have no results when ϕ is a general function.

Application to the geometric Brownian motion In the Gaussian case X ∼ N (0, 1),
the antithetic variable is:

X ′ = −X

As the simulation of Y ∼ N
(
µ, σ2) is obtained using the relationship Y = µ + σX, we

deduce that the antithetic variable is:

Y ′ = µ− σX

= µ− σ (Y − µ)
σ

= 2µ− Y

If we consider the geometric Brownian motion, the fixed-interval scheme is:

Xm+1 = Xm · exp
((

µ− 1
2σ

2
)
h+ σ

√
h · εm

)
whereas the antithetic path is given by:

X ′m+1 = X ′m · exp
((

µ− 1
2σ

2
)
h− σ

√
h · εm

)
In Figure 13.36, we report 4 trajectories of the GBM process and the corresponding anti-
thetic paths34.

In the multidimensional case, we recall that:

Xj,m+1 = Xj,m · exp
((

µj −
1
2σ

2
j

)
h+ σj

√
h · εj,m

)
where εm = (ε1,m, . . . , εn,m) ∼ Nn (0, ρ). We simulate εm by using the relationship εm =
P · ηm where ηm ∼ Nn (0, In) and P is the Cholesky matrix satisfying PP> = ρ. The
antithetic trajectory is then:

X ′j,m+1 = X ′j,m · exp
((

µj −
1
2σ

2
j

)
h+ σj

√
k · ε′j,m

)
where:

ε′m = −P · ηm = −εm
We verify that ε′m =

(
ε′1,m, . . . , ε

′
n,m

)
∼ Nn (0, ρ).

34The parameter values are X0 = 100, µ = 10% and σ = 20%.
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FIGURE 13.36: Antithetic simulation of the GBM process

Example 153 In the Black-Scholes model, the price of the spread option with maturity T
and strike K is given by:

C = e−rTE
[
(S1 (T )− S2 (T )−K)+

]
where the prices S1 (t) and S2 (t) of the underlying assets are given by the following SDE:{

dS1 (t) = rS1 (t) dt+ σ1S1 (t) dW1(t)
dS2 (t) = rS2 (t) dt+ σ2S2 (t) dW2(t)

and E [W1 (t)W2 (t)] = ρ t. To calculate the option price using Monte Carlo methods, we
simulate the bivariate GBM S1 (t) and S2 (t) and the MC estimator is:

ĈMC = e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S(s)

2 (T )−K
)+

where S(s)
j (T ) is the sth simulation of the terminal value Sj (T ). For the AV estimator, we

obtain:

ĈAV = e−rT

nS

nS∑
s=1

(
S

(s)
1 (T )− S(s)

2 (T )−K
)+

+
(
S
′(s)
1 (T )− S′(s)2 (T )−K

)+

2

where S′(s)j (T ) is the antithetic variate of S(s)
j (T ). In Figure 13.37, we report the probability

density function of the estimators ĈMC and ĈAV when nS is equal to 1 00035. We observe

35The parameters are S1 (0) = S2 (0) = 100, r = 5%, σ1 = σ2 = 20%, ρ = 50%, T = 1 and K = 5.
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that the variance reduction is significative and we obtain:

var
(
ĈAV

)
var
(
ĈMC

) = 34.7%

FIGURE 13.37: Probability density function of ĈMC and ĈAV (nS = 1 000)

13.3.2.2 Control variates

Let Y = ϕ (X1, . . . , Xn) and V be a random variable with known mean E [V ]. We define
Z as follows:

Z = Y + c · (V − E [V ])

We deduce that:

E [Z] = E [Y + c · (V − E [V ])]
= E [Y ] + c · E [V − E [V ]]
= E [ϕ (X1, . . . , Xn)]

and:

var (Z) = var (Y + c · (V − E [V ]))
= var (Y ) + 2 · c · cov (Y, V ) + c2 · var (V )

It follows that:

var (Z) ≤ var (Y ) ⇔ 2 · c · cov (Y, V ) + c2 · var (V ) ≤ 0
⇒ c · cov (Y, V ) ≤ 0
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In order to obtain a lower variance, a necessary condition is that c and cov (Y, V ) have
opposite signs. The minimum is obtained when ∂c var (Z) = 0 or equivalently when:

c? = −cov (Y, V )
var (V ) = −β

The optimal value c? is then equal to the opposite of the beta of Y with respect to the
control variate V . In this case, we have:

Z = Y − cov (Y, V )
var (V ) · (V − E [V ])

and:

var (Z) = var (Y )− cov2 (Y, V )
var (V )

=
(
1− ρ2 〈Y, V 〉

)
· var (Y )

This implies that we have to choose a control variate V that is highly (positively or nega-
tively) correlated with Y in order to reduce the variance.

Example 154 We consider that X ∼ U[0,1] and ϕ (x) = ex. We would like to estimate:

I = E [ϕ (X)] =
∫ 1

0
ex dx

We set Y = eX and V = X. We know that E [V ] = 1/2 and var (V ) = 1/12. It follows that:

var (Y ) = E
[
Y 2]− E2 [Y ]

=
∫ 1

0
e2x dx−

(∫ 1

0
ex dx

)2

=
[
e2x

2

]1

0
−
(
e1 − e0)2

= 4e− e2 − 3
2

≈ 0.2420

and:

cov (Y, V ) = E [V Y ]− E [V ]E [Y ]

=
∫ 1

0
xex dx− 1

2
(
e1 − e0)

=
[
xex
]1

0
−
∫ 1

0
ex dx− 1

2
(
e1 − e0)

= 3− e
2

≈ 0.1409

If we consider the VC estimator Z defined by36:

Z = Y − cov (Y, V )
var (V ) · (V − E [V ])

= Y − (18− 6e) ·
(
V − 1

2

)
36We have β ≈ 1.6903.
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we obtain:

var (Z) = var (Y )− cov2 (Y, V )
var (V )

= 4e− e2 − 3
2 − 3 · (3− e)2

≈ 0.0039

We conclude that we have dramatically reduced the variance of the estimator, because we
have:

var
(
ÎCV

)
var
(
ÎMC

) = var (Z)
var (Y ) = 1.628%

FIGURE 13.38: Understanding the variance reduction in control variates

This example may be disturbing, because the variance reduction is huge. To understand
the mechanisms underlying control variates, we illustrate the previous example in Figure
13.38. For each variable, we have represented the relationship with respect to the random
variable X. We have Y = exp (X) and V = X. To maximize the dependence between Y
and the control variate, it is better to consider βV instead of V . However, the random
variable βV is not well located, because it does not fit well Y . This is not the case of
Ŷ = E [Y ]+β (V −E [V ]). Indeed, Ŷ is the conditional expectation of Y with respect to V :

E [Y | V ] = E [Y ] + β (V −E [V ])

This is the best linear estimator of Y . The residual U of the linear regression is then equal
to:

U = Y − Ŷ
= (Y − E [Y ])− β (V −E [V ])
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The CV estimator Z is a translation of the residual in order to satisfy E [Z] = E [Y ]:

Z = E [Y ] + U

= Y − β (V −E [V ])

By construction, the variance of the residual U is lower than the variance of the random
variable Y . We conclude that:

var (Z) = var (U) ≤ var (Y )

We can therefore obtain a large variance reduction if the following conditions are satisfied:

• the control variate V largely explains the random variable Y ;

• the relationship between Y and V is almost linear.

In the previous example, these conditions are largely satisfied and the residuals are very
small37.

Remark 165 In practice, we don’t know the optimal value c?. However, the previous frame-
work helps us to estimate it. Indeed, we have:

c? = −β̂

where β̂ is the OLS estimate associated to the linear regression model:

Ys = α+ βVs + us

Because Ys and Vs are the simulated values of Y and V , this implies that c? is calculated at
the final step of the Monte Carlo method.

We recall that the price of an arithmetic Asian call option is given by:

C = e−rTE
[(
S̄ −K

)+]
where K is the strike of the option and S̄ denotes the average of S (t) on a given number
of fixing dates38 {t1, . . . , tnF }:

S̄ = 1
nF

nF∑
m=1

S (tm)

We can estimate the option price using the Black-Scholes model. We can also reduce the
variance of the MC estimator by considering the following control variates:

1. the terminal value V1 = S (T ) of the underlying asset;

2. the average value V2 = S̄;

3. the discounted payoff of the call option V3 = e−rT (S (T )−K)+;

4. the discounted payoff of the geometric Asian call option V4 = e−rT
(
S̃ −K

)+ where:

S̃ =
(∏nF

m=1
S (tm)

)1/nF

37The variance of residuals represents 1.628% of the variance of Y .
38We have tnF = T .
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For these control variates, we know the expected value. In the first and second cases, we
have:

E [S (T )] = S0e
rT

and:

E
[
S̄
]

= S0

nF

nF∑
m=1

ertm

The expected value of the third control variate is the Black-Scholes formula of the European
call option. For the last control variate, we have:

S̃ =
(∏nF

m=1
S0e

(r− 1
2σ

2)tm+σW (tm)
)1/nF

= S0 · exp
((

r − 1
2σ

2
)
t̄+ σW̄

)
where:

t̄ = 1
nF

∑nF

m=1
tm

and:
W̄ = 1

nF

∑nF

m=1
W (tm)

Because S̃ has a log-normal distribution, we deduce that the expected value of the fourth
control variate is also given by a Black-Scholes formula39. We consider the following param-
eters S0 = 100, K = 104, r = 5%, σ = 20% and T = 5. The fixing dates of the Asian option
are t1 = 1, t2 = 2, t3 = 3, t4 = 4 and t5 = 5. In top panels in Figure 13.39, we report the
probability density function of the MC estimator ĈMC and the CV estimator ĈCV when the
number of simulations is equal to 1 000. The variance ratio var

(
ĈCV

)
/ var

(
ĈMC

)
is respec-

tively equal to 22.6% for V1 = S (T ), 9.4% for V2 = S̄, 19.5% for V3 = e−rT (S (T )−K)+

and 0.5% for V4 = e−rT
(
S̃ −K

)+. In bottom panels in Figure 13.39, we also show the
relationship between the simulated value Y = e−rT

(
S̄ −K

)+ and the control variates V1
and V4. We verify that the linear regression produces lower residuals for V4 than for V1.

39We have:
E
[
ln S̃
]

= lnS0 +
(
r −

1
2
σ2
)
t̄

and:
var
(
ln S̃
)

= σ2υ

where:

υ = var
( 1
nF

∑nF

m=1
W (tm)

)
=

1
n2
F

E
[∑nF

m=1
W 2 (tm) + 2

∑
m′>m

W (tm′ )W (tm)
]

=
1
n2
F

(∑nF

m=1
tm + 2

∑nF

m=1
(nF −m) tm

)
We deduce that:

E
[
e−rT

(
S̃ −K

)+]
= S0e

γ−rTΦ
(
d+ σ

√
υ
)
−Ke−rTΦ (d)

where:
d =

1
σ
√
υ

(
ln
S0

K
+
(
r −

1
2
σ2
)
t̄

)
and:

γ = rt̄+
1
2
σ2 (υ − t̄)
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FIGURE 13.39: CV estimator of the arithmetic Asian call option

The previous approach can be extended in the case of several control variates:

Z = Y +
nCV∑
i=1

ci · (Vi − E [Vi])

= Y + c> (V − E [V ])

where c = (c1, . . . , cnCV ) and V = (V1, . . . , VnCV ). We can show that the optimal value of c
is equal to:

c? = − cov (V, V )−1 · cov (V, Y )

By noting that minimizing the variance of Z is equivalent to minimize the variance of U
where:

U = Y − Ŷ
= Y −

(
α+ β>V

)
we deduce that c? = −β. It follows that

var (Z) = var (U)
=

(
1−R2) · var (Y )

where R2 is the R-squared coefficient of the linear regression Y = α+ β>V + U .
Let us consider the previous example of the arithmetic Asian call option. In Table 13.5,

we give the results of the linear regression by considering the combination of the four
control variates. Previously, we found that the variance ratio was equal to 9.4% for the
second control variate. If we combine the first three variates, this ratio becomes 3.5%. With
the four control variates, the variance of the Monte Carlo estimator is divided by a factor
of 500!
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TABLE 13.5: Linear regression between the Asian call option and the control variates

α̂ β̂1 β̂2 β̂3 β̂4 R2 1−R2

−51.482 0.036 0.538 90.7% 9.3%
−24.025 −0.346 0.595 0.548 96.5% 3.5%
−4.141 0.069 0.410 81.1% 18.9%
−38.727 0.428 0.174 92.9% 7.1%
−1.559 −0.040 0.054 0.111 0.905 99.8% 0.2%

Remark 166 The reader may consult the book of Lamberton and Lapeyre (2007) for other
examples of control variates in option pricing. In particular, they show how to use the put-
call parity formula for reducing the volatility by noting that the variance of put options are
generally smaller than the variance of call options.

13.3.2.3 Importance sampling

Let X = (X1, . . . , Xn) be a random vector with distribution function F. We have:

I = E [ϕ (X1, . . . , Xn) | F]

=
∫
· · ·
∫
ϕ (x1, . . . , xn) f (x1, . . . , xn) dx1 · · · dxn

where f (x1, . . . , xn) is the probability density function of X. It follows that:

I =
∫
· · ·
∫ (

ϕ (x1, . . . , xn) f (x1, . . . , xn)
g (x1, . . . , xn)

)
g (x1, . . . , xn) dx1 · · · dxn

= E
[
ϕ (X1, . . . , Xn) f (X1, . . . , Xn)

g (X1, . . . , Xn)

∣∣∣∣G]
= E [ϕ (X1, . . . , Xn)L (X1, . . . , Xn) | G] (13.9)

where g (x1, . . . , xn) is the probability density function of G and L is the likelihood ratio:

L (x1, . . . , xn) = f (x1, . . . , xn)
g (x1, . . . , xn)

The values taken by L (x1, . . . , xn) are also called the importance sampling weights. Using
the vector notation, the relationship (13.9) becomes:

E [ϕ (X) | F] = E [ϕ (X)L (X) | G]

It follows that:
E
[
ÎMC

]
= E

[
ÎIS

]
= I

where ÎMC and ÎIS are the Monte Carlo and importance sampling estimators of I. We also
deduce that40:

var
(
ÎIS

)
= var (ϕ (X)L (X) | G)

40Recall that we use the vector notation, meaning that x = (x1, . . . , xn).
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It follows that:

var
(
ÎIS

)
= E

[
ϕ2 (X)L2 (X) | G

]
− E2 [ϕ (X)L (X) | G]

=
∫
ϕ2 (x)L2 (x) g (x) dx− I2

=
∫
ϕ2 (x) f

2 (x)
g2 (x) g (x) dx− I2

=
∫
ϕ2 (x) f

2 (x)
g (x) dx− I2 (13.10)

If we compare the variance of the two estimators ÎMC and ÎIS, we obtain:

var
(
ÎIS

)
− var

(
ÎMC

)
=

∫
ϕ2 (x) f

2 (x)
g (x) dx−

∫
ϕ2 (x) f (x) dx

=
∫
ϕ2 (x)

(
f (x)
g (x) − 1

)
f (x) dx

=
∫
ϕ2 (x) (L (x)− 1) f (x) dx

The difference may be negative if the weights L (x) are small (L (x) � 1) because the
values of ϕ2 (x) f (x) are positive. The importance sampling approach changes then the
importance of some values x by transforming the original probability distribution F into
another probability distribution G. Equation (13.10) is also interesting because it gives us
some insights about the optimal IS distribution41:

g? (x) = arg min var
(
ÎIS

)
= arg min

∫
ϕ2 (x) f

2 (x)
g (x) dx

= c · |ϕ (x)| · f (x)

where c is the normalizing constant such that
∫
g? (x) dx = 1. A good choice of the IS density

g (x) is then an approximation of |ϕ (x)| · f (x) such that g (x) can easily be simulated.

Remark 167 In order to simplify the notation and avoid confusions, we consider that
X ∼ F and Z ∼ G in the sequel. This means that ÎMC = ϕ (X) and ÎIS = ϕ (Z)L (Z).

We consider the estimation of the probability p = Pr {X ≥ 3} when X ∼ N (0, 1). We
have:

ϕ (x) = 1 {x ≥ 3}
Because the probability p is low (Pr {X ≥ 3} ≈ 0.1350%), the MC estimator will not be
efficient. Indeed, it will be rare to simulate a random variate greater than 3. To reduce the
variance of the MC estimator, we can use important sampling with Z ∼ N

(
µz, σ

2
z

)
. For

µz = 3 and σz = 1, we report in Figure 13.40 the histogram of the estimators42 p̂MC and

41The first-order condition is:
−ϕ2 (x) ·

f2 (x)
g2 (x)

= λ

where λ is a constant.
42We have:

p̂MC =
1
nS

nS∑
s=1

1 {Xs ≥ 3}
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FIGURE 13.40: Histogram of the MC and IS estimators (nS = 1 000)

p̂IS when the number of simulations is equal to 1 000. It is obvious that the IS estimator is
better than the MC estimator. To explain that, we report the probability density function
of X and Z in the top/left panel in Figure 13.40. Whereas Pr {X ≥ 3} is close to zero, the
probability Pr {Z ≥ 3} is equal to 50%. Therefore, it is easier to simulate Z ≥ 3, but we
have to apply a correction to obtain the right probability. This correction is given by the
likelihood ratio, which is represented in the top/right panel. In Figure 13.41, we show the
standard deviation σ (p̂IS) for different values of µz and σz. When σz = 1 and µz ∈ [0, 5], it
is lower than the standard deviation of p̂MC. For µz = 3, the variance ratio is approximately
equal to 1% meaning that the variance of p̂MC is divided by a factor of 100. We also notice
that we reduce the variance by using a higher value of σz. In fact, we can anticipate that
the IS estimator is more efficient than the MC estimator if the following condition holds:

Pr {Z ≥ 3} ≥ Pr {X ≥ 3}

The calculation of the optimal values of µz and σz is derived in Exercise 13.4.9 on page 891.

and:

p̂IS =
1
nS

nS∑
s=1

1 {Zs ≥ 3} · L (Zs)

where:

L (z) = σz exp
(

1
2

(
z − µz
σz

)2
−

1
2
z2
)
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FIGURE 13.41: Standard deviation (in %) of the estimator p̂IS (nS = 1 000)

Remark 168 The previous example is an illustration of rare event simulation. This is
why importance sampling is related to the theory of large deviations. Many results of this
statistical field (Cramer’s theorem, Berry-Esseen bounds) are then obtained using the same
approach than the importance sampling method.

We consider the pricing of the put option:

P = e−rTE
[
(K − S (T ))+

]
We can estimate the option price by using the Monte Carlo method with:

ϕ (x) = e−rT (K − x)+

In the case where K � S (0), the probability of exercise Pr {S (T ) ≤ K} is very small.
Therefore, we have to increase the probability of exercise in order to obtain a more efficient
estimator. In the case of the Black-Scholes model, the density function of S (T ) is equal to:

f (x) = 1
xσx

φ

(
ln x− µx

σx

)
where µx = lnS0 +

(
r − σ2/2

)
T and σx = σ

√
T . Using the same approach than previously,

we consider the IS density g (x) defined by:

g (x) = 1
xσz

φ

(
ln x− µz

σz

)



860 Handbook of Financial Risk Management

where µz = θ+ µx and σz = σx. For instance, we can choose θ such that the probability of
exercise is equal to 50%. It follows that:

Pr {Z ≤ K} = 1
2 ⇔ Φ

(
lnK − θ − µx

σx

)
= 1

2
⇔ θ = lnK − µx

⇔ θ = ln K

S0
−
(
r − 1

2σ
2
)
T

We deduce that:

P = E [ϕ (S (T ))]
= E [ϕ (S′ (T )) · L (S′ (T ))]

where:

L (x) =

1
xσx

φ

(
ln x− µx

σx

)
1
xσz

φ

(
ln x− µz

σz

)
= exp

(
θ2

2σ2
x

−
(

ln x− µx
σx

)
· θ
σx

)
and S′ (T ) is the same geometric Brownian motion than S (T ), but with another initial
value:

S′ (0) = S (0) eθ = Ke−(r−σ2/2)T

Example 155 We assume that S0 = 100, K = 60, r = 5%, σ = 20% and T = 2. If we
consider the previous method, the IS process is simulated using the initial value S′ (0) =
Ke−(r−σ2/2)T = 56.506, whereas the value of θ is equal to −0.5708. In Figure 13.42, we
report the density function of the estimators P̂MC and P̂IS when the number of simulations
is equal to 1 000. For this example, the variance ratio is equal to 1.77%, meaning that the
IS method has reduced the variance of the MC estimator by a factor greater than 50. If
we use another IS scheme with S′ (0) = 80, the reduction is less important, but remains
significant43.

13.3.2.4 Other methods

We mention two other methods, which are less used in risk management than the pre-
vious methods, but may be very efficient for some financial problems. The first method
is known as the conditional Monte Carlo method. Recall that I = E [Y ] where Y =
ϕ (X1, . . . , Xn). Let Z be a random vector and V = E [Y | Z] be the conditional expec-
tation of Y with respect to Z. It follows that:

E [V ] =
∫
E [Y | Z] fz (z) dz

= E [Y ]
= I

43The variance ratio is equal to 13.59%.
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FIGURE 13.42: Density function of the estimators P̂MC and P̂IS (nS = 1 000)

where fz is the probability density function of Z. Recall that:

var (Y ) = E [var (Y | Z)] + var (E [Y | Z])

We deduce that:

var (V ) = var (E [Y | Z])
= var (Y )− E [var (Y | Z)]
≤ var (Y )

because var (Y | Z) ≥ 0 implies that E [var (Y | Z)] ≥ 0. The idea of the conditional Monte
Carlo method is then simulating V instead of Y in order to reduce the variance. For that,
we have to find Z such that E [Y | Z] can easily be sampled. It can be the case with some
stochastic volatility models.

Example 156 Let X = (X1, X2) be a standardized Gaussian random vector with correla-
tion ρ. We want to calculate p = Pr {X1 ≤ aX2 + b}. We have:

Y = ϕ (X1, X2)
= 1 {X1 ≤ aX2 + b}

and:

p̂MC = 1
nS

nS∑
s=1

1 {X1,s ≤ aX2,s + b}

If we consider Z = X2, we obtain:

V = E [Y | Z]
= E [1 {X1 ≤ aX2 + b} | X2 = x2]



862 Handbook of Financial Risk Management

Because we have X2 = ρX1 +
√

1− ρ2X3 where X3 ∼ N (0, 1) is independent from X1, we
deduce that:

V = E
[
1
{
X1 ≤ a

(
ρX1 +

√
1− ρ2X3

)
+ b
}
| X3 = x3

]
= Φ

(
a
√

1− ρ2x3 + b

1− aρ

)

The conditional Monte Carlo (CMC) estimator is then equal to44:

p̂CMC = 1
nS

nS∑
s=1

Φ
(
a
√

1− ρ2X3,s + b

1− aρ

)
where X3,s ∼ N (0, 1). In Table 13.6, we report the variance ratio between the CMC and MC
estimators when a is equal to 1. We verify that the CMC estimator is particularly efficient
when ρ is negative. For instance, the variance is divided by a factor of 70 when ρ is equal
to −90% and b is equal to 3.0.

TABLE 13.6: Variance ratio (in %) when a = 1

b
Correlation ρ (in %)

−90.0 −75.0 −50.0 −25.0 0.0 25.0 50.0 75.0 90.0
0.0 3.2 8.0 16.1 24.5 33.3 43.0 54.0 67.8 79.8
1.0 2.9 7.3 14.8 22.5 30.6 39.3 48.9 60.0 67.6
2.0 2.2 5.6 11.3 17.2 23.3 29.6 35.9 41.9 48.8
3.0 1.4 3.4 7.0 10.7 14.4 18.1 21.4 24.6

The second method is the stratified sampling. Recall that X ∈ Ω. Let {Ωj , j = 1, . . . ,m}
be a partition45 of Ω. We have:

I = E [ϕ (X)]

=
∫

Ω
ϕ (x) f (x) dx

=
m∑
j=1

∫
Ωj
ϕ (x) f (x) dx

=
m∑
j=1

E [1 {X ∈ Ωj} · ϕ (X)]

=
m∑
j=1

Pr {X ∈ Ωj} · E [ϕ (X) | X ∈ Ωj ]

We introduce the index random variable B:

B = j ⇔ X ∈ Ωj
44If aρ = 1, we have:

p̂CMC =
1
nS

nS∑
s=1

1

{
a
√

1− ρ2X3,s + b ≥ 0
}

= p̂MC

45This means that Ωj
⋂

Ωk = ∅ and
⋃m

j=1 Ωj = Ω.
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We note p (j) = Pr {B = j} = Pr {X ∈ Ωj} and X (j) the random vector, whose probability
distribution is the conditional law of X | X ∈ Ωj . It follows that:

I =
m∑
j=1

p (j) · E [ϕ (X (j))]

=
m∑
j=1

p (j) · I (j)

where I (j) = E [ϕ (X (j))] = E [ϕ (X) | B = j]. We define the stratified sampling estimator
as follows:

ÎSTR =
m∑
j=1

p (j) · Ŷ (j)

where:

Ŷ (j) = 1
nS (j)

nS(j)∑
s=1

Ys (j) = 1
nS (j)

nS(j)∑
s=1

ϕ (Xs (j))

Recall that the MC estimator is equal to:

ÎMC = Ŷ

where:

Ŷ = 1
nS

nS∑
s=1

Ys = 1
nS

nS∑
s=1

ϕ (Xs)

The MC estimator can be viewed as a stratified sampling estimator with only one stratum:
Ω1 = Ω. On the contrary, the STR estimator depends on the number m of strata and the
distribution of strata.

Like the MC estimator, it is easy to show that the stratified sampling estimator is
unbiased46:

E
[
ÎSTR

]
= I

We introduce the following notations.

1. the conditional expectation µ (j) is defined as:

µ (j) = E [ϕ (X (j))] = E [ϕ (X) | B = j]

2. the conditional variance σ2 (j) is equal to:

σ2 (j) = var (ϕ (X (j))) = var (ϕ (X) | B = j)

Using the conditional independence of the random variables X (j), it follows that:

var
(
ÎSTR

)
=

m∑
j=1

p2 (j) · σ2 (j)
nS (j) (13.11)

and:

var
(
ÎMC

)
= 1
nS

 m∑
j=1

p (j) · σ2 (j) +
m∑
j=1

p (j) · (µ (j)− µ̄)2

 (13.12)

46We assume that nS (j) 6= 0.
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where:

µ̄ =
m∑
j=1

p (j) · µ (j)

Using Equations (13.11) and (13.12), it is not possible to compare directly the variance
of the two estimators because the stratified sampling estimator depends on the allocation
(nS (1) , . . . , nS (m)). Therefore, we can have var

(
ÎSTR

)
< var

(
ÎMC

)
or var

(
ÎSTR

)
>

var
(
ÎMC

)
. However, for many allocation schemes, the stratified sampling approach is an

efficient method to reduce the variance of the MC estimator.
To illustrate the interest of the stratified sampling approach, we consider the propor-

tional allocation:
nS (j) = nS · p (j)

It follows that:

var
(
ÎSTR

)
= 1
nS

m∑
j=1

p (j) · σ2 (j)

and:

var
(
ÎMC

)
= 1

nS

m∑
j=1

p (j) · σ2 (j) + 1
nS

m∑
j=1

p (j) · (µ (j)− µ̄)2

= var
(
ÎSTR

)
+ 1
nS

m∑
j=1

p (j) · (µ (j)− µ̄)2

≥ var
(
ÎSTR

)
Therefore, the stratified sampling estimator has a lower variance than the Monte Carlo
estimator. In this case, we notice that:

var
(
ÎSTR

)
= 1
nS
· E [varϕ (X) | B]

and:
var
(
ÎMC

)
= 1
nS
· E [varϕ (X) | B]︸ ︷︷ ︸
intra-strata variance

+ 1
nS
· var (E [ϕ (X) | B])︸ ︷︷ ︸

inter-strata variance

The stratified sampling approach with a proportional allocation consists of removing the
inter-strata variance in order to keep only the intra-strata variance. This result gives some
ideas about the optimal strata. Indeed, the variance reduction is high if the intra-strata
variance is low.

We now consider that the strata are given. We write the allocation as follows:

nS (j) = nS · q (j)

where the q (j)’s are arbitrary frequencies such that
∑m
j=1 q (j) = 1. To find the optimal

allocation q?, we have to solve the following variance minimization problem:

q? = arg min var
(
ÎSTR

)
subject to the constraint

∑m
j=1 q (j) = 1. It follows that the Lagrange function is equal to:

L (q;λ) = 1
nS

m∑
j=1

p2 (j) · σ2 (j)
q (j) + λ

 m∑
j=1

q (j)− 1
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We deduce that the optimal allocation is47:

q? (j) = p (j) · σ (j)∑m
j=1 p (j) · σ (j)

In this case, we obtain:

var
(
ÎSTR

)
= 1

nS

m∑
j=1

p2 (j) · σ2 (j)
q? (j)

= 1
nS

 m∑
j=1

p (j) · σ (j)

2

Example 157 We have I =
∫ 1

0 ϕ (x) dx = E [ϕ (X)] where X ∼ U[0,1]. We consider the
following cases for the function ϕ (x):

1. ϕ (x) = x

2. ϕ (x) = x2

3. ϕ (x) = (1 + cos (πx)) /2

These three functions are reported in Figure 13.43. In Table 13.7, we give the exact value
of I and the variance of the estimators. For the MC estimator and the function ϕ (x) = x,
we verify that:

nS · var
(
ÎMC

)
= var

(
U[0,1]

)
= 1

12
For the STR estimator, we consider fixed-space strata X (j) ∈

[
j−1
m , jm

]
implying that p (j) =

1/m. We can then simulate the conditional random variable X (j) by using the following
transformation:

X (j) = j − 1
m

+ U

m

where U ∼ U[0,1]. In Table 13.7, we report nS · var
(
ÎSTR

)
when m is equal to 10. We

notice that the variance is approximately divided by 100 when we consider the proportional
allocation q (j) = p (j). To understand this result, we consider the function ϕ (x) = x. In
this case, the variance of the stratum j is equal to48:

σ2 (j) = E
[
X2 (j)

]
− E2 [X (j)]

=
∫ j

m

j−1
m

mx2 dx−
(∫ j

m

j−1
m

mxdx
)2

=
[
m · x

3

3

] j
m

j−1
m

−

([
m · x

2

2

] j
m

j−1
m

)2

47The first-order condition is:
∂ L (q;λ)
∂ q (j)

= −
1
nS
·
p2 (j) · σ2 (j)

q2 (j)
+ λ = 0

implying that the ratio
p (j) · σ (j)

q (j)
is constant.

48The density function of X (j) is f (x) = m.
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We deduce that:

σ2 (j) = 1
3m2

(
j3 − (j − 1)3

)
− 1

4m2 (2j − 1)2

= 1
12m2

This implies that the variance of strata is equal to the variance of the uniform random
variable divided by a factor of m2. These intra-strata variances are given in Figure 13.44.
For the function ϕ (x) = x2, the variance of strata increases with the index j. This is
normal if we consider the graphic representation of the function ϕ (x) in Figure 13.43.
Indeed, the curvature of ϕ (x) implies that there is more variance when x increases. We
have also calculated the variance of the STR estimator when we use the optimal allocation
q?, which is reported in Figure 13.45. In this case, we allocate a more important number
of simulations for strata that present more variance. This is perfectly normal, because these
strata are more difficult to simulate than strata with low variance. However, the gain of the
optimal allocation is not very significant with respect to the proportional allocation.

FIGURE 13.43: Function ψ (x)

In the case of the uniform distribution U[0,1], we have used fixed-space strata X (j) ∈[
j−1
m , jm

]
, implying that the probability p (j) is equal for all the strata. This is the most

popular method for defining strata. In the case of a general probability distribution F, we
define the conditional random variable X (j) as follows:

X (j) = F−1
(
j − 1
m

+ U

m

)
(13.13)
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TABLE 13.7: Comparison between MC and STR estimators
ϕ (x) x x2 (1 + cos (πx)) /2

I 0.50000 0.33333 0.50000
nS var

(
ÎMC

)
0.08333 0.08890 0.12501

nS var
(
ÎSTR

)
p (j) 0.00083 0.00113 0.00105

nS var
(
ÎSTR

)
q? (j) 0.00083 0.00083 0.00084

FIGURE 13.44: Intra-strata variance σ2 (j) (in bps)

where U is a standard uniform random variate. We deduce that X (j) ∈
[
F−1 ( j−1

m

)
,

F−1 ( j
m

)]
and:

p (j) = Pr
{
X ∈

[
F−1

(
j − 1
m

)
,F−1

(
j

m

)]}
= F

(
F−1

(
j

m

))
− F

(
F−1

(
j − 1
m

))
= 1

m

In Figure 13.46, we have reported the strata defined by Equation (13.13) for different prob-
ability distribution when m is equal to 10.

The previous method consists in defining strata in order to obtain equal probabilities
p (j). It can be very different than the optimal method, whose objective is to define strata
such that the intra-strata variances σ (j) are close to zero. In order to illustrate the two
approaches, we consider the pricing of an European call option in the Black-Scholes model.
Recall that the price of the call option is equal to:

C = e−rTE
[
max

(
0, S0e

(r− 1
2σ

2)T+σ
√
TX −K

)]
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FIGURE 13.45: Optimal allocation q? (j) (in %)

FIGURE 13.46: Strata for different random variables
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where X ∼ N (0, 1). Let us apply the stratification method with strata defined by Equation
(13.13). We have:

X (j) = Φ−1
(
j − 1
m

+ U

m

)
where U ∼ U[0,1]. We deduce that:

Î
(1)
STR (m) = e−rT

m

m∑
j=1

1
nS (j)

ns(j)∑
s=1

max
(

0, S0e
(r− 1

2σ
2)T+σ

√
TXs(j) −K

)
However, we notice that max (0, S (T )−K) is equal to zero if:

S0e
(r− 1

2σ
2)T+σ

√
TX −K ≤ 0

⇔ X ≤ x1 = 1
σ
√
T

(
ln
(
K

S0

)
− rT

)
+ 1

2σ
√
T

It is then natural to define the first stratum by ]−∞, x1]. Indeed, we have ϕ (X (1)) = 0,
implying that the intra-strata variance σ (1) is equal to zero. For the other strata, we can
use the previous approach. For j ≥ 2, we have:

p (j) = Pr {X ≤ xj} − Pr {X ≤ xj−1} = 1− p (1)
m− 1

We deduce that:
Pr {X ≤ xj} = p (1) + j − 1

m− 1 · (1− p (1))

and:
xj = Φ−1

(
p (1) + j − 1

m− 1 · (1− p (1))
)

The jth stratum is then defined by X ∈ [xj−1, xj ] with x0 = −∞, xm = +∞ and:

p (j) =

 p (1) if j = 1
1− p (1)
m− 1 if j ≥ 2

To simulate the conditional random variable X (j) for j ≥ 2, we use the following scheme:

X (j) = Φ−1 (Φ (xj−1) + (Φ (xj)− Φ (xj−1)) · U)

where U ∼ U[0,1]. We deduce that:

Î
(2)
STR (m) =

(
1− p (1)
m− 1

)
e−rT

m∑
j=2

1
nS (j)

ns(j)∑
s=1

(
S0e

(r− 1
2σ

2)T+σ
√
TXs(j) −K

)
In the case of proportional allocation nS (j) = nS · p (j), we notice that the total number of
simulations is reduced and equal to (1− p (1)) · nS because we don’t have to simulate the
first stratum.

We consider an European call option with the following parameters: S0 = 100, K = 105,
σ = 20%, τ = 1 and r = 5%. In Figure 13.47, we have reported the variance of the two
stratified estimators for different values of m when the number of simulations nS is equal
to 10 000. In the case m = 1, we obtain the traditional MC estimator and we have:

var
(
Î

(2)
STR (1)

)
= var

(
Î

(1)
STR (1)

)
= var

(
ÎMC

)
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When m > 1, we obtain:

var
(
Î

(2)
STR (m)

)
< var

(
Î

(1)
STR (m)

)
< var

(
ÎMC

)
The second stratified estimator is then more efficient than the first stratified estimator,
because the design of the first stratum is optimal49.

FIGURE 13.47: Variance of the two estimators Î(1)
STR (m) and Î(2)

STR (m) for different values
of m

13.3.3 MCMC methods
Let us consider a Markov chain with transition density p

(
x(t+1) | x(t)) =

Pr
{
X(t+1) = x(t+1) | X(t) = x(t)}. We also assume that it has a stationary distribution

π (x). In this case, we can show that the Markov chain satisfies the detailed balance equa-
tion50:

p (y | x) · π (x) = p (x | y) · π (y) (13.14)

It follows that: ∫
p (x | y)π (y) dy =

∫
p (y | x)π (x) dy = π (x) (13.15)

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for simulating
a sample from a probability density function f (x). The underlying idea is to simulate a
Markov chain, whose limiting pdf is the desired pdf f (x). It is then equivalent to find the

49We have x1 = 0.093951 and p1 = 53.74%.
50In the discrete case, we have:

pi,j · πi = pj,i · πj
for all the states (i, j) of the Markov chain.



Monte Carlo Simulation Methods 871

transition kernel κ
(
x(t+1) | x(t)) such that the detailed balance property is satisfied:

κ (y | x) · f (x) = κ (x | y) · f (y) (13.16)

In this case, MCMC methods then generate a sample such that:

lim
t→∞

Pr
{
X(t) = x

}
= f (x)

Because the solution of Equation (13.16) is not unique, there are different MCMC methods
that will differ by the specification of the transition kernel κ (y | x).

13.3.3.1 Gibbs sampling

According to Casella and George (1992), the Gibbs sampler has been formulated by Ge-
man and Geman (1984), who studied image-processing models, and popularized in statistics
by Gelfand and Smith (1990). Let f (x1, . . . , xn) be the target probability density function
and f (xi | x1, . . . , xi−1, xi+1, . . . , xn) the conditional density of the ith component of the
random vector X = (X1, . . . , Xn). At iteration t, the Gibbs sampler (GS) is given by the
following steps:

• we draw x
(t)
1 ∼ f

(
x1 | x(t−1)

2 , . . . , x
(t−1)
n

)
;

• we draw x
(t)
2 ∼ f

(
x2 | x(t)

1 , x
(t−1)
3 , . . . , x

(t−1)
n

)
;

• we draw x
(t)
3 ∼ f

(
x3 | x(t)

1 , x
(t)
2 , x

(t−1)
4 , . . . , x

(t−1)
n

)
;

• we draw

x
(t)
i ∼ f

xi | x(t)
1 , . . . , x

(t)
i−1︸ ︷︷ ︸

iteration t

, x
(t−1)
i+1 , . . . , x(t−1)

n︸ ︷︷ ︸
iteration t−1


for i = 4, . . . , n− 1;

• we draw x
(t)
n ∼ f

(
xn | x(t)

1 , . . . , x
(t)
n−1

)
;

The algorithm is initialized with
(
x

(0)
1 , . . . , x

(0)
n

)
. After t iterations, we obtain the following

Gibbs sequence: {(
x

(1)
1 , . . . , x(1)

n

)
, . . . ,

(
x

(t)
1 , . . . , x(t)

n

)}
(13.17)

Under some conditions and if t is sufficiently large,
(
x

(t)
1 , . . . , x

(t)
n

)
is a random sample of

the joint distribution f (x1, . . . , xn). To obtain nS simulations of the density f (x1, . . . , xn),
Gelfand and Smith (1990) suggested then to generate nS Gibbs sequences and to take
the final value

(
x

(t)
1,s, . . . , x

(t)
n,s

)
from each sequence s. The Monte Carlo estimator of

E [ϕ (X1, . . . , Xn)] is then equal to:

ÎnS = 1
nS

nS∑
s=1

ϕ
(
X

(t)
1,s, . . . , X

(t)
n,s

)
(13.18)

However, if the Markov chain has reached his stationary state at time nb, this implies that
the Gibbs sequence:{(

x
(nb+1)
1 , . . . , x(nb+1)

n

)
, . . . ,

(
x

(nb+nS)
1 , . . . , x(nb+nS)

n

)}
(13.19)
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is also a Gibbs sample of the density f (x1, . . . , xn). We can then formulate another MC
estimator51:

ÎnS = 1
nS

nS∑
t=1

ϕ
(
X

(nb+t)
1 , . . . , X(nb+t)

n

)
(13.20)

However, contrary to the Gelfand-Smith approach, the random vectors of this estimator are
correlated. Therefore, the variance of this estimator is larger than in the independent case.

Let us consider the two-dimensional case. We note (X,Y ) the random vector and f (x, y)
the targeted distribution. At time t, we have X(t) = x and Y (t) = y, and we assume that
X(t+1) = x′ and Y (t+1) = y′. If (x, y) ∼ f , the density g (x′, y′) of the Gibbs sample is equal
to52:

g (x′, y′) =
∫
f (x, y) f (x′ | y) f (y′ | x′) dx dy

=
∫
f (x, y) f (x′, y)

fy (y)
f (y′, x′)
fx (x′) dx dy

where fx and fy are the marginal densities of the joint distribution f (x, y). It follows that:

g (x′, y′) =
∫
f (x, y)
fy (y)

f (x′, y)
fx (x′) f (y′, x′) dx dy

=
∫
f (x | y) f (y | x′) f (y′, x′) dx dy

= f (y′, x′)
∫
f (x | y) f (y | x′) dx dy

Because the events {X | Y = y} and {Y | X = x′} are independent, we obtain:

g (x′, y′) = f (y′, x′)
∫
f (x | y) dx

∫
f (y | x′) dy

= f (y′, x′)

We deduce that (x′, y′) ∼ f . If the Gibbs sampler reaches a stationary regime, it then
converges to the targeted distribution f (x, y).

Remark 169 In the two dimensional case, we notice that the proposal kernel is equal to:

κ (x′, y′ | x, y) ∝ f (x′ | y) · f (y′ | x′)

In the general case, we have:

κ (y | x) ∝
n∏
i=1

f (yi | y1, . . . , yi−1, xi+1, . . . , xn)

Example 158 Casella and George (1992) consider the following joint distribution of X
and Y :

f (x, y) ∝
(
n

x

)
yx+α−1 (1− y)n−x+β−1

51This approach requires a burn-in period, meaning that an initial number of samples is discarded.
However, it is not always obvious to know when the Markov chain has converged.

52We have the following sequences (x, y) → (x′, y) where x′ ∼ f (X | y) and (x′, y) → (x′, y′) where
y′ ∼ f (Y | x′).
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where x ∈ {0, 1, . . . , n} and y ∈ [0, 1]. It follows that:

f (x | y) ∝ yα−1 (1− y)β−1 ·
(
n

x

)
yx (1− y)n−x

∝
(
n

x

)
yx (1− y)n−x

∼ B (n, y)

and:

f (y | x) ∝
(
n

x

)
· yx+α−1 (1− y)n−x+β−1

∝ yx+α−1 (1− y)n−x+β−1

∼ B (x+ α, n− x+ β)

Therefore, {X | Y = y} is a Bernoulli random variable B (n, p) with p = y and {Y | X = x}
is a beta random variable B (α′, β′) with α′ = x + α and β′ = n − x + β. In Figure 13.48,
we have reported the Gibbs sequence of 1 000 iterations

(
x(t), y(t)) for the parameters n = 5,

α = 2 and β = 4. The initial values are x(0) = 5 and y(0) = 1/2. We assume that the
burn-in-period corresponds to the initial 200 iterations. We can then calculate I = E [X · Y ]
by Monte Carlo with the next 800 iterations. We obtain Î = 0.71. We can also show that the
variance of this MCMC estimator is three times larger than the variance of the traditional
MC estimator. This is due to the high autocorrelation between the samples53.

13.3.3.2 Metropolis-Hastings algorithm

Like the Gibbs sampler, the Metropolis-Hastings algorithm considers a multidimensional
probability density function f (x) = f (x1, . . . , xn). Let q (y | x) = q (y1, . . . , yn | x1, . . . , xn)
be the Markov transition density or the proposal density. The Metropolis-Hastings (MH)
algorithm consists in the following steps:

1. given the state x(t), we generate y ∼ q
(
Y | x(t)) from the Markov transition density;

2. we generate a uniform random number u ∼ U[0,1];

3. we calculate the density ratio r
(
x(t), y

)
defined by:

r (x, y) = q (x | y) · f (y)
q (y | x) · f (x)

and α
(
x(t), y

)
= min

(
r
(
x(t), y

)
, 1
)
;

4. we set:
x(t+1) =

{
y if u ≤ α

(
x(t), y

)
x(t) otherwise

The Metropolis-Hastings algorithm can be viewed as an acceptance-rejection algorithm,
when the samples are correlated due to the Markov chain (Hastings, 1970).

53We have:
ρ
〈
X(t) · Y (t), X(t−1) · Y (t−1)

〉
= 52%
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FIGURE 13.48: Illustration of the Gibbs sampler

The underlying idea of the MH algorithm is to build a kernel density κ (y | x) such that
the Markov chain converges to the targeted distribution f (x). In this case, we must verify
that:

κ (y | x) · f (x) = κ (x | y) · f (y)

It would be a pure coincidence that the kernel density κ (y | x) is equal to the proposal
density q (y | x). Suppose that:

q (y | x) · f (x) > q (x | y) · f (y)

Chib and Greenberg (1995) explain that “the process moves from x to y too often and
from y to x too rarely”. To reduce the number of moves from x to y, we can introduce the
probability α (x, y) < 1 such that α (y, x) = 1 and:

q (y | x) · α (x, y) · f (x) = q (x | y) · α (y, x) · f (y)
= q (x | y) · f (y)

where α (y, x) = 1. We deduce that:

α (x, y) = r (x, y) = q (x | y) · f (y)
q (y | x) · f (x)

If q (y | x) ·f (x) < q (x | y) ·f (y), we have q (y | x) ·f (x) = q (x | y) ·α (y, x) ·f (y). Because
the Markov chain must be reversible, we finally obtain that:

α (x, y) = min
(
q (x | y) · f (y)
q (y | x) · f (x) , 1

)
From the previous analysis, we deduce that the kernel density is κ (y | x) = q (y | x)α (x, y).
However, this result does not take into account that the Markov chain can remain at x.
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Therefore, Chib and Greenberg (1995) show that the kernel density of the MH algorithm
has the following form:

κ (y | x) = q (y | x)α (x, y) +(
1−

∫
q (y | x)α (x, y) dy

)
δx (y)

where δx (y) is the Dirac delta function.

Remark 170 The previous analysis shows that α (x, y) is the probability to move from x
to y. α (x, y) is then the acceptance ratio of the MH algorithm. Contrary to the rejection
sampling algorithm, the efficiency of the MH algorithm is not necessarily obtained when
α (x, y) is equal to 1. Indeed, there are two sources of correlation between x(t) and x(t+1):
(1) the correlation ρ

(
x(t), y

)
between x(t) and y, and (2) the correlation ρ

(
x(t), x(t)) be-

cause y is rejected. Therefore, we face a trade-off between reducing the correlation ρ
(
x(t), y

)
and increasing the acceptance ratio α

(
x(t), y

)
. Suppose for instance that we use a proposal

distribution with small variance, the correlation ρ
(
x(t), y

)
is high, but the acceptance ratio

α
(
x(t), y

)
is high. On the contrary, if we use a proposal distribution with small variance,

the correlation ρ
(
x(t), y

)
is low, but the acceptance ratio α

(
x(t), y

)
is also low. Therefore,

it is extremely difficult to find a proposal distribution such that the correlation ρ
(
x(t), y

)
is

low and the acceptance ratio α
(
x(t), y

)
is high.

In the original Metropolis algorithm (Metropolis et al., 1953), the authors assumed that
the proposal distribution is symmetric: q (y | x) = q (x | y). In this case, the acceptance
ratio is equal to:

α (x, y) = min
(
f (y)
f (x) , 1

)
An example of such algorithm is the random walk sampler:

Y = x(t) + Z

where the random vector Z follows a symmetric distribution. Another special case of the
Metropolis-Hastings algorithm is the independence sampler: q (y | x) = q (y). The proposal
distribution does not depend on x and the acceptance ratio becomes:

α (x, y) = min
(
q (x) · f (y)
q (y) · f (x) , 1

)
The MH algorithm is then very similar to the rejection sampling method, except that it
produces correlated samples. We also notice that the Gibbs sampler is a special case of the
MH algorithm where54:

q (y | x) ∼ f (xi | x−i)

Example 159 We consider the simulation of the bivariate Gaussian random vector X =
(X1, X2) ∼ N (µ,Σ) with the Metropolis-Hastings algorithm and a symmetric proposal dis-
tribution. It follows that:

α (x, y) = min

 exp
(
− 1

2 (y − µ)>Σ−1 (y − µ)
)

exp
(
− 1

2 (x− µ)>Σ−1 (x− µ)
) , 1


54At each iteration, we have yi ∼ f (xi | x−i), yj = xj if j 6= i, and α (x, y) = 1.
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The parameters are µ1 = 1, µ2 = −1, σ1 = 2, σ2 = 1 and ρ = 99%. We use the random
walk sampler Yi = x

(t)
i + Zi for i = 1, 2. The random vector (Z1, Z2) is generated using the

following four proposal distributions:

(a) Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1);

(b) Z1 ∼ N (0, 0.1) and Z2 ∼ N (0, 0.1);

(c) Z1 ∼ U[−2,2] and Z2 ∼ U[−2,2];

(d) Z1 ∼ U[−0.2,0.2] and Z2 ∼ U[−0.2,0.2].

In Figure 13.49, we have reported the simulated samples of the first 2 000 iterations for the
four cases when we use a burn-in-period of 500 iterations. The sampler is initialized with
x

(0)
1 = x

(0)
2 = 0. The acceptance ratio is respectively equal to 15% (a), 43% (b), 10% (c)

and 72% (d). The acceptance ratio is the highest for the case (d). However, we notice that
this proposal distribution is slow to explore the entire space. To obtain a sample such that
x

(t)
1 > 3 and x

(t)
2 > 0, we need more iterations (nS > 5000). On the contrary, proposal

distributions (a) and (c) have a high variance. The exploration of the probability space is
then faster, but the acceptance ratio is also lower. This example illustrates the trade-off
between the autocorrelation and the acceptance ratio.

FIGURE 13.49: Illustration of the random walk sampler

The previous example is purely illustrative, because we don’t need to use MCMC for
simulating Gaussian random vectors. Let us now consider the following bivariate probability
density functions:

(a) the pdf is a perturbation of the Gaussian density function:

f (x1, x2) ∝ exp
(
−x2

1 − x2
2 − x1

)
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(b) the pdf is a mixture of two Gaussian density functions:

f (x1, x2) ∝ exp
(
−x2

1 − x2
2
)

+ exp
(
−x2

1 − x2
2 − 1.8 · x1 · x2

)
(c) the pdf is a complex function of Φ (x1) and Φ (x2):

f (x1, x2) ∝ exp
(
−0.1 · Φ (x1) · Φ (x2) · x2

2
)

(d) we consider the pdf of the Clayton copula with two exponential marginal distribu-
tions55:

f (x1, x2) = (1 + θ)λ1λ2e
−λ1x1−λ2x2

(
u−θ1 + u−θ2 − 1

)−1/θ−2 (u1u2)−1−θ

where u1 = 1− e−λ1x1 and u2 = 1− e−λ2x2 .

We notice that we don’t know the normalization constant for the first three pdfs. The third
pdf is very complex and needs a very accurate algorithm for computing the Gaussian cdf.
The fourth case is a copula model. We use the bivariate Gaussian probability distribution
with a correlation equal to 50% for the proposal distribution. A sample of 1500 iterations
simulated with the random walk sampler is given in Figure 13.50. The fourth panels have
been obtained with the same random numbers of U , Z1 and Z2.

FIGURE 13.50: Simulating bivariate probability distributions with the MH algorithm

Remark 171 For high-dimensional MCMC problems, the proposal distribution is generally
the Gaussian distribution N (µ,Σ) or the multivariate Student’s t distribution tn (Σ, ν).

55We use the parameters θ = 2.5, λ1 = 1% and λ2 = 5%.
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13.3.3.3 Sequential Monte Carlo methods and particle filters

Sequential Monte Carlo methods (or SMC) and particle filters (PF) are used when we
consider non-linear/non-Gaussian state space models (or hidden Markov models). In these
models, the state vector X(t) is characterized by the transition density:

X(t+1) = x′ | X(t) = x ∼ f (x′ | x)

We assume that the state vector X(t) is not directly observed. The process that is observed
is denoted by Y (t) and is characterized by the measurement density:

Y (t) = y | X(t) = x ∼ f (y | x)

Let x(0:T ) =
(
x(0), . . . , x(T )) be the exhaustive statistic of the system. By the Markov

property, we have:

f
(
x(0:T )

)
= f

(
x(0)

) T∏
t=1

f
(
x(t) | It

)
where It represents all the information available at time t (including y(1), . . . , y(t)). To
calculate f

(
x(t) | It

)
, we have:

f
(
x(t) | It

)
∝ f

(
y(t) | x(t)

)
f
(
x(t) | It−1

)
(13.21)

where f
(
x(t) | It−1

)
is the prior density of X(t) and f

(
y(t) | x(t)) is the log-likelihood

function of the observed variable Y (t). This equation is known as the Bayes update step. We
recall that the prior density of the state variable X(t) is given by the Chapman-Kolmogorov
equation:

f
(
x(t) | It−1

)
=
∫
f
(
x(t) | x(t−1)

)
f
(
x(t−1) | It−1

)
dx(t−1) (13.22)

This equation is also known as the Bayes prediction step. It gives an estimate of the prob-
ability density function of X(t) given all the information until t − 1. A Bayesian filter
corresponds to the system of the two recursive equations (13.21) and (13.22). In order to
initialize the recurrence algorithm, we assume that the density function of the initial state
vector f

(
x(0)) is known.

The underlying idea of SMC methods is then to estimate the density functions
f
(
x(t) | It−1

)
and f

(
x(t) | It

)
. Given these estimates, we may also compute the best esti-

mates x̂(t) | It−1 and x̂(t), which are given by:

x̂(t) | It−1 = E
[
X(t) | It−1

]
=
∫
x(t)f

(
x(t) | It−1

)
dx(t)

and:
x̂(t) = E

[
X(t) | It

]
=
∫
x(t)f

(
x(t) | It

)
dx(t)

For that, we estimate the density f
(
x(t) | It

)
by the Monte Carlo method. At time t−1, we

assume that f
(
x(t−1) | It−1

)
is approximated by a sample

{
x

(t−1)
1 , . . . , x

(t−1)
nS

}
and a vector

of associated weights
{
w

(t−1)
1 , . . . , w

(t−1)
nS

}
, where nS is the number of simulated particles.

We deduce that:

f
(
x(t) | It

)
∝ f

(
y(t) | x(t)

) nS∑
s=1

w(t−1)
s f

(
x(t) | x(t−1)

s

)
The problem consists then in estimating the states

{
x

(t)
1 , . . . , x

(t)
nS

}
and the corresponding

weights
{
w

(t)
1 , . . . , w

(t)
nS

}
.
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Computation of weights Following Arulampalam et al. (2002), we apply the method
of importance sampling to the joint distribution of x(0:t) =

(
x(0), . . . , x(t)):

f
(
x(0:t) | y(t), It−1

)
= f

(
x(t) | y(t), x(0:t−1), It−1

)
f
(
x(0:t−1) | It−1

)
=

f
(
y(t) | x(t)) f (x(t) | x(0:t−1))

f
(
y(t) | It−1

) f
(
x(0:t−1) | It−1

)
∝ f

(
y(t) | x(t)

)
f
(
x(t) | x(0:t−1)

)
f
(
x(0:t−1) | It−1

)
Let q be the instrumental density such that it factorizes in the following way:

q
(
x(0:t)
s | y(t), It−1

)
= q

(
x(t)
s , x(0:t−1)

s | y(t), It−1

)
q
(
x(0:t−1)
s , It−1

)
We deduce that56:

w(t)
s ∝

f
(
x

(0:t)
s | y(t), It−1

)
q
(
x

(0:t)
s | y(t), It−1

)
∝

f
(
y(t) | x(t)

s

)
f
(
x

(t)
s | x(0:t−1)

s

)
f
(
x

(0:t−1)
s | It−1

)
q
(
x

(t)
s , x

(0:t−1)
s | y(t), It−1

)
=

f
(
y(t) | x(t)

s

)
f
(
x

(t)
s | x(0:t−1)

s

)
q
(
x

(t)
s | y(t), x

(0:t−1)
s , It−1

) ·
f
(
x

(0:t−1)
s | It−1

)
q
(
x

(0:t−1)
s | y(t), It−1

)
=

f
(
y(t) | x(t)

s

)
f
(
x

(t)
s | x(0:t−1)

s

)
q
(
x

(t)
s | y(t), x

(0:t−1)
s , It−1

) · w(t−1)
s (13.23)

The posterior density at time t can then be approximated as:

f
(
x(t) | y(t)

)
=

nS∑
s=1

w(t)
s · δx

(
x(t) − x(t)

s

)
(13.24)

The previous computations lead to the sequential importance sampling (or SIS) algorithm:

1. at time t, we simulate x(t)
s ∼ q

(
x

(t)
s | y(t), x

(0:t−1)
s , It−1

)
;

2. we update the weight w(t)
s using Equation (13.23);

3. we repeat steps 1 and 2 in order to obtain a sample of nS particles;

4. we normalize the weights:

w(t)
s ←

w
(t)
s∑nS

s=1 w
(t)
s

Remark 172 With the SIS algorithm, the variance of the weights increases exponentially
with the number of particles. This implies that some particles have negligible weights whereas
others have large weights. This is why resampling techniques are generally added in order to
reduce this phenomenon. Another method consists in simulating new (or auxiliary) particles
at each time. Therefore, there exist several SMC algorithms (Arulampalam et al., 2002;
Doucet and Johansen, 2009): auxiliary particle filter (APF), generic particle filter (GPF),
regularized particle filter (RPF), sampling importance resampling (SIR), etc.

56Note that y(t) ∈ It.
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An example We consider the following example:{
f
(
x(t) | x(t−1)) = N

(
x(t);T

(
t, x(t−1)) , Q)

f
(
y(t) | x(t)) = N

(
y(t);κ

(
x(t))2 , H)

The corresponding state space model is equal to:{
x(t) = T

(
t, x(t−1))+ η(t)

y(t) = κ
(
x(t))2 + ε(t) (13.25)

where η(t) ∼ N (0, Q) and ε(t) ∼ N (0, H). We notice that the state space model is non-
linear. The previous example has been extensively studied with the following specification
(Carlin et al., 1992; Kitagawa, 1996):

T (t, x) = x

2 + 25 · x
1 + x2 + 8 · cos (1.2 · t)

With the following values of parameters κ = 1/20, Q = 1 and R = 10, we simulate the
model (13.25) and estimate x(t) by considering different particle filters. The likelihood
and prior transition densities are given by f

(
y(t) | x(t)) and f

(
x(t) | x(t−1)). We assume

that the instrumental density q
(
x(t) | y(t), x(t−1), It−1

)
is equal to the transition density

f
(
x(t) | x(t−1)), meaning that the knowledge of y(t) does not improve the estimate of the

state x(t). The particles are simulated according to the following scheme:

x(t)
s = T

(
t, x(t−1)

s

)
+ η(t)

s

where η(t)
s ∼ N (0, Q). In Figure 13.51, we report one simulation of the state space model.

Recall that we observe y(t) and not x(t). The estimate x̂(t) is equal to:

x̂(t) =
∑nS

s=1
w(t)
s · x(t)

s

where x(t)
s is the simulated value of x(t) for the sth particle and w(t)

s is the importance weight
given by Equation (13.23). For each simulation, we also calculate the root mean squared
error:

RMSE =
√

1
T

∑T

t=1

(
x(t) − x̂(t)

)2
where x(t) is the true value of the state and x̂(t) is the estimate. We report the probability
density function of the RMSE statistic in Figure 13.52 when the number of particles is equal
to 1 000. We notice that the SIR algorithm is better than the other SMC algorithms for this
example. Figure 13.53 illustrates the convergence of the SIS algorithm with respect to the
number of particles.

13.3.4 Quasi-Monte Carlo simulation methods
We consider the following Monte Carlo problem:

I =
∫
· · ·
∫

[0,1]n
ϕ (x1, . . . , xn) dx1 · · · dxn

Let X be the random vector of independent uniform random variables. It follows that
I = E [ϕ (X)]. The Monte Carlo method consists in generating uniform coordinates in
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FIGURE 13.51: An example of a SMC run with 1 000 particles

FIGURE 13.52: Density of the RMSE statistic for 1 000 particles
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FIGURE 13.53: Density of the RMSE statistic for the SIS algorithm

the hypercube [0, 1]n. Quasi-Monte Carlo methods use non-random coordinates in order to
obtain a more nicely uniform distribution. A low discrepancy sequence U = {u1, . . . , unS}
is then a set of deterministic points distributed in the hypercube [0, 1]n. Let us define the
star discrepancy of U by D?:

D?
ns (U) = sup

x∈[0,1]n

∣∣∣∣∣ 1
nS

nS∑
s=1

n∏
i=1

1 {ui,s ≤ xi} −
n∏
i=1

xi

∣∣∣∣∣
We could interpret D? as the L∞ norm between the theoretical continuous uniform dis-
tribution and the discrete uniform distribution generated by the low discrepancy sequence
U . We note that if U is really uniform, then limnS→∞D?

nS (U) = 0 for every dimension n.
Moreover, Morokoff and Caflisch (1994) noticed that:

|InS − I| ≤ D?
nS (U) · V (f)

where V (f) is the Hardy-Krause variation of f . We could find low discrepancy sequences
such that the error is of order n−1

S (lnnS)n in probability (Morokoff and Caflisch, 1994). If
we compare this bound with the order convergence n−1/2

S of MC, we notice that QMC is
theoretically better than MC for small dimensions, but MC is better than QMC for high
dimensions. However, in practice, it appears that QMC could be more accurate than MC
even for large dimension n.

Glasserman (2003) reviewed different quasi-random sequences. The most known are
the Halton, Sobol and Faure sequences and corresponding numerical codes are available
in different programming languages (Press et al., 2007). The techniques to generate these
sequences are based on number theory. For example, the Halton sequence is based on the
p-adic expansion of integers n = dkp

k + · · · + d1p + d0 and the radical-inverse function
%b (n) =

∑k
i=0 dkp

−(i+1) where di ∈ {0, . . . , p− 1} for i = 0, . . . , k. The d-dimensional
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FIGURE 13.54: Comparison of different low discrepancy sequences

FIGURE 13.55: The Sobol generator
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FIGURE 13.56: Quasi-random points on the unit sphere

TABLE 13.8: Pricing of the spread option using quasi-Monte Carlo methods
nS 102 103 104 105 106 5× 106

LCG (1) 4.3988 5.9173 5.8050 5.8326 5.8215 5.8139
LCG (2) 6.1504 6.1640 5.8370 5.8219 5.8265 5.8198
LCG (3) 6.1469 5.7811 5.8125 5.8015 5.8142 5.8197
Hammersley (1) 32.7510 26.5326 21.5500 16.1155 9.0914 5.8199
Hammersley (2) 32.9082 26.4629 21.5465 16.1149 9.0914 5.8199
Halton (1) 8.6256 6.1205 5.8493 5.8228 5.8209 5.8208
Halton (2) 10.6415 6.0526 5.8544 5.8246 5.8208 5.8207
Halton (3) 8.5292 6.0575 5.8474 5.8235 5.8212 5.8208
Sobol 5.7181 5.7598 5.8163 5.8190 5.8198 5.8198
Faure 5.7256 5.7718 5.8157 5.8192 5.8197 5.8198

Halton sequence % = {%n} is then defined by %n = (%p1 (n) , . . . , %pd (n)) where p1, . . . , pd
are integers that are greater than one and pairwise relatively prime. We represent this
sequence when d = 2 and nS = n = 1024, and compare it to LCG random variates and
Hammersley and Faure sequences in Figure 13.54. The underlying idea of QMC is to add
the new points not randomly, but between the existing points. For example, we have added
256 points in the Sobol sequence57 in each panel of Figure 13.55. Finally, we report the
projection of different low discrepancy sequences on the unit sphere in Figure 13.56. We
notice that we can generate some ‘hole area’.

Example 160 We consider a spread option whose payoff is equal to (S1 (T )− S2 (T )−K)+.
The price is calculated using the Black-Scholes model, and the following parameters:

57The new points correspond to a square symbol.
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S1 (0) = S2 (0) = 100, σ1 = σ2 = 20%, ρ = 50% and r = 5%. The maturity T of the
option is set to one year, whereas the strike K is equal to 5. We estimate the option price
with several QMC methods and different number of simulations nS. Results are given in
Table 13.8. We consider three seed values for the LCG pseudorandom sequences. In the
case of Hammersley sequences, we use p1 = 2 (sequence 1) and p1 = 7 (sequence 2). We
also use three Halton sequences based on the following values of (p1, p2): (2, 3), (17, 19) and
(2, 19). Finally, we consider Sobol and Faure sequences when the dimension is equal to 2.
For simulating Gaussian random variates, we use the Box-Muller method. The true price
of the spread option is equal to 5.8198. We notice that only the Sobol and Faure generators
have converged to this price when the number of simulations is equal to one million.

13.4 Exercises
13.4.1 Simulating random numbers using the inversion method

1. Propose an algorithm to simulate random variates for the following distribution func-
tions:

(a) the generalized extreme value distribution GEV (µ, σ, ξ);
(b) the log-normal distribution LN

(
µ, σ2);

(c) the log-logistic distribution LL (α, β).

2. When we model operational risk losses, we are interested in the conditional random
variable L = X | X ≥ H where H is a given threshold.

(a) How can we simulate L if we consider a random number generator of X?
(b) Let FX be the distribution function of X. Give the conditional distribution FL.
(c) Find the inverse function F−1

L and propose an algorithm to simulate L.
(d) Compare the two algorithms in terms of efficiency.
(e) Apply algorithms (a) and (c) to the log-normal distribution LN

(
µ, σ2). We as-

sume that µ = 7, σ = 2.3 and H = $50 000. Simulate 100 random numbers58 and
draw the scatterplot between the uniform random numbers ui and the random
variates Li.

3. We consider the extreme order statistics X1:n = min (X1, . . . , Xn) and Xn:n =
max (X1, . . . , Xn).

(a) How can we simulate X1:n and Xn:n if we have a random generator for Xi?
(b) Calculate the distribution functions F1:n and Fn:n. Deduce an efficient algorithm

to simulate X1:n and Xn:n.
(c) Using the previous algorithm, simulate 1000 random numbers of X1:50 and X50:50

when Xi ∼ N (0, 1).
58We can use the Lewis-Goodman-Miller generator with a seed equal to 123 456.
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13.4.2 Simulating random numbers using the transformation method
1. We consider the random variable X, whose probability density function is given by:

f (x) = βαx−α−1e−β/x

Γ (α)

Calculate the density function of Y = 1/X. Deduce that X follows the inverse-gamma
distribution IG (α, β). Find an algorithm to simulate X.

2. Let X ∼ G (α, β) be a gamma distributed random variable.

(a) Show that the case α = 1 corresponds to the exponential distribution with pa-
rameter λ = β:

G (1, β) = E (β)

Deduce an algorithm to simulate G (1, β).
(b) When α is an integer and is equal to n, show that X ∼ G (n, β) is the sum

of n independent exponential random variables with parameter β. Deduce an
algorithm to simulate G (n, β).

3. Let X ∼ B (α, β) be a beta distributed random variable.

(a) We note Y ∼ G (α, δ) and Z ∼ G (β, δ) two independent gamma distributed
random variable. Show that59:

X = Y

Y + Z

(b) Deduce an algorithm to simulate X.

4. The polar method considers the random vector (X,Y ) defined by:{
X = R · cos Θ
Y = R · cos Θ

where R and Θ are two independent random variables. We assume that R ∼ FR and
Θ ∼ U[0,2π].

(a) Show that the joint density of (X,Y ) is equal to:

fX,Y (x, y) =
fR

(√
x2 + y2

)
2π
√
x2 + y2

Deduce the expression of the density function fX (x) of X.
(b) We assume that R =

√
2 · E where E ∼ E (1).

i. Show that fR (r) = re−r
2/2.

ii. Calculate fX (x).
iii. Deduce the Box-Muller algorithm to simulate normal distributed random

variables.
59Hint: consider the change of variables X = Y/ (Y + Z) and S = Y + Z, and calculate the joint density

function fX,S .
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(c) Bailey (1994) proposed to simulate the Student’s tν distribution with the polar
method. For that, he considered the distribution:

FR (r) = 1−
(

1 + r2

ν

)−ν/2
where r ≥ 0 and ν > 0.
i. Calculate fR (r).
ii. Show that:

fX,Y (x, y) = 1
2π

(
1 + x2 + y2

ν

)−ν/2−1

iii. Find the expression60 of fX (x). Deduce that X is a Student’s t random
variable with ν degrees of freedom.

iv. Find an algorithm to simulate R.
v. Deduce an algorithm to simulate Student’s tν random variables.
vi. What is the main difference with the Box-Muller algorithm?

13.4.3 Simulating random numbers using rejection sampling
1. We consider the beta distributed random variable X ∼ B (α, β). We assume that
α ≥ 1 and β ≥ 1.

(a) We use the proposal density function g (x) = 1. Calculate the function h (x)
defined as follows:

h (x) = f (x)
g (x)

Show that h (x) achieves its maximum at the point:

x? = α− 1
α+ β − 2

Deduce the value of c that maximizes the acceptance ratio.
(b) Plot the functions f (x) and cg (x) for the following parameters (α, β): (1.5, 1.5),

(3, 2), (1, 8) and (5, 7). Comment on these results.
(c) Propose an algorithm to simulate B (α, β) when α ≥ 1 and β ≥ 1.

2. We consider the beta distributed random variable X ∼ B (α, β). We assume that
α < 1 and β ≥ 1.

(a) We use the proposal density function g (x) = αxα−1. Find the value of c that
maximizes the acceptance ratio.

(b) Give an algorithm to simulate the random variable X ∼ G.
(c) Give an algorithm to simulate B (α, β) when α < 1 and β ≥ 1.

3. We consider the standard Gaussian random variable X ∼ N (0, 1).

60Hint: consider the change of variable u =
(

1 + y2

ν+x2

)−1
.
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(a) We use the Laplace distribution as the proposal distribution:

g (x) = 1
2e
−|x|

Calculate G (x) and G−1 (x). Give an algorithm to simulate the Laplace distri-
bution.

(b) Find the value of c that maximizes the acceptance ratio. Draw the functions f (x)
and cg (x).

(c) Deduce the acceptance-rejection algorithm.

4. We consider the standard gamma random variable X ∼ G (α) where α ≥ 1.

(a) We use the Cauchy distribution as the proposal distribution:

g (x) = 1
π (1 + x2)

Show that:
f (x)
g (x) ≤

2π
Γ (α)x

α+1e−x

Find the value of c that maximizes the acceptance ratio.
(b) We use the Student’s t distribution with 2 degrees of freedom as the proposal

distribution. Calculate the analytical expression of G (x). Deduce an algorithm
to simulate X.

(c) In the case (b), Devroye (1986) showed that:

f (x) ≤ cg (x)

where:

c =
√

3 (4α− 1)
Γ (α) (α− 1)α−1

e−(α−1)

What is the most efficient method between algorithms (a) and (b)?

5. We consider a discrete random variable X with a finite number of states xk where
k = 1, . . . ,K. We note p (k) = Pr {X = xk} its probability mass function.

(a) We consider the following proposal distribution:

q (k) = 1
K

Find the value of c that maximizes the acceptance ratio.
(b) We consider the following distribution:

xk 0 1.5 3.3 5.6 8.9
p (k) 10% 20% 40% 20% 10%

Simulate 1 000 random numbers using the acceptance-rejection algorithm and
draw the histogram of accepted and rejected values. Comment on these results.
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13.4.4 Simulation of Archimedean copulas
We recall that an Archimedean copula has the following expression:

C (u1, u2) = ϕ−1 (ϕ (u1) + ϕ (u2))

where ϕ is the generator function.

1. Retrieve the Genest-MacKay algorithm to simulate Archimedean copulas.

2. We assume that ϕ (u) = (− ln u)θ with θ ≥ 1. Find the corresponding copula.

3. Calculate the conditional distribution C2|1 associated to the previous Archimedean
copula. Deduce an algorithm to simulate it.

4. We consider the Frank copula defined as follows:

C (u1, u2) = −1
θ

ln
(

1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)

where θ ∈ R. Calculate the conditional distribution C2|1 and deduce an algorithm to
simulate this copula.

5. The Ali-Mikhail-Haq family of copulas is given by:

C (u1, u2) = u1u2

1− θ (1− u1) (1− u2)

where θ lies in [−1, 1]. Verify that the generator of this family is:

ϕ (u) = ln
(

1− θ (1− u)
u

)
6. Simulate 5 random vectors of the Gumbel-Hougaard (θ = 1.8), Frank (θ = 2.1) and

Ali-Mikhail-Haq copulas (θ = 0.6) by using the following uniform random variates:

v1 0.117 0.607 0.168 0.986 0.765
v2 0.498 0.400 0.269 0.892 0.109

13.4.5 Simulation of conditional random variables
Let Z ∼ N (µz,Σz,z) be a Gaussian random vector of dimension nz. We consider the

partition Z = (X,Y ) where nx + ny = nz, µz = (µx, µy) and:

Σzz =
(

Σx,x Σx,y
Σy,x Σy,y

)
1. Let T be the random vector Y given that X = x?. Give the distribution of T . Deduce

an algorithm to simulate T .

2. We consider the random vector T̃ defined by:

T̃ = Y − Σy,xΣ−1
x,x (X − x?)

Show that T̃ = T . Deduce an algorithm to simulate T .
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3. How can we simulate the Gaussian random vector Z without using the Cholesky
decomposition?

4. We assume that the vector of means is (1, 2, 3), the vector of standard deviations is
(1, 0.5, 5) and the correlation matrix is:

C =

 1.00
0.50 1.00
0.20 0.30 1.00


Apply the algorithm described in Question 3 by using the following independent Gaus-
sian random variates N (0, 1):

u1 −1.562 −0.563 −0.573 −0.596 0.984
u2 0.817 0.845 0.872 −1.303 −0.433
u3 −0.670 0.126 0.884 −0.918 −0.052

13.4.6 Simulation of the bivariate Normal copula
Let X = (X1, X2) be a standard Gaussian vector with correlation ρ. We note U1 =

Φ (X1) and U2 = Φ (X2).

1. We note Σ the matrix defined as follows:

Σ =
(

1 ρ
ρ 1

)
Calculate the Cholesky decomposition of Σ. Deduce an algorithm to simulate X.

2. Show that the copula of (X1, X2) is the same that the copula of the random vector
(U1, U2).

3. Deduce an algorithm to simulate the Normal copula with parameter ρ.

4. Calculate the conditional distribution of X2 knowing that X1 = x. Then show that:

Φ2 (x1, x2; ρ) =
∫ x1

−∞
Φ
(
x2 − ρx√

1− ρ2

)
φ (x) dx

5. Deduce an expression of the Normal copula.

6. Calculate the conditional copula function C2|1. Deduce an algorithm to simulate the
Normal copula with parameter ρ.

7. Show that this algorithm is equivalent to the Cholesky algorithm found in Question
3.

13.4.7 Computing the capital charge for operational risk
We assume that the mapping matrix contains two cells. For each cell, the aggregate loss

Sk is defined as:

Sk =
Nk∑
i=1

Xk,i
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where Nk ∼ P (λk) is the number of losses and Xk,i ∼ LN
(
µk, σ

2
k

)
are the individual losses.

The total loss for the bank is then equal:

L = S1 + S2

We calculate the capital-at-risk CaR (α) for different confidence levels: 90%, 95%, 99% and
99.9%. For that, we use one million simulations.

1. We consider the first cell k = 1 and we assume that λ1 = 50, µ1 = 7 and σ1 = 1.5.
Using 100 replications, calculate the mean and standard deviation of the estimator
ĈaR1 (α). Do you think that one million simulations is sufficient?

2. Same question for the second cell k = 2 if we assume that λ2 = 100, µ2 = 5.5 and
σ2 = 1.8.

3. Represent the probability density function of lnL when the aggregate losses S1 and
S2 are independent and perfectly dependent. Calculate the diversification ratio when
we assume that S1 and S2 are independent.

4. We assume that the dependence function C 〈S1, S2〉 is a Normal copula with parameter
ρ. Calculate the capital-at-risk of the bank for the following values of ρ: 0%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. Compare these estimates with those
obtained with a Gaussian approximation.

5. Same question if the dependence function between S1 and S2 is a t4 copula.

6. Same question if the dependence function between S1 and S2 is a t1 copula.

7. Comment on these results.

13.4.8 Simulating a Brownian bridge
We consider a Brownian bridge B (t) such that s ≤ t ≤ u, W (s) = ws and W (u) = wu.

1. Find the distribution of the random vector (W (s) ,W (t) ,W (u)).

2. Calculate the conditional distribution ofW (t) given thatW (s) = ws andW (u) = wu.

3. Deduce an algorithm to simulate B (t).

13.4.9 Optimal importance sampling
We consider the estimation of the probability p = Pr {X ≥ c} when X ∼ N (0, 1).

1. We note p̂MC the MC estimator of p for one simulation. Calculate E [p̂MC] and
var (p̂MC). What is the probability distribution of p̂MC?

2. Let N
(
µ, σ2) be the importance sampling distribution. Give the expression of the IS

estimator p̂IS for one simulation. Calculate E [p̂IS] and var (p̂IS). What do you notice
about the probability distribution of p̂IS?

3. We assume that c = 3. Calculate var (p̂MC). Draw the relationship between µ and
var (p̂IS) when σ is respectively equal to 0.8, 1, 2 and 3. Find the optimal value of µ.
What hypothesis can we make?

4. We assume that σ is equal to 1. Find the first-order condition if we would like to
select the optimal important sampling scheme. Draw the relationship between c and
the optimal value of µ. Deduce an heuristic approach for defining a good IS scheme.
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Chapter 14
Stress Testing and Scenario Analysis

In 1996, the Basel Committee proposed that banks regularly conduct stress testing programs
in the case of market risk. The underlying idea was to identify events that could generate
exceptional losses and understand the vulnerability of a bank. The use of stress tests has
been increasing with the implementation of the Basel II Accord. Indeed, stress testing is the
core of the Pillar 2 supervision, in particular for credit risk. At the same time, stress testing
programs have been extended to the financial sector taken as a whole. In this case, they do
not concern a given financial institution, but a set of banks or institutions. For example,
the financial sector assessment program (FSAP) conducted by the International Monetary
Fund and the World Bank measures the resilience of the financial sector of a given country
or region. In Europe, EBA and ECB are in charge of the EU-wide stress testing. Since the
2008 Global Financial Crisis, they have conducted six stress testing surveys. In the US, the
Fed performs every year a stress testing program that concerns the largest 30 banks. This
annual assessment includes two related programs: The ‘Comprehensive Capital Analysis and
Review’ (CCAR) and the ‘Dodd-Frank Act stress testing’ (DFAST). The objective of this
last program is to evaluate the impact of stressful economic and financial market conditions
on the bank capital. Recently, the Basel Committee on Banking Supervision has published
a consultative document on stress testing principles. It highlights the growing importance
of stress testing in the banking supervision model:

“Stress testing is now a critical element of risk management for banks and a core
tool for banking supervisors and macroprudential authorities” (BCBS, 2017a,
page 5).

During long times, stress testing mainly concerned market risk, and later credit risk.
These last years, it has been extended to other risks: funding risk, liquidity risk, and spillover
risk (Tarullo, 2016). Moreover, stress testing is now extended to other financial sectors such
as insurance and asset management. For instance, the Financial Stability Board (2017)
encourages national financial regulators to conduct system-wide stress testing of asset man-
agers, in particular for measuring the liquidity risk1. These views are also supported by
IMF (Bouveret, 2017) and some national regulators (AMF, 2017; BaFin, 2017). The coun-
terparty credit risk is another topic where stress testing could help. This explains that
ESMA and CFTC have conducted specific stress testing of central counterparty clearing
houses. We could then expect that the use of stress testing programs will increase across
financial industries in the coming years, not only at the level of financial institutions, but
also for regulatory purposes.

1“Although such system-wide stress testing exercises are still in an exploratory stage, over time they may
provide useful insights that could help inform both regulatory actions and funds’ liquidity risk management
practices” (FSB, 2017, page 23).
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14.1 Stress test framework
14.1.1 Definition
14.1.1.1 General objective

There are several definitions of stress testing, because stress tests can be used for different
objectives. Lopez (2005) describes stress testing as “a risk-management tool used to evaluate
the potential impact on portfolio values of unlikely, although plausible, events or movements
in a set of financial variables”. In this case, stress testing is a complementary tool for VaR
analysis. Jorion (2007) considers that stress testing encompasses scenario analysis and the
impact of stressed model parameters. Scenario analysis consists in measuring the potential
loss due to a given economic or financial stress scenario. For example, the bank could
evaluate the impact on its balance sheet if the world GDP decreases by 5% in the next
two years. Stress testing of model parameters consists in evaluating the impact of stressed
parameters on the P&L or the balance sheet of the bank. For example, the bank could
evaluate the impact of more severe LGD parameters on its risk-weighted assets or the
impact of higher correlations between banks on its CVA P&L. In the case of market risk,
we can use stressed covariance matrices. In this context, stress testing can be viewed as
an extension of the historical value-at-risk (Kupiec, 1998). More generally, stress testing
aims to provide a forward-looking assessment of losses that would be suffered under adverse
economic and financial conditions (BCBS, 2017a). In the case of a trading book, we recall
that the loss of Portfolio w is equal to:

Ls (w) = Pt (w)− g (F1,s, . . . ,Fm,s;w)

where g is the pricing function and (F1,s, . . . ,Fm,s) is the value of risk factors for the
scenario s. When considering the historical value-at-risk, we calculate the quantile of the
P&L obtained for nS historical scenarios of risk factors (s = 1, . . . , nS). When considering
the stress testing, we evaluate the portfolio loss for only one scenario:

Lstress (w) = Pt (w)− g (F1,stress, . . . ,Fm,stress;w)

However, this scenario represented by the risk factors (F1,stress, . . . ,Fm,stress) is supposed to
be severe. Contrary to the value-at-risk, stress testing is then not built from a probability
distribution.

14.1.1.2 Scenario design and risk factors

In the previous section, we feel that the stress scenario S is given by the set of risk
factors Fstress = (F1,stress, . . . ,Fm,stress). It is only the case when we consider a historical
scenario, e.g. the stock market crash in 1987 or the bond market crash in 1994. This type
of approach is related to the concept of market price-based stress test, when the stress
scenario is entirely defined by a set of market prices, for example the level of the VIX
index, the return of the S&P 500 index, etc. However, most of the time, the scenario S is
defined by a set (S1, . . . ,Sq) of q stress factors, which are not necessarily the market risk
factors of the pricing function. This is particularly true when we consider hypothetical and
macroeconomic stress tests. The difficulty is then to deduce the value of risk factors from
the stress scenario:

S = (S1, . . . ,Sq)⇒ Fstress = (F1,stress, . . . ,Fm,stress)
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Let us consider the FSAP stress scenarios used for the assessment of the stability of the
French banking system (De Bandt and Oung, 2004). They tested 13 stress scenarios: 9
single- and multi-factor shocks (F1 – F9) and 4 macroeconomic shocks (M1 – M4). We
report here the F1, F5 and F9 shocks:

F1 flattening of the yield curve due to an increase in interest rates: increase of 150 basis
points (bp) in overnight rates, increase of 50 bp in 10-year rates, with interpolation
for intermediate maturities;

F5 share price decline of 30% in all stock markets;

F9 flattening of the yield curve (increase of 150 basis points in overnight rates, increase
of 50 bp in 10-year rates) together with a 30% drop in stock markets.

We denote by S1 and S2 the stress factors defined by the single-factor shocks F1 and F5.
We have:

F1 : S1 ⇒ (F1,stress, . . . ,Fm,stress)
F5 : S2 ⇒ (F1,stress, . . . ,Fm,stress)
F9 : (S1,S2)⇒ (F1,stress, . . . ,Fm,stress)

We notice that F9 corresponds to the simultaneous shocks F1 and F5. It is obvious that
the three shocks will impact differently the market risk factors (F1,stress, . . . ,Fm,stress).
However, the transformation of the stress S into Fstress is complex and depends on the
modeling process of the financial institution. For instance, we can imagine that most of
models will associate to the scenario S1 a negative impact on stock markets. For Bank A, it
could be a 10% drop in stock markets while the model of Bank B may imply a share price
decline of 20% in stock markets. It follows that stress testing is highly model-dependent.
Let us now consider the M2 macroeconomic shock:

M2 increase to USD 40 in the price per barrel of Brent crude for two years (an increase
of 48% compared with USD 27 per barrel in the baseline case), without any reaction
from the central bank; the increase in the price of oil leads to an increase in the general
rate of inflation and a decline in economic activity in France together with a drop in
global demand.

Again, the stress factor S3 can produce different outcomes in terms of market risk factors
depending on the model:

M2 : S3 ⇒ (F1,stress, . . . ,Fm,stress)

Therefore, stress testing models are more sensitive to value-at-risk models. This is the
main drawback of this approach. For instance, if we want to compare two banks, it is
important to describe more precisely the stress scenarios than the shocks above. Moreover,
having the stressed market risk factors of the two banks FAstress =

(
FA1,stress, . . . ,FAm,stress

)
and FBstress =

(
FB1,stress, . . . ,FBm,stress

)
is also relevant to understand how the initial shock

spreads through the financial system, and the underlying assumptions of the models of
banks A and B. The sensitivity to models and assumptions is even more pronounced in
the case of liquidity stress tests. Indeed, the model must take into account spillover effects
between financial institutions. In the case of funding liquidity, it requires modeling the
network between banks, but also the monetary policy reaction function. In the case of
market liquidity, the losses will depend on the behavior of all market participants, including
asset managers and investors.
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The previous introduction shows that we can classify stress scenarios into 4 main cate-
gories:

1. historical scenario: “a stress test scenario that aims at replicating the changes in risk
factor shocks that took place in an actual past episode2” (BCBS, 2017a, page 60);

2. hypothetical scenario: “a stress test scenario consisting of a hypothetical set of risk
factor changes, which does not aim to replicate a historical episode of distress” (BCBS,
2017a, page 60);

3. macroeconomic scenario: “a stress test that implements a link between stressed
macroeconomic factors [...] and the financial sustainability of either a single finan-
cial institution or the entire financial system” (BCBS, 2017a, page 61);

4. liquidity scenario: “a liquidity stress test is the process of assessing the impact of an
adverse scenario on institution’s cash flows as well as on the availability of funding
sources, and on market prices of liquid assets” (BCBS, 2017a, page 60).

Concerning hypothetical stress tests, we can also make the distinction between three types of
scenarios: baseline, adverse and severely adverse. Since a baseline scenario corresponds to the
best forecast of future economic conditions, it is not necessarily a stress scenario but serves as
a benchmark. An adverse scenario is a scenario, where the economic conditions are assumed
to be worse than for the baseline scenario. The distinction between an adverse and a severely
adverse scenario is the probability of occurrence, which is very low for this latter. Therefore,
we notice that defining a stress scenario is a two-step process. We first have to select the
types of shocks, and then we have to calibrate the severity of the scenario. In Figures 14.1
and 14.2, we have reported the three scenarios of the 2017 Dodd-Frank Act stress test
exercises3 that were developed by the Board of Governors of the Federal Reserve System
(2017). The baseline scenario for the United States is a moderate economic expansion, while
the US economy experiences a moderate recession in the adverse scenario. The severely
adverse scenario is characterized by a severe global recession that is accompanied by a
period of heightened stress in corporate loan markets and commercial real estate markets.
The baseline, adverse and severely adverse scenarios use the same set of stress factors, but
the magnitude of the shocks are different.

14.1.1.3 Firm-specific versus supervisory stress testing

In the 1990s, stress tests were mainly conducted by banks in order to understand their
hidden vulnerabilities:

“The art of stress testing should give the institution a deeper understanding of
the specific portfolios that could be put in jeopardy given a certain situation.
The question then would be: Would this be enough to bring down the firm?
That way, each institution can know exactly what scenario they do not want to
engage in” (Dunbar and Irving, 1998).

More precisely, stress testing first emerged in trading activities. This explains that stress
testing was presented by the 1996 amendment to the capital accord as an additional tool to
the value-at-risk. It was an extreme risk measure, a tool for risk management, a requirement
in order to validate internal models, but it was not used for calculating the regulatory

2According to BCBS (2017a), it may also result from “a combination of changes in risk factor shocks
observed during different past episodes”.

3The data are available at the following website: www.federalreserve.gov/supervisionreg/dfast-ar
chive.htm.

http://www.federalreserve.gov/
http://www.federalreserve.gov/
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FIGURE 14.1: 2017 DFAST supervisory scenarios: Domestic variables

FIGURE 14.2: 2017 DFAST supervisory scenarios: International variables
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capital. The Basel 2.5 framework has changed this situation since the capital depends on the
stressed value-at-risk. In trading activities, stress scenarios are mainly historical. Besides the
vulnerability analysis, stress testing have also been extensively used in the setting of trading
limits. In the case of derivatives portfolios, trading limits are defined using sensitivities or
VaR metrics. However, some situations can lead the bank to determine hard trading limits
based on stress testing:

• some trading portfolios are sensitive to parameters that are unobservable or unstable;
for example, a basket option depends on correlations, that can change faster in a crisis
period;

• some underlying assets may become less liquid in a period of stress, for example
volatility indices, dividends futures, small cap stocks, high yield bonds, etc.

In these cases, stress exposure limits are better than delta or vega exposure limits, because
it is difficult to manage portfolios in non-normal situations. In the 2000s, the Basel II Accord
has encouraged banks to apply stress testing techniques to credit risk, and some operational
risk events such as rogue trading. However, firm-wide stress testing has made little progress
before the development of supervisory stress tests (CGFS, 2001, 2005).

Supervisory stress tests starts in 1996 with the amendment to the Basel I Accord. How-
ever, they mainly concerned micro-prudential analysis. It was also the case with the Basel
II Accord. The development of stress testing for macro-prudential purposes really begins
to take off after the Global Financial Crisis. Before 2008, only the financial sector assess-
ment program (FSAP), which was launched by the International Monetary Fund and the
World Bank, can be considered as a system-wide stress testing exercise. Since the GFC,
supervisory stress tests has become a standard for the different policymakers:

“Regulatory stress tests moved from being small-scale, isolated exercises within
the broader risk assessment programme, to large-scale, comprehensive risk-
assessment programmes in their own right leading directly to policy responses”
(Dent et al., 2016, page 133).

Most of the time, policymakers and supervisors develop concurrent stress tests, meaning
that the stress tests are applied to all banks of the system. Generally, these concurrent stress
tests are used for setting capital buffers of banks. In this case, it is important to distinguish
stress tests under the constant or dynamic balance sheet assumption (Busch et al., 2017).
Below, we review three supervisory stress testing frameworks:

• Financial sector assessment program (FSAP)4
The FSAP exercise is conducted by the IMF and the World Bank. It is an in-depth
assessment of a country’s financial sector. According to the IMF, “FSAPs analyze the
resilience of the financial sector, the quality of the regulatory and supervisory frame-
work, and the capacity to manage and resolve financial crises. Based on its findings,
FSAPs produce recommendations of a micro- and macro-prudential nature, tailored
to country-specific circumstances”. For instance, FSAPs have been tested for the fol-
lowing countries in 2017: Bulgaria, China, Finland, India, Indonesia, Japan, Lebanon,
Luxembourg, Netherlands, New Zealand, Saudi Arabia, Spain, Sweden, Turkey and
Zambia. Generally, the FSAP exercise includes one or two stress scenarios.

4The FSAP website is www.imf.org/external/np/fsap/fsap.aspx.

http://www.imf.org/
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• Dodd-Frank Act stress test (DFAST)5
According to the Fed, DFAST is a “forward-looking quantitative evaluation of the
impact of stressful economic and financial market conditions on bank holding compa-
nies’ capital”. The results of DFAST are incorporated into the comprehensive capital
analysis and review (CCAR), which evaluates the vulnerability of each bank on an
annual basis. The DFAST exercise includes three types of scenario: baseline, adverse
and severely adverse.

• EU-wide stress testing6
EU-wide stress tests are conducted by the European Banking Authority (EBA), the
European Systemic Risk Board (ESRB), the European Central Bank (ECB) and the
European Commission (EC) in a regular basis, generally every two years7. According
to the EBA, the aim of such tests is to “assess the resilience of financial institutions
to adverse market developments, as well as to contribute to the overall assessment of
systemic risk in the EU financial system”.

Supervisory stress tests are not limited to these three examples, since most of developed
central banks also use stress testing approaches, for instance the Bank of England (www.ba
nkofengland.co.uk/stress-testing) or the Bank of Japan (www.boj.or.jp/en/resea
rch/brp/fsr/index.htm).

14.1.2 Methodologies
There are three main approaches for building stress scenarios. The historical approach

can be viewed as an extension of the historical value-at-risk. The macroeconomic approach
consists in developing hypothetical scenarios based on a macro-econometric model. Hypo-
thetical scenarios can also be generated by the probabilistic approach. In this case, the
probability distribution of risk factors is estimated and extreme scenarios are computed
analytically or by Monte Carlo simulations.

14.1.2.1 Historical approach

This approach is the first method that have been used by banks in the early 1990s. It
consists in identifying the worst period for a given risk factor. For instance, a stress scenario
for equity markets may be the one that occurred during the Black Monday (1987) or the
collapse of Lehman Brothers (2008). A typical adverse scenario for sovereign bonds is the
US interest rate shock in 1994, also known as the ‘great bond massacre’. For currencies and
commodities, historical stress scenarios can be calibrated using the Mexican peso crisis in
1994, the Asian crisis in 1997, or the commodity price crash in 2015. This approach is very
simple and objective since it is based on past values of risk factors. However, it has two
main drawbacks. First, the past worst scenario is not necessarily a good estimate of a future
stress scenario. A typical example is the subprime crisis. Second, it is difficult to compare
the severity of different historical stress scenarios.

The loss (or drawdown) function is defined by L (h) = mintR (t;h) where R (t;h) is
the asset return for the period [t, t+ h]. In Table 14.1, we have reported the 5 maximum
values of L (h) for the S&P 500 index and different values of h. For instance, the maximum
of the daily drawdown is reached on 19 October 1987, where we observe a daily return of
−20.47%. On 15 October 2008, a loss of −9% is observed. If we consider a monthly period,
the maximum loss is about 30%. In Figure 14.3, we have reported the drawdown function

5The DFAST website is www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm.
6The corresponding website is www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing.
7They took place in 2009, 2010, 2011, 2014, 2016 and 2018.

http://www.bankofengland.co.uk/
http://www.bankofengland.co.uk/
http://www.boj.or.jp/
http://www.boj.or.jp/
http://www.federalreserve.gov/
http://www.eba.europa.eu/
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TABLE 14.1: Worst historical scenarios of the S&P 500 index
Sc. 1D 1W 1M
1 1987-10-19 −20.47 1987-10-19 −27.33 2008-10-27 −30.02
2 2008-10-15 −9.03 2008-10-09 −18.34 1987-10-26 −28.89
3 2008-12-01 −8.93 2008-11-20 −17.43 2009-03-09 −22.11
4 2008-09-29 −8.79 2008-10-27 −13.85 2002-07-23 −19.65
5 1987-10-26 −8.28 2011-08-08 −13.01 2001-09-21 −16.89
Sc. 2M 3M 6M
1 2008-11-20 −37.66 2008-11-20 −41.11 2009-03-09 −46.64
2 1987-10-26 −31.95 1987-11-30 −30.17 1974-09-13 −34.33
3 2002-07-23 −27.29 1974-09-13 −28.59 2002-10-09 −31.29
4 2009-03-06 −26.89 2002-07-23 −27.55 1962-06-27 −26.59
5 1962-06-22 −23.05 2009-03-09 −25.63 1970-05-26 −25.45

L (h). We notice that the drawdown increases with the time period at the beginning, but
decreases when the time period is sufficiently long. The maximum loss is called the maximum
drawdown:

MDD = min
∆t
L (∆t)

In the case of the S&P 500 index, the maximum drawdown is equal to −56.8% and has
been observed between 9 October 2007 and 9 March 2009.

Remark 173 In practice, the maximum drawdown is calculated using this formula:

MDD = −max
t

(max[0,t] Pt − Pt
max[0,t] Pt

)
where Pt is the asset price or the risk factor.

The choice of the lag window h is important. Indeed, defining a stress scenario of −30%
for US stocks is not the same if the time period is one day, one week or one month. An-
other important factor is the time period. For instance, a 50% drawdown for US stocks is
observed many times in the last 50 years. However, it is not the same thing to consider
the subprime crisis, the dot.com crisis or the 1973-1974 crisis of the stock market. Even if
these three historical periods experience similar losses for stocks, the fixed income market
reacts differently. It is then obvious that defining a stress scenario cannot be reduced to a
single number for one risk factor. It is also important to define how the other risk factors
will react and be impacted.

14.1.2.2 Macroeconomic approach

The macroeconomic approach consists in developing a macroeconometric model and
considering an exogenous shock in order to generate adverse stress scenarios. The advan-
tages of this approach are manifold. First, the macroeconomic model takes into account
the current economic environment. Stress scenarios are then seen as more plausible than
using the historical approach. For example, the drawdowns observed in the stock market in
1974, 2000 and 2008 are comparable in terms of magnitude, but not in terms of economic
conditions. The origin of a financial market crisis is different each time. This is true for the
stock market, but also for the other asset classes. Macroeconomic modeling may then help
to develop the relationships between risk factors and the interconnectedness between asset
classes for the next crisis. This is why the macroeconomic approach is certainly not better
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FIGURE 14.3: Loss function of the S&P 500 index

than the historical approach for defining single-factor stress testing, but it is more adapted
for building multi-factor stress testing. Therefore, a second advantage is to describe the
sequence of the crisis, and the dynamics between risk factors. Another advantage is that
many scenarios can be generated by the model. For instance, we have previously seen that
the DFAST program defines three scenarios: baseline, adverse and severely adverse. How-
ever, it is obvious that more scenarios are generated by the model. At the end, only two
or three scenarios are selected, because some of them produce unrealistic outcomes, others
may generate similar results, etc.

Exogenous
Shock

Model
Risk

Factors

FIGURE 14.4: Macroeconomic approach of stress testing

However, we must be careful with the macroeconomic approach since it has also weak-
nesses. Stress testing always contains a side of uncertainty. In the case of the historical
approach, this is obvious since there is no chance that the next crisis will look like a pre-
vious crisis. In the case of the macroeconomic approach, we generally expect to predict
the future crisis, but we certainly expect too much (Borio et al., 2014). In Figure 14.4, we
have represented the traditional way to describe and think the macroeconomic approach
of stress testing. The model uses input parameters (exogenous shocks) in order to produce
output parameters (risk factors). In the real life, the impact of the risk factors on financial
entities are not direct and deterministic. Indeed, we generally observe feedback effects from
the stressed entities (E1, . . . , En) on the economic situation (Figure 14.5). For instance, the
default of one financial institution may lead monetary authorities to change their interest
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rate policy. These feedback effects are the most challenging point of the macroeconomic
stress testing framework.

...

...

Model
Risk

Factors

E1

Ei

En

FIGURE 14.5: Feedback effects in stress testing models

A macroeconomic stress testing model is not only a macro-econometric model, that is
based on a reduced form or a vector autoregressive process (Sims, 1980). Modeling activity
(GDP, unemployment rate, etc.), interest rates and inflation (3M and 10Y interest rates,
CPI, etc.) is the first step of the global process. It must also indicate the impact of the
economic regime on credit risk parameters (default rates, CDS spreads, recovery rates, etc.)
and fundamental variables (earnings, dividends, etc.). Finally, it must define the shocks
on financial asset prices (stocks, bonds, commodities, real estate, etc.). For instance, the
DFAST program defines 16 domestic and 12 international economic variables:

• Domestic variables: (1) Real GDP growth; (2) Nominal GDP growth; (3) Real dispos-
able income growth; (4) Nominal disposable income growth; (5) Unemployment rate;
(6) CPI inflation rate; (7) 3-month Treasury rate; (8) 5-year Treasury yield; (9) 10-
year Treasury yield; (10) BBB corporate yield; (11) Mortgage rate; (12) Prime rate;
(13) Dow Jones Total stock market index (Level); (14) House price index (Level); (15)
Commercial real estate price index (Level); (16) Market volatility index (Level).

• International variables: (1) Euro area real GDP growth; (2) Euro area inflation; (3)
Euro area bilateral dollar exchange rate (USD/euro); (4) Developing Asia real GDP
growth; (5) Developing Asia inflation; (6) Developing Asia bilateral dollar exchange
rate (F/USD, index); (7) Japan real GDP growth; (8) Japan inflation; (9) Japan bi-
lateral dollar exchange rate (yen/USD); (10) UK real GDP growth; (11) UK inflation;
(12) UK bilateral dollar exchange rate (USD/pound).

These variables concern activity, interest rates, inflation but also the prices of financial
assets: the scenario for equities is given by the level of the Dow Jones index; the slope of the
yield curve defines the scenario for fixed income instruments; the BBB corporate yield, the
mortgage rate and the prime rate can be used to shape the scenario for credit products like
corporate bonds or CDS; the scenario for real estate is given by house and commercial RE
price indices; the level of the VIX indicates the scenario of the implied volatility for options
and derivatives; the four exchange rates determine the stress scenario, which is valid for
currency markets.
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We notice that the DFAST program defines the major trends of the financial asset
prices, but not a detailed scenario for each asset class. For equity markets, only the stress
scenario for US large cap stocks is specified. Using this figure, one has to deduce the stress
scenario for European equities, Japanese equities, EM equities, small cap equities, etc. So,
there is room for interpretation. And there is a gap between the stress scenario given by the
macroeconomic model and the outcome of the stress scenario. Contrary to the historical
approach, the macroeconomic approach requires translating the big trends into the detailed
path of risk factors. This step can only be done using parametric models: CAPM or APT
models for stocks, Nelson-Siegel model for interest rates, Merton model for credit, etc.

14.1.2.3 Probabilistic approach

Until now, we have presented the outcome of a stress scenario as an extreme loss. How-
ever, the term ‘extreme’ has little meaning and is not precise. It is obvious that a GDP
growth of −10% is more extreme than a GDP growth of −5%. The extreme nature of a
stress scenario can then be measured by its severity. However, we may wonder if a GDP
growth of −50% is conceivable for instance. There is then a trade-off between the severity
of a stress scenario and its probability or likelihood.

At first approximation, a stress scenario can be seen as an extreme quantile or value-
at-risk. In this case, the aim of stress testing is not to estimate the maximum loss but
an extreme loss. For instance, if we consider the univariate stress scenarios F1 − F9 of De
Bandt and Oung (2004) presented on page 895, the authors indicate that the corresponding
frequency is 1% over the last thirty years. In the case of multivariate stress scenarios, the
probability of M2 is equal to 1% while the probability of M5 is equal to 5%. However, most
of the time, the occurrence probability of a stress scenario is not discussed.

Let Y , X1 and X2 be three random variables that we would like to stress. These random
variables may represent macroeconomic variables, market risk factors or parameters of risk
models. We note S (Y ), S (X1) and S (X2) the corresponding stressed values. Evaluating
the likelihood of a stress scenario consists in calculating its probability of occurrence. The
calculation depends on the relationship between the portfolio loss L (w) and the random
variable to stress. For instance, if the relationship between L (w) and X1 is decreasing, the
probability of the stress S (X1) is equal to:

α1 = Pr {X1 ≤ S (X1)} = F1 (S (X1))

If the relationship between L (w) and X2 is increasing, we have:

α2 = Pr {X2 ≥ S (X2)} = 1− F2 (S (X2))

α1 and α2 measures the probability of univariate stress scenarios S (X1) and S (X2). Simi-
larly, we may compute the joint probability of the stress scenario (S (X1) ,S (X2)):

α1,2 = Pr {X1 ≤ S (X1) , X2 ≥ S (X2)}
= Pr {X1 ≤ S (X1)} − Pr {X1 ≤ S (X1) , X2 ≤ S (X2)}
= F1 (S (X1))−C1,2 (F1 (S (X1)) ,F2 (S (X2)))

While the univariate stress scenarios depend on the cumulative distribution functions F1
and F2, the bivariate stress scenario also depends on the copula function C1,2 between X1
and X2. If we assume that X1 and X2 are independent, we obtain:

α1,2 = α1 − α1 · (1− α2)
= α1 · α2
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If we assume that X1 and X2 are perfectly dependent — C1,2 = C+, we have8:

α1,2 = α1 −min (α1, 1− α2)
= 0

This result is perfectly normal because X1 and X2 impact L (w) in an opposite way. If
C1,2 = C−, we have:

α1,2 = α1 −max (0, α1 − α2)
= min (α1, α2)

We deduce that the probability of the bivariate stress scenario is lower than the probability
of the univariate stress scenarios:

0 ≤ α1,2 ≤ min (α1, α2)

We now consider that the stress scenario S (Y ) is deduced from S (X1) and S (X2). The
conditional probability of the stress scenario S (Y ) is then given by:

α = Pr {Y ≤ S (Y ) | (X1, X2) = (S (X1) ,S (X2))}

It follows that α depends on the conditional distribution of Y given X1 and X2. These
three concepts of probability — univariate, joint and conditional — drive the quantitative
approaches of stress testing that are presented below. They highlight the importance of
quantifying the likelihood of the stress scenario, that is the probability of outcomes.

14.2 Quantitative approaches
The previous breakdown is used to classify the models into three main categories. The

univariate case generally consists in modeling the probability distribution of a risk factor in
an extreme situation. It is generally based on the extreme value theory. The multivariate
case is a generalization of the first approach, and requires specifying the dependence between
the risk factors. Copula functions are then the right tool for this task. The third approach
uses more or less complex econometric models, in particular time series models.

14.2.1 Univariate stress scenarios
Let X be the random variable that produces the stress scenario S (X). If X follows the

probability distribution F, we have9 Pr {X ≤ S (X)} = F (S (X)). Given a stress scenario
S (X), we may deduce its severity:

α = F (S (X))

We may also compute the stressed value given the probability of occurrence α:

S (X) = F−1 (α)

Even if this framework is exactly the approach used by the value-at-risk, there is a big
difference between value-at-risk and stress testing. Indeed, the probability α used for stress
testing is much lower than for value-at-risk.

8We recall that α1 ≈ 0 and α2 ≈ 0.
9We assume that the relationship between L (w) and X is decreasing.
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TABLE 14.2: Probability (in %) associated to the return period T in years

Return period 1 5 10 20 30 50
Daily 0.3846 0.0769 0.0385 0.0192 0.0128 0.0077
Weekly 1.9231 0.3846 0.1923 0.0962 0.0641 0.0385
Monthly 8.3333 1.6667 0.8333 0.4167 0.2778 0.1667
1− αGEV 7.6923 1.5385 0.7692 0.3846 0.2564 0.1538

We recall that the return period T is related to the probability α by the relationship
T = α−1. We deduce that α = T −1. In Table 14.2, we report the probability α for different
return periods and different frequencies (daily, weekly and monthly). In the case where F is
the cumulative distribution function of daily returns10, the probability α is equal to 0.0769%
when T is equal to 5 years, and 0.0128% when T is equal to 30 years. There are extreme
probabilities in comparison to the confidence level α = 1% for the value-at-risk. Therefore,
we can use the extreme value theory to calculate these quantities. We reiterate that:

T = α−1 = n · (1− αGEV)−1

where n is the length of the block maxima11.

TABLE 14.3: GEV parameter estimates (in %) of MSCI USA and MSCI EMU indices

Parameter Long position Short position
MSCI USA MSCI EMU MSCI USA MSCI EMU

µ 1.242 1.572 1.317 1.599
σ 0.720 0.844 0.577 0.730
ξ 19.363 21.603 26.341 26.494

TABLE 14.4: Stress scenarios (in %) of MSCI USA and MSCI EMU indices

Year Long position Short position
MSCI USA MSCI EMU MSCI USA MSCI EMU

5 −5.86 −7.27 5.69 7.16
10 −7.06 −8.83 7.01 8.84
25 −8.92 −11.29 9.17 11.60
50 −10.56 −13.49 11.18 14.17
75 −11.62 −14.94 12.54 15.91

100 −12.43 −16.05 13.59 17.26
Extreme −9.51 −10.94 11.04 10.87statistic
T ? 32.49 22.24 47.87 20.03

Let us consider the MSCI USA and MSCI EMU indices from 1990 to 2017. We calculate
the daily returns Rt. Then we take the block maxima (X = Rt) and the block minima (X =
−Rt) for modeling short and long exposures. Finally, we estimate the parameters (µ, σ, ξ) by
the method of maximum likelihood and calculate the corresponding stress scenario S (X) =

10We assume that there are 260 trading days in one year.
11For instance, when T is equal to 5 years and n is equal to 20 days, we obtain αGEV = 1.5385%.
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FIGURE 14.6: Stress scenarios (in %) of MSCI USA and MSCI EMU indices

Ĝ−1 (1− nT −1) where Ĝ is the estimated GEV distribution. Results are given in Tables
14.3 and 14.4 and Figure 14.6 when the size of blocks is equal to 20 trading days. We notice
that the magnitude of stress scenarios is higher for the MSCI EMU index than for the MSCI
USA index. For each extreme statistic12, we have reported the associated return period T ?.
For the MSCI EMU index, T ? is close to 20 years. For the MSCI USA index, we obtain a
larger return period. This indicates that the stress scenarios for the MSCI USA index may
be underestimated. Therefore, it may be appropriate to take the same stress scenario for
the two indices, because the differences are not justified.

14.2.2 Joint stress scenarios
14.2.2.1 The bivariate case

Let Xn:n,1 and Xn:n,2 be the maximum order statistics of the random variables X1
and X2. We note p = Pr {Xn:n,1 > S (X1) , Xn:n,2 > S (X2)} the joint probability of stress
scenarios (S (X1) ,S (X2)). We have:

p = 1− Pr {Xn:n,1 ≤ S (X1)} − Pr {Xn:n,2 ≤ S (X1)}+
Pr {Xn:n,1 ≤ S (X1) , Xn:n,2 ≤ S (X2)}

= 1− F1 (S (X1))− F2 (S (X2)) + C (F1 (S (X1)) ,F2 (S (X2)))
= C̄ (F1 (S (X1)) ,F2 (S (X2)))

where C̄ (u1, u2) = 1− u1 − u2 + C (u1, u2). We deduce that the failure area is represented
by: {

(S (X1) ,S (X2)) ∈ R2
+ | C̄ (F1 (S (X1)) ,F2 (S (X2))) ≤ n

T

}
12They correspond to the minimum and maximum of daily returns.
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Given a return period T , we don’t have a unique joint stress scenario (S (X1) ,S (X2)), but
an infinite number of bivariate stress scenarios.

The previous result argues for computing the implied return period of a given scenario,
and not the opposite:

T = n

C̄ (F1 (S (X1)) ,F2 (S (X2)))
In the univariate case, the implied return period of the stress S (Xi) is equal to:

Ti = n

1− Fi (S (Xi))

Since an extreme value copula satisfies the property C⊥ ≺ C ≺ C+, we deduce that:

max (T1, T2) ≤ T ≤ nT1T2

In Table 14.5, we report the upper and lower bounds of T for different values of n, T1 and T2
by assuming that a year contains 260 trading days. We observe that the range of T is wide.
For instance, when n is equal to 20 days, and T1 and T2 are equal to 5 years, the return
period of the joint stress scenario is equal to 5 years if the two scenarios are completely
dependent and 325 years if they are independent.

TABLE 14.5: Upper and lower bounds of the return time T (in years)

n (in days) T1 T2
Lower Upper
bound bound

1 5 5 5 6500
5 5 5 5 1300

20 5 5 5 325
260 5 5 5 25
260 10 5 10 50
260 1 1 1 1

We consider the previous example with MSCI USA and EMU indices. We have reported
the failure area in Figure 14.7. For that, we have estimated the copula C by assuming a
Gumbel copula function:

C (u1, u2) = exp
(
−
(

(− ln u1)θ + (− ln u2)θ
)1/θ

)
We estimate θ by the method of maximum likelihood for each quadrant and obtain the
following results:

MSCI USA Positive Positive Negative Negative
MSCI EMU Positive Negative Negative Positive

θ̂ 1.7087 1.4848 1.7430 1.4697

This means that θ̂ is equal to 1.7087 if the stress for MSCI USA and EMU indices are
both positive. We have also reported the solution in the two extremes cases C⊥ and C+.
We observe that the dependence plays a major role when considering joint scenarios. For
instance, if we consider a scenario of −10% for the MSCI USA index and −10% for the
MSCI EMU index, the return period is respectively equal to 39.9, 55.1 and 8 197 years for
the product, Gumbel and Fréchet copulas.
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FIGURE 14.7: Failure area of MSCI USA and MSCI EMU indices (blockwise dependence)

Remark 174 The previous exercise illustrates the limits of blockwise analysis. Let us con-
sider the case of a negative stress for the MSCI USA index and a positive stress for the
MSCI EMU index. When n is equal to 20 days, we calculate for each block the worst daily
return for the first index and the best daily return for the second index. However, during 4
weeks, these two extreme returns do not certainly occur the same day. It follows that the
dependence is overestimated for the two quadrants (Positive, Negative) and (Negative, Pos-
itive). This is why it is better to estimate the copula function using daily returns and not
blockwise data. In this case, we obtain the results given in Figure 14.8.

14.2.2.2 The multivariate case

In the multivariate case, the failure area is defined by:{
(S (X1) , . . . ,S (Xp)) ∈ Rp+ | C̄ (F1 (S (X1)) , . . . ,Fm (S (Xp))) ≤

n

T

}
where:

C̄ (u1, . . . , up) =
p∑
i=0

(−1)i
∑

v∈Z(p−i,p)

C (v)


and Z (m, p) denotes {v ∈ [0, 1]p |

∑p
i=1 1 {vi = 1} = m}. In the case p = 2, we retrieve the

previous expression:
C̄ (u1, u2) = 1− u1 − u2 + C (u1, u2)

When p is equal to 3, we obtain:

C̄ (u1, u2, u3) = 1− u1 − u2 − u3 +
C (u1, u2) + C (u1, u3) + C (u2, u3)−
C (u1, u2, u3)
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FIGURE 14.8: Failure area of MSCI USA and MSCI EMU indices (daily dependence)

Remark 175 Bouyé et al. (2000) used this framework for evaluating stress scenarios as-
sociated to five commodities of the London Metal Exchange. Since commodity returns are
not necessarily positively correlated, they showed that collecting univariate stress scenarios
to form a multivariate stress scenario is completely biased. In particular, they presented an
example where the return period of univariate stress scenarios is 5 years while the return
period of the multivariate stress scenario is 50 000 years.

14.2.3 Conditional stress scenarios
In supervisory stress testing, the goal is to impact the parameters of the risk model

according to a given scenario. For example, these parameters may be the systematic risk
factor in market risk factors, the probability of default and the loss given default in credit
risk modeling, or the frequency of the Poisson distribution and the parameters of the severity
distribution in operational risk modeling. Therefore, we have to estimate the relationship
between these parameters and the variables of the scenario, and deduce their stressed values.

14.2.3.1 The conditional expectation solution

Let us assume a linear model between the independent variable Y and the explanatory
variables X = (X1, . . . , Xn):

Yt = β0 +
n∑
i=1

βiXi,t + εt

where εt ∼ N
(
0, σ2). By assuming that the standard properties of the linear regression

model hold, we obtain:

E [Yt] = β0 +
n∑
i=1

βiE [Xi,t]
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We can also calculate the conditional expectation of Yt:

E [Yt | Xt = (x1, . . . , xn)] = β0 +
n∑
i=1

βixi

Given a joint stress scenario S (X) = (S (X1) , . . . ,S (Xn)), we deduce the conditional stress
scenario of Y and we have:

S (Y ) = E [Yt | Xt = (S (X1) , . . . ,S (Xn))]

= β0 +
n∑
i=1

βiS (Xi)

In some cases, assuming a linear relationship is not relevant, in particular for the probability
of default or the loss given default. It is then common to use the following transformation
(Dees et al., 2017):

Zt = ln
(

Yt
1− Yt

)
We have:

Yt = exp (Zt)
1 + exp (Zt)

= 1
1 + exp (−Zt)

= h (Zt)

where h (z) is the logit transformation. We verify that Yt ∈ [0, 1]. Since the statistical model
becomes Zt = β0 +

∑n
i=1 βiXi,t + ut, we deduce that:

E [Yt | Xt = (x1, . . . , xn)] =
∫ ∞
−∞

h

(
β0 +

n∑
i=1

βiXi,t + ω

)
1
σ
φ
(ω
σ

)
dω (14.1)

This conditional expectation can be calculated thanks to numerical integration algorithms.

Remark 176 The previous model can also be extended in order to take into account fixed
effects (panel data) or lag dynamics. For instance, we can use an ARX(p) model:

Yt = β0 +
p∑
i=1

φiYt−i +
n∑
i=1

βiXi,t + ut

Example 161 We assume that the probability of default PDt at time t is explained by the
following linear regression model:

ln
(

PDt

1− PDt

)
= −2.5− 5gt − 3πt + 2ut + εt

where εt ∼ N (0, 0.25), gt is the growth rate of the GDP, πt is the inflation rate, and ut is
the unemployment rate. The baseline scenario is defined by gt = 2%, πt = 2% and ut = 5%.

In Figure 14.9, we have reported the probability density function of PDt for the baseline
scenario and the following stress scenario: gt = −8%, πt = 5% and ut = 10%. The con-
ditional expectation13 is respectively equal to 7.90% and 12.36%. The figure of 7.90% can

13We use a Gauss-Legendre quadrature method with an order of 512 for computing the conditional
expectation given by Equation (14.1).
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FIGURE 14.9: Probability density function of PDt

FIGURE 14.10: Relationship between the macroeconomic variables and PDt



912 Handbook of Financial Risk Management

TABLE 14.6: Stress scenario of the probability of default
t gt πt ut E [PDt | S (X)] q90% (S (X))
0 2.00 2.00 5.00 7.90 12.78
1 −6.00 2.00 6.00 11.45 18.26
2 −7.00 1.00 7.00 12.47 19.79
3 −9.00 1.00 9.00 14.03 22.14
4 −7.00 1.00 10.00 13.12 20.78
5 −7.00 2.00 11.00 13.01 20.59
6 −6.00 2.00 10.00 12.26 19.49
7 −4.00 4.00 9.00 10.49 16.80
8 −2.00 3.00 8.00 9.70 15.58
9 −1.00 3.00 7.00 9.11 14.68

10 2.00 3.00 6.00 7.82 12.68
11 4.00 3.00 6.00 7.14 11.60
12 4.00 3.00 6.00 7.14 11.60

be interpreted as the long-run (or unconditional) probability of default that is used in the
IRB formula. The relationship between the macroeconomic variables and the conditional
expectation of PDt is shown in Figure 14.10. For each panel, we consider the baseline sce-
nario and we vary one parameter each time. In Table 14.6, we consider a stress scenario
for the next 3 years, and we indicate the values taken by gt, πt and ut for each quarter
t. Then, we calculate the conditional expectation and the conditional quantile at the 90%
confidence level of the probability of default PDt. The stress scenario occurs at time t = 1
and propagates until t = 12. This is why we initially observe a jump in the probability
of default, since it goes from 7.90% to 11.45%. The conditional expectation continues to
increase and reaches a top at 14.03%. Then, it decreases and we obtain a new equilibrium
after 3 years.

In the previous example, we have also reported the conditional quantile q90% (S (X)).
We observed that its values are larger than those given by the conditional expectation
E [PDt | S (X)]. These differences raise the question of defining a conditional stress scenario.
Indeed, the previous framework defines the conditional stress scenario as the conditional
expectation of the linear model Yt = β0 +

∑n
i=1 βiXi,t + εt. In this case, the vector of

parameters β = (β0, β1, . . . , βn) is estimated by ordinary least squares. We could also define
the conditional stress scenario S (Y ) = qα (S (X)) as the solution of the quantile regression:

Pr {Yt ≤ qα (S) | Xt = S} = α

In this case, we can use the tools presented on pages 613 (parametric approach) and 643
(non-parametric approach). The parametric approach assumes that the probability distri-
bution between Y and X is Gaussian. The non-parametric approach is more adapted when
this assumption is not satisfied, for example when the stochastic dependence is not linear.

14.2.3.2 The conditional quantile solution

In order to understand the impact of the dependence on the conditional stress scenario,
we consider again the copula framework. If we consider the bivariate random vector (X,Y ),
using the linear regression is equivalent to assume that:

Yt = E [Yt | Xt = x] + εt
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This implies that (X,Y ) is a bivariate Gaussian random vector. The average dependence
structure between X and Y is then linear and can be represented by the parametric function
y = m (x) where m (x) is the conditional expectation function E [Yt | Xt = x]. However, the
conditional expectation is not appropriate when (X,Y ) is not Gaussian.

The statistical framework We have defined the conditional quantile function qα (x) as
the solution of the equation Pr {Y ≤ qα (x) | X = x} = α. Let F (x, y) be the probability
distribution of (X,Y ). By using the integral transforms U1 = Fx (X) and U2 = Fy (Y )
where Fx and Fy are the marginal distributions, we have:

Pr
{
Y ≤ F−1

y (u2) | X = F−1
x (u1)

}
= α

where u1 = Fx (x) and u2 = Fy (y) = Fy (qα (x)). It follows that the quantile regression of
Y on X is equivalent to solve the following statistical problem:

Pr {U2 ≤ u2 | U1 = u1} = α

or:
∂

∂ u1
C (u1, u2) = α

where C (u1, u2) is the copula function associated to probability distribution F (x, y). We
have u2 = C−1

2|1 (u1, α) where C2|1 (u1, u2) = ∂1C (u1, u2). It follows that:

Fy (y) = C−1
2|1 (Fx (x) , α)

Finally, we obtain y = qα (x) where:

qα (x) = F−1
y

(
C−1

2|1 (Fx (x) , α)
)

Remark 177 In the case where X and Y are independent, we have C (u1, u2) = u1u2,
∂1C (u1, u2) = u2, C−1

2|1 (u1, α) = α and:

y = qα (x) = F−1
y (α)

Therefore, the conditional quantile qα (x) of Y with respect to X = x is equal to the uncon-
ditional quantile F−1

y (α) of Y .

Some special cases Let us assume that the dependence structure is a Normal copula
with parameter ρ. On page 737, we have shown that:

C (u1, u2) =
∫ u1

0
Φ
(

Φ−1 (u2)− ρΦ−1 (u)√
1− ρ2

)
du

We deduce that:

∂1 C (u1, u2) = Φ
(

Φ−1 (u2)− ρΦ−1 (u1)√
1− ρ2

)
Solving the equation ∂1 C (u1, u2) = α gives:

u2 = Φ
(
ρΦ−1 (u1) +

√
1− ρ2Φ−1 (α)

)
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The conditional quantile function is then:

y = qα (x) = F−1
y

(
Φ
(
ρΦ−1 (Fx (x)) +

√
1− ρ2Φ−1 (α)

))

In the case of the Student’s t copula, we have demonstrated that14:

C2|1 (u1, u2; ρ, ν) = Tν+1

( ν + 1
ν +

[
T−1
ν (u1)

]2
)1/2

T−1
ν (u2)− ρT−1

ν (u1)√
1− ρ2


Solving the equation C2|1 (u1, u2; ρ, ν) = α gives:

u2 = Tν

ρT−1
ν (u1) +

√
1− ρ2

(
ν +

[
T−1
ν (u1)

]2
ν + 1

)1/2

T−1
ν+1 (α)


The conditional quantile function is then:

y = qα (x) = F−1
y

(
Tν

(
ρT−1

ν (Fx (x)) + η
√

1− ρ2
))

where:

η =
(
ν +

[
T−1
ν (Fx (x))

]2
ν + 1

)1/2

T−1
ν+1 (α)

Illustration Let us consider an example with two asset returns (R1,t, R2,t). We assume
that they follow a bivariate Gaussian distribution with µ1 = 3%, µ2 = 5%, σ1 = 10%, σ2 =
20% and ρ = −20%. In Figure 14.11, we have reported the conditional quantile function
R2,t = qα (R1,t) for different confidence levels α. We verify that the median regression
corresponds to the linear regression. The quantile regression shifts the intercept below when
α < 50% and above when α > 50%. We now assume two variants of this example:

1. the dependence structure is the previous Normal copula, but the marginal distribu-
tions follow a Student’s t1 distribution15;

2. the marginal distributions are the previous Gaussian distributions, but the dependence
structure is a Student’s t1 copula.

Results are given in Figures 14.12 and 14.13. We deduce that the linearity of the con-
ditional quantile vanishes if the marginals are not Gaussian or the dependence structure is
not Gaussian. In the first case, assuming a linear dependence between R1,t and R2,t implies
to overestimate on average the conditional return R2,t | R1,t when the first asset has high
negative returns. In the second case, we obtain the contrary result.

14See page 738.
15We have

Ri,t − µi
σi

∼ t1
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FIGURE 14.11: Conditional quantile (Gaussian distribution)

FIGURE 14.12: Conditional quantile (Normal copula and Student’s t marginals)
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FIGURE 14.13: Conditional quantile (Student’s t copula and Gaussian marginals)

14.2.4 Reverse stress testing
According to EBA (2018b), reverse stress test “means an institution stress test that

starts from the identification of the pre-defined outcome (e.g. points at which an institution
business model becomes unviable, or at which the institution can be considered as failing
or likely to fail) and then explores scenarios and circumstances that might cause this to
occur”. The underlying idea is then to identify the set of risk factors that may cause the
bankruptcy of the bank (or the financial institution). The difference between stress testing
and reverse stress testing can be summarized as follows:

• In stress testing, extreme scenarios of risk factors are used to test the viability of the
bank:

(S (F1) , . . . ,S (Fm))⇒ S (L (w))⇒
{
D = 0 if S (L (w)) < C
D = 1 otherwise

Using the set of stressed risk factors, we then compute the corresponding loss S (L (w))
of the portfolio. This stress can cause the default of the bank if the stressed loss is
larger than its capital C.

• In reverse stress testing, extreme scenarios of risk factors are deduced from the
bankruptcy scenario:

D = 1⇒ RS (L (w))⇒ (RS (F1) , . . . ,RS (Fm))

We first assume that the bank defaults and compute the associated stressed loss.
Then, we deduce the implied set of risk factors that has produced the bankruptcy.

Therefore, reverse stress testing can be viewed as an inverse problem, which can face very
quickly a curse of dimensionality.
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14.2.4.1 Mathematical computation of reverse stress testing

We assume that the portfolio loss is a function of the risk factors:

L (w) = ` (F1, . . . ,Fm;w)

Let (S (F1) , . . . ,S (Fm)) be the stress scenario. The associated loss is given by:

S (L (w)) = ` (S (F1) , . . . ,S (Fm) ;w)

Reverse stress testing assumes that the financial institution has calculated the reverse
stressed loss RS (L (w)) that may produce its bankruptcy. It follows that the reverse stress
scenario RS is the set of risk factors that corresponds to this stressed loss:

RS = {(RS (F1) , . . . ,RS (Fm)) : ` (S (F1) , . . . ,S (Fm) ;w) = RS (L (w))}

Since we have one equation with m unknows, there is not a unique solution except in some
degenerate cases. The issue is then to choose the most plausible reverse stress scenario. For
instance, we can consider the following optimization program16:

(RS (F1) , . . . ,RS (Fm)) = arg max ln f (F1, . . . ,Fm) (14.2)
s.t. ` (S (F1) , . . . ,S (Fm) ;w) = RS (L (w))

where f (x1, . . . , xm) is the probability density function of the risk factors (F1, . . . ,Fm).

The linear Gaussian case We assume that F ∼ N (µF ,ΣF ) and L (w) =
∑m
j=1 wjFj =

w>F . Problem (14.2) becomes:

RS (F) = arg min 1
2 (F − µF )>Σ−1

F (F − µF )

s.t. w>F = RS (L (w))

The Lagrange function is:

L (F ;λ) = 1
2 (F − µF )>Σ−1

F (F − µF )− λ
(
w>F − RS (L (w))

)
We deduce the first-order condition:

∂ L (F ;λ)
∂ F

= Σ−1
F (F − µF )− λw = 0

It follows that F = µF + λΣFw. Since we have w>F = w>µF + λw>ΣFw, we obtain:

λ = RS (L (w))− w>µF
w>ΣFw

and:
RS (F) = µF + ΣFw

w>ΣFw
(
RS (L (w))−w>µF

)
(14.3)

Another approach for solving the inverse problem is to consider the joint distribution of
F and L (w): (

F
L (w)

)
∼ N

((
µF

w>µF

)
,

(
ΣF ΣFw

w>ΣF w>ΣFw

))
16We notice that maximizing the density is equivalent to maximizing its logarithm.
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Using Appendix A.2.2.4 on page 1062, we deduce that the conditional distribution of F
given L (w) = RS (L (w)) is Gaussian:

F | L (w) = RS (L (w)) ∼ N
(
µF|L(w),ΣF|L(w)

)
where:

µF|L(w) = µF + ΣFw
w>ΣFw

(
RS (L (w))−w>µF

)
and:

ΣF|L(w) = ΣF −
ΣFww>ΣF
w>ΣFw

We know that the maximum of the probability density function of the multivariate normal
distribution is reached when the random vector is exactly equal to the mean. We deduce
that:

RS (X) = µF|L(w)

= µF + ΣFw
w>ΣFw

(
RS (L (w))−w>µF

)
(14.4)

Example 162 We assume that F = (F1,F2), µF = (5, 8), σF = (1.5, 3.0) and ρ (F1,F2) =
−50%. The sensitivity vector w to the risk factors is equal to (10, 3).

The stress scenario is the collection of univariate stress scenarios at the 99% confidence
level:

S (F1) = 5 + 1.5 · Φ−1 (99%) = 8.49
S (F2) = 8 + 3.0 · Φ−1 (99%) = 14.98

The stressed loss is then equal to:

S (L (w)) = 10 · 8.49 + 3 · 14.98 = 129.53

We assume that the reverse stressed loss is equal to 129.53. Using Formula (14.4), we
deduce that RS (F1) = 10.14 and RS (F2) = 9.47. The reverse stress scenario is very
different than the stress scenario even if they give the same loss. In fact, we have
f (S (F1) ,S (F2)) = 0.8135 · 10−6 and f (RS (F1) ,RS (F2)) = 4.4935 · 10−6, meaning that
the occurrence probability of the reverse stress scenario is more than five times higher than
the occurrence probability of the stress scenario.

The general case In the general case, we use a copula function C in order to describe
the joint distribution of the risk factors. We have:

ln f (F1, . . . ,Fm) = ln c (F1 (F1) , . . . ,Fm (Fm)) +
m∑
j=1

ln fj (Fj)

where c (u1, . . . , um) is the copula density, Fj is the cdf of Fj and fj is the pdf of Fj . Finally,
we obtain a non-linear optimization problem subject to a non-linear constraint.
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14.2.4.2 Practical solutions

There are very few articles on reverse stress testing, and a lack of statistical methods.
However, we can cite Grundke (2011), Kopeliovich et al. (2015), Glasserman et al. (2015)
and, Grundke and Pliszka (2018). In these research papers, the optimization problem is
generally approximated. For instance, Kopeliovich et al. (2015) and Grundke and Pliszka
(2018) consider the PCA method to reduce the problem dimension. Glasserman et al. (2015)
propose to use the method of empirical likelihood in order to evaluate the probability of a
reverse stress test.

From a practical point of view, banks generally use a fewer number of risk factors. This
helps to reduce the problem dimension. They can also consider a Gaussian approximation.
In fact, the main difficulty lies in the equality constraint. This is why they generally consider
the following optimization problem:

(RS (F1) , . . . ,RS (Fm)) = arg max ln f (F1, . . . ,Fm)
s.t. ` (S (F1) , . . . ,S (Fm) ;w) ≥ S (L (w))

In this case, they can use the Monte Carlo simulation method to estimate the reverse stress
scenario.

14.3 Exercises
14.3.1 Construction of a stress scenario with the GEV distribution

1. We note an and bn the normalization constants and G the limit distribution of the
Fisher-Tippet theorem.

(a) Find the limit distribution G when X ∼ E (λ), an = λ−1 and bn = λ−1 lnn.
(b) Same question when X ∼ U[0,1], an = n−1 and bn = 1− n−1.
(c) Same question when X is a Pareto distribution P (α, θ):

F (x) = 1−
(
θ + x

θ

)−α
and the normalization constants are an = θα−1n1/α and bn = θn1/α − θ.

2. We denote by G the GEV probability distribution:

G (x) = exp
(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

What is the interest of this probability distribution? Write the log-likelihood function
associated to the sample {x1, . . . , xT }.

3. Show that for ξ → 0, the distribution G tends toward the Gumbel distribution:

Λ (x) = exp
(
− exp

(
−
(
x− µ
σ

)))
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4. We consider the minimum value of daily returns of a portfolio for a period of n trading
days. We then estimate the GEV parameters associated to the sample of the opposite
of the minimum values. We assume that ξ is equal to 1.

(a) Show that we can approximate the portfolio loss (in %) associated to the return
period T with the following expression:

R (T ) ' −
(
µ̂+

(
T
n
− 1
)
σ̂

)
where µ̂ and σ̂ are the ML estimates of the GEV parameters.

(b) We set n equal to 21 trading days. We obtain the following results for two port-
folios:

Portfolio µ̂ σ̂ ξ
#1 1% 3% 1
#2 10% 2% 1

Calculate the stress scenario for each portfolio when the return period is equal
to one year. Comment on these results.

14.3.2 Conditional expectation and linearity
We consider the bivariate Gaussian random vector (X,Y ):(

X
Y

)
∼ N

((
µx
µy

)
,

(
σ2
x ρx,yσxσy

ρx,yσxσy σ2
y

))
1. Using the conditional distribution theorem, show that:

Y = β0 + βX + σU

where U ∼ N (0, 1). Give the expressions of β0, β and σ.

2. Deduce the conditional expectation function m (x):

m (x) = E [Y | X = x]

3. Let
(
X̃, Ỹ

)
be the log-normal random vector such that X̃ = exp (X) and Ỹ = exp (Y ).

Find the conditional expectation function m̃ (x):

m̃ (x) = E
[
Ỹ | X̃ = x

]
4. Comment on these results.

14.3.3 Conditional quantile and linearity
Let X and Y be a n× 1 random vector and a random variable. We assume that (X,Y )

is Gaussian: (
X
Y

)
∼ N

((
µx
µy

)
,

(
Σx,x Σx,y
Σy,x Σy,y

))
We note Fx (x) and Fy (x) the marginal distributions, and F (x, y) the joint distribution.
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1. Calculate the conditional distribution F (y | X = x) of the random variable Y (x) =
Y | X = x. Deduce the conditional quantile defined by:

qα (x) = inf {q : Pr (Y (x) ≤ q) ≥ α}

2. Show that:
qα (x) = β0 (α) + β>x

where β0 (α) is a function that depends on the confidence level α.

3. Compare qα (x) with the conditional expectation m (x). Deduce the main difference
between linear regression and quantile regression.

4. We consider an exponential default time τ ∼ E (λ) that depends on the risk factors X.
Moreover, we assume that X is Gaussian N (µx,Σx,x) and the dependence between
the default time τ and the risk factors X is a Normal copula. Find the conditional
quantile function qτα (x) of the random variable τ (x) = τ | X = x.

5. We now consider the probability of default PD associated to the default time τ ∼ E (λ).
Calculate the conditional quantile function qPD

α (x) of the random variable PD (x) =
PD | X = x.

6. We consider the single factor case where X ∼ N
(
µx, σ

2
x

)
and we assume that the

parameter of the Normal copula between τ and X is equal to ρ. Show that:

qPD
α (x) = Φ

(
Φ−1 (α)

√
1− ρ2 + ρ

(x− µx)
σx

)
7. Comment on these results and propose a quantile regression model to stress the prob-

ability of default.
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Chapter 15
Credit Scoring Models

Credit scoring refers to statistical models to measure the creditworthiness of a person or a
company. They have progressively replaced judgemental systems and are now widely used by
financial and banking institutions that check the credit rating and capacity of the borrower
before to approve a loan. Therefore, credit scoring is at the heart of the decision-making
system for granting credit. This is particularly true for consumer credit (mortgage, credit
card, personal loan, etc.). Credit scoring models are also used for commercial firms, but
their final outputs are generally not sufficient for making a decision. For instance, they can
be completed with the knowledge of the relationship manager on the company.

Credit scoring first emerged in the United States. For instance, one of the oldest credit
scores is the FICO score that was introduced in 1989 by Fair Isaac Corporation. The FICO
score is based on consumer credit files of consumer credit reporting agencies such as Ex-
perian, Equifax and TransUnion. It remains today the best-known and most-used external
scoring system in the world. In thirty years, credit scoring models have evolved considerably,
and financial institutions have generally built their own internal credit scoring system. In
particular, the development of credit scoring techniques has speeded up in the 2000s with
the introduction of the IRB formula in the Basel II Accord. For instance, they are now used
for estimating the probability of default or the loss given default, while validation and back-
testing procedures are better defined. The estimation of credit scores has also benefitted
from the massive development of marketing scores, big data and machine learning.

15.1 The method of scoring
15.1.1 The emergence of credit scoring
15.1.1.1 Judgmental credit systems versus credit scoring systems

The underlying idea of credit valuation is to use the experience in order to approve or
deny the credit of a (new) customer. In the case of judgmental credit analysis, the decision
is made by a credit analyst or the relationship manager, and is based on the character,
the capacity and the capital of the borrower. Past experience of the credit analyst is then
fundamental, and two credit analysts may give two different answers. Moreover, it takes
many years to build a track record, because it is not an industrial process. Indeed, the
credit analyst can analyze only a limited number of requests per week. Because of the high
costs, financial institutions have sought to automate credit decisions.

In 1941, Durand presented a statistical analysis of credit valuation. He showed that credit
analysts uses similar factors, and proposed a credit rating formula based on nine factors:
(1) age, (2) sex, (3) stability of residence, (4) occupation, (5) industry, (6) stability of
employment, (7) bank account, (8) real estate and (9) life insurance. The score is additive
and can take values between 0 and 3.46. For instance, 0.40 is added to the score if the

923
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applicant is a woman, 0.30 if the applicant is 50 years old or more, etc. Durand’s formula is
the first credit scoring model that has been published. Such credit scoring models become
more and more popular in financial institutions in the 1950s and 1960s, but the real turning
point is the development of the credit card business in the 1970s (Thomas, 2000). From an
industrial point of view, a credit scoring system has two main advantages compared to a
judgmental credit system:

1. it is cost efficient, and can treat a huge number of applicants;

2. decision-making process is rapid and consistent across customers.

Generally, financial institutions also consider that credit scoring systems are more efficient
and successful than judgmental credit systems. However, comparing track records is always
a difficult exercise since it depends on many factors. Some credit analysts may have a very
good track record, while the live performance of some statistical credit models may be worse
than their backtest performance. Nevertheless, the case of credit cards has demonstrated
that credit scoring models are far better than judgmental credit systems. The main reason
is the large amount of data that can be analyzed by a statistical model. While experience
is essential for a credit analyst, the efficiency of credit scoring depends on the quality and
amount of data.

15.1.1.2 Scoring models for corporate bankruptcy

These models appear with the research of Tamari (1966), who proposed to combine
several financial ratios for assessing the financial health of corporate firms. Nevertheless,
the weight of each ratio was assumed to be fixed and has been arbitrary calibrated. The
empirical work of Beaver (1966) was more interesting since he estimated the univariate
statistical relationship between financial ratios and the failure. However, the seminal paper
for the evaluation of creditworthiness is the publication of Altman (1968). Using a small
dataset and the statistical method of discriminant analysis, he introduced the concept of
z-score for predicting bankruptcy of commercial firms. The score was equal to:

Z = 1.2 ·X1 + 1.4 ·X2 + 3.3 ·X3 + 0.6 ·X4 + 1.0 ·X5

where the variables Xj represent the following financial ratios:

Xj Ratio
X1 Working capital / Total assets
X2 Retained earnings / Total assets
X3 Earnings before interest and tax / Total assets
X4 Market value of equity / Total liabilities
X5 Sales / Total assets

If we note Zi the score of the firm i, we can calculate the normalized score Z?i =
(Zi −mz) /σz where mz and σz are the mean and standard deviation of the observed
scores. Z?i can then be compared to the quantiles of the Gaussian distribution or the em-
pirical distribution. A low value of Z?i (for instance Z?i < 2.5) indicates that the firm has
a high probability of default. Today, the technique of z-score, which consists of normalizing
a score, is very popular and may be found in many fields of economics, finance, marketing
and statistics.

15.1.1.3 New developments

Since the publication of Durand (1941) and Altman (1968), the research on credit scoring
can be split into three main categories:
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• The first category concerns the default of corporate firms. It appears that the choice
of financial ratios and relevant metrics as explanatory variables are more important
than the model itself (Hand, 2006). Other factors such as the business cycle, economic
conditions or market prices (Hillegeist et al., 2004) may be taken into account. More-
over, the one-size-fits-all approach is not appropriate and credit scoring models are
different for stock-listed companies, medium-sized companies, financial companies or
industrial companies (Altman et al., 2010).

• The second category focuses on consumer credit and retail debt management (credit
cards, mortgages, etc.). Sample sizes are larger than for corporate credit (Thomas,
2000) and may justify the use of more sophisticated techniques that include the be-
havior of the customer (Thomas et al., 2017).

• The third research direction concerns statistical methods. Besides discriminant analy-
sis, new approaches have been proposed, in particular logit or probit models (Ohlson,
1980; Lennox, 1999) and survival models (Shumway, 2001). Moreover, with the avail-
ability of more personal data, machine learning techniques such as neural networks
(West, 2000) are also used and tested in credit scoring and are not reserved for only
marketing scores.

15.1.2 Variable selection
15.1.2.1 Choice of the risk factors

Variables used to determine the creditworthiness of a borrower are generally based on 5
risk factor categories, also called the five Cs:

1. Capacity measures the applicant’s ability to meet the loan payments. For example,
lenders may look at the debt-to-income or the job stability of the applicant. In the
case of corporate firms, the cash flow dynamics is a key element.

2. Capital is the size of assets that are held by the borrower. In the case of consumer
credit, it corresponds to the net wealth of the borrower. For a corporate firm, it can
be machinery, equipment, buildings, investment portfolio, etc.

3. Character measures the willingness to repay the loan. For example, the lender can
investigate the payment history of the applicant. If the applicant has children, the
applicant may have more incentive than if he/she is single.

4. Collateral concerns additional forms of security that the borrower can provide to the
lender. This item is particularly important in the case of corporate credit.

5. Conditions refer to the characteristics of the loan and the economic conditions that
might affect the borrower. For example, the score is generally a decreasing function of
the maturity and the interests paid by the borrower. For corporate firms, some sectors
are more dependent on the economic cycle than others.

In Table 15.1, we report some variables that are used when building a consumer credit score.
This type of score is generally used by banks, since they may include information that is
related to the banking relationship.

Scores are developed by banks and financial institutions, but they can also be developed
by consultancy companies. This is the case of the FICO R© scores, which are the most widely
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TABLE 15.1: An example of risk factors for consumer credit
Character Age of applicant

Marital status
Number of children
Educational background
Time with bank
Time at present address

Capacity Annual income
Current living expenses
Current debts
Time with employer

Capital Purpose of the loan
Home status
Saving account

Condition Maturity of the loan
Paid interests

used credit scoring systems in the world1. They are based on 5 main categories: payment
history (35%), amount of debt (30%), length of credit history (15%), new credit (10%)
and credit mix (10%).They generally range from 300 to 850, while the average score of US
consumers is 695. These scores are generally classified as follows: exceptional (800+), very
good (740-799), good (670-739), fair (580-669) and poor (580−).

Corporate credit scoring systems use financial ratios:

1. Profitability: gross profit margin, operating profit margin, return-on-equity (ROE),
etc.

2. Solvency: debt-to-assets ratio, debt-to-equity ratio, interest coverage ratio, etc.

3. Leverage: liabilities-to-assets ratio (financial leverage ratio), long-term debt/assets,
etc.

4. Liquidity: current assets/current liabilities (current ratio), quick assets/current lia-
bilities (quick or cash ratio), total net working capital, assets with maturities of less
than one year, etc.

Liquidity and solvency ratios measure the company’s ability to satisfy its short-term and
long-term obligations, while profitability ratios measure its ability to generate profits from
its resources. High profitability, high solvency and high liquidity reduces the probability of
default, but a high leverage increases the credit risk of the company. The score may also
include non-financial variables: firm age2, size (number of employees), quality of accounting
information, management quality, etc. For instance, we generally consider that large firms
default less often than small firms. Like retail scores, corporate scores are built by banks but
also by consulting firms and credit agencies. For example, Moody’s proposes the RiskCalc
model (Falkenstein et al., 2000).

1The FICO scores are developed since 1989 by Fair Isaac Corporation, which is a Californian-based
firm. There are more than 20 scores that are commonly used for auto lending, credit card decisioning,
mortgage lending, etc. In the US, FICO scores are used in over 90% of lending decisions (source: https:
//www.myfico.com).

2Recent firms may be penalized.

https://www.myfico.com
https://www.myfico.com
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15.1.2.2 Data preparation

Of course data quality is essential for building a robust credit scoring. However, data
preparation is not limited to check the data and remove outliers or fill missing values.
Indeed, a ‘one-size-fits-all’ approach is generally not appropriate, because a scoring model
is generally more a decision tree system than a parsimonious econometric model. This
is why credit scoring is work-intensive on data mining. Once the data is clean, we can
begin the phase of exploratory data analysis, which encompasses three concurrent steps:
variable transformation, slicing-and-dicing segmentation and potential interaction research.
The first step consists in applying a non-linear transformation, for example by computing
the logarithm, while the second and third steps are the creation of categorical/piecewise
and interaction variables.

Piecewise and dummy variables Let b be a p× 1 vector of bounds. We assume that b
is sorted in ascending order. We note b(1) = (−∞, b), b(2) = (b,+∞), b(3) = (b1, b) and:

b(4) = (0, b2 − b1, b3 − b2, . . . , bp − bp−1, 0)

It follows that b(1), b(2), b(3) and b(4) are four vector of dimension (p+ 1) × 1. From the
vector b, we can then create (p+ 1) piecewise variables which are defined by:

PWj =
(
X − b(3)

j

)
· 1
{
X > b

(1)
j

}
· 1
{
X ≤ b(2)

j

}
+ b

(4)
j · 1

{
X > b

(2)
j

}
The underlying idea is to have an affine function if the original variable takes its values
in the interval ]bj−1, bj ]. For instance, Figure 15.1 represents the fourth piecewise variables
which are obtained from b = (−0.5, 0, 1). In a similar way, we define dummy variables as
follows:

Dj = 1
{
X > b

(1)
j

}
· 1
{
X ≤ b(2)

j

}
In this case, Dj takes a value of 1 if X ∈ ]bj−1, bj ]. Using b = (−0.5, 0, 1), we obtain Figure
15.2.

Optimal slicing An important point is the choice of the bound b = (b1, b2, . . . , bK). It is
obvious that the optimal values depend on the response variable Y . For that, we introduce
the contingency table of the random vector (Y,X), which corresponds to a table of counts
with p rows and q columns:

Y/X X ∈ I(X)
1 · · · X ∈ I(X)

j · · · X ∈ I(X)
q

Y ∈ I(Y )
1 n1,1 n1,j n1,q

...
Y ∈ I(Y )

i ni,1 ni,j ni,q
...

Y ∈ I(Y )
p np,1 np,j np,q

where ni,j is the number of observations such that Y ∈ I(Y )
i and X ∈ I(X)

j . We assume
that the set are disjoints: I(X)

j1
∩ I(X)

j2
= ∅ for j1 6= j2 and I(Y )

i1
∩ I(Y )

i2
= ∅ for i1 6= i2. We

introduce the following notations:
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FIGURE 15.1: Piecewise variables

FIGURE 15.2: Dummy variables



Credit Scoring Models 929

• ni,· =
∑q
j=1 ni,j is the number of observations such that Y ∈ I(Y )

i ;

• n·,j =
∑p
i=1 ni,j is the number of observations such that X ∈ I(X)

j ;

• n =
∑p
i=1
∑q
j=1 ni,j is the total number of observations3.

If we assume that X and Y are independent (null hypothesis H0), the expected number of
observations such that Y ∈ I(Y )

i and X ∈ I(X)
j must be equal to:

n̄i,j = ni,· × n·,j
n

Under H0, we can prove that the Pearson’s statistic χ has a chi-squared limit distribution:

χ =
p∑
i=1

q∑
j=1

(ni,j − n̄i,j)2

n̄i,j
∼ χ2 (ν)

where ν = (p− 1) (q − 1). If we apply the Pearson’s chi-squared statistic to the previous
scoring problem, the contingency table becomes:

X X ≤ b1 b1 < X ≤ b2 · · · bp−1 < X ≤ bp X > bp
Y = 0 n0,1 n0,2 · · · n0,p n0,p+1
Y = 1 n1,1 n1,2 · · · n1,p n1,p+1

We assume here that Y is a binary random variable: Y = 0 indicates a good credit and
Y = 1 corresponds to a bad credit. We note χ (b) the value of the chi-squared statistic that
depends on the slicing vector b:

χ (b) =
1∑
i=0

p+1∑
j=1

(ni,j − n̄i,j)2

n̄i,j

The optimal value of b is defined by:
b? = arg maxχ (b) (15.1)

Indeed, if X and Y are independent, we have χ (b) = 0. In this case, the variable X does not
help to predict the variable Y . Maximizing the chi-squared statistic is equivalent to finding
the slicing setup that deviates the most from the independent case.

In order to solve the maximization problem (15.1), we may use the dynamic programming
principle, whose objective function is to solve this problem:

{c? (k)}K−1
k=1 = arg max

K−1∑
k=1

f (k, s (k) , c (k)) + f (K, s (K)) (15.2)

s.t.


s (k + 1) = g (k, s (k) , c (k))
s (k) ∈ S (k)
c (k) ∈ C (k)
s (1) = s

The underlying idea is to initialize the algorithm4 with a predetermined slice {b1, b2, . . . , bp},
to aggregate the knots in order to find the optimal slice

{
b?1, b

?
2, . . . , b

?
p?
}
for a given value

3We also have:

n =
p∑
i=1

ni,· =
q∑
j=1

n·,j

4The algorithm is described on page 1049.
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of p?. For that, we note ni,j (bj1 , bj2) = # (Y = i, bj1 < X ≤ bj2). The chi-squared marginal
contribution is defined by:

χ (bj1 , bj2) =
1∑
i=0

(ni,j (bj1 , bj2)− n̄i,j (bj1 , bj2))2

n̄i,j (bj1 , bj2) for j1 < j2

χ (bj1 , bj2) can be viewed as the Pearson’s statistic when we only consider the observations
such that bj1 < X ≤ bj2 . The gain function is equal to:

f (k, s (k) , c (k)) =
{
−∞ if c (k) ≤ s (k)
χ
(
bs(k)+1, bc(k)

)
otherwise

If k = 1, we have:

f (1, s (1) , c (1)) =
{
−∞ if c (1) ≤ s (1)
χ
(
b0, bs(1)

)
+ χ

(
bs(1)+1, bc(1)

)
otherwise

The transfer function is defined as follows:

s (k + 1) = g (k, s (k) , c (k)) = c (k)

The state variable s (k) and the control variable c (k) take their values in the set {1, 2, . . . , p}.
The number K of iterations is exactly equal to p? and we have:

f (K, sj) = χ
(
bsj+1, bp

)
In the case where p? = 1, the dynamic programming algorithm reduces to the brute force
algorithm:

j? = arg max
j∈{b1,b2,...,bp}

χ (−∞, bj) + χ (bj ,∞)

In this case, the optimal slice is composed of two classes: X ≤ bj? and X > bj? .

Example 163 We consider 40 observations of the random vector (Y,X). Below, we indi-
cate the values taken by X when Y = 0 and Y = 1:

• Y = 0: −2.0, −1.1, −1.0, −0.7, −0.5, −0.5, −0.4, −0.3, −0.2, −0.2, 0.0, 0.7, 0.8,
0.9, 1.0, 1.4, 1.9, 2.8, 3.2, 3.7.

• Y = 1: −5.2, −4.3, −3.6, −2.7, −1.8, −1.5, −1.2, −1.0, −0.8, −0.1, 0.0, 0.2, 0.2,
0.3, 0.5, 0.5, 0.5, 0.7, 0.8, 1.9.

If we consider the following grid b = (−5,−4,−3,−2,−1, 0, 1, 2, 3), we obtain the fol-
lowing contingency table:

X I(X)
1 I(X)

2 I(X)
3 I(X)

4 I(X)
5 I(X)

6 I(X)
7 I(X)

8 I(X)
9 I(X)

10
Y = 0 0 0 0 0 2 8 4 3 1 2
Y = 1 1 1 1 1 3 3 9 1 0 0

where I(X)
1 = {X ≤ −5}, I(X)

2 = {−5 < X ≤ −4}, . . . , I(X)
10 = {X > −4}. If we would

like to slice X into two classes, we use the brute force algorithm. If we group the intervals{
I(X)

2 , . . . , I(X)
10

}
, the contingency table becomes:

X X ≤ −5 X > −5 ni,·
Y = 0 0 20 20
Y = 1 1 19 20
n·,j 1 39 n = 40
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We deduce that:

χ = (0− 0.5)2

0.5 + (20− 19.5)2

19.5 + (1− 0.5)2

0.5 + (19− 19.5)2

19.5
= 1.02564

If we now consider the two groups
{
I(X)

1 , I(X)
2

}
and

{
I(X)

3 , . . . , I(X)
10

}
, we obtain the fol-

lowing contingency table:

X X ≤ −4 X > −4 ni,·
Y = 0 0 20 20
Y = 1 2 18 20
n·,j 2 38 n = 40

The associated Pearson’s chi-squared statistic is then equal to:

χ = (0− 1.0)2

1.0 + (20− 19.0)2

19.0 + (2− 1.0)2

1.0 + (18− 19.0)2

19.0
= 2.10526

We can proceed in the same way with the other values of b and we obtain the following
values of χ when the cut-off is bj :

X b1 b2 b3 b4 b5 b6 b7 b8 b9
χ 1.03 2.11 3.24 4.44 3.58 0.00 4.33 3.24 2.11

Since the maximum is reached for b4 (χ = 4.44), the optimal slicing is the following:

X X ≤ −2 X > −2
Y = 0 0 20
Y = 1 4 16

If we prefer to slice X into three classes, the dynamic programming algorithm finds that
the optimal cut-offs are b? = (−2, 1). In the case of four classes, the optimal slicing is:

X X ≤ −1 −1 < X ≤ 0 0 < X ≤ 1 X > 1
Y = 0 2 8 4 6
Y = 1 7 3 9 1

and the optimal value χ? is equal to 10.545. In order to understand how does the dynamic
programming algorithm work, we report the J and C matrices in Table 15.2. We notice that
the optimal value is J (1, s? (1)) = 10.545 where s? (1) is the 5th state. Moreover, the optimal
controls are c? (1) = 6 and c? (2) = 7 implying that s? (2) = c? (1) and s? (3) = c? (2) are
the 6th and 7th states. This is why the optimal cut-offs are b? = (−1, 0, 1), that is the 5th,
6th and 7th elements of the initial vector b.

Remark 178 We notice that the optimal slice b? depends on the initial grid b. This implies
that another grid b will not necessarily give the same optimal slice. For instance, we have
used a step of 1 in the previous example. If we use a step of 0.2, we obtain the optimal
solution b? = (−0.8,−0.2, 0.6). We have reported the corresponding slicing in Figure 15.3. In
this case, the Pearson’s chi-squared statistic is equal to 18.444, which is better than the value
10.545 obtained previously. This is why it is better to use a small step than a large step. The
risk is that the dynamic programming algorithm produces some classes with a low number
of observations. To prevent this possible overfitting, we can impose that χ (bj1 , bj2) = −∞
when the number of observations is below a given threshold (# (bj1 < X ≤ bj2) ≤ nmin).
This ensures that each optimized class has at least nmin observations.
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TABLE 15.2: Dynamic programming matrices J and C
state J (1, s (1)) J (1, s (2)) J (1, s (3)) c (1) c (2)
1 7.6059 4.0714 0.0256 4 7
2 7.7167 3.8618 0.1053 6 7
3 9.0239 3.7048 0.2432 6 7
4 10.4945 3.6059 0.4444 6 7
5 10.5450 3.5714 0.8065 6 7
6 5.9231 5.4945 0.0000 7 7
7 4.7576 4.0000 3.5714 8 8
8 −∞ 3.0000 3.0000 1 9
9 −∞ −∞ 2.0000 1 1

FIGURE 15.3: Optimal slicing with four classes

15.1.2.3 Variable selection

In practice, one may have many candidate variables X = (X1, . . . , Xm) for explaining
the variable Y . The variable selection problem consists in finding the best set of optimal
variables. Let us assume the following statistical model:

Y = f (X) + u
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where u ∼ N
(
0, σ2). We denote the prediction by Ŷ = f̂ (X). By assuming the standard

statistical hypotheses, we obtain:

E
[(
Y − Ŷ

)2
]

= E
[(
f (X) + u− f̂ (X)

)2
]

= E
[(
f (X)− f̂ (X)

)2
]

+ E
[
u2]

=
(
E
[
f̂ (X)

]
− f (X)

)2
+ E

[(
f̂ (X)− E

[
f̂ (X)

])2
]

+ σ2

= Bias2 + Variance + Error

Hastie et al. (2009) decompose the mean squared error of f̂ (X) into three terms: a bias
component, a variance component and an irreducible error. This bias-variance decomposi-
tion depends on the complexity of the model. When the model complexity is low (i.e. when
there is a low number of regressors), the estimator f̂ (X) generally presents a high bias
but a low variance. When the model complexity is high (i.e. when there is a high number
of regressors), the estimator f̂ (X) generally presents a low bias but a high variance. The
underlying idea of variable selection is then to optimize the bias-variance trade-off.

Best subset selection A first approach is to find the best subset of size k for k ∈
{1, . . . ,m} that gives the smallest residual sum of squares. It follows that the search is
performed through 2m possible subsets, meaning that we rapidly face a combinatorial ex-
plosion. Moreover, minimizing the residual sum of squares is equivalent to consider the
largest subset (1, . . . ,m). This is why we prefer to consider an information criterion that
penalizes the degree of freedom of the model. For instance, the Akaike criterion is defined
as follows:

AIC (α) = −2`(k)

(
θ̂
)

+ α · df(model)
(k)

where `(k)

(
θ̂
)

and df(model)
(k) are the log-likelihood and the degree of freedom of the kth

model5. Therefore, the best model corresponds to the model that minimizes the Akaike
criterion. In practice, the penalization parameter is generally set to α = 2. In the case of
the previous model, we deduce that:

AIC (2) = n ln

RSS
(
θ̂
)

n

+ 2 df(model)
(k)

Stepwise approach Another way for selecting variables is to use sequential approaches:
forward selection, backward selection and forward/backward combined selection. In the case
of forward selection, we start with the intercept and include one variable by one variable.
At each step, we select the model of dimension k+ 1 with the most significant F -value with
respect to the previous optimal model of dimension k:

F =
RSS

(
θ̂(k)

)
− RSS

(
θ̂(k+1)

)
RSS

(
θ̂(k+1)

)
/df(residual)

(k+1)

5df(model)
(k) is a complexity measure of the model, and corresponds to the number of estimated parameters.

It is sometimes called the ‘model degree of freedom’ whereas the classical measure used in linear regres-
sion t-statistics df(residual)

(k) is called the ‘residual degree of freedom’. We have the following relationship

df(residual)
(k) = n− df(model)

(k) where n is the number of observations.
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We stop when no model produces a significant F -value at the 95% confidence level. In the
case of backward selection, we start with all the variables and remove one variable by one
variable. At each step, we select the model of dimension k with the smallest significant F -
value with respect to the previous optimal model of dimension k+1. The forward/backward
combined procedure consists in using a forward step followed by a backward step, and to
iterate this loop until the convergence criterion is reached. The convergence criterion can
be expressed as a maximum number of loops6.

Lasso approach The lasso method consists in adding a L1 penalty function to the opti-
mization function in order to obtain a sparse parameter vector θ:

L1 (θ) = ‖θ‖1 =
K∑
k=1
|θk|

For example, the lasso regression model is specified as follows (Tibshirani, 1996):

yi =
K∑
k=1

βkxi,k + ui s.t.
K∑
k=1
|βk| ≤ τ

where τ is a scalar to control the sparsity. Using the notations introduced on page 604, we
have:

β̂ (τ) = arg min (Y−Xβ)> (Y−Xβ) (15.3)
s.t. ‖β‖1 ≤ τ

This problem is equivalent to the Lagrange optimization program β̂ (λ) = arg minL (β;λ)
where7:

L (β;λ) = 1
2 (Y−Xβ)> (Y−Xβ) + λ ‖β‖1

∝ 1
2β
> (X>X

)
β − β>

(
X>Y

)
+ λ ‖β‖1

The solution β̂ (λ) can be found by solving the augmented QP program where β = β+−β−
under the constraints β+ ≥ 0 and β− ≥ 0. We deduce that:

‖β‖1 =
K∑
k=1

∣∣β+
k − β

−
k

∣∣
=

K∑
k=1

∣∣β+
k

∣∣+
K∑
k=1

∣∣β−k ∣∣
= 1>β+ + 1>β−

Since we have:
β =

(
IK −IK

)( β+

β−

)
the augmented QP program is specified as follows:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t. θ ≥ 0
6The algorithm also stops when the variable to be added is the same as the last deleted variable.
7τ and λ are related by the relationship τ =

∥∥β̂ (λ)
∥∥

1
.
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where θ = (β+, β−), X̃ =
(

X −X
)
, Q = X̃>X̃ and R = X̃>Y − λ · 1. If we denote

A =
(
IK −IK

)
, we obtain:

β̂ (λ) = Aθ̂

Remark 179 If we consider Problem (15.3), we can also solve it using another augmented
QP program:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t.
{
Cθ ≥ D
θ ≥ 0

where Q = X̃>X̃, R = X̃>Y, C = −1> and D = −τ . We again have β̂ (τ) = Aθ̂.

We have:

RSS (β) = (Y−Xβ)> (Y−Xβ)

=
(
Y−X

(
β̂ols + β − β̂ols

))> (
Y−X

(
β̂ols + β − β̂ols

))
=

(
Y−Xβ̂ols

)> (
Y−Xβ̂ols

)
+ 2

(
Y−Xβ̂ols

)>
X
(
β − β̂ols

)
+(

β − β̂ols
)>

X>X
(
β − β̂ols

)
We notice that:

(∗) =
(
Y−Xβ̂ols

)>
X
(
β − β̂ols

)
=

(
Y> −

(
β̂ols

)>
X>
)

X
(
β − β̂ols

)
=

(
Y> −

((
X>X

)−1 X>Y
)>

X>
)

X
(
β − β̂ols

)
=

(
Y>X−

((
X>X

)−1 X>Y
)>

X>X
)(

β − β̂ols
)

=
(
Y>X−Y>X

) (
β − β̂ols

)
= 0

Finally, we obtain:

RSS (β) = RSS
(
β̂ols

)
+
(
β − β̂ols

)>
X>X

(
β − β̂ols

)
If we consider the equation RSS (β) = c, we distinguish three cases:

1. if c < RSS
(
β̂ols

)
, there is no solution;

2. if c = RSS
(
β̂ols

)
, there is one solution β? = β̂ols;

3. if c > RSS
(
β̂ols

)
, we have:

(
β − β̂ols

)>
A
(
β − β̂ols

)
= 1
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where:
A = X>X

c− RSS
(
β̂ols

)
The solution β? is an ellipsoid, whose center is β̂ols and principal axes are the eigen-
vectors of the matrix A.

If we add the lasso constraint
∑K
k=1 |βk| ≤ τ , the lasso estimator β̂ (τ) corresponds to the

tangency between the diamond shaped region and the ellipsoid that corresponds to the
possible maximum value of c. The diamond shape region due to the lasso constraint ensures
that the lasso estimator is sparse:

∃ η > 0 : ∀ τ < η, min
(
β̂1 (τ) , . . . , β̂K (τ)

)
= 0

For example, the two-dimensional case is represented in Figure 15.4. We notice that β̂1 (τ)
is equal to zero if τ < η. This sparsity property is central for understanding the variable
selection procedure.

β̂ols

β̂lasso (τ)

β1

β2 RSS (β1, β2) = constant

lasso path

|β1|+ |β2| ≤ τ

|β1|+ |β2| ≤ η

FIGURE 15.4: Interpretation of the lasso regression

Example 164 Using the data given in Table 15.3, we consider the linear regression model:

yi = β′0 +
5∑
k=1

β′kxi,k + ui (15.4)

The objective is to determine the importance of each variable.

The lasso method can be used for ranking the variables. For that, we consider the
following linear regression:

ỹi =
5∑
k=1

βkx̃i,k + ui
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TABLE 15.3: Data of the lasso regression problem
i y x1 x2 x3 x4 x5
1 3.1 2.8 4.3 0.3 2.2 3.5
2 24.9 5.9 3.6 3.2 0.7 6.4
3 27.3 6.0 9.6 7.6 9.5 0.9
4 25.4 8.4 5.4 1.8 1.0 7.1
5 46.1 5.2 7.6 8.3 0.6 4.5
6 45.7 6.0 7.0 9.6 0.6 0.6
7 47.4 6.1 1.0 8.5 9.6 8.6
8 −1.8 1.2 9.6 2.7 4.8 5.8
9 20.8 3.2 5.0 4.2 2.7 3.6

10 6.8 0.5 9.2 6.9 9.3 0.7
11 12.9 7.9 9.1 1.0 5.9 5.4
12 37.0 1.8 1.3 9.2 6.1 8.3
13 14.7 7.4 5.6 0.9 5.6 3.9
14 −3.2 2.3 6.6 0.0 3.6 6.4
15 44.3 7.7 2.2 6.5 1.3 0.7

where ỹi and x̃i,k are the standardized data8:

yi − ȳ
sy

=
5∑
k=1

βk

(
xi,k − x̄k
sxk

)
+ ui (15.5)

Linear regressions (15.4) and (15.5) are related by the following equation:

yi =
(
ȳ −

5∑
k=1

syβk
sxk

x̄k

)
+

5∑
k=1

syβk
sxk

xi,k + syui

We deduce that β′0 = ȳ−
∑5
k=1 (sy/sxk)βkx̄k and β′k = (sy/sxk)βk. When performing lasso

regression, we always standardize the data in order to obtain comparable beta’s. Otherwise,
the penalty function ‖β‖1 does not make a lot of sense. In Table 15.4, we have estimated the
lasso coefficients βk (λ) for different values of the shrinkage parameter λ. When λ = 0, we
obtain the OLS estimate, and the lasso regression selects all the available variables. When
λ→∞, the solution is β̂ (∞) = 0, and the lasso regression selects no explanatory variables.
In Table 15.4, we verify that the number of selected variables is a decreasing function of
λ. For instance, the lasso regression selects respectively four and three variables when λ is
equal to 0.9 and 2.5. It follows that the most important variable is the third one, followed
by the first, second, fourth and fifth variables.

In Figure 15.5, we have reported the path of the lasso estimate β̂ (λ) with respect to the
scaling factor τ? ∈ [0, 1], which is defined as follows:

τ? = τ

τmax
=

∥∥∥β̂ (λ)
∥∥∥

1∥∥∥β̂ (0)
∥∥∥

1

8The notations x̄k and sxk represent the mean and the standard deviation of the data{
xi,k, i = 1, . . . , n

}
.
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τ? is equal to zero when λ → ∞ (no selected variable) and one when λ = 0, which corre-
sponds to the OLS case. From this path, we verify the lasso ordering:

x3 � x1 � x2 � x4 � x5

TABLE 15.4: Results of the lasso regression
λ 0.0 0.9 2.5 5.5 7.5

β̂1 (λ) 0.4586 0.4022 0.3163 0.1130
β̂2 (λ) −0.1849 −0.2005 −0.1411
β̂3 (λ) 0.8336 0.7265 0.5953 0.3951 0.2462
β̂4 (λ) −0.1893 −0.1102
β̂5 (λ) 0.0931∥∥∥β̂ (λ)

∥∥∥
1

1.7595 1.4395 1.0527 0.5081 0.2462

RSS
(
β̂ (λ)

)
0.0118 0.0304 0.1180 0.4076 0.6306

R2
c 0.9874 0.9674 0.8735 0.5633 0.3244

df(model) 5 4 3 2 1

FIGURE 15.5: Variable selection with the lasso regression

15.1.3 Score modeling, validation and follow-up
15.1.3.1 Cross-validation approach

In order to avoid overfitting, we can also split the dataset into a training set and a
validation set. The training set is used to estimate the model, for example the vector θ in
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the case of a parametric model, while the validation set is used to compute the prediction
error and the residual sum of squares. This approach can be generalized for model selection.
In this case, the training set is used to fit the several models, while the validation set is
used to select the right model (Hastie et al., 2009). We generally distinguish two types of
cross-validation.

1. In exhaustive cross-validation methods, learning and testing are based on all possible
ways to divide the original sample into a training set and a validation set. For example,
leave-p-out cross-validation (LpOCV) assumes that the validation set is composed of p
observations, while the training set corresponds to the remaining observations. Since
the number of training and validation sets is equal to Cnp , this approach may be
computationally intensive. In order to reduce the complexity, we can choose p = 1.
This approach is called the leave-one-out cross-validation (LOOCV).

2. Non-exhaustive cross-validation methods split the original sample into training and
validation sets. For instance, the k-fold approach randomly divides the dataset into k
(almost) equally sized subsamples. At each iteration, one subsample is choosen as a
validation set, while the k−1 remaining subsamples form the training set. This means
that the model is fitted using all but the jth group of data, and the jth group of data
is used for the test set. We repeat the procedure k times, in such a way that each
subsample is tested exactly once. In the case of a linear regression, the k-fold cross
validation error is generally computed as:

Ecv = 1
n

k∑
j=1

∑
i∈Gj

(
yi − x>i β̂ (j)

)2

where i ∈ Gj denotes the observations of the jth subsample and β̂ (j) the estimate
of β obtained by leaving out the jth subsample. Even in simple cases, it cannot be
guaranteed that the function Ecv has a unique minimum. The simple grid search
approach is probably the best approach. The exhaustive leave-one-out cross validation
(LOOCV) is a particular case when k is equal to the size of the dataset. Moreover,
we can show that LOOCV is asymptotically equivalent to the AIC criterion (Stone,
1977).

In order to illustrate the principle of cross-validation, we consider the ridge estimator:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2β
>β

where Y is a n× 1 vector, X is a n×K matrix and β is a K × 1 vector. The ridge model
is then a regularized linear regression model with a L2-norm penalty (Hoerl and Kennard,
1970). It follows that the expression of β̂ is equal to:

β̂ =
(
X>X + λIK

)−1 X>Y

In the case of the leave-one-out cross validation, Allen (1971, 1974) showed that the function
Ecv has an explicit expression known as the predicted residual error sum of squares (or
PRESS) statistic:

Press = 1
n

n∑
i=1

(yi − ŷi,−i)2
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where ŷi,−i is the estimate of yi based on the ridge model when leaving out the ith obser-
vation. Indeed, we have9:

Press = 1
n

n∑
i=1

û2
i

(1− hi)2

where ûi = yi − x>i β̂ and hi = x>i
(
X>X + λIK

)−1
xi. With this formula, we don’t need to

estimate the n estimators β̂−i, where β̂−i is the ridge estimator when leaving out the ith
observation.

TABLE 15.5: Data of the ridge regression problem
i y x1 x2 x3 x4 x5
1 −23.0 −8.0 6.0 −12.7 9.5 −7.5
2 −21.0 −6.5 11.1 5.4 6.6 6.7
3 −5.0 −14.4 −13.3 −3.2 0.8 1.0
4 −39.6 −6.7 26.0 11.5 15.5 6.5
5 5.8 2.3 −7.1 −4.6 7.0 −0.6
6 13.6 2.0 −13.0 −13.3 −0.9 −8.6
7 14.0 10.7 −4.9 −23.1 2.5 19.0
8 −5.2 −8.5 1.0 4.2 −11.5 12.9
9 6.9 3.4 4.9 9.5 −12.8 11.0

10 −5.2 0.0 5.1 −14.3 −3.8 −10.0
11 0.0 1.0 4.0 14.1 −3.5 −23.6
12 3.0 2.4 1.6 −1.2 −4.8 −9.2
13 9.2 −0.1 −10.6 16.0 7.5 5.8
14 26.1 15.2 2.5 5.3 −18.0 10.4
15 −6.3 −19.2 −20.7 −5.1 3.9 −13.8
16 11.5 10.1 1.7 −12.1 −2.7 13.9
17 4.8 3.8 0.8 2.7 1.0 14.4
18 35.2 23.1 1.2 −5.0 −16.1 3.3
19 14.0 13.1 6.6 1.6 −7.4 −3.5
20 −21.4 −19.0 0.7 0.8 −2.7 11.3

Example 165 Using the data given in Table 15.5, we consider the linear regression model:

yi =
5∑
k=1

βkxi,k + ui

The objective is to determine the ridge parameter λ by cross-validation.

In order to estimate the optimal value of λ, we calculate the PRESS function and find
its minimum:

λ? = arg minPress (λ)

In Figure 15.6, we have represented the PRESS function for several values of λ. Using a
bisection, we deduce that the optimal value is λ? = 3.36.

Remark 180 The ridge regression is a good example where we can obtain an analytical
formula for the cross-validation error Ecv. In most of statistical models, this is not the case

9See Exercise 15.4.2 on page 1022.
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and we have to use a grid search for selecting the optimal model. This approach may be
time-consuming. However, since the calibration of credit scoring models is done once per
year, it is not an issue. Nevertheless, the computational time of cross-validation may be
prohibitive with on-the-fly or real time statistical models.

FIGURE 15.6: Selection of the ridge parameter using the PRESS statistic

15.1.3.2 Score modeling

Score modeling is the backbone of credit scoring. This is why it is extensively studied in
the next two sections of this chapter. However, we present here some elements in order to
understand the main challenges. The score is generally a (non-linear) function of exogenous
variablesX and parameters θ: S = f (X; θ). We assume that θ has been already estimated by
a statistical inference method and the model S = f

(
X; θ̂

)
has been validated. For example,

f
(
X; θ̂

)
may be a ridge regression model where θ̂ =

(
β̂, λ̂

)
and λ̂ has been calibrated by

a cross-validation method. The score estimation S = f
(
X; θ̂

)
is the preliminary part of

the decision rule. Indeed, we have now to decide if we select or not the applicant. It can be
done using the following rule:{

S < s =⇒ Y = 0 =⇒ reject
S ≥ s =⇒ Y = 1 =⇒ accept

The difficulty lies in the choice of the cut-off s. For instance, if the model is a logit model,
the score is a probability between 0 and 1:

Pr {Y = 1} = Pr {having a good risk} = f
(
X; θ̂

)
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At first sight, a natural cut-off is s = 50%:{
S < 50% =⇒ Y = 0 =⇒ reject
S ≥ 50% =⇒ Y = 1 =⇒ accept

However, we will see in Section 15.3 on page 1008 that s = 50% is not necessarily the
optimal cut-off, in particular when the population is heterogenous10. Moreover, the decision
rule may be influenced by other factors that are not driven by s statistical point of view.
For example, if the loss associated to the selection of a bad risk is larger than the gain
associated to the selection of a bad risk, the optimal cut-off may be larger than 50%.

15.1.3.3 Score follow-up

Once we have built a scoring system, we begin to collect new information about the
selected applicants. We can then backtest the score in order to check its robustness. Let
us consider a rating system, whose annual probability of default is given by the following
table:

Rating A B C D E F
Probability of default 0.5% 1% 2% 5% 15% 25%

Each year, we can calculate for each grade the default frequency and adjust the decision
rule in order to obtain a coherent scoring system. Below, we have reported two examples of
default frequencies:

Rating A B C D E F
Year 1 0.05% 2.3% 2.8% 7.5% 22.6% 35.1%
Year 2 0.5% 2.7% 1.3% 2.0% 15.1% 25.1%

It is obvious that Year 2 produces closer figures to the expected result than Year 1. How-
ever, Year 2 raises more concerns than Year 1 in terms of coherency. Indeed, the default
frequencies are not increasing between ratings B, C and D. On the contrary, we observe a
coherent ranking for Year 1, which faces an average default rate larger than predicted.

Besides the coherency issue, the stability of the scoring system is another important key
element of the follow-up. Two axes of analysis can be conducted. The first one concerns
the structure of the population with respect to the score. In the table below, we report the
observed frequencies of each class:

Rating A B C D E F
Year 0 25% 20% 20% 20% 10% 5%
Year 1 15% 20% 25% 17% 13% 10%
Year 2 15% 15% 30% 15% 15% 10%

We notice a change in the population distribution, implying that the original scoring system
may be no longer valid. The second axis of analysis concerns the exogenous variables that
compose the score. In this case, the analysis consists in comparing the structure of the
population with respect to each variable.

Another issue is the status of the rejected applicants. Indeed, there is an asymmetry
between applicants that are accepted for credit and the others. We know what accepted
applicants will become in terms of good/bad risk, but we don’t know what the good/bad
status of rejected applicants would have been (Hand and Henley, 1997):

10For example when the number of good risks is larger than the number of bad risks.
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“The behavior of those who have been rejected, if instead they had been ac-
cepted, is unknown. If one estimates a model using data only on accepted appli-
cants, those estimated parameters may be biased when applied to all applicants.
In addition, if cut-off scores are chosen to equalize the actual and predicted num-
ber of defaulting applicants then a sample of accepted applicants is likely to yield
inappropriate cut-offs for the population of all applicants“ (Crook and Banasik,
2004, page 857).

The statistical study of these rejected applicants is called ‘reject inference’ and can be viewed
as a missing data problem11 (Little and Rubin, 2014). Except when selected and rejected
populations are perfectly coherent with the scoring decision rule, the fact that we do not
observe the rejected population introduces a bias. Let us consider the example of a tight
decision rule implying that we never observe a bad risk. It is obvious that the calibrated
statistical model does not reflect the entire population, but only the selected population. The
issue is even high because a credit scoring model does not reduce to a statistical problem,
but it is used from a business point of view. Questions about the market share and the
other competitors are also essential. We have reported below an illustration:

Choice Number of Default Total profit Per-unit profit
selected applicants rate (in $ mn) (in $)

#1 1 000 000 5% 100 100
#2 2 000 000 7% 150 75
#3 5 000 000 10% 180 36

What is the optimal choice? If the goal is to minimize the default rate, the best choice is
#1. If the goal is to maximize the total profit, the third choice is optimal. There are several
statistical approaches to perform reject inference (extrapolation, augmentation, reweighting,
reclassification, etc.). However, they are not satisfactory because they focus on the default
rate and ignore business issues. Nevertheless, they can help to test if the credit scoring
model is biased (Banasik and Crook, 2007).

15.2 Statistical methods
Unsupervised learning is a branch of statistical learning, where test data does not in-

clude a response variable. It is opposed to supervised learning, whose goal is to predict
the value of the response variable Y given a set of explanatory variables X. In the case of
unsupervised learning, we only know the X-values, because the Y -values do not exist or are
not observed. Supervised and unsupervised learning are also called ‘learning with/without
a teacher ’ (Hastie et al., 2009). This metaphor means that we have access to the correct
answer provided by the supervisor (or the teacher) in supervised learning. In the case of
unsupervised learning, we have no feedback on the correct answer. For instance, the linear
regression is a typical supervised learning model, whereas the principal component analysis
is an approach of unsupervised learning.

11We generally distinguish three types of missing value problems: missing completely at random or MCAR,
missing at random or MAR, and missing not at random or MNAR. Credit scoring models generally face
MAR or MNAR situation.
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15.2.1 Unsupervised learning
In the following paragraphs, we focus on cluster analysis and dimension reduction, which

are two unsupervised approaches for detecting commonalities in data.

15.2.1.1 Clustering

Cluster analysis is a method for the assignment of observations into groups or clusters.
It is then an exploratory data analysis which allows to group similar observations together.
As a result, the objective of clustering methods is to maximize the proximity between
observations of a same cluster and to maximize the dissimilarity between observations which
belong to different clusters. In what follows, we consider two popular cluster methods: K-
means and hierarchical clustering.

K-means clustering It is a special case of combinatorial algorithms. This kind of al-
gorithm does not use a probability distribution but works directly on observed data. We
consider n observations with K attributes xi,k (i = 1, . . . , n and k = 1, . . . ,K). We note xi
the K×1 vector (xi,1, . . . , xi,K). We would like to build nC clusters Cj defined by the index
j where j = 1, . . . , nC with the following properties:

1. clusters must be disjoint: Cj ∩ Cj′ = ∅ for j 6= j′;

2. clusters must describe the entire dataset: C1 ∪ C2 ∪ · · · ∪ CnC = {1, . . . , n};

3. observations assigned to a cluster are statistically similar.

Let C be the mapping function which permits to assign an observation to a cluster, meaning
that C (i) = j assigns the ith observation to the jth cluster Cj – j is also called the corre-
sponding label. The principle of combinatorial algorithms is to adjust the mapping function
C in order to minimize the following loss function (Hastie et al., 2009):

L (C) = 1
2

nC∑
j=1

∑
C(i)=j

∑
C(i′)=j

d (xi, xi′)

where d (xi, xi′) is the dissimilarity measure between the observations i and i′. As a result,
the optimal mapping function is denoted C? = arg minL (C).

In the case of theK-means algorithm, the dissimilarity measure is the Frobenius distance
(or Euclidean norm):

d (xi, xi′) =
K∑
k=1

(xi,k − xi′,k)2 = ‖xi − xi′‖2

Therefore, the loss function becomes12:

L (C) =
nC∑
j=1

nj
∑
C(i)=j

‖xi − x̄j‖2

12In Exercise 15.4.3 on page 1023, we show that:∑
C(i)=j

1
2

∑
C(i′)=j

‖xi − xi′‖2 =
∑
C(i)=j

nj ‖xi − x̄j‖2
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where x̄j = (x̄1,j , ..., x̄K,j) is the (K × 1) mean vector associated with the jth cluster and
nj =

∑n
i=1 1 {C (i) = j} is the corresponding number of observations. If we note µ?j =

arg min
∑
C(i)=j ‖xi − µj‖

2, the previous minimization problem is equivalent to:

{
C?, µ?1, . . . , µ?nC

}
= arg min

nC∑
j=1

nj
∑
C(i)=j

‖xi − µj‖2

where µj is called the centroid of cluster Cj . This minimization problem may be solved by
the Lloyd’s iterative algorithm:

1. we initialize cluster centroids µ(0)
1 , . . . , µ

(0)
nC ;

2. at the iteration s, we update the mapping function C(s) using the following rule:

C(s) (i) = arg min
j

∥∥∥xi − µ(s−1)
j

∥∥∥2

3. we then compute the optimal centroids of the clusters
{
µ

(s)
1 , . . . , µ

(s)
nC

}
:

µ
(s)
j = 1

nj

∑
C(s)(i)=j

xi

4. we repeat steps 2 and 3 until convergence, that is when the assignments do not change:
C? = C(s) = C(s−1).

We can show that the algorithm converges to a local minimum, implying that the main issue
is to determine if the solution is also a global minimum. The answer depends on the initial
choice of centroids. Generally, the algorithm is initialized with random centroids. In this
case, we can run the algorithm many times and choose the clusters that give the smallest
value of the function L (C). We also notice that the number of clusters is an hyperparameter
of the clustering model13. This implies that we have to test different values of nC in order
to find the ‘optimal’ partition.

TABLE 15.6: Data of the clustering problem
i X1 X2 X3 X4 X5
1 17.6 19.6 19.8 20.4 28.8
2 13.2 17.5 17.5 17.4 24.2
3 35.9 25.4 32.4 25.0 40.7
4 28.1 24.0 25.1 28.7 26.7
5 23.5 23.6 23.7 14.3 18.1
6 36.5 30.3 29.5 32.0 29.5
7 14.0 23.9 18.3 19.2 17.2
8 36.7 29.0 30.3 21.1 28.7
9 31.2 19.4 29.9 33.3 23.8

10 17.0 20.5 23.8 16.0 19.7

13Originally, the K -means method defines K clusters by their means (or centroids). In this book, K is
the number of explanatory variables. This is why we prefer to use the notation j for cluster labeling, while
nC represents the number of classes.
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TABLE 15.7: Optimal centroids µ?j for 2 and 3 clusters

µ?j X1 X2 X3 X4 X5
nC = 2

µ?1 17.06 21.02 20.62 17.46 21.60
µ?2 33.68 25.62 29.44 28.02 29.88

nC = 3
µ?1 17.06 21.02 20.62 17.46 21.60
µ?2 36.37 28.23 30.73 26.03 32.97
µ?3 29.65 21.70 27.50 31.00 25.25

Example 166 We consider the clustering problem of 10 observations with five variables
X1 to X5. The data are reported in Table 15.6. We would like to know if two clusters are
sufficient or if we need more clusters to analyze the similarity.

By setting nC equal to 2, we obtain the following optimal clustering: C?1 = {1, 2, 5, 7, 10}
and C?2 = {3, 4, 6, 8, 9}. Optimal centroids are reported in Table 15.7. It follows that
L (C?1 , C?2 ) = 3 390.32. In the case nC = 3, the optimal clustering becomes C?1 =
{1, 2, 5, 7, 10}, C?2 = {3, 6, 8} and C?3 = {4, 9} while the loss function L (C?1 , C?2 , C?3 ) is equal
to 1 832.94. We notice that the K-means algorithm has split the second cluster into two
new clusters. The loss function does not help to determine the optimal number of clusters,
because L (C) tends to zero when nC increases. The most popular approach is the Elbow
method, which consists in drawing the percentage of variance explained as a function of
the number of clusters and detecting when the marginal gain is small. However, there is no
good solution to estimate nC , because they generally overestimate the number of clusters14.
This is why it is better to fix the minimum number of observations by cluster. It is obvious
that two clusters are sufficient in our example, because nC = 3 leads to having a cluster
with only two observations.

Hierarchical clustering The K-means clustering method presents several weak points.
First, it requires many iterations when the number of observations and the number of
clusters are large. Second, the solution highly depends on the cluster initialization, implying
that we need to run many times the Lloyd’s algorithm in order to find the optimal clustering.
Third, the number of clusters is definitively an issue.

The idea of hierarchical clustering is to create a tree structure in order to model the
relationships between the different clusters. Unlike the K-means algorithm, this algorithm
does not depend on the number of clusters or the initialization assignment. However, it
depends on the dissimilarity measure between two clusters. In Figure 15.7, we have repre-
sented an example of tree structure (or dendrogram) obtained by hierarchical clustering.
The 1st and 3rd observations are grouped in order to obtain a first cluster. This cluster is
then merged with the 5th observation in order to define a new cluster. In a similar way, the
6th and 7th observations are grouped to obtain a first cluster. This cluster is then merged
with the 10th observation in order to define a new cluster. The tree structure indicates how
two clusters are merged into a new single cluster. The lowest level of the tree corresponds to
the individual observations. In this case, each cluster contains one observation. The highest
level of the tree corresponds to the entire dataset. In this case, there is only one cluster that
contains all the observations.

14For instance, we obtain C?1 = {1, 2}, C?2 = {5, 7, 10}, C?3 = {3, 6, 8} and C?4 = {4, 9} when nC = 4.
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FIGURE 15.7: An example of dendrogram

Remark 181 There is a difference between a basic tree and a dendrogram. Indeed, the x-
axis of the dendrogram corresponds to the dissimilarity measure. Therefore, we can easily
see which merge creates small or large dissimilarity.

We generally distinguish two approaches for hierarchical clustering:

• in the agglomerative method (also called bottom-up clustering), the algorithm starts
with the individual clusters and recursively merge the closest pairs of clusters into one
single cluster;

• in the divisive method (also called the top-down clustering), the algorithm starts with
the single cluster containing all the observations and recursively splits a cluster into
two new clusters, which present the maximum dissimilarity.

Let Cj and Cj′ be two clusters. The objective function of the agglomerative method is to
minimize the dissimilarity measure D (Cj , Cj′) while we maximize the dissimilarity measure
D (Cj , Cj′) in the divisive method. In what follows, we only consider the agglomerative
method, because it is more efficient in terms of computational time and it is more widespread
used.

The dissimilarity measure D (Cj , Cj′) is defined as a linkage function of pairwise dissim-
ilarities d (xi, xi′) where C (i) = j and C (i′) = j′. Therefore, the agglomerative method
requires defining two dissimilarity measures: the linkage function between two clusters
D (Cj , Cj′) and the distance between two observations d (xi, xi′). For this last one, we gen-
erally consider the Mahalanobis distance:

d (xi, xi′) =
√

(xi − xi′)> Σ̂ (xi − xi′)
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where Σ̂ is the sample covariance matrix or the Minkowski distance:

d (xi, xi′) =
(

K∑
k=1
|xi,k − xi′,k|p

)1/p

where p > 1. The case p = 2 corresponds to the Euclidean distance. For the linkage
function, we generally consider three approaches. The single linkage (or nearest neighbor)
is the smallest distance between the clusters:

D (Cj , Cj′) = min
{C(i)=j,C(i′)=j′}

d (xi, xi′)

The complete linkage (or furthest neighbor) is the largest distance between the clusters:

D (Cj , Cj′) = max
{C(i)=j,C(i′)=j′}

d (xi, xi′)

Finally, the average linkage is the average distance between the clusters:

D (Cj , Cj′) = 1
njnj′

∑
C(i)=j

∑
C(i′)=j′

d (xi, xi′)

At each iteration, we search the clusters j and j′ which minimize the dissimilarity measure
and we merge them into one single cluster. When we have merged all the observations
into one single cluster, the algorithm is stopped. It is also easy to perform a segmentation
by considering a particular level of the tree. Indeed, we notice that the algorithm exactly
requires n − 1 iterations. The level L(s) = s is then associated to the sth iteration and we
note D(s) = D (Cj? , Cj′?) the minimum value of D (Cj , Cj′).

In Figure 15.7, the dendrogram was based on simulated data using the single linkage rule
and the Euclidean distance. We have considered 10 observations divided into two groups.
The attributes of the first (resp. second) one correspond to simulated Gaussian variates
with a mean of 20% (resp. 30%) and a standard deviation of 5% (resp. 5%). The intra-
group cross-correlation is set to 80% whereas the inter-group correlation is equal to 0%.
We obtain satisfactory results. Indeed, if we would like to consider two clusters, the first
cluster is composed of the first five observations, whereas the second cluster is composed
of the last five observations. In practice, hierarchical clustering may produce concentrated
segmentation as illustrated in Figure 15.8. We use the same simulated data as previously
except that the standard deviation for the second group is set to 25%. In this case, if we
would like to consider two clusters, we obtain a cluster with 9 elements and another cluster
with only one element (the 6th observation).

Let us consider Example 166 on page 946. By using the Euclidean distance, we obtain
the dendrograms in Figure 15.9. If we would like to split the data into two clusters, we find
for the three methods the solution {1, 2, 5, 7, 10} and {3, 4, 6, 8, 9}, which also corresponds
to the solution given by the K-means analysis. In the case of the single linkage method, we
have reported in Table 15.8 for each level L(s) the distance D(s), the two nearest neighbours
i? and i′? and the created cluster C(s). We notice that the solution for 3 clusters differs
from the K-means solution. Indeed, we find {1, 2, 5, 7, 10}, {4, 6, 8, 9} and {3} for the single
linkage method.

15.2.1.2 Dimension reduction

We now turn to the concept of dimension reduction, which consists in finding some
common patterns in order to better explain the data. For instance, we might want to reduce
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FIGURE 15.8: Unbalanced clustering

TABLE 15.8: Agglomerative hierarchical clustering (single linkage)

L(s) D(s) (i?, i′?) C(s)

1 7.571 (5, 10) {5, 10}
2 7.695 (1, 2) {1, 2}
3 8.204 (5, 7) {5, 7, 10}
4 9.131 (4, 9) {4, 9}
5 9.238 (1, 5) {1, 2, 5, 7, 10}
6 11.037 (6, 8) {6, 8}
7 12.179 (4, 6) {4, 6, 8, 9}
8 13.312 (3, 4) {3, 4, 6, 8, 9}
9 15.199 (1, 3) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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FIGURE 15.9: Comparison of the three dendrograms

a dataset with 1 000 variables to the two or three most important patterns. In machine
learning, dimension reduction is also known as feature extraction, which is defined as the
process to build new variables or features that are more informative and less redundant
than the original variables.

Principal component analysis Let X be a K × 1 random vector, whose covariance
matrix is equal to Σ. We consider the linear transform Z = B>X where B = (β1, . . . , βK)
is a K ×K matrix and the β’s are K × 1 vectors. The jth element of Z is denoted by Zj
and we have Zj = β>j X =

∑K
k=1 βk,jXk. Zj is also called the jth principal component. The

idea of PCA is to find a first linear function β>1 X such that the variance of Z1 is maximum
and then a jth linear function β>j X such that the variance of Zj is maximum and Zj is
uncorrelated with Z1, . . . , Zj−1 for all j ≥ 2 (Jolliffe, 2002). We can show that B is the
matrix of eigenvectors15 of the covariance matrix Σ:

ΣB = BΛ

where Λ = diag (λ1, . . . , λK) is the diagonal matrix of eigenvalues with λ1 ≥ λ2 ≥ · · · ≥ λK .
Since Σ is a symmetric and positive define matrix, we also have:

Σ = BΛB−1 = BΛB>

15See Exercise 15.4.4 on page 1024 for the derivation of this result.
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and B is an orthonormal matrix. By construction, we have16:

var (Zj) = var
(
β>j X

)
= β>j Σβj
= Λj,j
= λj

and:

cov (Zj , Zj′) = β>j Σβj′
= Λj,j′
= 0

We deduce the spectral decomposition of the covariance matrix:

Σ = BΛB> =
K∑
j=1

λjβjβ
>
j

We note B(1:j) and B(K−j+1:K) the matrices that contains the first and last j columns of
B. We consider the random vector Z̃ =

(
Z̃1, . . . , Z̃j

)
= B̃>X of dimension j. Here are some

properties of the PCA (Jolliffe, 2002):

1. the trace of cov
(
Z̃
)
is maximized if B̃ = B(1:j) corresponds to the j first eigenvectors;

2. the trace of cov
(
Z̃
)
is minimized if B̃ = B(K−j+1:K) corresponds to the j last eigen-

vectors;

3. the covariance of X given Z̃ is:

cov
(
X | Z̃1, . . . , Z̃j

)
= ΣX,X − ΣX,Z̃Σ−1

Z̃,Z̃
ΣZ̃,X

=
K∑

k=j+1
λkβkβ

>
k

4. we consider the following linear regression model:

X = AZ̃ + U

where A is a K × j matrix and U = (U1, . . . , UK) is the vector of residuals; if we
note Ω = diag

(
σ2

1 , . . . , σ
2
K

)
the covariance matrix of U , the trace of Ω is minimized if

B̃ = B(1:j).

Remark 182 The principal component analysis can be performed with correlation matrices
instead of covariance matrices. Jolliffe (2002) presents different arguments for justifying this
choice. Indeed, PCA makes more sense when the variables are comparable. Otherwise, the
principal components are dominated by the variables with the largest variances.

16Because of the following equality:

Λ = B−1ΣB = B>ΣB
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Example 167 We consider the random vector X = (X1, X2, X3, X4), whose individual
variances are equal to 1, 2, 3 and 4. The correlation matrix is:

ρ =


1.00
0.30 1.00
0.50 0.10 1.00
0.20 0.50 −0.50 1.00


We have reported the eigendecomposition of Σ and ρ in Tables 15.9 and 15.10. We

observe some differences. For instance, the first principal component of the covariance matrix
Σ is:

Z1 = 0.18 ·X1 + 0.33 ·X2 + 0.53 ·X3 + 0.76 ·X4

whereas the first principal component of the correlation matrix ρ is:

Z2 = 0.48 ·X1 + 0.44 ·X2 + 0.53 ·X3 + 0.55 ·X4

We verify that the sum of eigenvalues is equal to the sum of variances for the covariance
matrix, and the number of variables for the correlation matrix17.

TABLE 15.9: Eigendecomposition of the covariance matrix
β1 β2 β3 β4

X1 0.18 −0.20 −0.57 0.77
X2 0.33 0.58 −0.63 −0.40
X3 0.53 −0.73 −0.13 −0.41
X4 0.76 0.31 0.50 0.27
λj 5.92 2.31 1.31 0.46

TABLE 15.10: Eigendecomposition of the correlation matrix
β1 β2 β3 β4

X1 0.48 −0.44 −0.65 −0.40
X2 0.44 0.67 −0.40 0.45
X3 0.53 −0.51 0.38 0.57
X4 0.55 0.33 0.53 −0.56
λj 2.06 0.97 0.73 0.23

We now develop the interpretation tools of PCA. The quality of representation is defined
as the percentage of total variance that is explained by the jth principal component (or PC):

Qj = λj∑K
k=1 λk

We have 0 ≤ Qj ≤ 1. The cumulative quality of representation is just the cumulative sum
of the quality values:

Q?j =
j∑

k=1
Qk =

∑j
k=1 λk∑K
k=1 λk

17We have trace (Σ) =
∑K

k=1 σ
2
k and trace

(
BΛB−1

)
= trace

(
ΛB−1B

)
= trace (Λ) =

∑K

j=1 λj . For the

correlation matrix, we deduce that
∑K

j=1 λj = K.
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Q?j is also called the quality of representation of the jth principal plane18. The correlation
between the variable Xk and the factor Zj is given by:

cor (Xk, Zj) = βk,j
√
λj

It follows that the quality of representation of the variable Xk with respect to the jth PC
is19:

Qk,j = cor2 (Xk, Zj) = β2
k,jλj

We can also define the contribution of the variable Xk to the jth PC20:

Ck,j = β2
k,j

In order to the understand the association between variables, we generally plot the cor-
relation circle between two principal components that corresponds to the scatterplot of
cor (Xk, Zj) and cor (Xk, Zj′).

Remark 183 In practice, we estimate the covariance or the correlation matrix using a
sample. Let xi = (xi,1, . . . , xi,K) be the ith observation. We note zi,j = β>j xi the projection
of xi onto the jth principal component. The quality of representation and the contribution
of an observation to a principal component are then equal to:

Qi,j =
z2
i,j∑K

k=1 z
2
i,k

and:
Ci,j =

z2
i,j∑n

i=1 z
2
i,j

We consider again Example 166 on page 946. In Table 15.11, we have reported the results
of the PCA applied to the correlation matrix of data. The first PC explains 68.35% of the
variance, while the quality of representation of the second PC is equal to 14.54%. This means
that we can explain 82.89% with only two factors. For the first factor, each variable has a
positive loading. This is not the case of the second factor, where the factor loadings of X1,
X2 and X3 are negative. We notice that X1 and X3 are well represented by Z1 (95.81% and
86.95%). For the second PC, the second variable X2 is the most represented (41.40%). If we
consider the last PC, the quality of representation is poor (less than 1%). This indicates that
the last PC has a very low explanation power. We notice that the rationale of the fourth
PC is to model X3 because the second and third PCs do not explain this variable. The
contribution values Ck,j are also interesting to confirm the previous results. For instance,
X1 does not contribute to Z2. It follows that the second PC represents the opposition of X2

18That is the plane composed of the first j principal components.
19We verify that the sum of Qk,j is equal to the variance of the jth PC:

K∑
k=1

Qk,j =
K∑
k=1

β2
k,jλj = λj

K∑
k=1

β2
k,j = λj

20We verify that the sum of Ck,j is equal to 100%:

K∑
k=1

Ck,j =
K∑
k=1

β2
k,j = 1
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TABLE 15.11: Principal component analysis of Example 166
Factor Z1 Z2 Z3 Z4 Z5
λj 3.4173 0.7271 0.5548 0.2783 0.0226
Qj 68.35% 14.54% 11.10% 5.57% 0.45%
Q?j 68.35% 82.89% 93.98% 99.55% 100.00%

Matrix B of eigenvectors
X1 0.5295 −0.1015 −0.0567 −0.2554 0.8006
X2 0.3894 −0.7546 −0.0500 0.4855 −0.2019
X3 0.5044 −0.0188 −0.0247 −0.6650 −0.5499
X4 0.3952 0.5318 −0.6238 0.3995 −0.1107
X5 0.3967 0.3702 0.7775 0.3120 −0.0609

Correlation between Xk and Zj
X1 97.88% −8.66% −4.22% −13.47% 12.03%
X2 71.98% −64.35% −3.72% 25.61% −3.03%
X3 93.25% −1.60% −1.84% −35.08% −8.27%
X4 73.06% 45.35% −46.46% 21.07% −1.66%
X5 73.34% 31.57% 57.91% 16.46% −0.92%

Quality of representation of each variable Qk,j
X1 95.81% 0.75% 0.18% 1.82% 1.45%
X2 51.81% 41.40% 0.14% 6.56% 0.09%
X3 86.95% 0.03% 0.03% 12.31% 0.68%
X4 53.38% 20.57% 21.59% 4.44% 0.03%
X5 53.78% 9.96% 33.54% 2.71% 0.01%

Contribution of each variable Ck,j
X1 28.04% 1.03% 0.32% 6.52% 64.09%
X2 15.16% 56.94% 0.25% 23.57% 4.08%
X3 25.44% 0.04% 0.06% 44.22% 30.24%
X4 15.62% 28.29% 38.91% 15.96% 1.23%
X5 15.74% 13.70% 60.46% 9.73% 0.37%

with respect to X4 and X5. Clearly, the third PC mainly concerns X4 and X5. Figure 15.10
represents the scatterplot of the factor values zi,j for the first two principal components.
We notice that the second component classifies the observations in the same way than the
K-means algorithm or the agglomerative hierarchical clustering. Indeed, we retrieve the
two clusters {1, 2, 5, 7, 10} and {3, 4, 6, 8, 9}. This is not the case of the first component,
which operates the following classification {1, 2, 3, 4, 9} and {5, 6, 7, 8, 10}. In Figure 15.11,
we have reported the correlation circle between different PCs. If we consider the first two
PCs, the variables X1 and X2 are clearly opposed to the variables X4 and X5. The second
panel confirms the competition between X4 and X5 due to the third PC.

Non-negative matrix factorization There are several alternative approaches to princi-
pal component analysis. For instance, independent component analysis (ICA) estimates ad-
ditive factors that are maximally independent. Another popular method is the non-negative
matrix factorization (NMF). Let A be a non-negative matrix m × p. We define the NMF
decomposition of A as follows:

A ≈ BC

where B and C are two non-negative matrices with respective dimensions m×n and n× p.
Compared to classic decomposition algorithms, we remark that BC is an approximation
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FIGURE 15.10: Scatterplot of the factor values zi,1 and zi,2

FIGURE 15.11: PCA correlation circle
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of A. There are also different ways to obtain this approximation meaning that B and C
are not necessarily unique21. We also notice that the decomposition A ≈ BC is equivalent
to A> ≈ C>B>. It means that the storage of the data is not important. Rows of A may
represent either the observations or the variables, but the interpretation of the B and C
matrices depend on the choice of the storage. We remark that:

Ai,j =
n∑
k=1

Bi,kCk,j

Suppose that we consider a variable/observation storage. Therefore, Bi,k depends on the
variable i whereas Ck,j depends on the observation j. In this case, we may interpret B as
a matrix of weights. In factor analysis, B is called the loading matrix and C is the factor
matrix. Bi,k is then the weight of factor k for variable i and Ck,j is the value taken by factor
k for observation j. If we use an observation/variable storage which is the common way to
store data in statistics, B and C become the factor matrix and the loading matrix.

Because the dimensions m, n and p may be very large, one of the difficulties with NMF
is to derive a numerical algorithm with a reasonable computational time. Lee and Seung
(1999) developed a simple algorithm with strong performance and applied it to pattern
recognition with success. Since this seminal work, this algorithm has been improved and
there are today several ways to obtain a non-negative matrix factorization. In order to find
the approximate factorization, we need to define the loss function L which measures the
quality of the factorization. The optimization program is then:

{B?, C?} = arg minL (A,BC) (15.6)

u.c.
{
B � 0
C � 0

Lee and Seung (2001) considered two loss functions. The first one is the Frobenious norm:

L (A,BC) =
m∑
i=1

p∑
j=1

(
Ai,j − (BC)i,j

)2

whereas the second one is Kullback-Leibler divergence:

L (A,BC) =
m∑
i=1

p∑
j=1

(
Ai,j ln Ai,j

(BC)i,j
−Ai,j + (BC)i,j

)

To solve Problem (15.6), Lee and Seung (2001) proposed to use the multiplicative update
algorithm. Let B(s) and C(s) be the matrices at iteration s. For the Frobenious norm22, we
have:  B(s+1) = B(s) �

(
AC>(s)

)
�
(
B(s)C(s)C

>
(s)

)
C(s+1) = C(s) �

(
B>(s+1)A

)
�
(
B>(s+1)B(s+1)C(s)

)
21Let D be a nonnegative matrix such that D−1 is nonnegative too. For example, D may be a permutation

of a diagonal matrix. In this case, we have:

A ≈ BD−1DC ≈ B′C′

where B′ = BD−1 and C′ = DC are two nonnegative matrices. This shows that the decomposition is not
unique.

22A similar algorithm may be derived for the Kullback-Leibler divergence.
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where � and � are respectively the element-wise multiplication and division operators.
Under some assumption, we may show that B? = B(∞) and C? = C(∞), meaning that the
multiplicative update algorithm converges to the optimal solution.

For large datasets, the computational time to find the optimal solution may be large
with the previous algorithm. Since the seminal work of Lee and Seung, a lot of methods have
also been proposed to improve the multiplicative update algorithm and speed the converge.
Among these methods, we may mention the algorithm developed by Lin (2007), which is
based on the alternating non-negative least squares:{

B(s+1) = arg minL
(
A,BC(s)

)
C(s+1) = arg minL

(
A,B(s+1)C

) (15.7)

with the constraints B(s+1) � 0 and C(s+1) � 0. We notice that the two optimization
problems (15.7) are symmetric because we may cast the first problem in the form of the
second problem: B>(s+1) = arg minL

(
A>, C>(s)B

>
)
. So, we may only focus on the following

optimization problem:

C? = arg minL (A,BC)
u.c. C � 0

In the case of the Frobenious norm, we have ∂C L (A,BC) = 2B> (BC −A). The projected
gradient method consists in the following iterating scheme:

C ← C − α · ∂ L (A,BC)
∂ C

where α is the descent length. Let (β, γ) be two scalars in ]0, 1[. Instead of finding the
optimal value of α at each iteration, Lin (2007) proposed to update α in a very simple way
depending on the inequality equation:

(1− γ) ∂ L (A,BC)
∂ C

> (
C̃ − C

)
+ 1

2
(
C̃ − C

)> ∂2 L (A,BC)
∂ C ∂ C>

(
C̃ − C

)
≤ 0

where C̃ is the update of C. If this inequality equation is verified, α is increased (α← α/β),
otherwise α is decreased (α← αβ).

Remark 184 The choice of B(0) and C(0) for initializing NMF algorithms is important.
The random method consists in generating matrices with positive random numbers23. An-
other popular approach is the non-negative double singular value decomposition, which is a
modification of the singular value decomposition by considering only the non-negative part
of the singular values (Boutsidis and Gallopoulos, 2008).

In order to understand why NMF is different from other factor methods, we consider a
simulation study. We consider a basket of four financial assets. The asset prices are driven by
a multidimensional geometric Brownian motion. The drift parameter is equal to 5% whereas
the diffusion parameter is 20%. The cross-correlation ρi,j between assets i and j is equal to
20%, but ρ1,2 = 70% and ρ3,4 = 50%. In order to preserve the time homogeneity, the data
correspond to xi,t = lnSi,t where Si,t is the price of the asset i at time t. In Figure 15.12,
we report the time series xi,t for the four assets (panel 1) and, the first factor estimated

23For example, we can use the probability distributions U[0,1] or |N (0, 1)|.
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FIGURE 15.12: Estimating the first factor of a basket of financial assets

by NMF24 (panel 2) and PCA (panel 3). We notice that the NMF factor25 is not scaled in
the same way than the PCA factor. However, the correlation between the first differences
is equal to 98.8%. In the first panel in Figure 15.13, we compare the decomposition of the
variance according to the factors. We notice that PCA explains more variance than NMF
for a given number of factors. We obtain this result because NMF may be viewed as a
constrained principal component analysis with nonnegative matrices. However, it does not
mean that each PCA factor explains more variance than the corresponding NMF factor.
For example, the second NMF factor explains more variance than the second PCA factor
in Figure 15.13. In the other panels, we compare the dynamics of the first asset with the
dynamics given by the NMF factors26. With three risk factors, the reconstructed signal has
a correlation of 93.7% with the original signal.

15.2.2 Parametric supervised methods
15.2.2.1 Discriminant analysis

Discriminant analysis was first developed by Fisher (1936). This approach is close to the
principal component analysis (PCA) and is used to predict class membership for indepen-
dent variables. For that, we assume that we have nC disjoint classes Cj where j = 1, . . . , J .
Discriminant analysis consists then in assigning an observation to one and only one class.

24The NMF decomposition corresponds to:

lnX︸ ︷︷ ︸
nX×nT

≈ B︸ ︷︷ ︸
nX×nF

· C︸ ︷︷ ︸
nF×nT

where nX is the number of time-series, nT is the number of dates and nF is the number of NMF factors.
25In this example, B is the loading matrix while C is the matrix of time-series factors.
26The reconstructed multidimensional signal is just the matrix product BC for different values of nF .
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FIGURE 15.13: Variance decomposition and signal reconstruction

We consider an input vector x and we divide the input space into nC decision regions,
whose boundaries are called decision boundaries (Bishop, 2006). Classification methods can
then be seen as a supervised clustering methods, where the categorical response variable is
directly the class. For example, Figure 15.14 corresponds to a classification problem with
seven classes and two explanatory variables X1 and X2. The goal is then to predict for
each observation its class. For instance, we would like that the model predicts that the first
observation belongs to the first class, the second observation belongs to the fifth class, etc.

The two-dimensional case Using the Bayes theorem, we have:

Pr {A ∩B} = Pr {A | B} · Pr {B}
= Pr {B | A} · Pr {A}

It follows that:
Pr {A | B} = Pr {B | A} · Pr {A}

Pr {B}
If we apply this result to the conditional probability Pr {i ∈ C1 | X = x}, we obtain:

Pr {i ∈ C1 | X = x} = Pr {X = x | i ∈ C1} ·
Pr {i ∈ C1}
Pr {X = x}

The log-probability ratio is then equal to:

ln Pr {i ∈ C1 | X = x}
Pr {i ∈ C2 | X = x}

= ln
(

Pr {X = x | i ∈ C1}
Pr {X = x | i ∈ C2}

· Pr {i ∈ C1}
Pr {i ∈ C2}

)
= ln Pr {X = x | i ∈ C1}

Pr {X = x | i ∈ C2}
+ ln Pr {i ∈ C1}

Pr {i ∈ C2}

= ln f1 (x)
f2 (x) + ln π1

π2
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FIGURE 15.14: Classification statistical problem

where πj = Pr {i ∈ Cj} is the probability of the jth class and fj (x) = Pr {X = x | i ∈ Cj} is
the conditional probability density function of X. By construction, the decision boundary
is defined such that we are indifferent to an assignment rule (i ∈ C1 and i ∈ C2), implying
that:

Pr {i ∈ C1 | X = x} = Pr {i ∈ C2 | X = x} = 1
2

Finally, we deduce that the decision boundary satisfies the following equation:

ln f1 (x)
f2 (x) + ln π1

π2
= 0

If we model each class density as a multivariate normal distribution:

X | i ∈ Cj ∼ N (µj ,Σj)

we have:
fj (x) = 1

(2π)K/2 |Σj |1/2
exp

(
−1

2 (x− µj)>Σ−1
j (x− µj)

)
We deduce that:

ln f1 (x)
f2 (x) = 1

2 ln |Σ2|
|Σ1|

− 1
2 (x− µ1)> Σ−1

1 (x− µ1) +

1
2 (x− µ2)>Σ−1

2 (x− µ2)

The decision boundary is then given by:
1
2 ln |Σ2|
|Σ1|

− 1
2 (x− µ1)> Σ−1

1 (x− µ1) +

1
2 (x− µ2)> Σ−1

2 (x− µ2) + ln π1

π2
= 0 (15.8)
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Since the decision boundary is quadratic in x, such approach is called quadratic discriminant
analysis (QDA).

If we assume that Σ1 = Σ2 = Σ, Equation (15.8) becomes:

1
2 (x− µ2)>Σ−1 (x− µ2)− 1

2 (x− µ1)>Σ−1 (x− µ1) + ln π1

π2
= 0

or:
(µ2 − µ1)>Σ−1x = 1

2
(
µ>2 Σ−1µ2 − µ>1 Σ−1µ1

)
+ ln π2

π1
(15.9)

It follows that the decision boundary is then linear in x. This is why we called this approach
the linear discriminant analysis (LDA).

Example 168 We consider two classes and two explanatory variables X = (X1, X2) where
π1 = 50%, π2 = 1 − π1 = 50%, µ1 = (1, 3), µ2 = (4, 1), Σ1 = I2 and Σ2 = γI2 where
γ = 1.5.

FIGURE 15.15: Boundary decision of discriminant analysis

By solving Equations (15.8) and (15.9), we obtain the QDA and LDA decision bound-
aries27 reported in Figure 15.15. We verify that the LDA decision boundary is linear while
the QDA decision region is convex. For each class, we have also simulated 50 realizations. We
observe that the discriminant analysis performs the right classification most of the times.
However, we notice that two observations from class C1 and one observation from class C2
are not properly classified. In Figure 15.16, we analyze the impact of the parameters on
the decision boundary. The top/left panel corresponds to the previous example, whereas we
only change one parameter for each other panel. For instance, we increase the variance of
the second variable in the top/right panel. We observe that the impact on the LDA decision

27For the linear discriminant analysis, we have used Σ = (Σ1 + Σ2) /2.
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boundary is minor, but this is not the case for the QDA decision boundary. Indeed, the
convexity is stronger because X2 can take more larger values than X1. This is why for the
extreme values, the QDA decision boundary can be approximated by a vertical line when
x1 → −∞ and an horizontal line when x2 → +∞. Let us now introduce a correlation ρ be-
tween X1 and X2. It follows that the QDA decision boundary becomes more and more linear
when we increase ρ (bottom/left panel). Finally, the impact of the probabilities (π1, π2) is
crucial as shown in the bottom/right panel. It is obvious that the boundary decision moves
to the right when π1 increases, because the decision region concerning i ∈ C1 must be larger.
For instance, we must always accept i ∈ C1 at the limit case π1 = 100%.

FIGURE 15.16: Impact of the parameters on LDA/QDA boundary decisions

The general case We can generalize the previous analysis to J classes. In this case, the
Bayes formula gives:

Pr {i ∈ Cj | X = x} = Pr {X = x | i ∈ Cj} ·
Pr {i ∈ Cj}
Pr {X = x}

= c · fj (x) · πj

where c = 1/Pr {X = x} is a normalization constant that does not depend on j. We note
Sj (x) = ln Pr {i ∈ Cj | X = x} the discriminant score function for the jth class. We have:

Sj (x) = ln c+ ln fj (x) + ln πj

If we again assume that X | i ∈ Cj ∼ N (µj ,Σj), we obtain:

Sj (x) = ln c′ + ln πj −
1
2 ln |Σj | −

1
2 (x− µj)>Σ−1

j (x− µj)

∝ ln πj −
1
2 ln |Σj | −

1
2 (x− µj)>Σ−1

j (x− µj) (15.10)
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where ln c′ = ln c−K2 ln 2π. Given an input x, we calculate the scores Sj (x) for j = 1, . . . , J
and we choose the label j? with the highest score value. As in the two-class case, we can
assume an homoscedastic model (Σj = Σ), implying that the discriminant score function
becomes:

Sj (x) = ln c′′ + ln πj −
1
2 (x− µj)>Σ−1

j (x− µj)

∝ ln πj + µ>j Σ−1x− 1
2µ
>
j Σ−1µj (15.11)

where ln c′′ = ln c′− 1
2 ln |Σ| − 1

2x
>Σ−1x. Equation (15.11) defines the LDA score function,

whereas Equation (15.10) defines the QDA score function.

Remark 185 In practice, the parameters πj, µj and Σj are unknown. We replace them
by the corresponding estimates π̂j, µ̂j and Σ̂j. For the linear discriminant analysis, Σ̂ is
estimated by pooling all the classes.

Example 169 We consider the classification problem of 33 observations with two explana-
tory variables X1 and X2, and three classes C1, C2 and C3. The data are reported in Table
15.12.

TABLE 15.12: Data of the classification problem
i Cj X1 X2 i Cj X1 X2 i Cj X1 X2
1 1 1.03 2.85 12 2 3.70 5.08 23 3 3.55 0.58
2 1 0.20 3.30 13 2 2.81 1.99 24 3 3.86 1.83
3 1 1.69 3.73 14 2 3.66 2.61 25 3 5.39 0.47
4 1 0.98 3.52 15 2 5.63 4.19 26 3 3.15 −0.18
5 1 0.98 5.15 16 2 3.35 3.64 27 3 4.93 1.91
6 1 3.47 6.56 17 2 2.97 3.55 28 3 3.87 2.61
7 1 3.94 4.68 18 2 3.16 2.92 29 3 4.09 1.43
8 1 1.55 5.99 19 3 3.00 0.98 30 3 3.80 2.11
9 1 1.15 3.60 20 3 3.09 1.99 31 3 2.79 2.10

10 2 1.20 2.27 21 3 5.45 0.60 32 3 4.49 2.71
11 2 3.66 5.49 22 3 3.59 −0.46 33 3 3.51 1.82

The first step is to estimate the parameters πj , µj and Σj , whose values28 are reported in
Table 15.13. The second step consists in calculating the score function Sj (x) for each class
j using Equations (15.10) and (15.11). Results are given in Table 15.14. Besides the QDA
and LDA methods, we have also considered a third approach LDA2, which corresponds
to a linear discriminant analysis by including the squared values of variables. This means
that the explanatory variables are X1, X2, X2

1 and X2
2 in LDA2. By including polynomials,

the LDA2 method is more convex than the original LDA method, and can be seen as an
approximation of the QDA method.

If we consider the first observation, the maximum score is reached for the first class
(−2.28 for QDA, 0.21 for LDA and 6.93 for LDA2). If we consider the 14th observation,

28For the LDA method, we have:

Σ̂ =
(

1.91355 −0.71720
−0.71720 3.01577

)
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TABLE 15.13: Parameter estimation of the discriminant analysis
Class C1 C2 C3
π̂j 0.273 0.273 0.455
µ̂j 1.666 4.376 3.349 3.527 3.904 1.367

Σ̂j
1.525 0.929 1.326 0.752 0.694 −0.031
0.929 1.663 0.752 1.484 −0.031 0.960

QDA and LDA predict the third class, whereas LDA2 predicts the second class, which is
the true value. In Figure 15.17, we have reported the class assignment performed by the
three approaches, and we have indicated the bad class predictions by a circle. In order
to understand these results, we have also calculated the decision regions in Figure 15.18.
According to QDA, the decision boundary is almost linear between C1 and C2, whereas it
is quadratic between C2 and C3. LDA produces linear decision boundaries, but the decision
surface for C1 has changed. Finally, LDA2 can produce complex decision surfaces, even more
complex than those produced by QDA.

FIGURE 15.17: Comparing QDA, LDA and LDA2 predictions

Class separation maximization In the following, we show that the linear discriminant
analysis is equivalent to maximize class separability and is also related to the principal
component analysis. We note xi = (xi,1, . . . , xi,K) the K × 1 vector of exogenous variables
X for the ith observation. The mean vector and the variance (or scatter) matrix of Class Cj
is equal to:

µ̂j = 1
nj

∑
i∈Cj

xi
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TABLE 15.14: Computation of the discriminant scores Sj (x)

i
QDA LDA LDA2

S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x) S1 (x) S2 (x) S3 (x)
1 −2.28 −3.69 −7.49 0.21 −0.96 −0.79 6.93 5.60 5.76
2 −2.28 −6.36 −12.10 −0.26 −2.17 −2.34 1.38 −2.13 −1.89
3 −1.76 −3.13 −6.79 2.84 2.16 1.71 12.13 12.01 11.38
4 −1.80 −4.43 −8.88 1.35 0.09 −0.22 7.73 6.20 5.93
5 −2.36 −7.75 −13.70 4.32 2.93 1.45 8.12 5.54 4.76
6 −3.16 −5.63 −14.68 10.75 11.36 8.95 14.82 13.99 12.96
7 −3.79 −1.92 −6.32 8.06 9.22 8.15 17.36 19.03 17.89
8 −2.85 −8.43 −15.23 6.73 5.76 3.70 10.47 8.09 7.15
9 −1.74 −4.12 −8.37 1.76 0.64 0.27 8.94 7.77 7.39

10 −3.14 −3.21 −6.17 −0.58 −1.56 −0.98 6.59 5.55 6.15
11 −2.87 −3.01 −9.45 9.10 9.96 8.31 16.89 17.65 16.42
12 −3.04 −2.38 −7.77 8.42 9.34 7.98 17.28 18.50 17.28
13 −6.32 −2.29 −1.62 1.41 1.82 2.64 12.48 13.94 14.46
14 −6.91 −2.07 −1.42 3.86 4.94 5.34 15.15 17.41 17.34
15 −9.79 −3.62 −7.12 9.79 12.43 11.75 12.58 14.01 13.50
16 −3.90 −1.47 −3.44 5.25 5.99 5.65 16.84 18.82 18.03
17 −3.31 −1.55 −3.61 4.50 4.92 4.63 16.25 17.95 17.21
18 −4.84 −1.60 −2.19 3.65 4.28 4.45 15.51 17.48 17.14
19 −10.21 −4.12 −1.27 −0.13 0.52 2.06 8.98 9.99 11.70
20 −7.05 −2.41 −1.24 1.85 2.50 3.32 12.99 14.72 15.22
21 −23.11 −11.16 −2.56 2.98 5.75 7.61 3.79 4.57 7.26
22 −19.22 −9.53 −2.42 −1.84 −0.57 2.01 1.81 1.53 5.51
23 −13.86 −5.92 −1.01 −0.01 1.15 2.98 7.65 8.67 10.95
24 −10.01 −3.43 −0.70 2.75 4.07 5.02 12.84 14.95 15.65
25 −23.48 −11.44 −2.54 2.65 5.38 7.33 3.40 4.09 6.95
26 −15.87 −7.59 −2.30 −2.01 −1.14 1.23 3.19 3.02 6.50
27 −14.09 −5.40 −1.52 4.56 6.78 7.70 11.17 13.24 14.08
28 −7.55 −2.27 −1.39 4.18 5.45 5.85 15.10 17.44 17.40
29 −12.40 −4.67 −0.61 2.38 3.92 5.17 11.21 13.14 14.33
30 −8.85 −2.87 −0.88 3.17 4.41 5.17 13.77 15.97 16.37
31 −5.97 −2.17 −1.72 1.58 1.97 2.70 12.78 14.26 14.67
32 −9.40 −2.97 −1.81 5.33 7.11 7.46 14.55 16.95 16.93
33 −8.84 −3.01 −0.80 2.19 3.21 4.16 12.82 14.77 15.45

and29:
Sj = nΣ̂j =

∑
i∈Cj

(xi − µ̂j) (xi − µ̂j)>

where nj is the number of observations in the jth class. If consider the total population, we
also have:

µ̂ = 1
n

n∑
i=1

xi

29The variance matrix is equal to the unscaled covariance matrix and is also called the scatter matrix.
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FIGURE 15.18: QDA, LDA and LDA2 decision regions

and:

S = nΣ̂ =
n∑
i=1

(xi − µ̂) (xi − µ̂)>

We notice that:

µ̂ = 1
n

J∑
j=1

nj µ̂j

We define the between-class variance matrix as:

SB =
J∑
j=1

nj (µ̂j − µ̂) (µ̂j − µ̂)>

and the within-class variance matrix as:

SW =
J∑
j=1

Sj

We can show that the total variance matrix can be decomposed into the sum of the within-
class and between-class variance matrices30:

S = SW + SB
The discriminant analysis defined by Fisher (1936) consists in finding the discrimi-

nant linear combination β>X that has the maximum between-class variance relative to
the within-class variance: β? = arg max J (β) where J (β) is the Fisher criterion:

J (β) = β>SBβ
β>SWβ

30See Exercise 15.4.5 on page 1024.
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Since the objective function is invariant if we rescale the vector β – J (β′) = J (β) if β′ = cβ,
we can impose that β>SWβ = 1. It follows that:

β̂ = arg max β>SBβ (15.12)
s.t. β>SWβ = 1

The Lagrange function is:

L (β;λ) = β>SBβ − λ
(
β>SWβ − 1

)
We deduce that the first-order condition is equal to:

∂ L (β;λ)
∂ β>

= 2SBβ − 2λSWβ = 0 (15.13)

It is remarkable that we obtain a generalized eigenvalue problem31 SBβ = λSWβ or equiv-
alently:

S−1
W SBβ = λβ (15.14)

Even if SW and SB are two symmetric matrices, it is not necessarily the case for the product
S−1
W SB . Using the eigendecomposition SB = V ΛV >, we have S1/2

B = V Λ1/2V >. With the
parametrization α = S1/2

B β, Equation (15.14) becomes:

S1/2
B S−1

W S1/2
B α = λα (15.15)

because β = S−1/2
B α. Equation (15.15) defines a right regular eigenvalue problem. Let λk

and vk be the kth eigenvalue and eigenvector of the symmetric matrix S1/2
B S−1

W S1/2
B . It is

obvious that the optimal solution α? is the first eigenvector v1 corresponding to the largest
eigenvalue λ1. We conclude that the estimator is β̂ = S−1/2

B v1 and the discriminant linear
relationship is Y c = v>1 S−1/2

B X. Moreover, we have32:

λ1 = J
(
β̂
)

= β̂>SBβ̂
β̂>SW β̂

In Exercise 15.4.5 on page 1024, we show that the Fisher discriminant analysis is equiva-
lent to the linear discriminant analysis in the case of two classes. This result can be extended
to multiple classes and explains why this approach is also called Fisher linear discriminant
analysis.

Example 170 We consider a problem with two classes C1 and C2, and two explanatory
variables (X1, X2). Class C1 is composed of 7 observations: (1, 2), (1, 4), (3, 6), (3, 3), (4, 2),
(5, 6), (5, 5), whereas class C2 is composed of 6 observations: (1, 0), (2, 1), (4, 1), (3, 2), (6, 4)
and (6, 5).

In Figure 15.19, we have reported these 13 observations in the plane (x1, x2). The com-
putation of the first generalized eigenvector gives β = (0.7547,−0.9361). We deduce that
the slope of the optimal line direction is β1/β2 = −0.8062. Computing the Fisher score
si = β>xi for the ith observation is then equivalent to perform the orthogonal projection of

31See Appendix A.1.1.2 on page 1034 for the definition of the generalized eigendecomposition.
32Thanks to Equation (15.13), we have SBβ = λSW β and β>SBβ = λβ>SW β.
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the points on this optimal line (Bishop, 2006). Concerning the assignment decision, we can
consider the midpoint rule: {

si < µ̄⇒ i ∈ C1
si > µ̄⇒ i ∈ C2

where µ̄ = (µ̄1 + µ̄2) /2, µ̄1 = β>µ̂1 and µ̄2 = β>µ̂2. However, this rule is not always
optimal because it does not depend on the variance s̄2

1 and s̄2
2 of each class. In Figure 15.20,

we have reported the Gaussian density of the scores for the two classes. Since we observe
that the first class has a larger variance, the previous rule is not adapted. This is why we
can use the tools presented in Section 15.3 in order to calibrate the optimal decision rule.

FIGURE 15.19: Linear projection and the Fisher solution

Remark 186 v>1 S−1/2
B X is called the first canonical or discriminant variable (Hastie et

al., 2009) and we denote it by Y c(1). The previous analysis can be used to find the second
canonical variable Y c(2) = β>(2)X that is not correlated to Y c(1) such that J

(
β(2)

)
is maxi-

mum. The solution is β̂(2) = S−1/2
B v2 where v2 is the eigenvector associated to the second

largest eigenvalue λ2. This method can be extended to the general problem of finding the
kth canonical variable Y c(k) = β>(k)X that is not correlated to

(
Y c(1), . . . , Y

c
(k−1)

)
such that

J
(
β(k)

)
is maximum. Again, we can show that the solution is β̂(k) = S−1/2

B vk where vk is
the eigenvector associated to the kth largest eigenvalue λk. The computation of the K linear
relationships Y c(k) = β>(k)X is called the multiple discriminant analysis (MDA). MDA can
be seen as a generalized PCA method by taking into account a categorical response vari-
able. Indeed, PCA performs an eigendecomposition of S (or Σ̂) whereas MDA performs an
eigendecomposition of S−1

W SB.
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FIGURE 15.20: Class separation and the cut-off criterion

15.2.2.2 Binary choice models

The underlying idea of such models is to estimate the probability of a binary response
based on several explanatory variables. They have been developed in several fields of research
(biology, epidemiology, economy, etc.). In statistics, the two seminal papers are again written
by Fisher (1935) and Cox (1958). Since these publications, these models have been extended
and now represent a major field of study in statistics and econometrics33.

General framework In this section, we assume that Y can take two values 0 and 1. We
consider models that link the outcome to a set of factors X:

Pr {Y = 1 | X = x} = F
(
x>β

)
By construction, F must be a cumulative distribution function in order to ensure that
F (z) ∈ [0, 1]. We also assume that the model is symmetric, implying that F (z)+F (−z) = 1.
Given a sample {(xi, yi) , i = 1, . . . , n}, the log-likelihood function is equal to:

` (θ) =
n∑
i=1

ln Pr {Yi = yi}

where yi takes the values 0 or 1. We have:

Pr {Yi = yi} = pyii · (1− pi)
1−yi

33The materials presented below is based on surveys by Amemiya (1981, 1985) and McFadden (1984).
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where pi = Pr {Yi = 1 | Xi = xi}. We deduce that:

` (θ) =
n∑
i=1

yi ln pi + (1− yi) ln (1− pi)

=
n∑
i=1

yi ln F
(
x>i β

)
+ (1− yi) ln

(
1− F

(
x>i β

))
We notice that the vector θ includes only the parameters β. By noting f (z) the probability
density function, it follows that the associated score vector and Hessian matrix of the log-
likelihood function are:

S (β) = ∂ ` (β)
∂ β

=
n∑
i=1

(
yi
f
(
x>i β

)
F
(
x>i β

) − (1− yi)
f
(
x>i β

)
1− F

(
x>i β

))xi
=

n∑
i=1

f
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) (yi − F
(
x>i β

))
xi

and:

H (β) = ∂2 ` (β)
∂ β ∂ β>

= −
n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi =
f
(
x>i β

)2
F
(
x>i β

)
F
(
−x>i β

) − (yi − F
(
x>i β

))
·(

f ′
(
x>i β

)
F
(
x>i β

)
F
(
−x>i β

) − f
(
x>i β

)2 (1− 2F
(
x>i β

))
F
(
x>i β

)2 F
(
−x>i β

)2
)

Once β̂ is estimated by the method of maximum likelihood, we can calculated the predicted
probability for the ith observation:

p̂i = F
(
x>i β̂

)
Like a linear regression model, we can define the residual as the difference between the
observation yi and the predicted value p̂i. We can also exploit the property that the condi-
tional distribution of Yi is a Bernoulli distribution B (pi). This is why it is better to use the
standardized (or Pearson) residuals:

ûi = yi − p̂i√
p̂i (1− p̂i)

These residuals are related to the Pearson’s chi-squared statistic:

χ2
Pearson =

n∑
i=1

û2
i

=
n∑
i=1

(yi − p̂i)2

p̂i (1− p̂i)
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This statistic may used to measure the goodness-of-fit of the model. Under the assumption
H0 that there is no lack-of-fit, we have χ2

Pearson ∼ χ2
n−K whereK is the number of exogenous

variables. Another goodness-of-fit statistic is the likelihood ratio. For the ‘saturated’ model,
the estimated probability p̂i is exactly equal to yi. We deduce that the likelihood ratio is
equal to:

−2 ln Λ = 2
n∑
i=1

yi ln yi + (1− yi) ln (1− yi)−

2
n∑
i=1

yi ln p̂i + (1− yi) ln (1− p̂i)

= 2
n∑
i=1

yi ln
(
yi
p̂i

)
+ (1− yi) ln

(
1− yi
1− p̂i

)
In binomial choice models, D = −2 ln Λ is also called the deviance and we have D ∼ χ2

n−K .
In a perfect fit p̂i = yi, the likelihood ratio is exactly equal to zero. The forecasting procedure
consists of estimating the probability p̂ = F

(
x>β̂

)
for a given set of variables x and to use

the following decision criterion:
Y = 1⇔ p̂ ≥ 1

2

Remark 187 It could also be interesting to compute the marginal effects. We have:

E [Y | X = x] = F
(
x>β̂

)
and:

∂ E [Y | X = x]
∂ x

= f
(
x>β̂

)
· β̂

The marginal effects depend on the vector x and are then not easy to understand. This
is why we generally compute them by using the mean of the regressors or averaging them
across all the observations of the sample.

Logit analysis The logit model uses the following cumulative distribution function:

F (z) = 1
1 + e−z

= ez

ez + 1

The probability density function is then equal to:

f (z) = e−z

(1 + e−z)2

We verify the property F (z) + F (−z) = 1. The log-likelihood function is equal to:

` (β) =
n∑
i=1

(1− yi) ln
(
1− F

(
x>i β

))
+ yi ln F

(
x>i β

)
=

n∑
i=1

(1− yi) ln
(

e−x
>
i β

1 + e−x
>
i
β

)
− yi ln

(
1 + e−x

>
i β
)

= −
n∑
i=1

ln
(

1 + e−x
>
i β
)

+ (1− yi)
(
x>i β

)
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We also have34:

S (β) =
n∑
i=1

(
yi − F

(
x>i β

))
xi

and35:

H (β) = −
n∑
i=1

f
(
x>i β

)
·
(
xix
>
i

)
Probit analysis The probit model assumes that F (z) is the Gaussian distribution. The
log-likelihood function is then:

` (β) =
n∑
i=1

(1− yi) ln
(
1− Φ

(
x>i β

))
+ yi ln Φ

(
x>i β

)
The probit model can be seen as a latent variable model. Let us consider the linear model
Y ? = β>X+U where U ∼ N

(
0, σ2). We assume that we do not observe Y ? but Y = g (Y ?).

For example, if g (z) = 1 {z > 0}, we obtain:

Pr {Y = 1 | X = x} = Pr
{
β>X + U > 0 | X = x

}
= Φ

(
β>x

σ

)
We notice that only the ratio β/σ is identifiable. Since we can set σ = 1, we obtain the
probit model.

Regularization Let ` (θ) be the log-likelihood function. The regularized log-likelihood
function is equal to:

` (θ;λ) = ` (θ)− λ

p
‖θ‖pp

The case p = 1 is equivalent to consider a lasso penalization, whereas p = 2 corresponds to
the ridge regularization. The optimal value θ? is obtained by maximizing the regularized
log-likelihood function:

θ? (λ) = arg max ` (θ;λ)

In this problem, we consider λ as an hyperparameter, meaning that λ is not directly es-
timated by maximizing the penalized log-likelihood function with respect to (θ;λ). For
instance, in the case of the lasso regularization, λ can be calibrated in order to obtain a
sparse model or using cross-validation techniques.

34We use the property f (z) = F (z) (1− F (z)), implying that:

f (z)
F (z) F (−z)

=
f (z)

F (z) (1− F (z))
= 1

35We use the property f ′ (z) = −f (z) F (z)
(
1− e−z

)
, implying that:

f ′ (z)
f (z)

− (1− 2F (z)) = 0
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Extension to multinomial logistic regression We assume that Y can take J labels
(L1, . . . ,LJ) or belongs to J disjoint classes (C1, . . . , CJ). We define the conditional proba-
bility as follows:

pj (x) = Pr {Y = Lj | X = x}
= Pr {Y ∈ Cj | X = x}

= eβ
>
j x

1 +
∑J−1
j=1 e

β>
j
x

for j = 1, . . . , J − 1. The probability of the last label is then equal to:

pJ (x) = 1−
J−1∑
j=1

pj (x)

= 1
1 +

∑J−1
j=1 e

β>
j
x

We verify that 0 ≤ pj (x) ≤ 1 for all j = 1, . . . , J . The log-likelihood function becomes:

` (θ) =
n∑
i=1

ln

 J∏
j=1

pj (xi)i∈Cj


where θ is the vector of parameters (β1, . . . , βJ−1).
The multinomial logistic model can be formulated as a log-linear model. We note:

ln pj (x) = β0 + β>j x

Since we have
∑J
j=1 pj (x) = 1, we deduce that the constant β0 is given by:

J∑
j=1

eβ0+β>j x = 1⇔ β0 = ln 1∑J
j=1 e

β>
j
x

It follows that:

pj (x) = eβ
>
j x∑J

j=1 e
β>
j
x

This function is known as the softmax function and plays an important role in neural
networks. We also notice that the model is overidentified because the sum of probabilities
is equal to 1. However, if we use the parametrization β̆j = βj − βJ , we obtain the previous
model36, which is just identified.

36Indeed, we have:

pj (x) =
e
β̆>j xe−β

>
J x

e−β
>
J
x
∑J

j=1 e
β̆>
j
x

=
e
β̆>j x

1 +
∑J−1

j=1 e
β̆>
j
x

because eβ̆
>
J x = e(βJ−βJ )>x = 1.
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15.2.3 Non-parametric supervised methods
We have named this section ‘non-parametric supervised methods’ in order to group some

approaches that share some of the same characteristics. First, even if some of them are para-
metric, these models are highly non-linear, meaning that it is extremely difficult to interpret
these models. In this case, ‘forecasting’ is the main motivation and is more important than
‘modeling’. Second, it would be illusory to consider or to do statistical inference. Most of
the time, it is impossible to calculate the variance of the parameters and the associated t-
statistics. Therefore, the term ‘model calibration’ is more appropriate than the term ‘model
estimation’. Finally, the number of parameters or unknowns can be large.

If we consider the linear regression model, we have Y = β>X + u where (Y,X)
forms a random vector. If we consider an observation i, we have yi = f (xi) + ui where
f (xi) =

∑K
k=1 βkxi,k. Let us now consider some non-linear features. We can replace the

linear function by:

f (xi) =
K∑
k=1

βkφk (xi) = β>φ (xi)

For example, we can use quadratic, cubic or piecewise features. We abandon the framework
of Gaussian conditional distribution, which is the basis of linear regression, and the reference
to the random variablesX and Y is not necessary. This means that the calibrated parameters(
β̂1, . . . , β̂K

)
are less relevant. Only the calibrated function f̂ (x) is important. For instance,

if we use radial basis functions:

φk (x) = exp
(
−1

2 ‖x− ck‖
2
)

where ck is the centering parameter, we obtain:

f̂ (xi) =
K∑
k=1

β̂ke
− 1

2‖xi−ck‖
2

Even if f̂ (x) is a parametric function, it can be considered as a non-parametric model.
Indeed, the functional form is the relevant quantity, not the parameters.

15.2.3.1 k-nearest neighbor classifier

The k-NN algorithm is one of the simplest non-parametric models. Let {(xi, yi)} be the
training sample of dimension n. We assume that the labels yi can be assigned to J classes
(C1, . . . , CJ). The goal is to assign a label y for a given unlabeled observation x. For that, we
select the k closest labeled observations in the training sample and we find the label ŷ that
appears most frequently within the k-subset. Said differently, the k-NN classifier uses the
majority vote of the k closest neighbors and the classification rule depends on k, which is the
hyperparameter. It is obvious that a high value of k helps to smooth the decision regions,
but it increases the computational complexity. Moreover, there is a trade-off between bias
and variance. If k = 1, we assign to x the label of the input xi that is the closest. If k = n,
we assign to x the most frequent label of the training sample. In the first case, we see that
ŷ is an unbiased estimator of y, but its variance is large. In the second case, the estimator
is biased but it has a small variance.

The implementation of the k-NN algorithm requires defining the distance between the
points xi and xj . Generally, we use the Euclidean distance, but we can consider the
Minkowski distance. To find the k closest labeled observations, the simplest way is the
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brute-force approach. When the number of observations n is large, we can use more efficient
methods based on tree-based partition37.

FIGURE 15.21: Illustration of the k-NN classifier

We consider the non-linearly separable classification problem, where the classes are dis-
tributed in rings around the point (0,0):

Cj =
{

(xi,1, xi,2) ∈ R2 : r2
j−1 < x2

i,1 + x2
i,2 ≤ r2

j

}
where j = {1, 2, 3} and rj = j is the radius of the ring. In the first panel in Figure 15.21, we
have represented the three rings, and we have reported 100 simulated observations (xi,1, xi,2)
that form the training set. In the second panel, we consider 1 000 observations. Solutions
provided by 1-NN and 10-NN classifiers are given in the third and fourth panels. We notice
that the 10-NN classifier is less efficient than the 1-NN classifier, because the number of
closest neighbors is large compared to the number of observations in the training set.

Remark 188 We can apply the k-NN algorithm to the regression. In this case, the predicted
value ŷ is the (weighted) average of the values yi of the k closest neighbors38.

15.2.3.2 Neural networks

Neural networks as non-linear models We have seen that we can extend the linear
model as follows39:

yi = β0 + β>φ (xi) + εi

In this case, we transform the input data (xi,1, . . . , xi,K) into the auxiliary data
(zi,1, . . . , zi,K) where zi,k = φk (xi,k). Here, the non-linearity property is introduced thanks

37The two most famous methods are the K-D tree and ball tree algorithms.
38The weight is generally inversely proportional to the distance.
39Here, we include a constant in the model.
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to the non-linear function φk. However, there are many other ways to build a non-linear
model. For instance, we can assume that:

yi = φ
(
β0 + β>xi

)
+ εi

We first create the auxiliary data zi = β0 + β>xi from the inputs and then apply the
non-linear function φ (x). If we use several non-linear functions, we obtain:

yi =
J∑
j=1

γjφj
(
β0 + β>xi

)
+ εi

or:

yi = ϕ

γ0 +
J∑
j=1

γjφj
(
β0 + β>xi

)+ εi

= f (xi) + εi

The underlying idea of neural networks is to define a non-linear function f (x), which is
sufficiently flexible to fit complex relationships.

Input x1

Input x2

Input x3

Input x4

Output y

Hidden
layer

Input
layer

Output
layer

FIGURE 15.22: The perceptron

Neural networks as a mathematical representation of biological systems The
term ‘neural network’ makes reference to biological systems, in particular the brain. For
instance, Rosenblatt (1958) proposed a self-organizing and adaptive model called the per-
ceptron. It is no coincidence that the title of this publication is “The Perceptron: A Proba-
bilistic Model for Information Storage and Organization in the Brain”. We have represented
the perceptron in Figure 15.22. The input data are combined in order to produce an hidden
variable z =

∑K
k=1 βkxk. Then, we apply the function f (z) in order to obtain the output y:

y = f (z) =
{

0 if z < 0
1 if z ≥ 0

In the context of neural networks, the function f (z) is called the activation function
and z is the hidden unit. If we generalize the perceptron by considering different hidden
units, we obtain the artificial neural network described in Figure 15.23. In this example,
we have four input units, five hidden units and one output unit. This model is also called
a feed-forward neural network with one hidden layer. It can be extended in two directions.
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Input x1

Input x2

Input x3

Input x4

Output y

Hidden
layer

Input
layer

Output
layer

FIGURE 15.23: Feed-forward neural network with a single hidden layer

Input x1

Input x2

Input x3

Input x4

Output y1

Output y2

Output y3

Hidden
layer #1

Hidden
layer #2

Input
layer

Output
layer

FIGURE 15.24: Feed-forward neural network with two hidden layers and three output
units
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First, we can consider several output units. Second, we can use several hidden layers. In
this case, we speak about multi-layer neural networks (Figure 15.24). For example, deep
learning refers to a neural network with a large number of hidden layers.

The term neural network does not only refer to the structure input layer – hidden layer
– output layer. Activation functions generally map the resulting values into the range [0, 1]
or [−1, 1] and correspond to sigmoidal functions. For example, the perceptron uses the
Heaviside step function f (z) = 1 {z > 0}, because it indicates if the neuron is activated or
not. We can also use the sign function f (z) = sign (z) in order to indicate a ‘positive’ or
‘negative’ potential. However, the most popular activation functions are continuous:

1. the logistic function is equal to:

f (z) = 1
1 + e−z

= ez

1 + ez
(15.16)

we have f (z) ∈ [0, 1], meaning that we can interpret f (z) as a probability function;
moreover, it is symmetric about 0.5;

2. the hyperbolic tangent function is defined by:

f (z) = ez − e−z

ez + e−z
= e2z − 1
e2z + 1 (15.17)

and we have f (z) ∈ [−1, 1];

3. the rectified linear unit (ReLU) function corresponds to:

f (z) = max (0, z) (15.18)

and we have f (z) ∈ [0,∞).

Furthermore, neural networks are also characterized by the concept of learning algorithms.
Neural networks can be seen as non-linear functions with some unknown parameters. The
first idea is then to estimate the parameters by minimizing the residual sum of squares,
meaning that neural networks are just a particulate case of non-linear least squares. How-
ever, neural networks generally use other techniques for identifying the parameters. Sta-
tistical learning implicitly refers to human brains or natural neural networks. The concept
of learning is then central and shall contrast with the concept of optimization. The latter
implies that there is one solution. In an artificial neural network, each node represents a
neuron and each connection can be seen as a synapse. Since these connections transmit a
signal from one neuron to another, the underlying idea is that they learn like in a human
brain. This is why the parameters that control these connections are updated until the ar-
tificial neural network has learnt. In fact, the difference between optimization and learning
is somewhat forced. Indeed, optimization also uses iterative algorithms that can be inter-
preted as learning algorithms. However, the learning algorithms that are used in artificial
neural networks try to imitate the learning process of human brains40. They are also called
adaptive learning rules in order to say that they are adaptive and they try to learn.

Remark 189 According to Bishop (2006), the term neural network “has been used very
broadly to cover a wide range of different models, many of which have been the subject of
exaggerated claims regarding their biological plausibility”. In fact, we use neural networks
as non-linear regression models in the sequel.

40It is particularly true for the first generation of algorithms that were discovered before 1990s.
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Structure of the canonical neural network The notations used in neural networks
and machine learning are generally different than those used in statistics. In this book, we
have tried to use similar homogenous notations in order to make the reading easier:

• the observation (also called the example) is denoted by i;

• the input variable uses the index k and xi,k is the kth input variable of the ith obser-
vation;

• zi,h is the value taken by the hth hidden variable and the ith observation;

• for the output variables (also called the patterns), we introduce the notation yj (xi)
to name the model output taken by the jth output variable and the ith observation;
sometimes, we use the alternative notation ŷi,j , which is more traditional in statistical
inference theory.

The number of input, hidden and output variables are respectively equal nx, nz and ny.
The activation functions fx,z and fz,y links respectively the x’s to the z’s, and the z’s to the
y’s. In order to distinguish them, fz,y is also called the output scaling function. We have41:

zi,h = fx,z (ui,h) = fx,z

(
nx∑
k=1

βh,kxi,k

)

and:

yj (xi) = fz,y (vi,j) = fz,y

(
nz∑
h=1

γj,hzi,h

)
where ui,h and vi,j are the intermediary variables before the activation of the functions fx,z
and fz,y. Finally, we have:

yj (xi) = fz,y

(
nz∑
h=1

γj,hfx,z

(
nx∑
k=1

βh,kxi,k

))
(15.19)

Figure 15.25 summarizes the structure and the notations of this neural network.

Remark 190 Including a constant is equivalent to consider that xi,1 = 1. A variant model
is to define yj (xi) as follows:

yj (xi) = fz,y

(
γj,0 +

nz∑
h=1

γj,hfx,z

(
βh,0 +

nx∑
k=1

βh,kxi,k

))
(15.20)

In this case, we add a constant as an input variable (βh,0) and a constant as a hidden
variable (γj,0). Bishop (2006) shows that this model can be written as:

yj (xi) = fz,y

(
nz∑
h=0

γj,hfx,z

(
nx∑
k=0

βh,kxi,k

))

where xi,0 = 1. The other possibility is to have a direct link between the x’s to the y’s or
skip-layer connections:

yj (xi) = fz,y

(
γj,0 +

nz∑
h=1

γj,hfx,z

(
βh,0 +

nx∑
k=1

βh,kxi,k

)
+

nx∑
k=1

γj,nz+kxi,k

)
(15.21)

41Most of the time, we use the same activation function fx,z (u) = fz,y (u) = f (u).
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xi,1

xi,2

xi,k

zi,1

zi,2

zi,h = fx,z (ui,h)

ui,h =
nx∑∑∑
k=1

βh,kxi,k

y1 (xi)

y2 (xi)

yj (xi) = fz,y (vi,j)

vi,j =
nz∑∑∑
h=1

γj,hzi,h

Input
layer

Hidden
layer

Output
layer

...

...
...

...
...

...

nx nz ny

βh,1

βh,2

βh,k

γj,1

γj,2

γj,h

FIGURE 15.25: Canonical neural network

Loss function If we note yi,j the value of the output variable that is observed42, we would
like to verify:

yj (xi) = yi,j

It follows that a natural loss function is the sum of squared errors:

L (θ) =
n∑
i=1

ny∑
j=1

1
2 (yj (xi)− yi,j)2 (15.22)

where θ is the vector of parameters and n is the number of observations. Minimizing this
loss function is also equivalent to maximize the log-likelihood function associated to the
non-linear regression model:

yi,j = yj (xi) + εi,j

where εi,j ∼ N
(
0, σ2) and εi,j ⊥ εi′,j′ if i 6= i′ or j 6= j′.

The previous loss function is natural when considering a non-linear regression. In the case
of binary classification (yi = 0 or yi = 1) and if the output y (xi) represents a probability,
it is better to use the cross-entropy error loss43:

L (θ) = −
n∑
i=1

(yi ln y (xi) + (1− yi) ln (1− y (xi))) (15.23)

42It is called the target value or the pattern.
43We skip the subscript j because we assume that j = 1. We have then yi = yi,1 and y (xi) = y1 (xi).



Credit Scoring Models 981

The choice of the loss function depends then on the output variable, but also on the activa-
tion function. For example, the cross-entropy error loss is adapted if fz,y corresponds to the
logistic function, but not to the hyperbolic tangent function. In the case of the multi-class
classification problem, Bishop (2006) proposes to consider the following loss function:

L (θ) = −
n∑
i=1

ny∑
j=1

yi,j ln yj (xi) (15.24)

where ny is equal to the number of classes nC and fz,y corresponds to the softmax function
that was previously defined in the case of the multi-logistic model:

yj (xi) = fz,y (vi,j)

= evi,j∑ny
j′=1 e

vi,j′

The loss function is then the opposite of the log-likelihood function.

Learning rules In order to minimize the loss function, we can use classical optimization
algorithm44 (Newton-Raphson, conjugate gradient, BFGS, DFP, Levenberg-Marquardt,
etc.). As we have already said previously, this is not the philosophy of neural networks,
and we generally prefer to use a statistical learning rule, which corresponds to an iterative
algorithm:

θ(t+1) = θ(t) + ∆θ(t)

where θ(t) is the value of θ at the iteration (or epoch) t, and ∆θ(t) is the adjustment vector.
The learning rule consists in defining how θ(t) is updated, and is mostly based on the
gradient of the loss function:

G (θ) = ∂ L (θ)
∂ θ

Here are the main methods (Smith, 1993):

• The steepest descent method is defined by:

∆θ(t) = −η ·G
(
θ(t)
)

where η > 0 is the learning rate parameter. For minimizing the loss function, ∆θ(t)

should go in the opposite direction of the gradient.

• For the momentum method, we have:

∆θ(t) = − (1− αm) η ·G
(
θ(t)
)

+ αm ·∆θ(t−1)

= −ηm ·G
(
θ(t)
)

+ αm ·∆θ(t−1)

where αm ∈ [0, 1] is the momentum weight and ηm > 0 is the momentum learning
rate parameter. Therefore, the adjustment at iteration t is the weighted average of
the adjustment at iteration t−1 and the steepest descent adjustment. The underlying
idea of the term αm∆θ(t−1) is to keep going in the previous direction. This method
can speed up the algorithm because it may avoid oscillations45.

44See Appendix A.1.3 on Page 1046.
45A better method is to consider the Nesterov approach:

∆θ(t) = −ηm ·G
(
θ(t) + αm∆θ(t−1)

)
+ αm ·∆θ(t−1)



982 Handbook of Financial Risk Management

• The adaptive learning method is given by:

∆θ(t) = −η(t) ·G
(
θ(t)
)

where:
η(t) =

{
η(t−1) + κ if G

(
θ(t)) ·K (θ(t)) ≥ 0

φ · η(t−1) otherwise

κ > 0, 0 < φ < 1 and K
(
θ(t)) = G

(
θ(t−1)). Instead of using a fixed step η, we

consider a variable step η(t) that depends on the previous value η(t−1). The variable
step increases when the gradient does not change between iterations t− 1 and t, and
decreases otherwise. Another rule is to consider a moving average of the gradient:

K
(
θ(t)
)

= (1− %) ·G
(
θ(t)
)

+ % ·K
(
θ(t−1)

)
≈ (1− %)

∑
τ=1

%τ−1G
(
θ(t−τ)

)
where % ∈ [0, 1]. In the case % = 0, we retrieve the previous rule K

(
θ(t)) = G

(
θ(t−1)).

• The adaptive learning with momentum method combines the two previous approaches:

∆θ(t) = − (1− α) η(t) ·G
(
θ(t)
)

+ α ·∆θ(t−1)

= −η(t)
m ·G

(
θ(t)
)

+ αm ·∆θ(t−1)

There are numerous other algorithms46 (adagrad, adam, nadam, rprop, rmsprop, etc.),
and a lot of tricks for accelerating the convergence. First, we distinguish three approaches
for evaluating the gradient of the objective function:

1. the batch gradient descent (BGD) computes the gradient with respect to the entire
training dataset:

G
(
θ(t)
)

=
∂ L

(
θ(t))

∂ θ

2. the stochastic gradient descent (SGD) considers only one different training example
at each iteration:

G
(
θ(t)
)

=
∂ Li

(
θ(t))

∂ θ

where Li (θ) is the loss function for the ith observation;

3. the mini-batch gradient descent (MGD) updates the parameters by using a subset of
the training dataset:

G
(
θ(t)
)

=
∑
i∈S(t)

∂ Li
(
θ(t))

∂ θ

where the subset S(t) changes at each iteration.

The underlying idea is to evaluate the gradient not with respect to the current value θ(t), but with respect
to the prediction of the future value θ(t+1). This prediction is equal to θ̂(t+1) = θ(t) + αm∆θ(t−1) in the
momentum method.

46See Ruder (2016) for a review of recent approaches.
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It is obvious that the choice of one approach depends on the size of the training data.
Moreover, we better understand why the momentum approach is important when defining
the learning rule. Indeed, in SGD and MGD approaches, the estimation of the gradient
is more noisy than in the BGD approach. The momentum method helps to smooth the
gradient and to obtain a more consistent direction.

We give here some default values that are used for the learning rules: η = 1, αm = 0.75,
κ = 0.1, φ = 0.9, αm = 0.6 and % = 0.5. However, these parameters can change during the
learning process. For instance, the learning rate parameter η can be greater at the beginning
of the learning process, because of the large gradients. In a similar way, we can use a small
momentum parameter αm and then we can increase it progressively. We can also assume
that the appropriate learning rules can vary between the parameters.

Error backpropagation In order to calculate the gradient G (θ), we consider a method
called error backpropagation (or backward propagation). In the case of the loss function
(15.22), we have L (θ) =

∑n
i=1 Li (θ) and:

Li (θ) =
ny∑
j=1

1
2 (yj (xi)− yi,j)2

It follows that G (θ) =
∑n
i=1Gi (θ) where Gi (θ) is the gradient of Li (θ). In the case of the

previous loss, we can use the decomposition Li (θ) =
∑ny
j=1 Li,j (θ) where:

Li,j (θ) = 1
2 (yj (xi)− yi,j)2

Using chain rule, we obtain47:

∂ Li,j (θ)
∂ γj,h

= ∂ Li,j (θ)
∂ yj (xi)

· ∂ yj (xi)
∂ vi,j

· ∂ vi,j
∂ γj,h

= (yj (xi)− yi,j) f ′z,y (vi,j) zi,h

and ∂γj,h Li,j′ (θ) = 0 when j 6= j′. We also deduce that48:

∂ Li,j (θ)
∂ βh,k

= ∂ Li,j (θ)
∂ zi,h

· ∂ zi,h
∂ ui,h

· ∂ ui,h
∂ βh,k

= ∂ Li,j (θ)
∂ zi,h

f ′x,z (ui,h)xi,k

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,hf ′x,z (ui,h)xi,k

In the case of Model (15.20), there is a constant and we have:

∂ Li,j (θ)
∂ γj,0

= (yj (xi)− yi,j) f ′z,y (vi,j)

47The distinction between j and j′ is important when we consider the softmax function (see Exercise
15.4.7 on page 1025).

48Because we have:
∂ Li,j (θ)
∂ zi,h

=
∂ Li,j (θ)
∂ yj (xi)

·
∂ yj (xi)
∂ vi,j

·
∂ vi,j

∂ zi,h

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,h



984 Handbook of Financial Risk Management

and:
∂ Li,j (θ)
∂ βh,0

= (yj (xi)− yi,j) f ′z,y (vi,j) γj,hf ′x,z (ui,h)

In the case of Model (15.21), we have for the direct links:

∂ Li,j (θ)
∂ γj,nz+k

= (yj (xi)− yi,j) f ′z,y (vi,j)xi,k

It follows that the neural network consists in two steps. The forward propagation computes
ui,h, zi,h, vi,j and yj (xi), meaning that the information comes from left to right. The
backward propagation computes all the derivatives using the chain rule, implying that the
information goes from right to left.

Remark 191 All the previous quantities can be calculated in a matrix form in order to
avoid loop implementation (see Exercise 15.4.7 on page 1025).

Since f ′z,y and f ′x,z are easy to calculate, all the derivatives are calculated in a closed-form
expression. For instance, the derivative of the logistic activation function is equal to:

f ′ (z) = e−z

(1 + e−z)2

= 1
1 + e−z

(
1− 1

1 + e−z

)
= f (z) (1− f (z))

It follows that f ′z,y (vi,j) = fz,y (vi,j) (1− fz,y (vi,j)) = yj (xi) (1− yj (xi)) and f ′x,z (ui,h) =
zi,h (1− zi,h). In Exercise 15.4.7 on page 1025, we consider other activation functions and
loss functions.

Examples Neural networks are sufficiently flexible that they can approximate any con-
tinuous function. Therefore, they are said to be ‘universal approximators’ (Bishop, 2006).
Figure 15.26 illustrates this property when the function is f (x) = 2 cos (x) or f (x) = |x|−2.
For that, we use the network structure (15.20) with two constants and direct links. The ac-
tivation function fx,z is the hyperbolic tangent function, while the output scaling function
fz,y is the identity function. The training step is done with 201 uniform points between
−4 and +4. We notice that the accuracy depends on the number nz of hidden nodes. In
particular, the approximation is very good when we consider three hidden nodes. The uni-
versal approximation property is certainly the main strength of neural networks. It suffices
to increase the number of hidden nodes in order to achieve a given accuracy. However,
this property is also the main weakness of neural networks. Indeed, the distinction between
training and validation steps is not obvious, and overfitting risk is large.

The trade-off between nz and L (θ) is not the only issue with neural networks. Another
problem is the scaling of data. By applying activation functions, the output domain is not
necessarily the set Rny . In Figure 15.27, we have reported the approximation of f (x) = |x|−
2 by considering two hidden nodes and different configurations. The first panel corresponds
to the network structure (15.19) without constant and direct link (β0 = 0, γ0 = 0 and
γx = 0). In the second panel, we include the two constants β0 and γ0, but not the direct
links (γx = 0). We notice that this second structure is better to approximate the function
than the structure of the first panel. The reason is the range of dom f (x), which is better
managed by including a constant γ0. This is confirmed by the third panel. Finally, the fourth
panel assumes that the output scaling function fz,y is the logistic sigmoid function. In this
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FIGURE 15.26: Neural networks as universal approximators

FIGURE 15.27: The scaling issue of neural networks (f (x) = |x| − 2)
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case, it is obvious that the output y (xj) ∈ [0, 1] cannot reach dom f (x) = [−2, 2]. This case
is trivial while the three previous cases are not. This means that the network structure is
crucial, not only the number of hidden units, but also the choice of activation and scaling
functions, adding or not constants and direct links, and the scaling of both input and output
data.

FIGURE 15.28: Convergence of the XOR problem

The XOR (or exclusive or) problem is a classic problem in neural networks. We note
y = x1 ⊕ x2 where x1 and x2 are two binary outputs:

0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 0 = 1
1⊕ 1 = 0

The XOR problem can be viewed as a supervised classification problem. In order to solve
this problem, we use a neural network with three hidden nodes with no constant and no
direct link. The activation and output scaling functions are set to the logistic function. In
Figure 15.28, we have represented the evolution of the loss function L (θ) with respect to
the iterations of the learning rules, which are steepest descent (SD), momentum (MOM),
adaptive learning (AL) and adaptive learning with momentum (AL II) methods. We also
consider a steepest descent with optimal stepsize (SD II) and the BFGS algorithm. More-
over, we have used the two loss criteria: least squares and cross-entropy errors. The results
show the following major lessons. First, we notice that the convergence highly depends on
the learning rule, but also on the loss criterion. Second, a comparison of the optimal pa-
rameters θ̂ shows that they are all different. They differ from one learning rule to another,
but they also differ from one loss criterion to another even if we use the same learning
rule. This result is not surprising, because we observe that the solution θ̂ changes each time
we consider new starting values. This means that neural networks produce models that
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are overidentified. In this context, it is perfectly illusory to analyze and understand the
estimated model. As we have already said, only the predictions ŷi,j are relevant.

TABLE 15.15: Data of program effectiveness
OBS GPA TUCE PSI GRD OBS GPA TUCE PSI GRD

1 2.66 20 0 0 17 2.75 25 0 0
2 2.89 22 0 0 18 2.83 19 0 0
3 3.28 24 0 0 19 3.12 23 1 0
4 2.92 12 0 0 20 3.16 25 1 1
5 4.00 21 0 1 21 2.06 22 1 0
6 2.86 17 0 0 22 3.62 28 1 1
7 2.76 17 0 0 23 2.89 14 1 0
8 2.87 21 0 0 24 3.51 26 1 0
9 3.03 25 0 0 25 3.54 24 1 1

10 3.92 29 0 1 26 2.83 27 1 1
11 2.63 20 0 0 27 3.39 17 1 1
12 3.32 23 0 0 28 2.67 24 1 0
13 3.57 23 0 0 29 3.65 21 1 1
14 3.26 25 0 1 30 4.00 23 1 1
15 3.53 26 0 0 31 3.10 21 1 0
16 2.74 19 0 0 32 2.39 19 1 1

Source: Greene (2017), Table F14.1 and Spector and Mazzeo (1980).

We consider the classification problem described in Greene (2017) based on the study of
Spector and Mazzeo (1980), who examined whether a new method of teaching economics,
the personalized system of instruction (PSI), significantly influenced performance in later
economics courses. The corresponding data are reproduced in Table 15.15. OBS is the
observation, that is the student. The output variable is GRD, which corresponds to the
grade increase (1) or decrease (0) indicator for the student. The explanatory variables are
the constant C, the grade point average GPA, the test score on economics test TUCE,
and the binary variable PSI that indicates the participation to the new teaching method.
Following Greene (2017), we estimate the following logit model:

Pr {GRDi = 1} = F (β0 + β1 GPAi +β2 TUCEi +β3 PSIi)
= F

(
x>i β

)
where F is the cumulative distribution function of the logistic distribution. The results
are reported in Table 15.16, and the value of the optimized log-likelihood function is
`
(
β̂
)

= −12.8896. In order to challenge the logistic regression, we consider a neural network
with three hidden nodes. The logistic function is used for both the activation and output
scaling functions and we consider a direct link between the input variables (C, GPA, TUCE
and PSI) and the output variable GRD. In Table 15.17, we have calculated the estimated
probability p̂i = Pr {GRDi = 1} in the cases of the logit model:

p̂i = F
(
x>i β̂

(logit)
)

and the neural network:

p̂i = F
(
γ̂(nn)
z F

(
β̂(nn)
x xi

)
+ γ̂(nn)

x xi

)
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TABLE 15.16: Results of the logistic regression

Parameter Estimate Standard
t-statistic p-valueerror

β0 −13.0214 4.9313 −2.6405 0.0134
β1 2.8261 1.2629 2.2377 0.0334
β2 0.0952 0.1415 0.6722 0.5069
β3 2.3787 1.0646 2.2344 0.0336

TABLE 15.17: Estimated probability p̂i = Pr {GRDi = 1}

OBS Logit NN OBS Logit NN
1 2.658 2.658 17 5.363 5.363
2 5.950 5.950 18 3.859 3.859
3 18.726 18.726 19 58.987 58.987
4 2.590 2.590 20 66.079 66.079
5 56.989 56.989 21 6.138 6.138
6 3.486 3.486 22 90.485 90.485
7 2.650 2.650 23 24.177 24.177
8 5.156 5.156 24 85.209 85.209
9 11.113 11.113 25 83.829 83.829

10 69.351 69.351 26 48.113 48.113
11 2.447 2.447 27 63.542 63.542
12 19.000 19.000 28 30.722 30.722
13 32.224 32.224 29 84.170 84.170
14 19.321 19.321 30 94.534 94.534
15 36.099 36.099 31 52.912 52.912
16 3.018 3.018 32 11.103 11.103

The results are surprising. The estimated probability calculated with the neural network is
exactly equal to the estimated probability calculated with the logit model. If we inspect the
estimated coefficient, we obtain:

β̂(nn)
x =

 1.0343 0.8482 1.0678 0.5770
0.3856 0.1976 1.4420 0.8744
0.1925 0.8791 2.0427 0.5439


γ̂

(nn)
z = (−2.9240,−2.9538,−3.6783) and γ̂

(nn)
x = (−3.4652, 2.8261, 0.0952, 2.3787). More-

over, the loss error is equal to L
(
θ̂
)

= 12.8896, which is exactly the opposite of the op-
timized log-likelihood function. This result is not surprising because the neural network
encompasses the logit model:

Pr {GRDi = 1} = F

γ(nn)
z F

(
β(nn)
x xi

)
︸ ︷︷ ︸
specific nn effect

+ γ(nn)
x xi︸ ︷︷ ︸

logit effect


We also notice that the logit coefficients are the same than the neural network coefficients for
the direct link units (β̂(logit) = γ̂

(nn)
x ) with the exception of the constant49. Let us estimate

49The constant is equal to −13.0214 for the logit model and −3.4652 for the neural network.
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the neural network by using other starting values for the optimization step. We obtain the
same probability than previously, but the estimated coefficients are not the same. We have:

β̂ =

 0.4230 0.9108 0.5875 0.0882
0.9586 0.2078 0.7862 0.4852
0.7835 2.9180 8.7259 0.4899


γ̂

(nn)
z = (−4.5296,−4.3299,−4.2120) and γ̂(nn)

x = (0.0501, 2.8261, 0.0952, 2.3787). Again, the
neural network coefficients for the direct link units are equal to the logit coefficients with
the exception of the constant. We deduce that the neural network does not differ from the
logit model, because we have:

β̂
(logit)
0 = γ(nn)

z F
(
β(nn)
x xi

)
+ γ

(nn)
1

This result is interesting, because it shows that the neural network did not better than the
logit model, although it presents more flexibility.

Remark 192 The previous results are explained because we optimize the cross-entropy er-
ror loss for estimating the parameters of the neural network. This implies that the logit
framework is perfectly compatible with the neural network framework.

15.2.3.3 Support vector machines

The overidentification of neural networks is an important issue and the optimization step
involves an objective function, which is generally not convex with respect to the parameters.
This implies that there are many local minima. Moreover, the foundation of neural networks
suffers from little theoretical basis of these learning models. Like neural networks, support
vector machines (SVM) can be seen as an extension of the perceptron. However, it presents
nice theoretical properties and a strong geometrical framework. Once SVMs have been first
developed for linear classification, they have been extended for non-linear classification and
regression.

TABLE 15.18: An example of linearly separable observations
i 1 2 3 4 5 6 7
xi,1 0.5 2.7 2.7 1.7 1.5 2.3 4.0
xi,2 2.5 4.2 2.0 4.2 0.7 5.3 6.9
yi +1 +1 +1 +1 +1 +1 +1

i 8 9 10 11 12 13 14 15
xi,1 6.4 7.7 8.8 7.4 6.5 8.3 6.0 5.0
xi,2 4.5 2.2 6.0 6.5 1.7 1.3 1.3 0.5
yi −1 −1 −1 −1 −1 −1 −1 −1

Separating hyperplanes We consider a training set {(xi, yi) , i = 1, . . . , n}, where the
response variable yi can take the values −1 and +1. This training set is said linearly sepa-
rable if there is a hyperplane H =

{
x ∈ RK : f (x) = β0 + x>β = 0

}
such that:

yi = sign f (xi)

This means that the hyperplane divides the affine space in two half-spaces50 such that
{i : yi = +1} ∈ H+ and {i : yi = −1} ∈ H−. Let us consider the example with two ex-
planatory variables given in Table 15.18. We have represented the data (xi,1, xi,2) and the

50The upper half-space H+ is defined by f (x) > 0 while the lower half-space H− corresponds to f (x) < 0.
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corresponding label yi in Figure 15.29. It is obvious that this training set is linearly sep-
arable. For example, we have reported three hyperplanes H1, H2 and H3 that perform a
perfect classification.

x2

x1
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

H1 H2H3

FIGURE 15.29: Separating hyperplane picking

Since there are many solutions, we may wonder if there exists one solution that dominates
the others. The answer has been proposed by Vladimir Vapnik and Alexey Chervonenkis
in the sixties, who have formulated the concept of support vector machines. Following
Cortes and Vapnik (1995), the optimal hyperplane is the one that maximizes the margin.
In Figure 15.30, we have represented an hyperplane and the two margins M+ and M−,
which corresponds to the Euclidean distance between the hyperplane and the closest positive
and negative points. The underlying idea of Vapnik and Chervonenkis is then to find the
hyperplane H with the largest values of M+ and M−.

We notice that finding a hyperplane with two different margins M+ 6= M− is equivalent
to define a hyperplane with the same positive and negative margins: M+ = M− = M . This
implies that the two separating hyperplanes H+ and H− are equidistant to the hyperplane
H. The estimation of H+ and H− requires identifying the training points that belongs to
H+ and H−. These points are called the support vectors. In the case of Figure 15.30, two
support vectors are necessary to define H+ and H−, or equivalently H and the margin M .
By construction, the number of support points is at least equal to the number of explanatory
variables. Except in degenerate cases, there are much less number of support points than the
number of observations. This implies that not all observations are relevant for defining the
decision boundary of an optimal linear classifier. Only the support vectors are important.

Hard margin classification The maximization problem is:{
β̂0, β̂

}
= arg maxM

s.t.
{
f (xi) ≥M if yi = +1
f (xi) ≤ −M if yi = −1
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FIGURE 15.30: Margins of separation

However, this optimization problem is not well defined, since M depends on β. More pre-
cisely, it is inversely proportional to ‖β‖2. This is why we need to add another constraint,
e.g. β1 = 1 or ‖β‖2 = 1. Another approach is to standardize the problem by setting M = 1.

Let x− and x+ be two (negative and positive) support vectors, we deduce that the
distance between x− and x+ is equal to51:

d (x−, x+) = β> (x+ − x−) = 2M

If we replace β by the corresponding unit vector β̂ = β/ ‖β‖2, we obtain β> (x+ − x−) =
2M̂ ‖β‖2. By setting M = 1, we obtain M̂ = 1/ ‖β‖2. Maximizing the margin is then
equivalent to maximize 1/ ‖β‖2 or minimize ‖β‖2 (or ‖β‖22). Moreover, we notice that the
inequality constraints52 can be compacted as yif (xi) ≥ 1. Finally, we obtain the following
optimization problem:{

β̂0, β̂
}

= arg min 1
2 ‖β‖

2
2 (15.25)

s.t. yi
(
β0 + x>i β

)
≥ 1 for i = 1, . . . , n

We recognize a standard quadratic programming (QP) problem that can be easily solved
from a numerical point of view.

Using the training set given in Table 15.18 on page 989, and solving the QP problem
(15.25), we obtain β̂0 = 2.416, β̂1 = −0.708 and β̂2 = 0.248. It follows that the margin M
is equal to 1.333. Since the equation β0 + β1x1 + β2x2 = c is equivalent to:

x2 = c− β0

β2
− β1

β2
x1

51We have β0 + x>−β = −M and β0 + x>+β = M .
52Because we have set M = 1.
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we deduce that the equations of the three hyperplanes H−, H and H+ are:

H− : x2 = −13.786 + 2.857 · x1 (c = −1)
H : x2 = −9.750 + 2.857 · x1 (c = 0)
H+ : x2 = −5.714 + 2.857 · x1 (c = +1)

We have reported the estimated hyperplanes in Figure 15.31, and have also indicated the
support vectors, which are only three.
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FIGURE 15.31: Optimal hyperplane

The historical approach to estimate a support vector machine is to map the primal QP
problem to the dual QP problem. Using the results provided in Appendix A.1.3.1 on page
1046, we can show that53:

α̂ = arg min 1
2α
>Γα− α>1n (15.26)

s.t.
{
y>α = 0
α ≥ 0n

where α is the vector of Lagrange multipliers associated to the n inequality constraints and
Γi,j = yiyjx

>
i xj . Moreover, we have:

β̂ =
n∑
i=1

α̂iyixi

The optimal value of β̂0 can be deduced from any support vectors. In the case of a positive
support vector x+, we have β̂0 = 1− x>+β̂, while we have β̂0 = −1− x>−β̂ for any negative
support vector x−. Moreover, we can classify new observations by considering the following
rule:

ŷ = sign
(
β̂0 + x>β̂

)
53See Exercise 15.4.8 on page 1027.
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If we consider our example, we observe that α̂i is different from zero for three obser-
vations: i ∈ {3, 8, 15}. They correspond to the three support vectors that we have found
graphically. We obtain α̂3 = 0.2813, α̂8 = 0.0435 and α̂15 = 0.2378. With these values, we
deduce that β̂1 = −0.708 and β̂2 = 0.248. In order to compute β̂0, we consider one of the
support vectors and calculate β̂0 = yi − x>i β̂. For example, in the case of the first support
vector (or the third observation), we have: β̂0 = 1 + 2.7× 0.708− 2× 0.248 = 2.416.

Remark 193 We may wonder what the rational of using the dual problem is. The primal
problem is a QP problem with K + 1 unknowns and n inequality constraints. The dual
problem is a QP problem with n unknowns, one equality constraint and n box constraints.
Since the last constraints are straightforward to manage, the second problem is easier to solve
than the first problem. However, the dimension of the second problem is larger than this of
the first problem, since we have to calculate the Γ matrix of dimension n × n. Therefore,
it is difficult to justify that the dual problem presents less computational issues than the
primal problem. The reason is to be found elsewhere. In fact, the calculation of Γ involves
the calculation of the inner product 〈xi, xj〉 = x>i xj. We will see later that it corresponds
to a covariance kernel, and the dual problem can be used in a more efficient way than the
primal problem with other covariance kernels when we consider non-linear SVM problems.

Soft margin classification The inequality constraints yi
(
β0 + x>i β

)
≥ 1 ensure that

all the training points are well-classified and belongs to the half-spaces H+ and H−. How-
ever, training data are generally not fully linearly separable. Therefore, we can relax these
constraints by introducing slack variables ξi > 0:

yi
(
β0 + x>i β

)
≥ 1− ξi

We then face three situations:

1. if ξi = 0, the observation i is well-classified since we have yi
(
β0 + x>i β

)
≥ 1;

2. if 0 < ξi ≤ 1, the observation i is located in the ‘street’, that is in the area between the
two separating planes H− and H+; in this case, ξi can be interpreted as the margin
error (ξi ≤M);

3. if ξi > 1, the observation i is fully misclassified.

The quality of the classification can be measured by the misclassification error sum, that
we can bound:

n∑
i=1

ξi ≤ ξ+

The parameter ξ+ indicates the tolerance we have with respect to the hard margin classi-
fication. Instead of adding the inequality constraint

∑n
i=1 ξi ≤ ξ+ in Problem (15.25), we

can penalize the objective function:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξi (15.27)

s.t. yi
(
β0 + x>i β

)
≥ 1− ξi for i = 1, . . . , n

where the parameter C controls the level of errors. If C is large, the norm ‖β‖2 can be
large. On the contrary, if C is small, the sum

∑n
i=1 ξi can be large, but not the norm ‖β‖2.
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As the margin M is equal to 1/ ‖β‖2, C controls then the trade-off between the size of the
margin and the misclassification error rate. The dual problem is54:

α̂ = arg min 1
2α
>Γα− α>1n (15.28)

s.t.
{
y>α = 0
0n ≤ α ≤ C · 1n

Again, we have β̂ =
∑n
i=1 α̂iyixi. Support vectors corresponds then to training points such

that 0 < αi < C. For computing β̂0, we average over all the support vectors:

β̂0 =

∑n
i=1 1 {0 < α̂i < C} ·

(
yi − x>i β̂

)
∑n
i=1 1 {0 < α̂i < C}

Since we have yi
(
β0 + x>i β

)
≥ 1− ξi and ξi ≥ 0, the Kuhn-Tucker conditions implies that:

ξ̂i = max
(

0, 1− yi
(
β̂0 + x>i β̂

))
(15.29)

The classification rule does not change, and we have ŷ = sign
(
β̂0 + x>β̂

)
.

FIGURE 15.32: Soft margin SVM classifiers

We consider the previous training set given in Table 15.18 and we introduce two points
(6.0, 5.0,+1) (i = 16) and (2.0, 2.0,−1) (i = 17). In this case, the training set is not linearly
separable. Considering different values of C, we have represented the optimal hyperplanes
in Figure 15.32. We verify that the margin decreases when C increases. In the case where
C is equal to 0.05, we obtain β̂0 = 1.533, β̂1 = −0.458, β̂2 = 0.168, and the optimal value
of αi and ξi are reported in Table 15.19.

54See Exercise 15.4.8 on page 1027
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TABLE 15.19: Soft margin classification with C = 0.05

i yi xi,1 xi,2 α̂i ξ̂i
1 +1 0.5 2.5 0.000 0.000
2 +1 2.7 4.2 0.039 0.000
3 +1 2.7 2.0 0.050 0.369
4 +1 1.7 4.2 0.000 0.000
5 +1 1.5 0.7 0.050 0.038
6 +1 2.3 5.3 0.000 0.000
7 +1 4.0 6.9 0.050 0.143
8 −1 6.4 4.5 0.050 0.354
9 −1 7.7 2.2 0.000 0.000

10 −1 8.8 6.0 0.000 0.000
11 −1 7.4 6.5 0.050 0.231
12 −1 6.5 1.7 0.000 0.000
13 −1 8.3 1.3 0.000 0.000
14 −1 6.0 1.3 0.039 0.000
15 −1 5.0 0.5 0.050 0.324
16 +1 6.0 5.0 0.050 1.379
17 −1 2.0 2.0 0.050 1.952

If we combine Equations (15.27) and (15.29), we obtain:

f (β0, β) = 1
2 ‖β‖

2
2 + C

n∑
i=1

max
(
0, 1− yi

(
β0 + x>i β

))
= C ·

(
n∑
i=1

max
(
0, 1− yi

(
β0 + x>i β

))
+ 1

2C ‖β‖
2
2

)
We deduce that the optimization program is:

arg minR (x, y) + 1
2C ‖β‖

2
2 (15.30)

where R (x, y) =
∑n
i=1 L (xi, yi) and L (xi, yi) is the binary hinge loss:

L (xi, yi) = max
(
0, 1− yi

(
β0 + x>i β

))
It follows that the soft margin classification corresponds to a risk minimization problem
with a ridge penalization. The problem is convex but non-smooth because L (xi, yi) is non-
differentiable. More generally, we can use other loss functions, for instance the 0− 1 loss:

L0−1 (xi, yi) =
{

0 if yi
(
β0 + x>i β

)
≥ 1

1 otherwise

However, the associated risk measure is non-convex, and the minimization problem is com-
putationally hard. A better approach is to consider the squared hinge loss:

Lsquared (xi, yi) = Lhinge (xi, yi)2

In this case, the problem is convex and smooth. Another popular loss function is the ramp
loss:

Lramp (xi, yi) = min
(
1,Lhinge (xi, yi)

)
The derivation of the dual problems and the comparison of these different loss functions are
discussed in Exercise 15.4.8 on page 1028.
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SVM regression Support vector machines can be extended to output variables that are
continuous. In this case, we have to define an appropriate loss function. For instance, if we
consider the least squares loss function, we have:

Lls (xi, yi) = (yi − f (xi))2

where f (x) = β0 + x>β. The corresponding SVM regression is then:

{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i (15.31)

s.t. yi = β0 + x>i β + ξi for i = 1, . . . , n

It is obvious that ξi plays the role of the residual. This regression problem looks very similar
to the SVM problem for the soft margin classification and the squared hinge loss function.
In particular, we can show that the dual problem is55:

α̂ = arg min 1
2α
>
(
XX> + 1

2C In
)
α− α>Y (15.32)

s.t. 1>nα = 0

Once we have solved this QP problem, we can calculate the prediction for x: ŷ = β̂0 +x>β̂.
Vapnik (1998) proposed another loss function in order to keep the formalism of the

original soft margin problem:

Lls (xi, yi) = 1 {|yi − f (xi)| ≥ ε} · (|yi − f (xi)| − ε)

where ε > 0. It follows that:

Lls (xi, yi) =
{
|yi − f (xi)| − ε if |yi − f (xi)| ≥ ε
0 if |yi − f (xi)| ≤ ε

Therefore, we would like to find a hyperplane such that we don’t care about the errors that
are smaller than ε. We have:

Lls (xi, yi) = 1 {yi − f (xi) ≤ −ε} · (f (xi)− yi − ε) +
1 {yi − f (xi) ≥ ε} · (yi − f (xi)− ε)

= 1
{
ξ−i ≥ 0

}
· ξ−i + 1

{
ξ+
i ≥ 0

}
· ξ+
i

where ξ−i = f (xi)− yi − ε and ξ+
i = yi − f (xi)− ε. We deduce that the ε-SVM regression

problem is: {
β̂0, β̂, ξ̂

−, ξ̂+
}

= arg min 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)
(15.33)

s.t.


f (xi)− yi ≤ ε+ ξ−i
yi − f (xi) ≤ ε+ ξ+

i

ξ−i ≥ 0
ξ+
i ≥ 0

for i = 1, . . . , n

55See Exercise 15.4.8 on page 1028.
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We can show that the dual problem is56:{
α̂−, α̂+} = arg min 1

2
(
α− − α+)>XX> (α− − α+)+ (15.34)

ε
(
α− + α+)> 1n +

(
α− − α+)> Y

s.t.

 1>n (α− − α+) = 0
0n ≤ α− ≤ C · 1n
0n ≤ α+ ≤ C · 1n

where α− and α+ are the Lagrange multipliers of the inequality constraints. We have β̂ =∑n
i=1
(
α̂+
i − α̂

−
i

)
xi and:

β̂0 = 1
nSV

 ∑
i∈SV−

(
yi + ε− x>i β̂

)
+
∑
i∈SV+

(
yi − ε− x>i β̂

)
where SV− =

{
i : 0 < α̂−i < C

}
and SV+ =

{
i : 0 < α̂+

i < C
}
are the set of negative and

positive support vectors, and nSV is the number of support vectors.

TABLE 15.20: Comparison of OLS, LAD and SVM estimates

β̂k OLS LAD LS-SVM ε-SVM LS-SVM ε-SVM
(C = 1, ε = 1) (C =∞, ε = 0)

β̂0 3.446 2.331 3.389 3.262 3.446 2.331
β̂1 1.544 1.893 1.542 1.631 1.544 1.893
β̂2 −1.645 −1.735 −1.616 −1.526 −1.645 −1.735
β̂3 2.895 2.908 2.885 2.726 2.895 2.908

We consider Example 100 on page 606, which has been used to illustrate the linear re-
gression. In Table 15.20, we report OLS, LAD and SVM estimates for C = 1 and ε = 1. In
the last two columns, we consider the limit cases, when the constant C tends to +∞ and
ε is equal to zero. We notice that the LS-SVM estimator converges to the OLS estimator.
This is quite intuitive since we use a least squares loss function. In some sense, the LS-SVM
regression can be seen as a ridge regression. When C tends to +∞, the ridge penalization
disappears. More curiously, the ε-SVM estimator converges to the LAD estimator. In fact,
the ε-SVM regression is close to a ridge quantile regression. When ε is equal to zero, we ob-
tain a median regression with a L2 penalization. This is why the ε-SVM estimator converges
to the LAD (or median regression) estimator.

Non-linear support vector machines As we have previously seen, we can introduce
non-linearity by replacing the input data x by φ (x), where φ is a map from K-dimension
to m-dimension non-linear feature space. In the case of SVM, we notice that the dual
formulation generally requires the computation of the inner product 〈x, x′〉. This implies
that we can use the same framework by replacing 〈x, x′〉 by 〈φ (x) , φ (x′)〉. Manipulating
φ (x) can be tricky and not always obvious57, because of the high dimension of the non-
linear space. Sometimes, it is better to manipulate the inner product, which is called a kernel
function K (x, x′). For example, let us consider x = (x1, x2) and φ (x) =

(
x2

1, x1x2, x2x1, x
2
2
)
.

The corresponding kernel function is K (x, x′) = 〈x, x′〉2. We also notice that two mapping

56See Exercise 15.4.8 on page 1028.
57The dimension m is generally much larger than the original dimension.
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functions can give the same kernel. For instance, K (x, x′) = 〈x, x′〉2 can be generated by
φ (x) =

(
x2

1,
√

2x1x2, x
2
2
)
.

Since we have K (x, x′) = φ (x)> φ (x′), we see that the kernel function is symmetric
(Bishop, 2006). This is the main property to define kernel functions. Another way to char-
acterize a kernel is to verify that the Kernel (or Gram) matrix K = (Ki,j), whose elements
are Ki,j = K (xi, xj), is positive definite. Therefore, we can directly construct kernels with-
out specifying φ. For instance, ecK, K + c, cK and Kd are also kernel functions when c > 0
and d ∈ N. If K1 and K2 are two kernels, the sum K1 + K2 and the product K1 · K2 are
also kernel functions. The simplest kernel function is obtained by considering the identify
function φ (x) = x. It follows that 〈x, x′〉+c and (〈x, x′〉+ c)d are also kernel functions. This
last one is called the polynomial kernel and is very popular in SVM non-linear classification.
Another popular kernel functions are the Gaussian (or radial basis function) kernel58:

K (x, x′) = exp
(
− 1

2σ2 ‖x− x
′‖22

)
and the neural network (or sigmoid) kernel:

K (x, x′) = tanh (c1 〈x, x′〉+ c2)

FIGURE 15.33: Transforming a non-linearly separable training set into a linearly sepa-
rable training set

In order to understand the interest of kernel, we consider a training set59, which is not
linearly separable. In the left panel in Figure 15.33, we have represented the two input
variables x1 and x2, and the response variable60 y. Let us apply the polynomial mapping

58We can show that dimension of the feature space is infinite: φ (x) = (φ0 (x) , . . . , φs (x) , . . . , φ∞ (x))
where:

φs (x) =
(

1
√
s!σ2s

e
− x2

2σ2 xs

)
59The data are generated as follows: x1,i = c1,i + r1,i cos θi and x2,i = fi (c2,i + r2,i sin θi) where θi ∼
U[0,2π]. In the case y = −1, we have c1,i = c2,i = 0, r1,i = r2,i ∼ U[0,1] and fi (x) = x, otherwise we have
c1,i = 1, c2,i = 0, r1,i ∼ U[8,9], r2,i ∼ U[0,1] and fi (x) = |x| − 0.5.

60y = +1 corresponds to a circle while y = −1 corresponds to a square.
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z = φ (x) =
(
x2

1 − 10,
√

2x1x2, x
2
2
)
. We have reported this transformation in the right panel

in Figure 15.33. We observe that the training sets (x, y) and (z, y) are very different, since
(z, y) is linearly separable.

All the previous SVM algorithms are valid in the non-linear case and we obtain the
following generic framework:

1. the first step consists of defining the mapping function φ. Let zi = φ (xi) be the
transformed data;

2. in the second step, we calculate the estimated parameters β̂0 and β̂ in the feature
space Z;

3. finally, a new observation x is classified by computing ŷ = sign
(
β̂0 + φ (x)> β̂

)
; in

the case of the SVM regression, we have ŷ = β̂0 + φ (x)> β̂.

The previous framework can be simplified by considering the kernel function K instead
of the mapping function φ. Indeed, in the dual problems, the input variables are evaluated
through the inner product 〈φ (xi) , φ (xj)〉, that can be replaced61 by the kernel value Ki,j =
K (xi, xj). The elements of the Γ matrix used in hard and soft margin QP problem becomes:

Γi,j = yiyjφ (xi)> φ (xj)
= yiyjKi,j

and we have Γ = y � y> � K where K = (ki,j) is the Gram matrix. Since we have β̂ =∑n
i=1 α̂iyiφ (xi) and β̂0 =

∑
j∈SV

(
yj − φ (xj)> β̂

)
, we deduce that ŷ = sign f̂ (x) where:

f̂ (x) = β̂0 + φ (x)> β̂

=
∑
j∈SV

(
yj − φ (xj)>

n∑
i=1

α̂iyiφ (xi)
)

+
n∑
i=1

α̂iyiφ (x)> φ (xi)

=
∑
j∈SV

(
yj −

n∑
i=1

α̂iyiK (xj , xi)
)

+
n∑
i=1

α̂iyiK (x, xi)

for a new feature x. The estimation of ŷ involves the computation of K (xj , xi) and K (x, xi).
However, this expression can be reduced because most of the estimates α̂i are equal to zero.

Remark 194 The derivation of the SVM non-linear regression is similar to the framework
above, because the dual problem involves the computation of φ (X)φ (X)>, which is exactly
equal to the Gram matrix K.

In Figure 15.33, we have shown that it was possible to transform the data in order to
obtain separable training sets. For instance, the hyperplane H, which is estimated using the
hard margin classifier, is defined by:

0.884− 0.142 · z1 + 0.268 · z2 − 1.422 · z3 = 0

or equivalently:

0.884− 0.142 ·
(
x2

1 − 10
)

+ 0.268
√

2 · x1x2 − 1.422 · x2
2 = 0

61The fact that we can easily substitute inner products by the Gram matrix in SVM classification and
regression is called the kernel trick.
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Let us now consider a Monte Carlo simulation. We assume that X ∼ N (04, I4) and Y =
sign (N (0, 1)), meaning that there is no relationship between X and Y . We simulate 300
observations for the training set, and we compute the hard margin classifier for several
kernels: linear, quadratic and cubic polynomial with c = 0, and RBF (σ = 50 and σ = 20).
Then, we estimate the predicted value ŷi for all the observations and calculate the error
rate. Since Y is independent from X, the true error rate is equal to 50%, because the score is
purely random. Using 500 replications, we have estimated the density function of the error
rate in Figure 15.34. We notice that the linear kernel classifier is the worst method, while
the RBF kernel with σ = 20 is the best method. On average, the error rate is respectively
equal to 45.0%, 41.5%, 37.7%, 31.8% and 22.3%. Therefore, we have overfitted the model,
and this is particularly true with the kernel approach. Indeed, if we consider a validation
set, we obtain an average error rate of 50% whatever the kernel function we have used.
We conclude that kernel functions are very powerful, but they can lead to large overfitting
problems.

FIGURE 15.34: Probability density function of in-sample error rates

Extension to the multi-class problem We assume that we have nC disjoint classes
Cj where j = 1, . . . , J . SVMs are inherently two-class classifiers, and the extension to the
multi-class problem is not straightforward. However, we distinguish two main approaches.
The first approach uses binary classification. In the case of the ‘one-against-all’ strategy,
we construct J single SVM classifiers in order to separate the training data from every
class to the other classes. For the jth classifier, the response variable is then z(j)

i = +1 if
yi ∈ Cj and z

(j)
i = −1 if yi /∈ Cj . Using this modified training set, we can estimate the

discriminant function f̂ (j) (x) = β̂
(j)
0 +x>β̂(j). In the two-class case, we have ŷ = sign f̂ (x).

In the multi-class problem, the prediction corresponds to the binary classifier that gives the
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largest value f̂ (j) (x) :

ŷ ∈ Cj? where j? = arg max
j
f̂ (j) (x)

Another approach based on the binary classification is called the ‘one-against-one’ strategy.
In this case, we construct J (J − 1) /2 single SVM classifiers in order to separate the training
data from the class Cj to the class Cj′ . Using the estimated discriminant function f̂(j|j′) (x) =

β̂
(j|j′)
0 + x>β̂(j|j′), we can calculate the prediction ŷ(j|j′) = sign f̂(j|j′) (x). The empirical

probability that the observation belongs to the class Cj is then equal to62:

p̂j (x) =
2
∑J
j′=1 1

{
ŷ(j|j′) = +1

}
J (J − 1)

We deduce that the classification rule is defined as follows:

ŷ ∈ Cj? where j? = arg max
j
p̂j (x)

The second approach of multi-classification extends the mathematical framework of SVM
that has been developed for the binary classification. The idea is then to consider a function
y = f (x) : RK → {1, . . . , J} where:

f (x) = arg max
j
β

(j)
0 + x>β(j)

We have now to estimate the J ×1 vector β0 and the K×J matrix β. Crammer and Singer
(2001) developed both hard and soft margin primal and dual problems in an elegant way.
For a review and a comparison of these different methods, the reader can refer to Hsu and
Lin (2002).

15.2.3.4 Model averaging

Model averaging (or ensemble averaging) combines multiple learning algorithms to ob-
tain better predictive performance than could be obtained from the individual models. Two
types of approaches are generally used. The first one constructs a family of ‘random’ models
(bagging/random forests), whereas the second one generates a family of ‘adaptive’ models
(boosting).

The motivation of model averaging is to replace a single expert by a committee of
experts. Sometimes, it is difficult to find a skilled expert, or his search has a large cost.
In this case, we can imagine that the work produced by this high skilled expert can be
done by a committee of less skilled experts. For establishing the committee, we can choose
(randomly) experts with similar skills or we can choose experts that are complementary.
The parallel with model averaging is obvious when we distinguish random and adaptive
models.

Bagging (bootstrap aggregation) Breiman (1996) proposed to use the bootstrap
method to improve the performance of weak learners, in particular to reduce their vari-
ance and the overfitting bias. Given a training set Z = {(xi, yi) , i = 1, . . . , n}, the bagging
method generates nS bootstrapped training sets Z(s) and estimates the output function

62We have ŷ(j|j′) = +1⇔ ŷ(j′|j) = −1.
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f̂(s) (x) for each training set. The sth model is then defined by the pair
(
Z(s), f̂(s)

)
. In the

case of regression, the predicted value is the mean of the predicted values of the different
models:

ŷ = 1
nS

nS∑
s=1

f̂(s) (x)

In the case of classification, we generally implement the majority vote rule:

ŷ = MaxVote
(
f̂(1) (x) , . . . , f̂(nS) (x)

)
In this approach, the predictions of each model are considered as a ‘vote’. The final prediction
corresponds to the class that has the maximum number of votes for multi-classification, or
the majority vote for binary classification. As shown by Breiman (1996), the bagging method
makes only sense when we consider non-linear models.

Job

Score

CLN

1

CLN < 5

0

CLN ≥ 5

Score > 500

0

Score ≤ 500

Job = 1

Loan

Home

0

Home = 0

1

Home = 1

Loan < 100

0

Loan ≥ 100

Job = 0

FIGURE 15.35: An example of decision tree

The bagging method is extensively used when considering decision trees. A tree is repre-
sented by a series of binary splits. Each node represents a query, except the terminal nodes
that correspond to the decision nodes. In the case of a classification tree, the output variable
takes a discrete set of class labels, whereas the output variable takes continuous values when
considering regression trees. In Figure 15.35, we report an example of a classification tree.
We consider an applicant that would like a new credit. If the applicant has not a job, the
credit will be automatically refused if the amount of the loan is too high. If the amount of
the loan is less than 100, the final decision will depend upon whether the applicant owns his
house. In this case, the client can obtain the credit if he applies for a mortgage or a home
equity line of credit. If the applicant has a job, the bank computes his credit score. If the
score is less than 500, the credit is rejected. Otherwise, the final decision will depend on
the number of credits. If the applicant has less than 5 credits, the new credit is accepted,
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otherwise it is refused. Decision trees are very popular in credit scoring for three main
reasons. First, they can handle different types of variables (numeric, continuous, discrete,
qualitative, etc.). Second, the rules and the decision process are very easy to understand.
Third, they can be estimated with statistical models, and adjusted by experts. In practice,
we use greedy approaches based on recursive binary splitting algorithms. One drawback of
classification trees is that their prediction power is generally lower than the ones observed
with logistic models, neural networks or support vector machines. We generally say that
they produce weak classifiers (or learners). However, by combining classification trees and
bagging, we can obtain the same performance than strong classifiers (Hastie et al., 2009).

Remark 195 Bagging is also extensively used when we have a large set of predictors. In-
stead of running one logistic regression with all the input variables, we can estimate many
logit models with a limited number of explanatory variables (e.g. less than 10). In this
approach, the bootstrap procedure concerns the variables, not the observations. By construc-
tion, the bagging model will produce better and more stable predictions than the single logit
model63.

Random forests Let Ŷ(s) = f̂(s) (X) be the output random variable produced by the sth

bootstrapped model. If we assume that Ŷ(1), . . . , Ŷ(nS) are iid random variables with mean
µ and variance σ2, we have:

var
(
Ŷ
)

= var
(

1
nS

nS∑
s=1

Ŷ(s)

)
= σ2

ns

where Ŷ is the bagging estimator. We deduce that var
(
Ŷ
)
→ 0 when nS → ∞. Theo-

retically, the bagging method can highly reduce the variance of the prediction. However,
the hypothesis that Ŷ(1), . . . , Ŷ(nS) are not correlated is too strong. If we assume that the
average correlation between bootstrapped models is equal to ρ, we obtain:

var
(
Ŷ
)

= E

( 1
nS

nS∑
s=1

(
Ŷ(s) − µ

))2


= E

 1
n2
S

nS∑
s=1

(
Ŷ(s) − µ

)2
+ 1
n2
S

∑
r 6=s

(
Ŷ(r) − µ

)(
Ŷ(s) − µ

)
= nSσ

2

n2
S

+ nS (nS − 1) ρσ2

n2
S

= ρσ2 + 1− ρ
ns

σ2

It follows that var
(
Ŷ
)
> ρσ2. For example, if ρ = 90%, the maximum reduction of the vari-

ance is only 10%. It follows that the improvement due to the bagging method can be highly
limited when the correlation is high. Breiman (2001) proposed a modification of bagging by
building de-correlated trees. At each iteration s, we select randomly a subset of predictors
X(s), implying that the model is then defined by the 3-tuple

(
Z(s),X(s), f̂(s)

)
. Generally,

the randomization step is done with a fixed number K? of bootstrapped predictors64.
63For instance, if we consider the degenerate case when the number of observations is lower than the

number of predictors (n < K), the single logit model is highly noisy, which is not the case of the bagging
model.

64The recommended default value is K? =
√
K for classification and K? = K/3 for regression (Hastie et

al., 2009).
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Remark 196 The method of random forests can be viewed as a double bagging method.
Indeed, it mixes observation-based and feature-based bagging methods.

Boosting In this approach, the training set (Z,W) is defined by including the weight of
each observation:

(Z,W) = {(xi, yi, wi) , i = 1, . . . , n}

At each iteration s, boosting computes adaptive weightsW(s) and fits the learning algorithm
f̂(s) with the training set

(
Z,W(s)

)
. Then, it combines the different learning models through

a weighting rule:
ŷ = f̂ (x) = Avg

(
ωs · f̂(s) (x)

)nS
s=1

where ωs is the weight of the sth learning model and Avg is the averaging function. In the
case of a binary classification, we have:

ŷ = f̂ (x) = sign
(
nS∑
s=1

ωsf̂(s) (x)
)

The concept of boosting has been introduced by Schapire (1990), who proved that a ‘weak’
learning algorithm can be ‘boosted’ into a ‘strong’ learning algorithm65. In the 1990s, many
boosting algorithms have been developed, but the high recognition comes with the adaptive
boosting method proposed by Freund and Schapire (1997), and described in Algorithm 2.

The algorithm concerns the classification problem y ∈ {−1,+1}. We begin by initializing
the observation weights wi to 1/n. Then, we fit the classifier f̂(1) using the training set Z,
because the initial weights have no impact. The first step is the usual manner to fit a
classification model. To improve the accuracy, boosting constructs at iteration s another
training set by calculating new observation weights:

wi,s+1 =
{
wi,s if i is well-classified
wi,se

ωs otherwise

If the observation i is well-classified, the weight remain the same, otherwise it increases:
wi,s+1 > wi,s. Indeed, the update makes only sense if the error rate L(s) is smaller than
50%, implying that ωs is strictly positive66. At iteration s + 1, the classifier will be fitted
with the training set

(
Z,W(s+1)

)
, where the misclassified observations at iteration s are

more weighted than the well-classified observations. Therefore, the weighting schemeW(s+1)

forces the new classifier f̂(s+1) to be more focus on the training observations that are difficult
to classify. Finally, we use the majority vote to predict y:

ŷ = sign
(
nS∑
s=1

ωs · f̂(s) (x)
)

We represent the classifier weight ωs with respect to the loss function (or the error rate) in
Figure 15.36. If the error rate is equal to 50%, the weight ωs of the sth classifier is equal
to zero. This classifier does not participate to the final model, because it corresponds to a
random guessing model. On the contrary, if the error rate of one classifier is equal to zero,
its allocation is infinite in the final model. In Figure 15.36, we also show the impact of the

65A training set is said to be strongly learnable if “there exists a polynomial-time algorithm that achieves
low error with high confidence” for all the observations (Schapire, 1990). A weak learning algorithm performs
just slightly better than a random learning algorithm.

66If the classifier has an error rate greater than 50%, it performs worse than random guessing.
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Algorithm 2 AdaBoost.M1 binary classifier
Estimate the AdaBoost.M1 classifier ŷ = f̂ (x)
Initialize the observation weights wi,1 = 1/n for i = 1, . . . , n
for s = 1 : nS do
W(s) ← (w1,s, . . . , wn,s)
Fit the classifier f̂(s) using the training set

(
Z,W(s)

)
Compute the loss function:

L(s) =

∑n
i=1 wi,s · 1

{
yi 6= f̂(s) (xi)

}
∑n
i=1 wi,s

Calculate the classifier weight ωs:

ωs ← ln
(1− L(s)

L(s)

)

Update the observation weights:

wi,s+1 ← wi,se
ωs·1{yi 6=f̂(s)(xi)}

Normalize the observation weights:

wi,s+1 ←
wi,s+1∑n
i′=1 wi′,s+1

end for
return f̂ (x) = sign

(∑nS
s=1 ωsf̂(s) (x)

)

error rate on the weights wi,s+1 when we consider a sample of two observations. We assume
that the first observation is misclassified while the second observation is well-classified at
the step s. This implies that the first observation will have more weight at the step s + 1.
The re-weighting of observations also depends on the error rate. If the error rate of the sth

model is low, the re-weighting is strong, in order to separate well-classified and misclassified
observations. It is not obvious that the error rate is a monotonous function of the iteration
s. At the beginning, the error rate can increase or decrease depending whether the initial
classifier is good or bad. But, at the end, the error rate must reach the upper bound 50%.

In order to illustrate the boosting method, we consider the data given in Table 15.21
and the logit model:

Pr {yi = 1} = F (β0 + β1xi)
where F (x) is the logit function. We have Pr {yi = −1} = 1 − F (β0 + β1xi). Given the
pattern x, the classification rule is then:

ŷ = 2 · 1
{

F
(
β̂0 + β̂1x

)
>

1
2

}
− 1

where β̂0 and β̂1 are the parameters, which have been estimated by the method of maximum
likelihood. Using our data, we obtain β̂0 = 0.4133 and β̂1 = 0.2976, and the error rate is
equal to 45%. In the case of the boosting algorithm, the first iteration is exactly the same
as the previous logit estimation. For the second iteration, we have to calculate the weights
wi,2 of each observation. We have ω1 = 0.2007 because L(1) = 45%. Therefore, we update
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FIGURE 15.36: Weighting schemes of the boosting approach

the weights. In Table 15.21, we have reported the predicted value ŷi,s at the iteration step
s, and also the variable ϑi,s which indicates the misclassified observations. For instance,
observations 3, 4, 5, 7, 9, 10, 12, 16 and 17 are not well-classified at the first iteration by
the logit model. This is why the weight of these observations increase by eω1 . While the
weights wi,1 take the uniform value of 5%, the weights wi,2 are different with respect to
observations. After normalizing, wi,2 is equal to 5.56% for observations that are misclassified
at the first iteration, otherwise it is equal to 4.55%. Using these weights, we estimate the
logit model, and found β̂0,2 = 0.2334 and β̂1,2 = 0.2558 (Table 15.22). The loss function
is then equal to L(2) = 38.89%. We see that the second logit model has improved the
classification for two observations (i = 3 and i = 10). We can continue the algorithm. In
our example, the boosting method stops after 5 iterations, because L(5) = 50.00%. The
fifth estimated classifier is then a pure random guessing model. While the number of well-
classified observations is equal to 11 for the logit model, it is equal to 13 for the boosting
model67. From a general point of view, the boosting is interesting only if we use a large
dataset of observations and variables. When considering small datasets, we face an obvious
overfitting issue.

Remark 197 The boosting method is based on weighted estimation methods. In Chapter
10, we have already defined the weighted least squares estimator68. In Exercise 15.4.10 on
page 1029, we extend the method of maximum likelihood, neural networks and support vector
machines when observations are weighted.

Hastie et al. (2009) showed that boosting is related to additive models:

g (x) =
nS∑
s=1

β(s)B
(
x; γ(s)

)
67The boosting classifier corresponds to the column ŷi in Table 15.21.
68See Section 10.1.1.5 on page 612.
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TABLE 15.21: Illustration of the boosting algorithm (nS = 2)

i yi xi
wi,1 ŷi,1 ϑi,1

wi,2 ŷi,2 ϑi,2 ŷi ϑi(in %) (in %)
1 1 0.597 5.00 1 4.55 1 1
2 1 1.496 5.00 1 4.55 1 1
3 −1 −0.914 5.00 1 X 5.56 −1 −1
4 −1 −0.497 5.00 1 X 5.56 1 X 1 X
5 −1 0.493 5.00 1 X 5.56 1 X 1 X
6 1 0.841 5.00 1 4.55 1 1
7 −1 −0.885 5.00 1 X 5.56 1 X 1 X
8 1 1.418 5.00 1 4.55 1 1
9 −1 −0.183 5.00 1 X 5.56 1 X 1 X

10 −1 −1.298 5.00 1 X 5.56 −1 −1
11 1 −0.324 5.00 1 4.55 1 1
12 1 −1.454 5.00 −1 X 5.56 −1 X −1 X
13 1 −0.270 5.00 1 4.55 1 1
14 1 −0.770 5.00 1 4.55 1 1
15 1 0.232 5.00 1 4.55 1 1
16 −1 0.970 5.00 1 X 5.56 1 X 1 X
17 −1 1.196 5.00 1 X 5.56 1 X 1 X
18 1 0.578 5.00 1 4.55 1 1
19 1 −0.686 5.00 1 4.55 1 1
20 1 −0.590 5.00 1 4.55 1 1

TABLE 15.22: Estimated model at each boosting iteration (nS = 5)

s 1 2 3 4 5
β̂0,s 0.4133 0.2334 −0.0771 0.0009 0.0103
β̂1,s 0.2976 0.2558 0.0278 0.0277 −0.0751
L(s) 0.4500 0.3889 0.4805 0.4741 0.5000
ωs 0.2007 0.4520 0.0780 0.1038 0.0000
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where β(s) is the expansion coefficient and B
(
x; γ(s)

)
is the basis function at iteration s.

Forward stagewise regression consists in finding the optimal values of β̂(s) and γ̂(s):(
β̂(s), γ̂(s)

)
= arg min

n∑
i=1
L
(
yi, ĝ(s−1) (xi) + β(s)B

(
x; γ(s)

))
where ĝ(s) (xi) =

∑s
s′=1 β̂(s′)B

(
x; γ̂(s′)

)
and L is the loss function. In the case of boost-

ing, we can show that B
(
x; γ(s)

)
= f̂(s) (x), β̂(s) = ωs and L (y, f (x)) = e−yf(x). We

recognize an additive logit model with the softmax loss function. Using this framework,
Friedman (2002) proposed gradient boosting models. The idea is to minimize the loss func-
tion

∑n
i=1 L (yi, f (xi)) with respect to the learning algorithm f (x). The steepest descend

algorithm consists in the following iterations:

f̂(s) (xi) = f̂(s−1) (xi)− η(s)

∂ L
(
yi, f̂(s−1) (xi)

)
∂ f (xi)

Instead of finding the optimal classifier f̂(s), gradient boosting estimates the optimal step
η(s) and iterates the previous formula. Finally, the optimal model f̂ (x) is given by the
estimate f̂(nS) (x) at the last iteration.

Remark 198 The table below summarizes the differences between bagging, random forests
and boosting:

Method Model Z(s) X(s) W(s)
Weighted

definition average
Bagging

(
Z(s), f̂(s)

)
X

Random forests
(
Z(s),X(s), f̂(s)

)
X X

Boosting
(
Z,W(s), f̂(s)

)
X X

In the bagging method, the randomization step concerns observations. In the case of random
forests, the models are generated by randomizing both observations and variables. Boosting
is a very different approach, since all the observations and variables are used to construct the
weak learning models. In this method, the perturbations are introduced by using a weighting
scheme for the observations that changes at each iteration. The randomization step is then
replaced by an adaptive step, where the (s+ 1)th model depends on the accuracy of the sth

model. Finally, boosting uses a weighted average of the different weak learning algorithms.

15.3 Performance evaluation criteria and score consistency
This section is dedicated to the performance assessment of a score. Using information

theory, we would like to know if the scoring system is informative or not. The second
paragraph presents the graphical tools in order to measure the classification accuracy of the
score. Finally, we define the different statistical measures to estimate the performance of
the score. We also notice that the tools presented here can be used with both the training
set or the validation set.
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15.3.1 Shannon entropy
15.3.1.1 Definition and properties

The entropy is a measure of unpredictability or uncertainty of a random variable. Let
(X,Y ) be a random vector where pi,j = Pr {X = xi, Y = yj}, pi = Pr {X = xi} and pj =
Pr {Y = yj}. The Shannon entropy of the discrete random variable X is given by69:

H (X) = −
∑n

i=1
pi ln pi

We have the property 0 ≤ H (X) ≤ lnn. H is equal to zero if there is a state i such that
pi = 1 and is equal to lnn in the case of the uniform distribution (pi = 1/n). The Shannon
entropy is a measure of the average information of the system. The lower the Shannon
entropy, the more informative the system. For a random vector (X,Y ), we have:

H (X,Y ) = −
∑n

i=1

∑n

j=1
pi,j ln pi,j

We deduce that the conditional information of Y given X is equal to:

H (Y | X) = EX [H (Y | X = x)]

= −
∑n

i=1

∑n

j=1
pi,j ln pi,j

pi
= H (X,Y )−H (X)

We have the following properties:
• if X and Y are independent, we have H (Y | X) = H (Y ) and H (X,Y ) = H (Y ) +
H (X);

• if X and Y are perfectly dependent, we have H (Y | X) = 0 and H (X,Y ) = H (X).
The amount of information obtained about one random variable, through the other random
variable is measured by the mutual information:

I (X,Y ) = H (Y ) +H (X)−H (X,Y )

=
∑n

i=1

∑n

j=1
pi,j ln pi,j

pipj

Figure 15.37 shows some examples of Shannon entropy calculation. For each example, we
indicate the probabilities pi,j and the values taken by H (X), H (Y ), H (X,Y ) and I (X,Y ).
The top/left panel corresponds to a diffuse system. The value of H (X,Y ) is maximum,
meaning that the system is extremely disordered. The top/right panel represents a highly
ordered system in the bivariate case and a diffuse system in the univariate case. We have
H (X | Y ) = H (Y | X) = 0, implying that the knowledge of X is sufficient to find the state
of Y . Generally, the system is not perfectly ordered or perfectly disordered. For instance,
in the case of the system described in the bottom/left panel, the knowledge of X informs
us about the state of Y . Indeed, if X is in the third state, then we know that Y cannot be
in the first or sixth state. Another example is provided in the bottom/right panel.

Remark 199 If we apply the Shannon entropy to the transition matrix of a Markov chain,
we set X = R (s) and Y = R (t) where R (t) is the state variable at the date t. We obtain:

H (R (t) | R (s)) = −
K∑
i=1

π?i

K∑
j=1

p
(t−s)
i,j ln p(t−s)

i,j

where pi,j = Pr {R (t+ 1) = j | R (t) = i}, S = {1, 2, . . . ,K} is the state space of the
Markov chain and π? is the associated stationary distribution.

69We use the convention pi ln pi = 0 when pi is equal to zero.
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1/12

H (X) = 1.658
H (Y ) = 1.328
I (X,Y ) = 0.750

FIGURE 15.37: Examples of Shannon entropy calculation

15.3.1.2 Application to scoring

Let S and Y be the score and the control variable. For instance, Y is a binary random
variable that may indicate a bad credit (Y = 0) or a good credit (Y = 1). Y may also
correspond to classes defined by some quantiles. With Shannon entropy, we can measure
the information of the system (S, Y ). We can also compare two scores S1 and S2 by using
the statistical measures I (S1, Y ) and I (S2, Y ). Let S3 be the aggregated score obtained
from the two individual scores S1 and S2. We can calculate the information contribution
of each score with respect to the global score. Therefore, we can verify that a score really
adds an information.

We consider the following decision rule:{
S ≤ 0⇒ S? = 0
S > 0⇒ S? = 1
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We note ni,j the number of observations such that S? = i and Y = j. We obtain the
following system (S?, Y ):

Y = 0 Y = 1
S? = 0 n0,0 n0,1
S? = 1 n1,0 n1,1

where n = n0,0 + n0,1 + n1,0 + n1,1 is the total number of observations. The hit rate is the
ratio of good bets:

H = n0,0 + n1,1

n

This statistic can be viewed as an information measure of the system (S, Y ). When there
are more states, we can consider the Shannon entropy. In Figure 15.38, we report the
contingency table of two scores S1 and S2 for 100 observations70. We have I (S1, Y ) = 0.763
and I (S2, Y ) = 0.636. We deduce that S1 is more informative than S2.

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

10 9

7 9

3 7 2

2 10 4 5

10 2

3 4 13

H (S1) = 1.767
H (Y ) = 1.609
H (S1, Y ) = 2.614
I (S1, Y ) = 0.763

s1

s2

s3

s4

s5

s6

y1 y2 y3 y4 y5

7 10

10 8

5 4 3

3 10 6 4

2 5 8

5 5 5

H (S1) = 1.771
H (Y ) = 1.609
H (S1, Y ) = 2.745
I (S1, Y ) = 0.636

FIGURE 15.38: Scorecards S1 and S2

15.3.2 Graphical methods
We assume that the control variable Y can takes two values: Y = 0 corresponds to a bad

risk (or bad signal) while Y = 1 corresponds to a good risk (or good signal). Gouriéroux
(1992) introduced 3 graphical tools for assessing the quality of a score: the performance
curve, the selection curve and the discrimination curve71. In the following, we assume that
the probability Pr {Y = 1 | S ≥ s} is increasing with respect to the level s ∈ [0, 1], which
corresponds to the rate of acceptance. We deduce that the decision rule is the following:

• if the score of the observation is above the threshold s, the observation is selected;

• if the score of the observation is below the threshold s, the observation is not selected.

70Each score is divided into 6 intervals (s1, . . . , s6) while the dependent variable is divided into 5 intervals
(y1, . . . , y5).

71See also Gouriéroux and Jasiak (2007).
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If s is equal to one, we select no observation. If s is equal to zero, we select all the observa-
tions. In a scoring system, the threshold s is given. Below, we assume that s is varying and
we analyze the relevance of the score with respect to this parameter.

15.3.2.1 Performance curve, selection curve and discriminant curve

The performance curve is the parametric function y = P (x) defined by: x (s) = Pr {S ≥ s}

y (s) = Pr {Y = 0 | S ≥ s}
Pr {Y = 0}

where x (s) corresponds to the proportion of selected observations and y (s) corresponds to
the ratio between the proportion of selected bad risks and the proportion of bad risks in
the population. The score is efficient if the ratio is below one. If y (s) > 1, the score selects
more bad risks than those we can find in the population72. If y (s) = 1, the score is random
and the performance is equal to zero. In this case, the selected population is representative
of the total population.

The selection curve is the parametric curve y = S (x) defined by:{
x (s) = Pr {S ≥ s}
y (s) = Pr {S ≥ s | Y = 0}

where y (s) corresponds to the ratio of observations that are wrongly selected. By construc-
tion, we would like that the curve y = S (x) is located below the bisecting line y = x in
order to verify that Pr {S ≥ s | Y = 0} < Pr {S ≥ s}.

Remark 200 The performance and selection curves are related as follows73:

S (x) = xP (x)

The discriminant curve is the parametric curve y = D (x) defined by:

D (x) = g1
(
g−1

0 (x)
)

where:
gy (s) = Pr {S ≥ s | Y = y}

It represents the proportion of good risks in the selected population with respect to the
proportion of bad risks in the selected population. The score is said to be discriminant if
the curve y = D (x) is located above the bisecting line y = x.

72In this case, we have Pr {Y = 0 | S ≥ s} > Pr {Y = 0}.
73We have:

Pr {S ≥ s | Y = 0} =
Pr {S ≥ s,Y = 0}

Pr {Y = 0}

= Pr {S ≥ s} ·
Pr {S ≥ s,Y = 0}

Pr {S ≥ s}Pr {Y = 0}

= Pr {S ≥ s} ·
Pr {Y = 0 | S ≥ s}

Pr {Y = 0}



Credit Scoring Models 1013

15.3.2.2 Some properties

We first notice that the previous parametric curves do not depend on the probability
distribution of the score S, but only on the ranking of the observations. They are then
invariant if we apply an increasing function to the score. Gouriéroux (1992) also established
the following properties:

1. the performance curve (respectively, the selection curve) is located below the line
y = 1 (respectively, the bisecting line y = x) if and only if cov (f (Y ) , g (S)) ≥ 0 for
any increasing functions f and g;

2. the performance curve is increasing if and only if:

cov (f (Y ) , g (S) | S ≥ s) ≥ 0

for any increasing functions f and g, and any threshold level s;

3. the selection curve is convex if and only if E [f (Y ) | S = s] is increasing with respect
to the threshold level s for any increasing function f .

Remark 201 The first property is the least restrictive. It allows us to verify that the score
S is better than a random score. We can show that (3) ⇒ (2) ⇒ (1). The last property is
then the most restrictive.

A score is perfect or optimal if there is a threshold level s? such that
Pr {Y = 1 | S ≥ s?} = 1 and Pr {Y = 0 | S < s?} = 1. It separates the population between
good and bad risks. Graphically, the selection curve of a perfect score is equal to:

y = 1 {x > Pr {Y = 1}} ·
(

1 + x− 1
Pr {Y = 0}

)
Using the relationship S (x) = xP (x), we deduce that the performance curve of a perfect
score is given by:

y = 1 {x > Pr {Y = 1}} ·
(
x− Pr {Y = 1}
x · Pr {Y = 0}

)
For the discriminant curve, a perfect score satisfies D (x) = 1. When the score is random, we
have S (x) = D (x) = x and P (x) = 1. In Figure 15.39, we have reported the performance,
selection and discriminant curves of a given score S. We also show the curves obtained with
an optimal (or perfect) score and a random score. A score must be located in the area
between the curve computed with a random score and the curve computed with a perfect
score, except if the score ranks the observations in a worst way than a random score.

Gouriéroux (1992) also established two properties for comparing two scores S1 and S2:

• the score S1 is more performing on the population P1 than the score S2 on the pop-
ulation P2 if and only if the performance (or selection) curve of (S1, P1) is below the
performance (or selection) curve of (S2, P2);

• the score S1 is more discriminatory on the population P1 than the score S2 on the
population P2 if and only if the discriminant curve of (S1, P1) is above the discriminant
curve of (S2, P2).

Figure 15.40 illustrates the case where the score S1 is better than the score S2. However,
the order is only partial. Most of the time, the two scores cannot be globally compared. An
example is provided in Figure 15.41. The second score is not very good to distinguish good
and bad risks when it takes small values, but it is close to a perfect score when it takes high
values.
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FIGURE 15.39: Performance, selection and discriminant curves

FIGURE 15.40: The score S1 is better than the score S2
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FIGURE 15.41: Illustration of the partial ordering between two scores

15.3.3 Statistical methods
Since the quantitative tools for comparing two scores are numerous, we focus on two

non-parametric measures: the Kolmogorov-Smirnov test and the Gini coefficient.

15.3.3.1 Kolmogorov-Smirnov test

We consider the cumulative distribution functions:

F0 (s) = Pr {S ≤ s | Y = 0}

and:
F1 (s) = Pr {S ≤ s | Y = 1}

The score S is relevant if we have the stochastic dominance order F0 � F1. In this case,
the score quality is measured by the Kolmogorov-Smirnov statistic:

KS = max
s
|F0 (s)− F1 (s)|

It takes the value 1 if the score is perfect. The KS statistic may be used to verify that the
score is not random. We then test the assumptionH0 : KS = 0 by using the tabulated critical
values74 In Figure 15.42, we give an example with 5 000 observations. The KS statistic is
equal to 36%, which implies that H0 is rejected at the confidence level 1%.

74The critical values at the 5% confidence level are equal to:

n 10 50 100 500 5000
CV 40.9% 18.8% 13.4% 6.0% 1.9%



1016 Handbook of Financial Risk Management

FIGURE 15.42: Comparison of the distributions F0 (s) and F1 (s)

15.3.3.2 Gini coefficient

The Lorenz curve The Gini coefficient is the statistic, which is the most used for mea-
suring the performance of a score. It is related to the concept of Lorenz curve, which is a
graphical representation of the concentration. Let X and Y be two random variables. The
Lorenz curve y = L (x) is the parametric curve defined by:{

x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

In economics, x represents the proportion of individuals that are ranked by income while
y represents the proportion of income. In this case, the Lorenz curve is a graphical repre-
sentation of the distribution of income and is used for illustrating inequality of the wealth
distribution between individuals. For example, we observe that 70% of individuals have only
34% of total income in Figure 15.43.

Definition of the Gini coefficient The Lorenz curve has two limit cases. If the wealth
is perfectly concentrated, one individual holds 100% of the total wealth. If the wealth
is perfectly allocated between all the individuals, the corresponding Lorenz curve is the
bisecting line. We define the Gini coefficient by:

Gini (L) = A

A+B

where A is the area between the Lorenz curve and the curve of perfect equality, and B is the
area between the curve of perfect concentration and the Lorenz curve. By construction, we
have 0 ≤ Gini (L) ≤ 1. The Gini coefficient is equal to zero in the case of perfect equality
and one in the case of perfect concentration. We have:

Gini (L) = 1− 2
∫ 1

0
L (x) dx
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FIGURE 15.43: An example of Lorenz curve

Application to credit scoring We can interpret the selection curve as a Lorenz
curve. We recall that F (s) = Pr {S ≤ s}, F0 (s) = Pr {S ≤ s | Y = 0} and F1 (s) =
Pr {S ≤ s | Y = 1}. The selection curve is defined by the following parametric coordinates:{

x (s) = 1− F (s)
y (s) = 1− F0 (s)

The selection curve measures the capacity of the score for not selecting bad risks. We could
also build the Lorenz curve that measures the capacity of the score for selecting good risks:{

x (s) = Pr {S ≥ s} = 1− F (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

It is called the precision curve. Another popular graphical tool is the receiver operating
characteristic (or ROC) curve (Powers, 2011), which is defined by:{

x (s) = Pr {S ≥ s | Y = 0} = 1− F0 (s)
y (s) = Pr {S ≥ s | Y = 1} = 1− F1 (s)

An example for a given score S is provided in Figure 15.44. For all the three curves, we can
calculate the Gini coefficient. Since the precision and ROC curves are located above the
bisecting line, the Gini coefficient associated to the Lorenz curve L becomes75:

Gini (L) = 2
∫ 1

0
L (x) dx− 1

75An alternative to the Gini coefficient is the AUC measure, which corresponds to the area under the
ROC curve. However, they give the same information since they are related by the equation:

Gini (ROC) = 2×AUC (ROC)− 1
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The Gini coefficient of the score S is then computed as follows:

Gini? (S) = Gini (L)
Gini (L?)

where L? is the Lorenz curve associated to the perfect score.

FIGURE 15.44: Selection, precision and ROC curves

Remark 202 The Gini coefficient is not necessarily the same for the three curves. However,
if the population is homogeneous, we generally obtain very similar figures76.

15.3.3.3 Choice of the optimal cut-off

The choice of the optimal cut-off s? depends on the objective function. For instance, we
can calibrate s? in order to achieve a minimummarket share. We can also fix a given selection
rate. More generally, the objective function can be the profitability of the activity. From a
statistical point of view, we must distinguish the construction of the scoring model and the
decision rule. In statistical learning, we generally consider three datasets: the training set,
the validation set and the test set. The training set is used for calibrating the model and
its parameters whereas the validation set helps to avoid overfitting. But the decision rule is
based on the test set.

76For instance, we obtain the following results with the score S that has been used in Figure 15.44:

Curve Gini (L) Gini (L?) Gini? (S)
Selection 20.41% 40.02% 51.01%
Precision 30.62% 59.98% 51.05%
ROC 51.03% 100.00% 51.03%
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Confusion matrix A confusion matrix is a special case of contingency matrix. Each row
of the matrix represents the frequency in a predicted class while each column represents the
frequency in an actual class. Using the test set, it takes the following form:

Y = 0 Y = 1
S < s n0,0 n0,1
S ≥ s n1,0 n1,1

n0 = n0,0 + n1,0 n1 = n0,1 + n1,1

where ni,j represents the number of observations of the cell (i, j). We notice that each cell
of this table can be interpreted as follows:

Y = 0 Y = 1
It is rejected It is rejected,

S < s and it is a bad risk but it is a good risk
(true negative) (false negative)
It is accepted, It is accepted

S ≥ s but it is a bad risk and it is a good risk
(false positive) (true positive)

(negative) (positive)

The cells (S < s, Y = 0) and (S ≥ s, Y = 1) correspond to observations that are well-
classified: true negative (TN) and true positive (TP). The cells (S ≥ s, Y = 0) and
(S < s, Y = 1) correspond to two types of errors:

1. a false positive (FP) can induce a future loss, because it may default: this is a type I
error;

2. a false negative (FN) potentially corresponds to a loss of a future P&L77: this is a
type II error.

Classification ratios Binary classification defines many metrics for measuring the per-
formance of the classifier78 (Fawcett, 2006):

True Positive Rate TPR = TP
TP + FN

False Negative Rate FNR = FN
FN + TP = 1− TPR

True Negative Rate TNR = TN
TN + FP

False Positive Rate FPR = FP
FP + TN = 1− TNR

The true positive rate (TPR) is also known as the sensitivity or the recall. It measures the
proportion of real good risks that are correctly predicted good risk. Fawcett (2006) also
defines the precision or the positive predictive value (PPV):

PPV = TP
TP + FP

77This is an opportunity cost.
78 We rewrite the confusion matrix as follows:

Y = 0 Y = 1
S < s TN FN
S ≥ s FP TP

N = TN + FP P = FN + TP
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It measures the proportion of predicted good risks that are correctly real good risk. Besides
these metrics, statisticians also use two generic metrics:

1. the accuracy considers the classification of both negatives and positives:

ACC = TP + TN
P + N = TP + TN

TP + FN + TN + FP

2. the F1 score is the harmonic mean of precision and sensitivity:

F1 = 2
1/precision + 1/sensitivity

= 2 · PPV · TPR
PPV + TPR

Example 171 We consider three scoring systems that have been calibrated on a training
set. These systems produce a score between 0 and 1 000. A low value predicts a bad risk
while a high value predicts a good risk. In order to calibrate the cut-off, we consider a test
set, which is composed of 10 000 new observations. In Table 15.23, we report the confusion
matrix of each scoring system for different cut-off values (100, 200 and 500).

TABLE 15.23: Confusion matrix of three scoring systems and three cut-off values s
Score s = 100 s = 200 s = 500

S1
386 616 698 1 304 1 330 3 672

1 614 7 384 1 302 6 696 670 4 328

S2
372 632 700 1 304 1 386 3 616

1 628 7 368 1 300 6 696 614 4 384

S3
382 616 656 1 344 1 378 3 624

1 618 7 384 1 344 6 656 622 4 376

Perfect 1 000 0 2 000 0 2 000 3 000
1 000 8 000 0 8 000 0 5 000

Using confusion matrices given in Table 15.23, we calculate the different classification
ratios and report them in Table 15.24. In addition to the three scoring systems, we have
also considered a perfect score in order to show what the best value is for each classification
ratio. Finally, we indicate the best scoring system in Table 15.25. We notice that it depends
on the ratio and on the value of the cut-off. For instance, if we want to maximize the true
positive ratio or minimize the false negative ratio, S1 is the best scoring system for low
value of s while S2 is better when s is equal to 500. For the other ratios, S1 seems to be the
best system when s = 100, otherwise S2 dominates S1 and S3 when s = 200 or s = 500.

Remark 203 We recall that F0 (s) = Pr {S ≤ s | Y = 0} and F1 (s) = Pr {S ≤ s | Y = 1}.
We deduce that TNR = F0 (s), FNR = F1 (s), FPR = 1 − F0 (s) and TPR = 1 − F1 (s).
Therefore, the ROC curve is the parametric curve, where the x-coordinates are the false
positive rates and the y-coordinates are the true positive rates. Generally, we note α and
β the type I and II errors. We may also interpret the ROC curve as the relationship of
1− β (s) with respect to α (s).
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TABLE 15.24: Binary classification ratios (in %) of the three scoring systems

Score s TPR FNR TNR FPR PPV ACC F1

S1

100 92.3 7.7 19.3 80.7 82.1 77.7 86.9
200 83.7 16.3 34.9 65.1 83.7 73.9 83.7
500 54.1 45.9 66.5 33.5 86.6 56.6 66.6

S2

100 92.1 7.9 18.6 81.4 81.9 77.4 86.7
200 83.7 16.3 35.0 65.0 83.7 74.0 83.7
500 54.8 45.2 69.3 30.7 87.7 57.7 67.5

S3

100 92.3 7.7 19.1 80.9 82.0 77.7 86.9
200 83.2 16.8 32.8 67.2 83.2 73.1 83.2
500 54.7 45.3 68.9 31.1 87.6 57.5 67.3

Perfect
100 100.0 0.0 50.0 50.0 88.9 90.0 94.1
200 100.0 0.0 100.0 0.0 100.0 100.0 100.0
500 62.5 37.5 100.0 0.0 100.0 70.0 76.9

TABLE 15.25: Best scoring system
Cut-off TPR FNR TNR FPR PPV ACC F1

100 S1/S3 S1/S3 S1 S1 S1 S1 S1
200 S1/S2 S1/S2 S2 S2 S2 S2 S2
500 S2 S2 S2 S2 S2 S2 S2

15.4 Exercises
15.4.1 Elastic net regression

We consider the standard linear model:

Y = Xβ + U

where Y is a n×1 vector, X is a n×K matrix and U ∼ N
(
0, σ2In

)
. Let β̂ be the estimator

of β, that is the solution of the following least squares problem:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2

(
α ‖β‖1 + (1− α) ‖β‖22

)
where λ ≥ 0 and α ∈ [0, 1].

1. We consider the case α = 0, which corresponds to the ridge regression.

(a) Find the optimal estimator β̂ridge.
(b) What is the relationship between the ridge estimator β̂ridge and the ordinary

least squares β̂ols?

(c) Deduce the expression of E
[
β̂ridge

]
. Show that β̂ridge is a biased estimator except

if λ = 0.
(d) Demonstrate that the covariance matrix of β̂ridge is equal to:

var
(
β̂ridge

)
= σ2 (X>X +Q

)−1
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where Q is a matrix to determine. Deduce that:

var
(
β̂ols

)
� var

(
β̂ridge

)
where � is the positive definite ordering.

(e) Let Ŷ be the predicted values of Y. If Ŷ = HY, the model degree of freedom is
equal to the trace of H. Show that the degree of freedom of the ridge model is
equal to:

dfmodel =
K∑
k=1

s2
k

s2
k + λ

where (s1, . . . , sK) are the singular values of X (Hastie et al., 2009).
(f) What does the previous results become when X is an orthonormal matrix?

2. We consider the case α > 0, which corresponds to the elastic net regression (Zou and
Hastie, 2005).

(a) Write the corresponding QP program.
(b) Consider the data of Example 164 on page 936. Compare the estimates β̂ when

α is respectively equal to 0, 0.25, 0.5 and 1.0.

15.4.2 Cross-validation of the ridge linear regression
We consider the ridge estimator:

β̂ = arg min 1
2 (Y−Xβ)> (Y−Xβ) + λ

2β
>β

where Y is a n× 1 vector, X is a n×K matrix and β is a K × 1 vector.

1. Compute the ridge estimator β̂.

2. We note β̂−i the ridge estimator when leaving out the ith observation:

β̂−i = arg min 1
2 (Y−i −X−iβ)> (Y−i −X−iβ) + λ

2β
>β

where Y−i and X−i correspond to Y and X with the ith row removed. By using the
relationships X>X = X>−iX−i + xix

>
i and X>Y = X>−iY−i + xiyi, show that:

β̂−i = β̂ −
(
X>X + λIK

)−1
xiûi

1− hi

where ûi = yi − x>i β̂ and hi = x>i
(
X>X + λIK

)−1
xi.

3. We note ŷi,−i = x>i β̂−i and ûi,−i = yi − ŷi,−i. Demonstrate that:

ûi,−i = ûi
1− hi

4. Calculate the predicted residual error sum of squares (PRESS) statistic:

Press = 1
n

n∑
i=1

(yi − ŷi,−i)2

where ŷi,−i is the estimate of yi based on the ridge model when leaving out the ith
observation.
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5. In the OLS regression, we reiterate that df(model) = trace H = K where H is the
hat matrix for the OLS regression. Define the corresponding hat matrix H (λ) for the
ridge regression. Show that:

df(model) (λ) =
K∑
k=1

s2
k

s2
k + λ

where (s1, . . . , sK) are the singular values of X.

6. The generalized cross-validation (GCV) statistic is defined by:

GCV = nK2

(
K∑
k=1

(n−K) s2
k + nλ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)
where h̄ = n−1∑n

i=1 H (λ)i,i and RSS
(
β̂ (λ)

)
is the residual sum of squares calculated

with the ridge estimator β̂ (λ). What is the relationship between GCV and PRESS
statistics? What is the impact of λ?

7. Show that another expression of the GCV statistic is:

GCV = n

(
n−K +

K∑
k=1

λ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)

8. Using the data of Example 165 on page 940, calculate the estimates β̂−i when λ is
equal to 3.0. Compute also ŷi,−i, ûi,−i, ûi and hi. Deduce then the value of PRESS
and GCV statistics.

15.4.3 K-means and the Lloyd’s algorithm
1. We consider n observations with K attributes xi,k (i = 1, . . . , n and k = 1, . . . ,K).

We note xi the K × 1 vector (xi,1, . . . , xi,K). Show that:

1
2

n∑
i=1

n∑
j=1
‖xi − xj‖2 = n

n∑
i=1
‖xi − x̄‖2

where:

x̄ = 1
n

n∑
i=1

xi

2. We recall that the loss function of the K-means clustering method is:

L (C) = 1
2

nC∑
j=1

∑
C(i)=j

∑
C(i′)=j

‖xi − xi′‖2

Deduce that:

L (C) =
nC∑
j=1

nj
∑
C(i)=j

‖xi − x̄j‖2

where x̄j and nj are two quantities to define.
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3. We consider the following optimization function:

{
µ?1, . . . , µ

?
nC

}
= arg min

nC∑
j=1

nj
∑
C(i)=j

‖xi − µj‖2

Show that µ?j = x̄j . Comment on this result.

4. Apply the K-means analysis to Example 169 and compare the results with those
obtained with the discriminant analysis.

15.4.4 Derivation of the principal component analysis
The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002). Let X be a K×1

random vector, whose covariance matrix is equal to Σ. We consider the linear transform
Zj = β>j X where βj is a K × 1 vector.

1. Calculate var (Z1) and define the PCA objective function to estimate β1. Show that
β1 is the eigenvector associated to the largest eigenvalue of Σ.

2. Calculate var (Z2) and cov (Z1, Z2). Define then the PCA objective function to es-
timate β2. Show that β2 is the eigenvector associated to the second eigenvalue of
Σ.

15.4.5 Two-class separation maximization
We note xi the K × 1 vector of exogenous variables X for the ith observation.

1. We consider the case of J classes. We note µ̂j the mean vector for class Cj :

µ̂j = 1
nj

∑
i∈Cj

xi

and µ̂ the mean vector for the entire sample:

µ̂ = 1
n

n∑
i=1

xi = 1
n

J∑
j=1

njµ̂j

Calculate the scatter matrices S, SW and SB . Show that:

S = SW + SB

2. We now consider the two-class problem, and we note yi = β>xi. Show that:

β>SBβ = n1n2

n1 + n2
(µ̃1 − µ̃2)2

where:
µ̃j = 1

nj

∑
i∈Cj

yi

3. Show that:
β>SWβ = s̃2

1 + s̃2
2

where:
s̃2
j =

∑
i∈Cj

(yi − µ̃j)2
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4. Deduce that the Fisher optimization program is:

β? = arg max (µ̃1 − µ̃2)2

s̃2
1 + s̃2

2

What is the interpretation of this statistical problem?

5. Find the optimal value β? and verify that the decision boundary is linear.

6. Using Example 170 on page 967, calculate SW and SB . Find the optimal value β? and
compute the score for each observation. Propose an assignment decision based on the
mid-point rule. Comment on these results.

15.4.6 Maximum likelihood estimation of the probit model
1. Given a sample {(xi, yi) , i = 1, . . . , n}, find the log-likelihood function of the probit

model.

2. Let J (β) be the Jacobian matrix of the log-likelihood vector. Show that:

Ji,k (β) =
(
yi − Φ

(
x>i β

))
φ
(
x>i β

)
Φ
(
x>i β

) (
1− Φ

(
x>i β

)) · xi,k
for i = 1, . . . , n and k = 1, . . . ,K. Define the score vector S (β).

3. Let H (β) be the Hessian matrix of the log-likelihood function. Show that:

H (β) = −
n∑
i=1

Hi ·
(
xix
>
i

)
where:

Hi = yi

(
φ
(
x>i β

)
+ x>i βΦ

(
x>i β

))
Φ
(
x>i β

)2 φ
(
x>i β

)
+

(1− yi)
(
φ
(
x>i β

)
− x>i β

(
1− Φ

(
x>i β

)))(
1− Φ

(
x>i β

))2 φ
(
x>i β

)
4. Propose a Newton-Raphson algorithm to find the ML estimate.

15.4.7 Computation of feed-forward neural networks
We consider the canonical neural network without constant and direct link.

1. We noteX the input matrix of dimension n×nx and Y the output matrix of dimension
n× ny. Let Ŷ be the prediction of Y . Find the matrix relationship between X and Ŷ
with respect to the parameter matrices β and γ of dimension nz × nx and ny × nz.

2. We assume that the activation functions fx,z and fz,y are the identity function.
Demonstrate that the neural network is equivalent to an overidentified linear model
or a constrained linear regression.
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3. We consider the additive loss function:

L (θ) =
n∑
i=1

ny∑
j=1
Li,j (θ)

where:
Li,j (θ) = ξ (yj (xi) , yi,j)

Calculate the matrices ∂γL (θ) and ∂βL (θ) of dimension ny × nz and nz × nx.

4. We assume that the activation functions fx,z and fz,y correspond to the logistic func-
tion and the loss is the least squares error function. Find the matrices ∂γL (θ) and
∂βL (θ).

5. Same question if we consider the cross-entropy error loss:

L (θ) = −
n∑
i=1

(yi ln y (xi) + (1− yi) ln (1− y (xi)))

6. Explain why we cannot use the property of additivity in the case of the softmax
function.

7. Calculate the matrices ∂γL (θ) and ∂βL (θ) when fz,y is the softmax function, fx,z is
the identity function, and the loss function is the multi-class error function:

L (θ) = −
n∑
i=1

nC∑
j=1

yi,j ln yj (xi)

where nC is the number of classes79.

8. Extend the previous results when we consider a constant between the x’s and the z’s,
a constant between the z’s and the y’s and a direct link between the x’s and the y’s.

15.4.8 Primal and dual problems of support vector machines
The goal of this exercise is to determine the primal and dual problems of the differ-

ent SVM models. For each problem, we ask to write the primal problem into a quadratic
programming (QP) format:

θ̂ = arg min 1
2θ
>Qθ − θ>R

s.t.

 Aθ = B
Cθ ≥ D
θ− ≤ θ ≤ θ+

where θ is the vector of parameters. Then, we ask to find the corresponding dual problem
and also the associated QP matrix form.

79Hint: Use the following decomposition L (θ) =
∑n

i=1 Li (θ).
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Hard margin classification

We first begin with the hard margin classifier. We recall that the primal optimization
problem is: {

β̂0, β̂
}

= arg min 1
2 ‖β‖

2
2

s.t. yi
(
β0 + x>i β

)
≥ 1 for i = 1, . . . , n

1. By noting θ the vector of parameters, write the primal problem in the QP form.

2. We note α = (α1, . . . , αn) the vector of Lagrange coefficients associated to the con-
straints yi

(
β0 + x>i β

)
≥ 1. Write the Lagrange function and find the first-order con-

ditions.

3. Deduce that the dual problem is:

α̂ = arg max
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i x
>
j

s.t. α ≥ 0

4. Write this dual problem as a QP problem.

5. Determine the dual QP problem directly by applying Equation (A.12) on page 1047.
What do you observe? How to fix this issue?

Soft margin classification with binary hinge loss

We now consider the soft margin classification problem:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξi

s.t.
{
yi
(
β0 + x>i β

)
≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , n

1. Write the primal problem as a QP problem.

2. Show that the objective function of the dual problem does not change compared to
the hard margin classifier. What does the dual QP problem become?

3. How can we characterize the support vectors?

4. Find the optimal values of ξi.

5. We consider the training data set given in Table 15.18 on page 989. Represent the
optimal values of β0, β1, β2,

∑n
i=1 ξi and the margin M with respect to C. Compare

the optimal hyperplane when C = 0.07 with the optimal hyperplane obtained with
the hard margin classifier.

Soft margin classification with squared hinge loss

We replace the binary hinge loss by the squared hinge loss:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i

s.t.
{
yi
(
β0 + x>i β

)
≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , n



1028 Handbook of Financial Risk Management

1. Write the primal problem as a QP problem.

2. Find the dual problem. What do you observe?

3. We consider the training data set given in Table 15.18 on page 989. Study the con-
vergence of the optimal values of β0, β1, β2,

∑n
i=1 ξi and the margin M with respect

to C. What is the main difference between binary and squared hinge loss functions?

4. We introduce in the training set two new points (6.0, 5.0,+1) (i = 16) and (2.0, 2.0,−1)
(i = 17). Calculate β̂0, β̂, α̂i and ξ̂i when the constant C is equal to 1.

Soft margin classification with ramp loss

1. Compare 0− 1, binary hinge, squared hinge and ramp loss functions.

2. Using the property min (1,max (0, a)) = max (0, a) − max (0, a− 1), show that
Lramp (xi, yi) is the difference of two convex functions. Comment on this result.

LS-SVM regression

We consider the following optimization problem:{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

ξ2
i

s.t. yi = β0 + x>i β + ξi for i = 1, . . . , n

1. Write the primal problem as a QP problem.

2. Find the dual QP problem.

3. Deduce the expression of β̂0 and β̂. Show that the residuals are centered.

ε-SVM regression

We consider the following optimization problem:{
β̂0, β̂, ξ̂

−, ξ̂+
}

= arg min 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)

s.t.


β0 + x>i β − yi ≤ ε+ ξ−i
yi − β0 − x>i β ≤ ε+ ξ+

i

ξ−i ≥ 0
ξ+
i ≥ 0

for i = 1, . . . , n

where ε ≥ 0.

1. Write the primal problem as a QP problem.

2. Find the dual problem.

3. Write the dual problem as a QP problem.

4. Deduce the expression of β̂0 and β̂.

5. Calculate the optimal values ξ̂− and ξ̂+.

6. What does the optimization problem becomes when ε = 0?
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15.4.9 Derivation of the AdaBoost algorithm as the solution of the ad-
ditive logit model

We consider a special case of additive models, where the loss function is specified as
follows:

L
(
β(s), f(s)

)
=

n∑
i=1
L
(
yi, ĝ(s−1) (xi) + β(s)f(s) (xi)

)
ĝ(s) (x) =

∑s
s′=1 β̂(s′)f̂(s′) (x), f̂(s) is the sth optimal classification model and L (y, f (x)) =

e−yf(x).

1. Show that:

L
(
β(s), f(s)

)
=

n∑
i=1

wi,se
−yiβ(s)f(s)(xi)

where wi,s is a quantity to determine.

2. Find an expression of L
(
β(s), f(s)

)
that depends on the error rate:

L(s) =
∑n
i=1 wi,s · 1 {yi 6= yi,s}∑n

i=1 wi,s

where yi,s = f(s) (xi).

3. We assume that f(s) is known. Verify that the optimal value of β̂(s):

β̂(s) = arg minL
(
β(s), f(s)

)
is equal to:

β̂(s) = 1
2 ln

(1− L(s)

L(s)

)
4. Suppose that f̂(s) has been already estimated. Show that the normalized observation

weights are:

wi,s+1 = wi,se
ws·1{yi 6=ŷi,s}∑n

i=1 wi′,se
ws·1{yi′ 6=ŷi′,s}

where ws is a parameter to determine.

5. Conclude on these results.

15.4.10 Weighted estimation
We note w = (w1, . . . , wn) the vector of observation weights.

1. We consider the weighted log-likelihood function:

`w (θ) =
n∑
i=1

wi · `i (θ)

(a) Define the weighted maximum likelihood estimator.
(b) Find the expression of the Jacobian and Hessian matrices.

2. We consider neural networks (Exercise 15.4.7 on page 1025).
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(a) Define the least squares loss function Lw (θ). Give the matrix form of the deriva-
tives ∂γLw (θ) and ∂βLw (θ).

(b) Same question if we consider the cross-entropy loss function.

3. We consider the soft margin SVM classification (Exercise 15.4.8 on page 1027).

(a) Define the optimization problem.
(b) What is the impact of introducing weights on the primal and dual problems.
(c) Why weighted hard margin classification does not make sense?



Conclusion

In the past forty years, risk management has considerably changed in the banking industry
and more broadly in the financial sector. There are certainly two main reasons. The first one
is due to the development of financial markets, the innovation of financial solutions and the
competitiveness between financial agents. Since products and operations are more complex
than in the past, it is quite normal that risk management has followed the trend. However,
this first reason explains partially the development of risk management. The second reason is
that carrying on banking and financial business requires a strong risk management, because
risk pricing has become the essential element to ensure the sustainability of the financial
institution. On top of that, regulation has perfectly understood the role of the banking
sector on the economy, which is positive for boosting the economic growth but may also be
a problem of systemic risk. In particular, the 2008 Global Financial Crisis has completely
changed the approach of regulators, and the place of risk management in the financial sector.
Before 2008, risk management was a tool for banks for managing their own business risk.
Since 2008, risk management has become a tool for regulators and supervisors for managing
the systemic risk of the whole financial sector. This is particularly true for banks, but this
phenomenon is now expanding to other financial institutions such as insurance companies
and asset managers.

This handbook reflects the evolution of risk management of these last forty years. Besides
the presentation of statistical and mathematical tools that are necessary for measuring and
managing financial risks, it gives the guidelines of the banking and financial regulation
and introduces the different methods for computing capital requirements. This handbook
illustrates that there is no other industry in the world, where the regulation is so complex
and strong. It also illustrates that financial risk management is highly mathematical and
technical. The combination of these two dimensions makes the practice of risk management
a difficult exercise. In this handbook, we use many examples, provide many illustrations and
propose many exercises in order for the student to gain a strong knowledge in the practice
of risk measurement. Measuring the risk is the first step before managing it. Therefore,
this handbook does not claim to give recipes in order to take the right risk management
decisions. This skill will develop with work experience and real life situations. But this
handbook claims that the student has the essential background of risk measurement and
regulatory rules to become a risk manager.
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Appendix A
Technical Appendix

A.1 Numerical analysis
A.1.1 Linear algebra

Following Horn and Johnson (2012), we recall some definitions about matrices1:

• the square matrix A is symmetric if it is equal to its transpose A>;

• the square matrix A is hermitian if it is equal to its own conjugate transpose A∗,
implying that we have Ai,j = conjAj,i;

• we say that A is an orthogonal matrix if we have AA> = A>A = I and an unitary
matrix if we have A∗ = A−1;

• A+ is the Moore-Penrose inverse or pseudo-inverse of A if AA+A = A, A+AA+ = A+

and, AA+ and A+A are hermitian matrices; in the case where A is invertible, we have
A+ = A−1; when A has linearly independent columns, we have A+ =

(
A>A

)−1
A>.

A.1.1.1 Eigendecomposition

The value λ is an eigenvalue of the n×n matrix A if there exists a non-zero eigenvector
v such that we have Av = λv. Let V denote the matrix composed of the n eigenvectors. We
have:

AV = V Λ

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues. We finally obtain the
eigendecomposition of the matrix A:

A = V ΛV −1 (A.1)

If A is an hermitian matrix, then the matrix V of eigenvectors is unitary. It follows that:

A = V ΛV ∗

In particular, if A is a symmetric real matrix, we obtain2:

A = V ΛV > (A.2)
1To go further, the reader may consult the book of Meucci (2005), which contains an extensive presen-

tation of linear algebra tools used in risk management.
2We have:

A> =
(
V ΛV −1

)>
=

(
V −1

)>
ΛV >

We deduce that V −1 = V >.

1033
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Remark 204 A related decomposition is the singular value decomposition. Let A be a rect-
angular matrix with dimension m× n. We have:

A = UΣV ∗ (A.3)

where U is a m ×m unitary matrix, Σ is a m × n diagonal matrix with elements σi ≥ 0
and V is a n × n unitary matrix. σi are the singular values of A, ui are the left singular
vectors of A, and vi are the right singular vectors of A.

A.1.1.2 Generalized eigendecomposition

The generalized eigenvalue problem is Av = λBv where A and B are two n×n matrices.
In a matrix form, we have:

AV = BV Λ

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of ordered generalized eigenvalues. The
generalized eigenvalue problem is related to the maximum/minimum of the Rayleigh quo-
tient:

R (x) = x>Ax

x>Bx

Indeed, we get x? = v1 and R (x?) = λ1 for the maximization problem x = arg maxR (x)
and x? = vn and R (x?) = λn for the minimization problem x = arg minR (x).

A.1.1.3 Schur decomposition

The Schur decomposition of the n× n matrix A is equal to:

A = QTQ∗ (A.4)

where Q is a unitary matrix and T is an upper triangular matrix3. This decomposition is
useful to calculate matrix functions.

Let us consider the matrix function in the space M of square matrices:

f : M −→M
A 7−→ B = f (A)

For instance, if f (x) =
√
x and A is positive, we can define the matrix B such that:

BB∗ = B∗B = A

B is called the square root of A and we note B = A1/2. This matrix function generalizes the
scalar-valued function to the set of matrices. Let us consider the following Taylor expansion:

f (x) = f (x0) + (x− x0) f ′ (x0) + (x− x0)2

2! f ′′ (x0) + . . .

We can show that if the series converge for |x− x0| < α, then the matrix f (A) defined by
the following expression:

f (A) = f (x0) + (A− x0I) f ′ (x0) + (A− x0I)2

2! f ′′ (x0) + . . .

3Q and T are also called the transformation matrix and the Schur form of A.
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converges to the matrix B if |A− x0I| < α and we note B = f (A). In the case of the
exponential function, we have:

f (x) = ex =
∞∑
k=0

xk

k!

We deduce that the exponential of the matrix A is equal to:

B = eA =
∞∑
k=0

Ak

k!

In a similar way, the logarithm of A is the matrix B such that eB = A and we note B = lnA.
Let A and B be two n × n square matrices. Using the Taylor expansion, Golub and

Van Loan (2013) showed that f
(
A>
)

= f (A)>, Af (A) = f (A)A and f
(
B−1AB

)
=

B−1f (A)B. It follows that:
eA
>

=
(
eA
)>

and:
eB
−1AB = B−1eAB

If AB = BA, we can also prove that AeB = eBA and eA+B = eAeB = eBeA.

Remark 205 There are different ways to compute numerically f (A). For transcendental
functions, we have:

f (A) = Qf (T )Q∗

where A = QTQ∗ is the Schur decomposition of A. Because T is an upper diagonal matrix,
f (T ) is also a diagonal matrix whose elements can be calculated with Algorithm 9.1.1 of
Golub and Van Loan (2013). This algorithm is reproduced below4.

A.1.2 Approximation methods
A.1.2.1 Spline functions

We consider a set of data points (xi, yi) where x1 < x2 < · · · < xn. S (x) is the associated
cubic spline if S (x) is a C2 function, S (xi) = yi and S (x) is a polynomial of degree 3 on
each interval:

S (x) = ai + bix+ cix
2 + dix

3 if x ∈ [xi, xi+1]

The C2 property implies that:

ai−1 + bi−1xi + ci−1x
2
i + di−1x

3
i = ai + bixi + cix

2
i + dix

3
i

bi−1 + 2ci−1xi + 3di−1x
2
i = bi + 2cixi + 3dix2

i

2ci−1 + 6di−1xi = 2ci + 3dixi

Therefore, we obtain a linear system of 4n equations with 4n unknowns. By assuming that5
c0 = d0 = cn = dn = 0, the linear system is tridiagonal and easy to solve. The main
interest of cubic splines is its tractability, because it is straightforward to calculate the
quantities S (x), S′ (x), S′′ (x), S−1 (x) and

∫ x
x0
S (u) du for any value x. This explains that

it is extensively used in finance.

4For the exponential matrix, we may prefer to use the Pade approximation method, which is described
in Algorithm 9.3.1 (scaling and squaring) of Golub and Van Loan (2013). See also the survey of Moler and
Van Loan (2003).

5This is equivalent to impose that the cubic spline is linear if x < x1 and x > xn.
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Algorithm 3 Schur-Parlett matrix function f (A)
Compute the Schur decomposition A = QTQ∗

Initialize F to the matrix 0n×n
for i = 1 : n do
fi,i ← f (ti,i)

end for
for p = 1 : n− 1 do
for i = 1 : n− p do
j ← i+ p
s← ti,j (fj,j − fi,i)
for k = i+ 1 : j − 1 do
s← s+ ti,kfk,j − fi,ktk,j

end for
fi,j ← s/ (tj,j − ti,i)

end for
end for
B ← QFQ∗

return B

Source: Golub and Van Loan (2013), page 519.

Remark 206 The interpolation method can be extended to the smoothing problem:

min p ·
n∑
i=1

(yi − S (xi))2 + (1− p) ·
∫ xn

x1

S′′ (u)2 du

where p is the smoothing parameter. We obtain the cubic spline solution when p is equal to
1, whereas we obtain the least squares solution when p is equal to 0. In the general case, the
first-order condition consists in solving a band linear system.

A.1.2.2 Positive definite matrix approximation

The computation of Gaussian risk measures involves the use of covariance or correlation
matrices. Since we can manipulate many instruments and securities, we generally observe
missing values in the dataset. Therefore, several approaches can be used to estimate the
covariance matrix Σ. The two most popular approaches are listwise and pairwise methods.
Listwise deletion removes all the observations that have one or more missing values. Since
this approach is popular, it cannot be implemented from a practical point of view. For
instance, deleting all the public holidays dramatically reduces the number of valid dates in
a global universe of stocks. This is why pairwise deletion is used in practice. It consists of
deleting the observations by considering each pair of observations. However, the estimated
covariance matrix Σ̂ is generally not positive definite. Another issue occurs when the number
of observations is lower than the number of variables. In this case, Σ̂ is only positive semi-
definite.

Computing the nearest covariance matrix We assume that Σ is not a positive semi-
definite matrix. We consider the square root decomposition Σ = A2 where A = A1 + iA2.
We have A2 = A2

1 − A2
2 because A1A2 = 0 (Horn and Johnson, 2012). We deduce that the
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eigenvalues λi (Σ) of Σ are related to the eigenvalues of A1 and A2:

λi (Σ) =
{

λ2
i (A1) if λi

(
A2

1
)
> 0

−λ2
i (A2) otherwise

Therefore, Σ can be approximated by Σ̃ = A2
1, which is a positive semi-definite matrix.

Moreover, we have:

x>Σx = x> (A1 + iA2)2
x

= x>A2
1x− x>A2

2x

≤ x>A2
1x

This means that any quadratic form x>Σx is bounded by x>Σ̃x. This means that Σ̃ is a
conservative estimator when computing the Gaussian value-at-risk.

Remark 207 We can transform any positive semi-definite matrix Σ̃ into a (strict) positive
definite matrix Σ̆ by considering the eigenvalue thresholding method Σ̆ = V Λ̆V > where
Σ̃ = V ΛV >, Λ̆i,i = max (Λi,i, ε) and ε > 0 is a small number.

Computing the nearest correlation matrix Given an arbitrary symmetric matrix A,
the nearest correlation matrix is defined as follows

ρ (A) = min {‖A−X‖2 : X is a correlation matrix}

For solving this problem, Higham (2002) proposed to use the method of alternating projec-
tions, which consists of iterating A← PU (PS (A)) where PU and PS are the projections on
the sets S =

{
X = X> : X ≥ 0

}
and U =

{
X = X> : diag (X) = 1n

}
. There are different

approaches to achieve the convergence. Higham (2002) considered the Dykstra’s method
given in Algorithm 4. For the projections, we have PS (R) = QT+Q∗ where QTQ∗ is the
Schur decomposition of R and T+

i,j = max (Ti,j , 0), and PU (Y ) = X where Xi,i = 1 and
Xi,j = Yi,j if i 6= j.

Algorithm 4 Computing the nearest correlation matrix
The goal is to compute ρ (A)
We set ∆S0 = 0 and X0 = A
We note ε the convergence criterion of the algorithm
repeat
Rk ← Xk−1 −∆Sk−1
Yk = PS (Rk)
∆Sk = Yk −Rk
Xk = PU (Yk)

until ‖Xk −Xk−1‖2 ≤ ε
return ρ (A)← Xk

A.1.2.3 Numerical integration

Trapezoidal and Simpson’s rules The general approach to calculate I (a, b) =∫ b
a
f (x) dx is to approximate the integral by a sum Î (a, b) =

∑n
i=1 wi·f (xi). Let xi = a+i·h
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where h = (b− a) /n and n is the number of knots. We have:∫ b

a

f (x) dx ≈
n∑
i=1

h

2 (f (xi−1) + f (xi))

= h

(
1
2f (a) +

n−1∑
i=1

f (xi) + 1
2f (b)

)

There is no difficulty to implement the trapezoidal method. Moreover, we can show that
the quadrature error is: ∫ b

a

f (x) dx− Î (a, b) = −h
2

12 (b− a) f ′′ (c)

where c ∈ [a, b]. The error decreases with the discretization step h and depends on the
curvature f ′′. If the curvature is high, it would be better to use the Simpson’s rule. This
method consists in replacing the function f (x) on the interval [xi−1, xi+1] by the parabolic
function that matches the points f (xi−1), f (xi) and f (xi+1). For that, we estimate the
curvature by the finite difference:

f ′′ (xi) ≈
f (xi−1)− 2f (xi) + f (xi+1)

h2

We obtain: ∫ xi+1

xi−1

f (x) dx ≈ h

3 (f (xi−1) + 4f (xi) + f (xi))

The Simpson’s rule is then:∫ b

a

f (x) dx ≈ h

3 (f (a) + 4f (x1) + 2f (x2) + 4f (x3) + . . .+ f (b))

= h

3

f (a) + 4
n/2−1∑
i=1

f (x2i−1) + 2
n/2−1∑
i=1

f (x2i) + f (b)


In this case, the quadrature error becomes:∫ b

a

f (x) dx− Î (a, b) = − h4

180 (b− a) f (4) (c)

Gaussian Quadratures One of the most popular methods of numerical integration is the
quadrature method with irregular steps when we approximate the function by a polynomial.
In the case of Gaussian quadratures, Golub and Welsch (1969) showed that, if f (x) =
B (x)P (x) where P ∈ P2n−1 and Pn is the set of polynomials of order n, then there exists
a set of knots 0 < x1 < x2 < · · · < xn < 1 such that6:

I (0, 1) =
∫ 1

0
f (x) dx =

∑n

i=1
wif (xi)

6If the support is [a, b], we use the change of variable y = (x− a) / (b− a):∫ b

a

f (x) dx =
1

b− a

∫ 1

0
f (a+ (b− a) y) dy
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where wi are positive weights. If the function f (x) is not a polynomial but sufficiently
regular with respect to P (x), G (f) =

∑n
i=1 wif (xi) is an approximation of the integral

I (0, 1). To compute the weights and knots, we have to specify the basis function B (x) and
the support. (wi, xi) is then the eigenvalue solution of a Jacobi matrix. For example, Figure
A.1 shows (wi, xi) in the case of Gauss-Legendre quadratures, which are used with functions
with a finite support and B (x) = 1. An important point is that extension to dimension
larger than one is straightforward (Davis and Rabinowitz, 1984).

FIGURE A.1: Weights and knots of the Gauss-Legendre quadrature

We consider the function f (x) = 2πω cos (2πωx)+2x. In Figure A.2, we represent f (x),
the analytical value x2+sin (2πωx) of I (0, x) =

∫ x
0 f (t) dt and the numerical approximation

Î (0, x) when ω = 1 and ω = 8. We notice that the approximation depends on the order
n of the quadrature and the upper bound x of the integral. For a fixed value n, the error
generally increases with x. In order to understand the accuracy of the numerical solution,
we must verify that f (x) is sufficiently regular with respect to the polynomial P ∈ P2n−1.
In Figure A.3, we observe that the adjustment of f (x) for x ∈ [0, 10] is bad when n = 10
and n = 16, but it is better when n = 36 and n = 200.

A difficulty concerns functions, whose support is not finite. In Table A.1, we report
the value xn of the last knot for Gauss-Laguerre and Gauss-Hermite quadratures. The
use of these methods implies that the approximations

∫∞
0 f (x) dx '

∫ xn
0 f (x) dx and∫∞

−∞ f (x) dx '
∫ xn
−xn f (x) dx are valid.

Remark 208 We can show that the knots corresponds to the roots of the polynomial7. Once
the roots are determined, we can calculate the weights with the following condition (Stoer

7For example, the Legendre polynomial is defined as:

Pn (x) =
1

2n

n∑
i=0

(n
i

)2
(x− 1)n−i (x+ 1)n
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FIGURE A.2: Gauss-Legendre numerical integration

FIGURE A.3: Legendre approximation of f (x) = 2π cos (2πx) + 2x
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TABLE A.1: Value xn of the last knot in Gauss-Laguerre and Gauss-Hermite quadratures
n Laguerre Hermite
4 9.3951 1.6507
8 22.8631 2.9306

16 51.7012 4.6887
32 111.7514 7.1258

100 374.9841 13.4065
200 767.8000 19.3300

and Bulirsch, 1993): ∫ b

a

w (x)xkPn (x) dx = 0

for all k = 0, 1, . . . , n−1. The weights are then the solution of a linear system. Abramowitz
and Stegun (1970) have tabulated the solution (wi, xi) for the most known quadratures (Leg-
endre, Laguerre, Hermite, etc.) and different values8 of n. These methods are now standard
and widely implemented in numerical softwares.

Quadratures methods can be extended when we consider functions with several variables:∫ b

a

∫ d

c

f (x, y) dx dy '
n∑
i=1

n∑
j=1

wiwjf (xi, xj)

We can also consider non-constant bounds:

I =
∫ b

a

∫ g2(x)

g1(x)
f (x, y) dx dy

and we have:

I '
n∑
i=1

w
[a,b]
i

 n∑
j=1

w
[g1(xi),g2(xi)]
j f

(
x

[a,b]
i , x

[g1(xi),g2(xi)]
j

)
where

(
w∆
i , x

∆
i

)
indicates the weights and knots of the Gauss-Legendre quadrature associ-

ated to the support ∆.

A.1.2.4 Finite difference methods

We follow Kurpiel and Roncalli (2000) and consider the linear parabolic equation:

∂ u (t, x)
∂ t

+ c (t, x)u (t, x) = Atu (t, x) + d (t, x) (A.5)

where At is the elliptic differential equation:

Atu (t, x) = a (t, x) ∂
2 u (t, x)
∂ x2 + b (t, x) ∂ u (t, x)

∂ x
(A.6)

The goal is to solve Equation (A.5) for t ∈ [t−, t+] and x ∈ [x−, x+]. In this case, we use
the finite difference method, well-adapted for 2-order parabolic equations in x. For that,

8Generally, n takes the values 2, 4, 8, 16, 32, 64 and 128.
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we introduce a uniform finite-difference mesh for t and x. Let Nt and Nx be the number of
discretization points for t and x respectively. We denote by k and h the mesh spacings. We
have:

k = t+ − t−

Nt − 1

h = x+ − x−

Nx − 1
and:

tm = t− +m · k
xi = x− + i · h

Let umi be the approximate solution to (A.5) at the grid point (tm, xi) and u (tm, xi) the
exact solution of the partial differential equation at this point.

Discretization in space If we consider the central difference method to approximate the
derivatives, we have:

∂ u (t, x)
∂ x

≈
umi+1 − umi−1

2h
and:

∂2 u (t, x)
∂ x2 ≈

umi+1 − 2umi + umi−1
h2

Equation (A.5) becomes:
∂ u (t, x)
∂ t

+ cmi u
m
i = Am

i + dmi

where:
Am
i = ami

umi+1 − 2umi + umi−1
h2 + bmi

umi+1 − umi−1
2h

We finally obtain:
∂ u (t, x)
∂ t

= Bm
i

where:
Bm
i = Am

i + dmi − cmi umi

Discretization in time The most classical method to solve Equation (A.5) is to use the
Euler scheme. We have:

∂ u (t, x)
∂ t

≈ umi − u
m−1
i

k
We also notice that Equation (A.5) becomes:

umi − u
m−1
i

k
+ cmi u

m
i = Atu (t, x) + dmi

However, the function Atu (t, x) depends both on time t and space x. That’s why we could
not employ the traditional Euler algorithm:

umi = um−1
i + k (Atu (t, x) + dmi − cmi umi )

In this case, we replace the function Atu (t, x) by its numerical approximation Am
i . There-

fore, we have:

umi = um−1
i + k (Am

i + dmi − cmi umi )
= um−1

i + kBm
i
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The θ-scheme method In the previous paragraph, we have used the single-sided forward
difference to approximate the derivatives ∂tu (t, x). The θ-scheme method is a combination
of left-sided and right-sided differences. Let θ ∈ [0, 1]. We have:

umi = um−1
i + k

(
(1− θ) Bm−1

i + θBm
i

)
Using the expression of Bm

i , we obtain:

um−1
i−1

(
am−1
i (1− θ) k

h2 − b
m−1
i (1− θ) k

2h

)
+um−1

i

(
1− 2am−1

i (1− θ) k

h2 − c
m−1
i (1− θ) k

)
+um−1

i+1

(
am−1
i (1− θ) k

h2 + bm−1
i (1− θ) k

2h

)
+umi−1

(
ami θ

k

h2 − b
m
i θ

k

2h

)
+umi

(
−1− 2ami θ

k

h2 − c
m
i θk

)
+umi+1

(
ami θ

k

h2 + bmi θ
k

2h

)
= −ψmi

where:
ψmi = dm−1

i (1− θ) k + dmi θk

The different numerical algorithms We introduce the following notations:

αmi = ami
k

h2 − b
m
i

k

2h

βmi = 1− 2ami
k

h2 − c
m
i k

γmi = ami
k

h2 + bmi
k

2h

The explicit scheme corresponds to θ = 0. We have then:

umi = αm−1
i um−1

i−1 + βm−1
i um−1

i + γm−1
i um−1

i+1 + dm−1
i k (A.7)

We obtain the numerical solution by iterating Equation (A.7) from the initial condition and
using Dirichlet conditions. The implicit scheme corresponds to θ = 1. We have then:

αmi u
m
i−1 + (βmi − 2)umi + γmi u

m
i+1 = −

(
um−1
i + dmi k

)
(A.8)

We obtain the numerical solution by solving the linear system (A.8) and using Neumann
conditions. In mixed schemes, we have θ ∈ ]0, 1[. In particular, we can show that the
algorithm is stable if θ ≥ 1

2 . In the general case, the stability assumption is verified if:

k → 0
∧
h→ 0

∧ k

h2 → 0
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For instance, the well-famous Crank-Nicholson scheme corresponds to θ = 1
2 . By introducing

the following notations:

ςmi = (1− θ)αmi
τmi = 1 + (1− θ) (βmi − 1)
υmi = (1− θ) γmi
φmi = θαmi

ϕmi = −1 + θ (βmi − 1)
χmi = θγmi

ψmi = (1− θ) dm−1
i k + θdmi k

The linear system to solve becomes:

φmi u
m
i−1 + ϕmi u

m
i + χmi u

m
i+1 = −

(
ςm−1
i um−1

i−1 + τm−1
i um−1

i + υm−1
i um−1

i+1 + ψmi
)

The corresponding matrix form is:

Λmum = − (Ξm−1um−1 + Ψm) + εm (A.9)

where:

um =



um1
um2
...
umi
...

umNx−3
umNx−2


The Λm and Ξm matrices are defined in the following manner:

Λm =



ϕm1 χm1 0
φm2 ϕm2 χm2 0
. . . . . . . . . . . . . . .

0 φmi ϕmi χmi 0
. . . . . . . . . . . .

0 φmNx−2 ϕmNx−2


and:

Ξm =



τm1 υm1 0
ςm2 τm2 υm2 0
. . . . . . . . . . . . . . .

0 ςmi τmi υmi 0
. . . . . . . . . . . .

0 ςmNx−2 τmNx−2
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whereas εm is the residual absorbtion vector:

εm =



−
(
φm1 u

m
0 + ςm−1

1 um−1
0

)
0
...
0
...
0

−
(
χmNx−2u

m
Nx−1 + υm−1

Nx−2u
m−1
Nx−1

)


Integrating the boundary conditions A new form of the system of equations (A.9) is:

Λmum = vm + εm

where:
vm = − (Ξm−1um−1 + Ψm)

The use of boundary conditions (Dirichlet or/and Neumann) leads us to modify this equa-
tion:

Λ?mum = v?m
where:

Λ?m ←− Λm
v?m ←− vm

(v?m)1 ←− −ςm−1
1 um−1

0

(v?m)Nx−1 ←− −υm−1
Nx−2u

m−1
Nx−1

• Conditions on x−

– Dirichlet: u (t, x−) = ux− (t)

(v?m)1 ←− −φ
m
1 ux− (tm)

– Neumann: ∂x u (t, x−) = u′x− (t)

(Λ?m)1,1 ←− φm1

(v?m)1 ←− φm1 u
′
x− (tm)h

• Conditions on x+

– Dirichlet: u (t, x+) = ux+ (t)

(v?m)Nx−2 ←− −χ
m
Nx−2ux+ (tm)

– Neumann: ∂x u (t, x+) = u′x+ (t)

(Λ?m)Nx−2,Nx−2 ←− χmNx−2

(v?m)Nx−2 ←− −χmNx−2u
′
x+ (tm)h
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A.1.3 Numerical optimization
A.1.3.1 Quadratic programming problem

A quadratic programming (QP) problem is an optimization problem with a quadratic
objective function and linear inequality constraints:

x? = arg min 1
2x
>Qx− x>R

s.t. Sx ≤ T (A.10)

where x is a n × 1 vector, Q is a n × n matrix and R is a n × 1 vector. We note that
the system of constraints Sx ≤ T allows specifying linear equality constraints9 Ax = B
or weight constraints x− ≤ x ≤ x+. Most numerical packages then consider the following
formulation:

x? = arg min 1
2x
>Qx− x>R

s.t.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

(A.11)

because the problem (A.11) is equivalent to the canonical problem (A.10) with the following
system of linear inequalities: 

−A
A
C
−In
In

x ≤

−B
B
D
−x−
x+


If the space Ω defined by Sx ≤ T is non-empty and if Q is a symmetric positive definite
matrix, the solution exists because the function f (x) = 1

2x
>Qx − x>R is convex. In the

general case where Q is a square matrix, the solution may not exist.
The Lagrange function is also:

L (x;λ) = 1
2x
>Qx− x>R+ λ> (Sx− T )

We deduce that the dual problem is defined by:

λ? = arg max
{

inf
x
L (x;λ)

}
s.t. λ ≥ 0

We note that ∂x L (x;λ) = Qx − R + S>λ. The solution to the problem ∂x L (x;λ) = 0 is
then x = Q−1 (R− S>λ). We obtain:

inf
x
L (x;λ) = 1

2
(
R> − λ>S

)
Q−1 (R− S>λ)− (R> − λ>S)Q−1R+

λ>
(
SQ−1 (R− S>λ)− T )

= 1
2R
>Q−1R− λ>SQ−1R+ 1

2λ
>SQ−1S>λ−R>Q−1R+

2λ>SQ−1R− λ>SQ−1S>λ− λ>T

= −1
2λ
>SQ−1S>λ+ λ>

(
SQ−1R− T

)
− 1

2R
>Q−1R

9This is equivalent to imposing that Ax ≥ B and Ax ≤ B.
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The dual program is another quadratic program:

λ? = arg min 1
2λ
>Q̄λ− λ>R̄ (A.12)

s.t. λ ≥ 0

where Q̄ = SQ−1S> and R̄ = SQ−1R− T .

A.1.3.2 Non-linear unconstrained optimization

We consider the minimization problem:

x? = arg min f (x) (A.13)

where x ∈ Rn. Let G (x) and H (x) be the gradient vector and the Hessian matrix of f (x).
The optimum verifies:

G (x?) = 0 (A.14)

The first-order Taylor expansion of G (x) around the point x0 is given by:

G (x) = G (x0) +H (x0) (x− x0)

If x is the solution of Equation (A.14), we obtain G (x0)+H (x0) (x− x0) = 0. The Newton-
Raphson algorithm uses an iterative process to find this root:

xk+1 = xk −H−1
k Gk

where k is the iteration index, Gk = G (xk) and Hk = H (xk). Starting from an initial point
x0, we find the solution x? if the algorithm converges10. However, we generally prefer to use
the following process:

xk+1 = xk − λkH−1
k Gk

= xk + λkdk

where λk > 0 is a scalar. The difference comes from the introduction of the step length λk.
Starting from the point xk, the vector dk = −H−1

k Gk indicates the direction to reach the
maximum. Nevertheless, using a step length equal to 1 is not always optimal. For instance,
we could exceed the optimum11 or the convergence may be very slow. This is why numerical
optimization methods use two types of algorithms:

1. an algorithm to approximate the Hessian matrix Hk and to compute the descent dk;

2. a second algorithm to define the optimal step length λk:

λk = arg min
λ>0

f (xk + λdk)

The Hessian approximation avoids singularity problems which are frequent in the neighbor-
hood of the optimum. Press et al. (2007) distinguished two algorithm families to define the
descent, namely conjugate gradient and quasi-Newton methods.

10We stop the algorithm when the gradient is close to zero. For example, the stopping rule may be
maxi

∣∣Gk,i∣∣ ≤ ε where ε is the allowed tolerance.
11This means that f does not necessarily decrease at each iteration.
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• In the case of the conjugate gradient approach, we have:

dk+1 = − (Gk+1 − %k+1dk)

For the Polak-Ribiere algorithm, the scalar % is given by:

%k+1 =
G>k+1Gk+1

G>k Gk

whereas for the Fletcher-Reeves algorithm, we have:

%k+1 = (Gk+1 −Gk)>Gk+1

G>k Gk

• For quasi-Newton methods, the direction is defined as follows:

dk+1 = −H̃k+1Gk+1

where H̃ is an approximation of the inverse of the Hessian matrix. Its expression is:

H̃k+1 = H̃k −
H̃kyky

>
k H̃k

y>k H̃kyk
+ sks

>
k

s>k yk
+

β
(
H̃kyk − θksk

) (
H̃kyk − θksk

)>
where yk = Gk+1 −Gk, sk = xk+1 − xk and:

θk = y>k H̃kyk
s>k yk

The Davidon, Fletcher and Powell (DFP) algorithm corresponds to β = 0, whereas
the Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm is given by:

β = 1
y>k H̃kyk

To find the optimal value of λk, we employ a simple one-dimension minimization algorithm12

such as the golden section, Brent’s method or the cubic spline approximation (Press et al.,
2007).

Remark 209 Newton’s method may also be used to solve non-linear optimization problems
with linear constraints:

x? = arg min f (x)
s.t. Ax = B

Indeed, this constrained problem is equivalent to the following unconstrained problem:

y? = arg min g (y)

where g (y) = f (Cy +D), C is an orthonormal basis for the nullspace of A, D =(
A>A

)+
A>B and

(
A>A

)+ is the Moore-Penrose pseudo-inverse of A>A. The solution
is then:

x? = Cy? +D

12Computing the optimal value of λk may be time consuming. In this case, we may also prefer the half
method which consists in dividing the test value by one half each time the function fails to decrease – λ
then takes the respective values 1, 1/2, 1/4, 1/8, etc. – and to stop when the criterion f (xk + λkdk) < f (xk)
is satisfied.
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A.1.3.3 Sequential quadratic programming algorithm

The sequential quadratic programming (or SQP) algorithm solves this constrained non-
linear programming problem:

x? = arg min f (x) (A.15)

s.t.
{
A (x) = 0
B (x) ≥ 0

where A (x) and B (x) are two multidimensional non-linear functions. Like Newton’s meth-
ods, this algorithm is an iterative process:

xk+1 = xk + λkdk

where:

dk = arg min 1
2d
>Hkd+ d>Gk

s.t.
{
∂xA (xk) d+A (xk) = 0
∂xB (xk) d+B (xk) ≥ 0

It consists in replacing the non-linear optimization problem by a sequence of quadratic
programming problems (Boggs and Tolle, 1995). The QP problem corresponds to the second-
order Taylor expansion of f (x):

f (xk + δ) = f (xk) + δ>Gk + 1
2δ
>Hkδ

where: {
A (xk + δ) = A (xk) + ∂xA (xk) δ = 0
B (xk + δ) = B (xk) + ∂xB (xk) δ ≥ 0

and δ = λd. We can use quasi-Newton methods to approximate the Hessian matrix Hk.
However, if we define λk as previously:

λk = min
λ>0

f (xk + λdk)

we may face some problems because the constraints A (x) = 0 and B (x) ≥ 0 are not nec-
essarily satisfied. This is why we prefer to specify λk as the solution to the one-dimensional
minimization problem:

λk = min
λ>0

m (xk + λdk)

where m (x) is the merit function:

m (x) = f (x) + pA
∑
j

|Aj (x)| − pB
∑
j

min (0, Bj (x))

We generally choose the penalization weights pA and pB as the infinite norm of Lagrange
coefficients associated with linear and non-linear constraints (Nocedal and Wright, 2006).

A.1.3.4 Dynamic programming in discrete time with finite states

We note k the discrete time where k ∈ {1, . . . ,K}. Let s (k) and c (k) be the state and
control variables. We assume that the state variable evolves according to the dynamics:

s (k + 1) = g (k, s (k) , c (k))
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The state variable s (k + 1) only depends on the previous value s (k) and not on the entire
path of the state. However, it can be controlled thanks to c (k). Knowing the initial value
of the state s (1) = s, we would like to find the optimal control c? (k) that maximizes the
additive gain function:

{c? (k)}K−1
k=1 = arg maxJ (s, c (1) , . . . , c (K − 1)) (A.16)

where:

J (s, c (1) , . . . , c (K − 1)) =
K−1∑
k=1

f (k, s (k) , c (k)) + f (K, s (K))

f (k, s (k) , c (k)) is the gain function at time k, whereas f (K, s (K)) is the terminal gain.
We impose that the state and control variables satisfy some constraints: s (k) ∈ S (k) and
c (k) ∈ C (k). The optimization problem becomes:

{c? (k)}K−1
k=1 = arg max

K−1∑
k=1

f (k, s (k) , c (k)) + f (K, s (K)) (A.17)

s.t.


s (k + 1) = g (k, s (k) , c (k))
s (k) ∈ S (k)
c (k) ∈ C (k)
s (1) = s

A policy π = {µ (1) , . . . , µ (K − 1)} is described by functions µ (k) = µ (k, s (k)) that map
states into controls (Bertsekas, 2005). The optimal policy π? is then defined as follows:

π? = arg max
K−1∑
k=1

f (k, s (k) , µ (k, s (k))) + f (K, s (K)) (A.18)

s.t.


s (k + 1) = g (k, s (k) , µ (k, s (k)))
s (k) ∈ S (k)
µ (k, s (k)) ∈ C (k)
s (1) = s

This problem may be solved with the method of dynamic programming introduced by
Bellman (1957). Let κ ∈ N such that 1 ≤ κ ≤ K − 1. We consider the tail subproblem:

π? (κ) = arg max
K−1∑
k=κ

f (k, s (k) , µ (k, s (k))) + f (K, s (K)) (A.19)

with the same set of constraints that those used for Problem (A.18) Bellman’s optimal-
ity principle states that if π? = (µ? (1) , . . . , µ? (K − 1)) is an optimal policy for Problem
(A.18), then the tail policy π? (κ) = {µ? (κ) , . . . , µ? (K − 1)} is an optimal policy for Prob-
lem (A.19). Therefore, we can solve Problem (A.18) using a backward algorithm, which is
characterized by a set of recursive optimizations (Bertsekas, 2005):

1. at the terminal date, we have:

J (K, s (K)) = f (K, s (K))

2. at the intermediate date k < K, we have:

J (k, s (k)) = sup
c(k)∈C(k)

{f (k, s (k) , c (k)) + J (k + 1, g (k, s (k) , c (k)))} (A.20)
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In the finite case where there are nS states and nC controls, the previous algorithm is
simplified. Let {s1, . . . , snS} and {c1, . . . , cnC} be the values taken by s (k) and c (k). We
note J (K, si) the terminal value when s (K) = si. We store the solutions J (k, s (k)) and
c? (k) into the matrices J and C. The DP algorithm becomes:

1. We initialize the algorithm by k = K.

2. At the time K, we know the terminal value J (K, s (K)). Therefore, we initialize the
element (i,K) of the matrix J to J (K, si).

3. We set k ←− k − 1.

4. At the date k < K, we calculate for each state si the value taken by J (k, si):

J (k, si) = sup
1≤j≤nC

{f (k, si, cj) + J (k + 1, s′)}

where s′ = g (k, si, cj). By construction, s′ corresponds to a state si′ . We deduce that
J (k + 1, s′) is equal to the element (i′, k + 1) of the matrix J . Moreover, the optimal
control c? (k) is given by:

c? (k) = arg max
1≤j≤nC

{f (k, si, cj) + J (k + 1, s′)}

We deduce that the element (i, k) of the matrices J and C are J (k, si) and c? (k).

5. If k = 1, we stop the algorithm. Otherwise, we go to step 3.

A.2 Statistical and probability analysis
A.2.1 Probability distributions
A.2.1.1 The Bernoulli distribution

The Bernoulli random variable X takes the value 1 with success probability of p and
the value 0 with failure probability of q = 1− p. We note X ∼ B (p). The probability mass
function may also be expressed as follows:

Pr {X = k} = pk (1− p)1−k with k = 0, 1

We have E [X] = p and var (X) = p (1− p).

A.2.1.2 The binomial distribution

The binomial random variableX is the sum of n independent Bernoulli random variables
with the same probability of success p:

X =
n∑
i=1
Bi (p)

We note X ∼ B (n, p). The probability mass function is equal to:

Pr {X = k} =
(
n

k

)
pk (1− p)n−k with k = 0, 1, . . . , n

We have E [X] = np and var (X) = np (1− p).
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A.2.1.3 The geometric distribution

The geometric random variable X is the number of Bernoulli trials needed to get one
success. We note X ∼ G (p). The probability mass function is equal to:

Pr {X = k} = (1− p)k−1
p with k ∈ N?

We have E [X] = 1/p and var (X) = (1− p) /p2.

Remark 210 If we define X as the number of failures before the first success, we have
Pr {X = k} = (1− p)k p with k ∈ N, E [X] = (1− p) /p and var (X) = (1− p) /p2.

A.2.1.4 The Poisson distribution

The Poisson random variable X is the number of times an event occurs in the unit
interval of time. We note X ∼ P (λ) where λ is the parameter of the Poisson distribution.
The probability mass function is equal to:

Pr {X = k} = λke−λ

k! with k ∈ N

We have E [X] = var (X) = λ. The parameter λ is then the expected number of events
occurring in the unit interval of time.

A.2.1.5 The negative binomial distribution

The negative binomial distribution is another probability distribution for modeling the
frequency of an event. We note X ∼ NB (r, p) where r > 0 and p ∈ [0, 1]. The probability
mass function is equal to:

Pr {X = k} =
(
r + k − 1

k

)
(1− p)r pk with k ∈ N

We have E [X] = pr/ (1− p) and var (X) = pr/ (1− p)2.

A.2.1.6 The gamma distribution

The gamma distribution is a two-parameter family of continuous probability distribu-
tions, whose support is [0,∞). We note X ∼ G (α, β) where α > 0 and β > 0. α and β
are called the shape parameter and the rate parameter. The probability density function is
equal to:

f (x) = βαxα−1e−βx

Γ (α)
where Γ (α) is the gamma function defined as:

Γ (α) =
∫ ∞

0
tα−1e−t dt

The cumulative distribution function is the regularized gamma function:

F (x) = γ (α, βx)
Γ (α)

where γ (α, x) is the lower incomplete gamma function defined as:

γ (α, x) =
∫ x

0
tα−1e−t dt

We have E [X] = α/β and var (X) = α/β2. We verify the following properties:
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• G (1, β) ∼ E (β);

• if X ∼ G (α, β), then cX ∼ G (α, β/c) when c > 0;

•
∑n
i=1 G (αi, β) ∼ G (

∑n
i=1 αi, β).

Remark 211 The standard gamma distribution corresponds to G (α, 1) and is denoted by
G (α).

A.2.1.7 The beta distribution

The beta distribution is a two-parameter family of continuous probability distributions
defined on the interval [0, 1]. We note X ∼ B (α, β) where α > 0 and β > 0. The probability
density function is equal to:

f (x) = xα−1 (1− x)β−1

B (α, β)
where B (α, β) is the gamma function defined as:

B (α, β) =
∫ 1

0
tα−1 (1− t)β−1 dt

= Γ (α) Γ (β)
Γ (α+ β)

The cumulative distribution function is the regularized incomplete beta function.

F (x) = IB (x;α, β)

= B (x;α, β)
B (α, β)

where B (x;α, β) is the incomplete beta function defined as:

B (x;α, β) =
∫ x

0
tα−1 (1− t)β−1 dt

We have E [X] = α/ (α+ β) and:

var (X) = αβ

(α+ β)2 (α+ β + 1)

A.2.1.8 The noncentral chi-squared distribution

Let (X1, . . . , Xν) be a set of independent Gaussian random variables such that Xi ∼
N
(
µi, σ

2
i

)
. The noncentral chi-squared random variable is defined as follows:

Y =
ν∑
i=1

X2
i

σ2
i

We write Y ∼ χ2
ν (ζ) where ν is the number of degrees of freedom and ζ is the noncentrality

parameter:

ζ =
ν∑
i=1

µ2
i

σ2
i
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The cumulative distribution function of Y is defined as:

F (y; ν, ζ) = Pr {Y ≤ y} =
∞∑
j=0

e−ζ/2ζj

2jj! F (y; ν + 2j, 0)

where F (y; ν, 0) is the cumulative distribution function of the chi-squared distribution with
ν degrees of freedom. We deduce that the probability density function is:

f (y; ν, ζ) =
∞∑
j=0

e−ζ/2ζj

2jj! f (y; ν + 2j, 0)

where f (y; ν, 0) is the probability density function of the chi-squared distribution. We may
also show that the mean and the variance of Y are ν + ζ and 2 (ν + 2ζ). For the skewness
and excess kurtosis coefficients, we obtain:

γ1 = (ν + 3ζ)
√

23

(ν + 2ζ)3

γ2 = 12 (ν + 4ζ)
(ν + 2ζ)2

Remark 212 When µi is equal to zero, Y becomes a (central) chi-squared distribution
χ2
ν (0). The density function is equal to:

f (y; ν, 0) = xν/2−1e−x/2

2ν/2Γ (ν/2)

whereas the cumulative distribution function has the following expression:

F (y; ν, 0) = γ (ν/2, x/2)
Γ (ν/2)

A.2.1.9 The exponential distribution

X is an exponential random variable E (λ) if the density function is f (x) = λe−λx for
x ≥ 0. We deduce that F (x) = 1 − e−λx. We have E [X] = 1/λ and var (X) = 1/λ2. More
generally, we can show that E [Xn] = n!/λn. This distribution verifies the lack of memory
property:

Pr {X ≥ s+ t | X ≥ s} = Pr {X ≥ t}

for all s ≥ 0 and t ≥ 0.

A.2.1.10 The normal distribution

Let C be a correlation matrix. We consider the standardized Gaussian random vector
X ∼ N (0,C) of dimension n. We note φn (x;C) the associated density function defined as:

φn (x;C) = (2π)−n/2 |C|−1/2 exp
(
−1

2x
>C−1x

)
We deduce that the expression of cumulative distribution function is:

Φn (x;C) =
∫ x1

−∞
· · ·
∫ x2

−∞
φn (u;C) du
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By construction, we have E [X] = 0 and cov (x) = C. In the bivariate case, we use the
notations φ2 (x1, x2; ρ) = φ2 (x;C) and Φ2 (x1, x2; ρ) = Φ2 (x;C) where ρ = C1,2 is the
correlation between the components X1 and X2. In the univariate case, we also consider the
alternative notations φ (x) = φ1 (x; 1) and Φ (x) = Φ1 (x; 1). The density function reduces
then to:

φ (x) = 1√
2π

exp
(
−1

2x
2
)

Concerning the moments, we have µ (X) = 0, σ (X) = 1, γ1 (X) = 0 and γ2 (X) = 0.
Adding a mean vector µ and a covariance matrix Σ is equivalent to apply the linear

transformation to X:
Y = µ+ σX

where σ = diag1/2 (Σ).

A.2.1.11 The Student’s t distribution

Let X ∼ N (0,Σ) and V ∼ χ2
ν

/
ν be independent of X. We define the multivariate

Student’s t distribution as the one corresponding to the linear transformation:

Y = V −
1/2X

The corresponding density function is:

tn (y; Σ, ν) = Γ ((ν+n)/2)
Γ (ν/2) (νπ)n/2

|Σ|−1/2

(
1 + 1

ν
y>Σ−1y

)−(ν+n)/2

We note Tn (y; Σ, ν) the cumulative density function:

Tn (y; Σ, ν) =
∫ y1

−∞
· · ·
∫ y2

−∞
tn (u; Σ, ν) du

The first two moments13 of Y are E [Y ] = 0 and cov (Y ) = ν (ν − 2)−1 Σ. Adding a mean µ
is equivalent to consider the random vector Z = µ+ Y . We also verify that Y tends to the
Gaussian random vector X when the number of degrees of freedom tends to ∞.

In the univariate case, the standardized density function becomes:

t1 (y; ν) = Γ ((ν+1)/2)
Γ (ν/2)

√
νπ

(
1 + y2

ν

)−(ν+1)/2

We also use the alternative notations tν (y) = t1 (y; ν) and Tν (y) = T1 (y; ν). Con-
cerning the moments14, we obtain µ (Y ) = 0, σ2 (Y ) = ν/ (ν − 2), γ1 (Y ) = 0 and
γ2 (Y ) = 6/ (ν − 4).

A.2.1.12 The log-normal distribution

Let Z ∼ N
(
µ, σ2) be a normal-distributed random variable. X = eZ is a log-normal

random variable and we note X ∼ LN
(
µ, σ2). The probability distribution function is

equal to:

f (x) = 1
xσ
√

2π
e
−

1
2

(
x− µ
σ

)2

13The second moment is not defined if ν ≤ 2.
14The skewness is not defined if ν ≤ 3 whereas the excess kurtosis is infinite if 2 < ν ≤ 4.
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whereas the cumulative distribution function has the following expression:

F (x) = Φ
(

ln x− µ
σ

)
We have:

E [X] = eµ+ 1
2σ

2

and:
var (X) = e2µ+σ2

(
eσ

2
− 1
)

A.2.1.13 The Pareto distribution

The Pareto distribution is denoted by P (α, x−). We have:

f (x) = α

x

(
x

x−

)−α
and:

F (x) = 1−
(
x

x−

)−α
where x ≥ x−, α > 0 and x− > 0. Concerning the first two moments, we obtain:

E [X] = αx−
α− 1

if α > 1 and:
var (X) =

αx2
−

(α− 1)2 (α− 2)
if α > 2.

Remark 213 The Pareto distribution: can be parameterized as follows;

F (x) = 1−
(
θ + x

θ

)−α
where x ≥ 0, α > 0 and θ > 0. In this case, it is denoted by P (α, θ).

A.2.1.14 The generalized extreme value distribution

The generalized extreme value distribution is denoted by GEV (µ, σ, ξ). We have:

f (x) = 1
σ

(
1 + ξ

(
x− µ
σ

))−(1+1/ξ)
exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

and:

F (x) = exp
(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ
)

where x > µ− σ/ξ, σ > 0 and ξ > 0. Concerning the first two moments, we obtain:

E [X] = µ+ σ

ξ
(Γ (1− ξ)− 1)

if ξ < 1 and:

var (X) = σ2

ξ2

(
Γ (1− 2ξ)− Γ2 (1− ξ)

)
if ξ < 1

2 .
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A.2.1.15 The generalized Pareto distribution

The generalized Pareto distribution is denoted by GPD (σ, ξ). We have:

f (x) = 1
σ

(
1 + ξx

σ

)−1/ξ−1

and:

F (x) = 1−
(

1 + ξx

σ

)−1/ξ

where x ≥ 0, σ > 0 and ξ > 0. Concerning the first two moments, we obtain:

E [X] = σ

1− ξ

if ξ < 1 and:

var (X) = σ2

(1− ξ)2 (1− 2ξ)

if ξ < 1
2 .

A.2.1.16 The skew normal distribution

The seminal work of Azzalini (1985) has led to a rich development on skew distributions
with numerous forms, parameterizations and extensions15. We adopt here the construction
of Azzalini and Dalla Valle (1996).

The multivariate case Azzalini and Dalla Valle (1996) define the density function of
the skew normal (or SN) distribution as follows:

f (x) = 2φn (x− ξ; Ω) Φ1
(
η>ω−1 (x− ξ)

)
with ω = diag1/2 (Ω). We say that X follows a multivariate skew normal distribution with
parameters ξ, Ω and η and we write X ∼ SN (ξ,Ω, η). We notice that the distribution of
X ∼ SNn (ξ,Ω,0) is the standard normal distribution N (ξ,Ω). We verify the property
X = ξ + ωY where Y ∼ SN (0,C, η) and C = ω−1Ωω−1 is the correlation matrix of Ω.
Azzalini and Dalla Valle (1996) demonstrated that the first two moments are:

E [X] = ξ +
√

2
π
ωδ

cov (X) = ω

(
C− 2

π
δδ>

)
ω>

where δ =
(
1 + η>Cη

)−1/2Cη.
Azzalini and Capitanio (1999) showed that Y ∼ SN (0,C, η) has the following stochastic

representation:

Y =
{

U if U0 > 0
−U otherwise

where: (
U0
U

)
∼ N (0,C+ (δ)) , C+ (δ) =

(
1 δ>

δ C

)
15See for instance Arellano-Valle and Genton (2005) and Lee and Wang (2013) for a review.
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and δ =
(
1 + η>Cη

)−1/2 Cη. We deduce that:

Pr {X ≤ x} = Pr
{
Y ≤ ω−1 (x− ξ)

}
= Pr

{
U ≤ ω−1 (x− ξ) | U0 > 0

}
=

Pr
{
U ≤ ω−1 (x− ξ) , U0 > 0

}
Pr {U0 > 0}

= 2
(
Pr
{
U ≤ ω−1 (x− ξ)

}
− Pr

{
U ≤ ω−1 (x− ξ) , U0 ≤ 0

})
= 2

(
Φn
(
ω−1 (x− ξ) ;C

)
− Φn+1 (u+;C+ (δ))

)
= 2Φn+1 (u+;C+ (−δ))

where u+ =
(
0, ω−1 (x− ξ)

)
. We can therefore use this representation to simulate the

random vector X ∼ SN (ξ,Ω, η) and compute the cumulative distribution function.
Let A be a m× n matrix and X ∼ SN (ξ,Ω, η). Azzalini and Capitanio (1999) demon-

strated that the linear transformation of a skew normal vector is still a skew normal vector:

AX ∼ SN (ξA,ΩA, ηA)

where:

ξA = Aξ

ΩA = AΩA>

ηA = ωAΩ−1
A B>η(

1 + η>
(
C−BΩ−1

A B>
)
η
)1/2

with ω = diag1/2 (Ω), C = ω−1Ωω, ωA = diag1/2 (ΩA) and B = ω−1ΩA>. This property also
implies that the marginal distributions of a subset of X is still a skew normal distribution.

The univariate case When the dimension n is equal to 1, the density function of X ∼
SN

(
ξ, ω2, η

)
becomes:

f (x) = 2
ω
· φ
(
x− ξ
ω

)
· Φ
(
η

(
x− ξ
ω

))
Using the previous stochastic representation, we have:

Pr {X ≤ x} = 2
(

Φ
(
x− ξ
ω

)
− Φ2

(
0, x− ξ

ω
; δ
))

= 2Φ2

(
0, x− ξ

ω
;−δ

)
where:

δ = η√
1 + η2

We note m0 = δ
√

2/π. The moments of the univariate SN distribution are:

µ (X) = ξ + ωm0

σ2 (X) = ω2 (1−m2
0
)

γ1 (X) =
(

4− π
2

)
m3

0

(1−m2
0)3/2

γ2 (X) = 2 (π − 3) m4
0

(1−m2
0)2
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A.2.1.17 The skew t distribution

The multivariate case Let X ∼ SN (0,Ω, η) and V ∼ χ2
ν

/
ν be independent of X.

Following Azzalini and Capitanio (2003), the mixture transformation Y = ξ + V −1/2X has
a skew t distribution and we write Y ∼ ST (ξ,Ω, η, ν). The density function of Y is related
to the multivariate t distribution as follows:

f (y) = 2tn (y − ξ; Ω, ν) T1

(
η>ω−1 (y − ξ)

√
ν + n

Q+ ν
; ν + n

)
where Q = (y − ξ)>Ω−1 (y − ξ). We notice that we have:

Pr {Y ≤ y} = Pr
{
V −1/2X ≤ ω−1 (y − ξ)

}
= Pr

{
V −1/2U ≤ ω−1 (y − ξ) | U0 > 0

}
= 2 Pr

{
V −1/2

(
−U0
U

)
≤
(

0
ω−1 (y − ξ)

)}
= 2

(
Tn

(
ω−1 (y − ξ) ;C, ν

)
−Tn+1 (u+;C+ (δ) , ν)

)
= 2Tn+1 (u+;C+ (−δ) , ν)

where u+ =
(
0, ω−1 (y − ξ)

)
.

Like the multivariate skew normal distribution, the skew t distribution satisfies the
closure property under linear transformation. Let A be am×n matrix and Y ∼ ST (ξ,Ω, η).
We have:

AY ∼ SN (ξA,ΩA, ηA, νA)
where:

ξA = Aξ

ΩA = AΩA>

ηA = ωAΩ−1
A B>η(

1 + η>
(
C−BΩ−1

A B>
)
η
)1/2

νA = ν

with ω = diag1/2 (Ω), C = ω−1Ωω, ωA = diag1/2 (ΩA) and B = ω−1ΩA>. This property also
implies that the marginal distributions of a subset of Y is still a skew t distribution.

The univariate case The density function becomes:

f (y) = 2
ω
· t1
(
y − ξ
ω

; ν
)
·T1

(
η

(
y − ξ
ω

)√
ν + 1
Q+ ν

; ν + 1
)

where Q = (y − ξ)2
/ω2. To compute the cumulative density function, we use the following

result:
Pr {Y ≤ y} = 2T2

(
0, y − ξ

ω
;−δ; ν

)
Let m0 and v0 be two scalars defined as follows16:

m0 = δ

√
ν

π
exp

(
ln Γ

(
ν − 1

2

)
− ln Γ

(ν
2

))
v0 = ν

ν − 2 − µ
2
0

16We recall that δ = α
/√

1 + α2 .
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As shown by Azzalini and Capitanio (2003), the moments of the univariate ST distribution
are:

µ (Y ) = ξ + ωm0

σ2 (Y ) = ω2v0

γ1 (Y ) = m0v
−3/2
0

(
ν
(
3− δ2)
ν − 3 − 3ν

ν − 2 + 2m2
0

)

γ2 (Y ) = m0v
−2
0

(
3ν2

(ν − 2) (ν − 4) −
4m2

0ν
(
3− δ2)

ν − 3 + 6m2
0ν

ν − 2 − 3m4
0

)
− 3

A.2.1.18 The Wishart distribution

Let X1, . . . , Xn be n independent Gaussian random vectors Np (0,Σ). If we note X =
(X1, . . . , Xn) the n × p matrix, then S = X>X is positive definite and follows a Wishart
distribution Wp (Σ, n) with n degrees of freedom and covariance matrix Σ. Its probability
density function is:

f (S) = |S|(n−p−1)/2

2np/2Γp (n/2) |Σ|n/2
exp

(
−1

2 trace
(
Σ−1S

))
where Γp (α) is the multivariate gamma function:

Γp (α) = πp(p−1)/4
∏p

j=1
Γp
(
α+ 1− j

2

)
We have E [S] = nΣ and var (Si,j) = n

(
Σ2
i,j + Σi,iΣj,j

)
. Here are the main properties:

1. if A is a q × p matrix with rank q, then ASA> ∼ Wq

(
AΣA>, n

)
;

2. if Σ > 0, then Σ−1/2SΣ−1/2 ∼ Wp (Ip, n);

3. if Si are independent random matrices Wp (Σ, ni), then
∑m
i=1 Si ∼ Wp (Σ,

∑m
i=1 ni);

4. if a is a p× 1 vector, we have:
a>Sa

a>Σa ∼ χ
2 (n)

5. S−1 follows an inverse Wishart distribution W−1
p (Σ, n) and we have:

a>Σ−1a

a>S−1a
∼ χ2 (n− p+ 1)

A.2.2 Special results
A.2.2.1 Affine transformation of random vectors

The univariate case Let X be a random variable with probability distribution F. We
consider the affine transformation Y = a+bX. If b > 0, the cumulative distribution function
H of Y is:

H (y) = Pr {Y ≤ y}

= Pr
{
X ≤ y − a

b

}
= F

(
y − a
b

)
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and its density function is:

h (y) = ∂yH (y) = 1
b
f

(
y − a
b

)
If b < 0, we obtain:

H (y) = Pr {Y ≤ y}

= Pr
{
X ≥ y − a

b

}
= 1− F

(
y − a
b

)
and:

h (y) = ∂yH (y) = −1
b
f

(
y − a
b

)
The mean and the variance of Y are respectively equal to a+ b ·µ (X) and b2 · var (X). The
centered moments are:

E [(Y − µ (Y ))r] = br · E [(X − µ (X))r]

We deduce that the excess kurtosis of Y is the same as for X whereas the skewness is equal
to:

γ1 (Y ) = sign (b) · γ1 (X)

As an illustration, we consider the random variable Y = µ + σX with X ∼ N
(
µ, σ2)

and σ > 0. We obtain:
H (y) = Φ

(
y − µ
σ

)
and

h (y) = 1
σ
√

2π
exp−1

2

(
y − µ
σ

)2

We also deduce that
H−1 (α) = µ+ σΦ−1 (α)

For the moments, we obtain µ (Y ) = µ, σ2 (Y ) = σ2, γ1 (Y ) = 0 and γ2 (Y ) = 0.

The multivariate case Let X be a random vector of dimension n, A a m×1 vector and
B a m×n matrix. We consider the affine transformation Y = A+BX. The moments verify
µ (Y ) = A + Bµ (X) and cov (Y ) = B cov (X)B>. In the general case, it is not possible
to find the distribution of Y . However, if X ∼ N (µ,Σ), Y is also a normal random vector
with Y ∼ N

(
A+Bµ,BΣB>

)
.

A.2.2.2 Change of variables

Let X be a random variable, whose probability density function is f (x). We consider
the change of variable Y = ϕ (X). If the function ϕ is monotonic, the probability density
function g (y) of Y is equal to:

g (y) = f (x)
∣∣∣∣dxdy

∣∣∣∣
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In the multivariate case, we note (X1, . . . , Xn) the random vector with density function
f (x1, . . . , xn). If the function ϕ is bijective, we can show that the probability density func-
tion of (Y1, . . . , Yn) = ϕ (X1, . . . , Xn) is equal to:

g (y1, . . . , yn) = f (x1, . . . , xn)
∣∣∣∣ 1
det Jϕ

∣∣∣∣
where Jϕ is the Jacobian associated to the change of variables.

A.2.2.3 Relationship between density and quantile functions

Let F (x) be a cumulative distribution function. The density function is f (x) = ∂x F (x).
We note α = F (x) and x = F−1 (α). We have:

∂ F−1 (F (x))
∂ x

= ∂ F−1 (α)
∂ α

(
∂ F (x)
∂ x

)
= 1

We deduce that:
∂ F−1 (α)

∂ α
=
(
∂ F (x)
∂ x

)−1
= 1
f (F−1 (α))

and:
f (x) = 1

∂α F−1 (F (x))
For instance, we can use this result to compute the moments of the random variable X with
the quantile function instead of the density function:

E [Xr] =
∫ ∞
−∞

xrf (x) dx =
∫ 1

0

(
F−1 (α)

)r dα

A.2.2.4 Conditional expectation in the case of the normal distribution

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx
µy

)
,

(
Σx,x Σx,y
Σy,x Σy,y

))
The conditional probability distribution of Y given X = x is a multivariate normal distri-
bution. We have:

µy|x = E [Y | X = x]
= µy + Σy,xΣ−1

x,x (x− µx)

and:

Σy,y|x = σ2 [Y | X = x]
= Σy,y − Σy,xΣ−1

x,xΣx,y

We deduce that:
Y = µy + Σy,xΣ−1

x,x (x− µx) + u

where u is a centered Gaussian random variable with variance σ2 = Σy,y|x. It follows that:

Y =
(
µy − Σy,xΣ−1

x,xµx
)︸ ︷︷ ︸

β0

+ Σy,xΣ−1
x,x︸ ︷︷ ︸

β>

x+ u
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We recognize the linear regression of Y on a constant and a set of exogenous variables X:

Y = β0 + β>X + u

Moreover, we have:

R2 = 1− σ2

Σy,y

=
Σy,xΣ−1

x,xΣx,y
Σy,y

A.2.2.5 Calculation of a useful integral function in credit risk models

We consider the following integral:

I =
∫ c

−∞
Φ (a+ bx)φ (x) dx

We have:

I =
∫ c

−∞

(
1√
2π

∫ a+bx

−∞
exp

(
−1

2y
2
)

dy
)
φ (x) dx

= 1
2π

∫ c

−∞

∫ a+bx

−∞
exp

(
−y

2 + x2

2

)
dy dx

By considering the change of variables (x, z) = ϕ (x, y) such that z = y − bx, we obtain17:

I = 1
2π

∫ c

−∞

∫ a

−∞
exp

(
−z

2 + 2bzx+ b2x2 + x2

2

)
dz dx

If we consider the new change of variable t =
(
1 + b2

)−1/2
z and use the notation δ = 1 + b2,

we have:

I =
√
δ

2π

∫ c

−∞

∫ a√
1+b2

−∞
exp

(
−δt

2 + 2b
√
δtx+ δx2

2

)
dtdx

=
√
δ

2π

∫ c

−∞

∫ a√
1+b2

−∞
exp

(
−δ2

(
t2 + 2b√

δ
xt+ x2

))
dtdx

We recognize the expression of the cumulative bivariate normal distribution18, whose cor-
relation parameter ρ is equal to −b/

√
δ:∫ c

−∞
Φ (a+ bx)φ (x) dx = Φ2

(
c,

a√
1 + b2

; −b√
1 + b2

)
17We use the fact that the Jacobian of ϕ (x, y) has the following expression:

Jϕ =
(

1 0
−b 1

)
and its determinant |Jϕ| is equal to 1.

18We recall that Φ2 (x, y; ρ) is the cumulative distribution function of the bivariate Gaussian vector (X,Y )
with correlation ρ on the space [−∞, x]× [−∞, y].
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A.3 Stochastic analysis
In what follows, we recall the main results of stochastic analysis related to Brownian

motions and stochastic differential equations. Most of them can be found in Gikhman and
Skorokhod (1972), Liptser and Shiryaev (1974), Friedman (1975), Karatzas and Shreve
(1991) and Øksendal (2010). But before that, we introduce some definitions and notations.

• The probability space is denoted by (Ω,F ,P) where Ω is the sample space, F is the
σ-algebra representing the collection of all events and P is the probability measure.

• A random (or stochastic) process X = {X (t) : t ∈ T} is a collection of random vari-
ables X (t) where T = [0,∞) is the index set.

• A filtration Ft on the probability space (Ω,F ,P) is an increasing sequence of σ-
algebras included in F :

Fs ⊂ Ft ⊂ F ∀ t ≥ s
The filtration represents the time evolution of the information produced by the
stochastic process X.

• The random process X is Ft-adapted if X (t) is Ft-measurable for all fixed t ∈ T ,
meaning that the value of X (t) depends only on Ft. In other words, the value of X (t)
cannot depend on unknown future data.

• The random processX is a martingale with respect to the filtration Ft if E |X (t)| <∞
(or E

∣∣X2 (t)
∣∣ <∞) and E [X (t)| Fs] = xs where xs is the realization of X (s).

• The random process X is stationary if:

P {X (s) ∈ A} = P {X (t) ∈ A} ∀ (s, t) ∈ T 2

It is weak-sense stationary if the first moment and the autocovariance do not vary
with respect to time:

E
[
X (t)2

]
<∞

E [X (s)] = E [X (t)]
E [X (s)X (t)] = E [X (s+ u)X (t+ u)]

where u ≥ 0. In the case where X is a Gaussian random process, the two definitions
are equivalent.

• The stochastic process X is Markov if the probability distribution of X (t) condition-
ally to the filtration Fs is equal to the probability distribution of X (t) conditionally
to the realization xs:

P {X (t) ∈ A| Fs} = P {X (t) ∈ A|X (s) = xs}

This implies that we don’t need to know all the information before s, but only the
last value taken by the process.

• The random process X is continuous at time t if, for all ε > 0,

lim
t→s

P {|X (t)−X (s)| > ε} = 0

X is said to be a continuous stochastic process on T if X is continuous for any fixed
t ∈ T .
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A.3.1 Brownian motion and Wiener process
The stochastic process B = {B (t) : t ∈ T} is a Brownian motion if:

1. B (0) = 0;

2. for all partition 0 = t0 < t1 < t2 < · · · < tn, the random variables B (ti) − B (ti−1)
are independent;

3. B (t) − B (s) is normally distributed with E [B (t)−B (s)] = µ (t− s) and
E
[
(B (t)−B (s))2

]
= σ2 (t− s) for t ≥ s.

If µ = 0 and σ = 1, we obtain the standard Brownian motion. It corresponds to the Wiener
process19 and we denote it by W (t). Here, we list the four main properties of W (t):

1. E [W (t)] = 0;

2. cov (W (s)W (t)) = E [W (s)W (t)] = min (s, t);

3. W (t) is a martingale;

4. the process W is continuous.

Notice that Wiener paths are not differentiable (Friedman, 1975), meaning that ∂tW (t)
has no sense. We can also show that the Wiener process is invariant in law under various
transformation: c−1/2W (ct) L= W (t) if c > 0 (rescaling), tW

(
t−1) L= W (t) (inversion) and

W (1)−W (1− t) L= W (t) if t ∈ [0, 1] (time reversibility).
The multidimensional Wiener processW (t) = (W1 (t) , . . . ,Wn (t)) satisfies the following

properties:

• each component Wi (t) is a Brownian motion;

• the different components are correlated:

E [Wi (s)Wj (t)] = ρi,j ·min (s, t)

We note ρ the correlation matrix of W (t):

E
[
W (t)W (t)>

]
= ρ t

It implies that the density function of W (t) is the multivariate normal pdf:

φn (x, ρ t) = (2π)−n/2 |ρ|−1/2
√
t

exp
(
− 1

2tx
>ρ−1x

)
Remark 214 Let W (t) be a multivariate Wiener process with correlation matrix ρ. We
have:

W (t) = AW ? (t)

where AA> = ρ and W ? (t) is a multivariate independent Wiener process.
19From a historical point of view, the Brownian motion and the Wiener process were derived in a different

manner. Today, the two terms are equivalent.
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A.3.2 Stochastic integral
Let f (t) be a stochastic function that defines the stochastic process20 X. We assume that

f (t) is a random step function on [a, b] and we denote by ∆ = {a = t0 < t1 < · · · < tn = b}
the associated partition. We have f (t) = f (ti) if t ∈ [ti, ti+1[. We introduce the notation:∫ b

a

f (t) dW (t) =
n−1∑
i=0

f (ti) (W (ti+1)−W (ti))

∫ b
a
f (t) dW (t) is called the stochastic integral of the random process X = {f (t) , t ≥ 0} on

[a, b] with respect to the Wiener process. If f (t) is non-random, we have an integration by
parts (IPP) formula:∫ b

a

f (t) dW (t) = f (b)W (b)− f (a)W (a)−
∫ b

a

f ′ (t)W (t) dt

We deduce that: ∫ b

a

dW (t) = W (b)−W (a)

In the case of a general function f (t), the stochastic integral is defined as the limit in
probability of the Riemann sum21:∫ b

a

f (t) dW (t) = lim
n→∞

n−1∑
i=0

f (ti) (W (ti+1)−W (ti))

Like the Riemann–Stieltjes integral, it satisfies the linearity property:∫ b

a

(αf + βg) (t) dW (t) = α

∫ b

a

f (t) dW (t) + β

∫ b

a

g (t) dW (t)

and the Chasles decomposition:∫ c

a

f (t) dW (t) =
∫ b

a

f (t) dW (t) +
∫ c

b

f (t) dW (t)

where (α, β) ∈ R2 and a < b < c. We also have:

E

[∫ b

a

f (t) dW (t)
]

= 0

Another important result is the Itô isometry that is useful for computing the variance of
the stochastic integral:

E

(∫ b

a

f (t) dW (t)
)2
 = E

[∫ b

a

f2 (t) dt
]

More generally, we have:

E

[∫ b

a

f (t) dW (t)
∫ b

a

g (t) dW (t)
]

= E

[∫ b

a

f (t) g (t) dt
]

20This is equivalent that X = {X (t) = f (t) , t ≥ 0} is a stochastic process.
21This construction is valid only if the random process X is Ft-adapted.
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Remark 215 If f (t) is a non-random function, then
∫ b
a
f (t) dW (t) is a Gaussian random

variable, whose mean is zero and variance is equal to
∫ b
a
f2 (t) dt.

The Itô integral is a special case of the stochastic integral:

I (t) =
∫ t

0
f (s) dW (s)

It is also called the ‘indefinite integral’. An important property is that any Itô integral is a
martingale:

E [I (t)| Fs] = I (s)

A related result is the martingale representation theorem. Assuming that the filtration Ft
is generated by a Wiener process, the theorem states that any Ft-martingale M (t) can be
written as an Itô integral:

M (t) = E [M (0)] +
∫ t

0
f (s) dW (s)

A.3.3 Stochastic differential equation and Itô’s lemma
An Itô process is an adapted stochastic process that can be expressed as follows:

X (t) = X (0) +
∫ t

0
µ (s) ds+

∫ t

0
σ (s) dW (s)

The stochastic differential equation (SDE) of X (t) is:

dX (t) = µ (t) dt+ σ (t) dW (t)

The conditional process dX (t) with respect to Ft is Gaussian with mean µ (t) dt and
variance σ2 (t) dt. µ (t) is called the drift coefficient, while σ (t) is the diffusion coefficient.

A.3.3.1 Existence and uniqueness of a stochastic differential equation

Let µ (t, x) and σ (t, x) be two measurable functions where (t, x) ∈ T × R. If X (t) is a
random process such that:{ dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t) (A.21a)

X (0) = x0 (A.21b)

we say that X (t) satisfies the stochastic differential equation (A.21a) with the initial con-
dition (A.21b).

Friedman (1975) showed that the system (A.21) has a unique solution if there exist two
scalar K1 and K2 such that ∀ (x, y) ∈ R2, we verify the following inequalities:{

|µ (t, x)− µ (t, y)| ≤ K1 |x− y|
|σ (t, x)− σ (t, y)| ≤ K1 |x− y|

and {
|µ (t, x)| ≤ K2 (1 + |x|)
|σ (t, x)| ≤ K2 (1 + |x|)

The previous theorem is not the unique way to show the existence of a solution. For instance,
a variant of this theorem is given by Karatzas and Shreve (1991). If there exist a scalar
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K ∈ R that verifies the inequality |µ (t, x)− µ (t, y)| ≤ K |x− y| for all (x, y) ∈ R2, and
a strictly increasing function h : R+ −→ R+ that satisfies the conditions22 h (0) = 0 and∫ ε

0 h
−2 (u) du =∞ for all ε > 0 such that |σ (t, x)− σ (t, y)| = h (|x− y|), then the solution

of the SDE exists and is unique.

A.3.3.2 Relationship with diffusion processes

A Markov process X (t) is called a diffusion process if the transition probability func-
tion23 p (s, x; t, A) satisfies the two following properties:

1. For all ε > 0, t ∈ T and x ∈ R, we have:

lim
h→0

1
h

∫
∆
p (t, x; t+ h,dy) = 0

where ∆ = {y ∈ R : |x− y| > ε}.

2. For all ε > 0, t ∈ [0, T ] and x ∈ R, there exist two functions a (t, x) and b (t, x) such
that:

lim
h→0

1
h

∫
∆̄

(y − x) p (t, x; t+ h,dy) = a (t, x)

and:
lim
h→0

1
h

∫
∆̄

(y − x)2
p (t, x; t+ h,dy) = b (t, x)

where ∆̄ = {y ∈ R : |x− y| ≤ ε}.

This definition is given by Gikhman and Skorokhod (1972). They also showed that the
unique solution of the SDE (A.21) is a diffusion process with a (t, x) = µ (t, x) and b (t, x)
= σ2 (t, x).

A.3.3.3 Itô calculus

To find the explicit solution of a SDE, we can use Itô calculus. We consider the following
differential:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)
Let f (t, x) be a C2 function. The stochastic differential equation of Y (t) = f (t,X (t)) is
equal to:

dY (t) = df (t,X (t))

= ∂ f

∂ t
(t,X (t)) dt+ ∂ f

∂ x
(t,X (t)) dX (t) +

1
2σ

2 (t,X (t)) ∂
2 f

∂ x2 (t,X (t)) dt

=
(
∂ f

∂ t
(t,X (t)) + µ (t,X (t)) ∂ f

∂ x
(t,X (t)) +

1
2σ

2 (t,X (t)) ∂
2 f

∂ x2 (t,X (t))
)

dt+

σ (t,X (t)) ∂ f
∂ x

(t,X (t)) dW (t)

22For instance, we can take h (u) = uα where α ≥ 1
2 .23The transition probability function of the Markov process X (t) is defined as:

p (s, x; t, A) = P (X (t) ∈ A | X (s) = x)
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The previous result is called the Itô formula. It can be viewed as Taylor series with the
following Itô rules: dt · dt = 0, dt · dW (t) = 0 and dW (t) · dW (t) = dt.

Remark 216 In compact form, we have:

dY =
(
∂ f

∂ t
+ µ (·) ∂ f

∂ x
+ 1

2σ
2 (·) ∂

2 f

∂ x2

)
dt+ ∂ f

∂ x
σ (·) dW

=
(
∂ f

∂ t
+Atf

)
dt+ ∂ f

∂ x
σ (·) dW

where Atf is the infinitesimal generator of X:

Atf = 1
2σ

2 (·) ∂
2 f

∂ x2 + µ (·) ∂ f
∂ x

In the case where X (t) = W (t), we obtain:

df (t,W (t)) = ∂t f (t,W (t)) dt+ 1
2∂

2
x f (t,W (t)) dt+ ∂x f (t,W (t)) dW (t)

If we now consider two stochastic processes X1 (t) and X2 (t) that depend on the same
Wiener process: {

dX1 (t) = µ1 (t,X1 (t)) dt+ σ1 (t,X1 (t)) dW (t)
dX2 (t) = µ2 (t,X2 (t)) dt+ σ2 (t,X2 (t)) dW (t)

the Itô formula becomes:

d (X1 (t)X2 (t)) = X1 (t) dX2 (t) +X2 (t) dX1 (t) + dX1 (t) · dX2 (t)

where:
dX1 (t) · dX2 (t) = σ1 (t,X1 (t))σ2 (t,X2 (t)) dt

A.3.3.4 Extension to the multidimensional case

Let X (t) = (X1 (t) , . . . , Xm (t)) be a random vector process. We consider the functions
µ : T × Rm −→ Rm and σ : T × Rm −→ Rm×n. The multidimensional SDE is defined as:{

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)
X (0) = x0

where x0 is a vector of dimension m. The Itô formula applied to Y (t) = f (t,X (t)) is:

dY (t) = df (t,X (t))

= ∂ f

∂ t
(t,X (t)) dt+ ∂ f

∂ x
(t,X (t))> dX (t) +

1
2dX (t)> ∂

2 f

∂ x2 (t,X (t)) dX (t)

We finally obtain24:

dY (t) =
(
∂ f

∂ t
(t,X (t)) + ∂ f

∂ x
(t,X (t))> µ (t,X (t)) +

1
2 trace

(
σ (t,X (t))> ∂

2 f

∂ x2 (t,X (t))σ (t,X (t)) ρ
))

dt+

∂ f

∂ x
(t,X (t))> σ (t,X (t)) dW (t)

24The Itô rules are dt · dt = 0, dt · dW (t) = 0 and dW (t) · dW (t)> = ρ dt.
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If we apply the Itô formula to Y (t) = X1 (t)X2 (t), we obtain:

dY (t) = µ1 (t,X1 (t))X2 (t) dt+ µ2 (t,X2 (t))X1 (t) dt+
ρ1,2σ1 (t,X1 (t))σ2 (t,X2 (t)) +
σ1 (t,X1 (t))X2 (t) dW1 (t) + σ2 (t,X2 (t))X1 (t) dW2 (t)

= X1 (t) dX2 (t) +X2 (t) dX1 (t) + dX1 (t) · dX2 (t)

where:
dX1 (t) · dX2 (t) = ρ1,2σ1 (t,X1 (t))σ2 (t,X2 (t)) dt

In the case where W1 (t) = W2 (t) = W (t), the correlation ρ1,2 is equal to one and we
retrieve the previous result.

Using the previous framework, we also deduce that the integration by parts formula
becomes: ∫ b

a

X1 (t) dX2 (t) = X1 (b)X2 (b)−X1 (a)X2 (a)−∫ b

a

X2 (t) dX1 (t)−
∫ b

a

dX1 (t) · dX2 (t)

In the case where X1 (t) = f (t) is a non-random process and X2 (t) = W (t), we retrieve
the classical IPP:∫ b

a

f (t) dW (t) = f (b)W (b)− f (a)W (a)−∫ b

a

W (t) df (t)−
∫ b

a

df (t) · dW (t)

= f (b)W (b)− f (a)W (a)−
∫ b

a

f ′ (t)W (t) dt

because
∫ b
a
f ′ (t) dt dW (t) = 0.

Remark 217 dX1 (t) · dX2 (t) is also called the quadratic variation and we note:

dX1 (t) · dX2 (t) = 〈X1 (t) , X2 (t)〉

Using the notation 〈X1 (t)〉 = 〈X1 (t) , X1 (t)〉, the quadratic variation satisfies the bilinearity
property and the polarization identity:

〈X1 (t) , X2 (t)〉 = 〈X1 (t) +X2 (t)〉 − 〈X1 (t)〉 − 〈X2 (t)〉
2

A.3.4 Feynman-Kac formula
We consider the state variable X (t) defined by:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)

and AtV the infinitesimal generator of the diffusion process:

AtV (t, x) = 1
2σ

2 (t, x) ∂
2 V (t, x)
∂ x2 + µ (t, x) ∂ V (t, x)

∂ x

Under the following assumptions:
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1. µ (t, x), σ(t, x), g (t, x) and h (t, x) are Lipschitz and bounded on [0, T ]× R;

2. f (x) is a continuous function of class C2;

3. f (x) and g (x) grows exponentially25.

the solution of the Cauchy problem:{
−∂tV (t, x) + h (t, x)V (t, x) = AtV (t, x) + g (t, x)
V (T, x) = f (x) (A.22)

is unique and given by:

V (t, x) = E

[
β (T ) f (X (T )) +

∫ T

t

β (s) g (s,X (s)) ds

∣∣∣∣∣X (t) = x

]
(A.23)

where:
β (s) = exp

(
−
∫ s

t

h (u,X (u)) du
)

The Feynman-Kac formula states that the solution of the parabolic PDE (A.22) can be
found by calculating the conditional expectation (A.23).

In the case where h (t, x) = g (t, x) = 0, we obtain the backward Chapman-Kolmogorov
equation:

∂tV (t, x) = −µ (t, x) ∂ V (t, x)
∂ x

− 1
2σ

2 (t, x) ∂
2 V (t, x)
∂ x2

where V (T, x) = f (x) and:

V (t, x) = E [f (X (T ))|X (t) = x]

If f (x) = 1 {x ≤ xT }, we obtain the probability distribution:

V (t, x) = E [1 {X (T ) ≤ xT }|X (t) = x]
= P {X (T ) ≤ xT |X (t) = x}

To obtain the density function, we set f (x) = 1 {x = xT } and we have:

V (t, x) = P {X (T ) = xT |X (t) = x}

Remark 218 The Feynman-Kac formula is valid in the multivariate case by considering
the following infinitesimal generator of the diffusion process:

AtV (t, x) = 1
2 trace

(
σ (t,X (t))> ∂

2 f

∂ x2 (t,X (t))σ (t,X (t)) ρ
)

+

∂ f

∂ x
(t,X (t))> µ (t,X (t))

25This implies that there exist two scalars K ≥ 0 and ξ ≥ 0 such that |f (x)| ≤ Keξx2 .
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A.3.5 Girsanov theorem
LetW be a Wiener process on the probability space {Ω,F ,P}. If the process g (t) satisfies

the Novikov condition:
E
[
exp

(
1
2

∫ t

0
g2 (s) ds

)]
<∞

then WQ defined by WQ (t) = W (t) −
∫ t

0 g (s) ds is a Wiener process on the probability
space {Ω,F ,Q}. The change of measure is given by the Radon-Nikodym derivative:

dQ
dP = M (t)

= exp
(∫ t

0
g (s) dW (s)− 1

2

∫ t

0
g2 (s) ds

)
Moreover, M (t) is an Ft-martingale.

Remark 219 If we consider the state variable X (t) defined by:

dX (t) = µ (t,X (t)) dt+ σ (t,X (t)) dW (t)

the Girsanov theorem states that the change of measure is equivalent to change the drift of
the diffusion:

dX (t) = (µ (t,X (t)) + g (t)) dt+ σ (t,X (t)) dWQ (t)

The Girsanov theorem can be extended to the multidimensional Wiener process. In this
case, g (t) and WQ (t) = W (t)−

∫ t
0 g (s) ds are two vector processes and we have:

M (t) = exp
(∫ t

0
g (s)> dW (s)− 1

2

∫ t

0
g (s)> g (s) ds

)

A.3.6 Fokker-Planck equation
With the backward Chapman-Kolmogorov equation, we can compute the probability of

the event {X (T ) = xT } conditionally to X (t) = x. From a numerical point of view, this
approach is generally not efficient because we need to solve one PDE for each value of xT .
Another way to compute this probability is to consider the forward Chapman-Kolmogorov
equation: {

∂tU (t, x) = −∂x [µ (t, x)U (t, x)] + 1
2∂

2
x

[
σ2 (t, x)U (t, x)

]
U (s, x) = 1 {x = xs}

where s < t. This PDE is known as the Fokker-Planck equation and its solution is:

U (t, x) = P {X (t) = x | X (s) = xs}
= p (s, xs; t, x)

In particular, we can calculate the density function p (0, x0;T, xT ).
In the multidimensional case, the Fokker-Planck equation becomes:

∂tU (t, x1, . . . , xm) = −
m∑
i=1

∂xi [µi (t, x1, . . . , xm)U (t, x1, . . . , xm)] +

1
2

m∑
i=1

m∑
j=1

∂2
xi,xj [Σi,j (t, x1, . . . , xm)U (t, x1, . . . , xm)]
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where:

Σi,j (t, x1, . . . , xm) =
n∑

k1=1

n∑
k2=1

ρk1,k2σi,k1 (t, x1, . . . , xm)σj,k2 (t, x1, . . . , xm)

In the diagonal bivariate case: dX1 (t) = µ1 (t,X1 (t) , X2 (t)) dt+ σ1 (t,X1 (t) , X2 (t)) dW1 (t)
dX2 (t) = µ2 (t,X1 (t) , X2 (t)) dt+ σ2 (t,X1 (t) , X2 (t)) dW2 (t)
E [W1 (t)W2 (t)] = ρ1,2 dt

we obtain:

∂tU (t, x1, x2) = −∂x1 [µ1 (t, x1, x2)U (t, x1, x2)]−
∂x2 [µ2 (t, x1, x2)U (t, x1, x2)] +
1
2∂

2
x1

[
σ2

1 (t, x1, x2)U (t, x1, x2)
]

+
1
2∂

2
x2

[
σ2

2 (t, x1, x2)U (t, x1, x2)
]

+

ρ1,2∂
2
x1,x2

[σ1 (t, x1, x2)σ2 (t, x1, x2)U (t, x1, x2)]

A.3.7 Reflection principle and stopping times
A nonnegative random variable τ is a stopping time with respect to the stochastic process

W if the event {τ ≤ t} depends onW (s) for s ≤ t. This implies that {τ ≤ t} ∈ Ft, meaning
that the event cannot depend on the future path of the stochastic process. A particular case
of stopping times is a hitting time. Let τx = inf {t : W (t) = x} denote the first time when
the Brownian motion hits the value x ≥ 0. We can show that the hitting time τx is also a
stopping time, and satisfies the strong Markov property:

W (τx + t)−W (τx) = W (τx + t)− x L= W (t)

Therefore, W (τx + t) −W (τx) is a Brownian motion that is independent from W (s) for
s ≤ τx. This result generalizes the independent increments property when τx is not a fixed
time, but a random time. Let us define W̃ (t) as follows:

W̃ (t) =
{
W (t) if t ≤ τx
2x−W (t) otherwise

The reflection principle states that W̃ (t) is also a Brownian motion. Then, we can show
that26:

Pr {τx ≤ t} = 2 Pr {W (t) ≥ x}

= 2
(

1− Φ
(
x√
t

))

26We deduce that the density function of τx is equal to:

f (t) = ∂t Pr {τx ≤ t}

=
x

t3/2
φ

(
x
√
t

)
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Let M (t) = sups≤tW (s) be the maximum of a Brownian motion. We have:

{M (t) ≥ x} ⇔ {τx ≤ t}

It follows that:

Pr {M (t) ≥ x} = Pr {τx ≤ t}

= 2
(

1− Φ
(
x√
t

))
Another important result is the joint distribution of (M (t) ,W (t)), which is given by:

Pr {M (t) ≥ x,W (t) ≤ y} = Pr {W (t) ≥ 2x− y}

= 1− Φ
(

2x− y√
t

)
where x ≥ 0 and y ≤ x. It follows that the joint density of (M (t) ,W (t)) is equal to:

f (x, y) = (2x− y)
t3/2

√
2
π

exp
(
− (2x− y)2

2t

)

If we consider the Brownian motion with drift:

X (t) = µt+W (t)

the distribution of M (t) = sups≤tX (s) becomes:

Pr {M (t) ≤ x} = Φ
(
x− µt√

t

)
− e2µxΦ

(
−x− µt√

t

)
(A.24)

whereas the joint density of (M (t) , X (t)) is equal to:

f (x, y) = (2x− y)
t3/2

√
2
π

exp
(
µy − 1

2µ
2t− (2x− y)2

2t

)

A.3.8 Some diffusion processes
A.3.8.1 Geometric Brownian motion

It is the solution of the following SDE:{
dX (t) = µX (t) dt+ σX (t) dW (t)
X (0) = x0

In order to find the explicit solution, we apply the Itô’s lemma to the stochastic process
Y (t) = lnX (t) and we have27:

dY (t) =
(

1
X (t)µX (t)− 1

2X (t)2 (σX (t))2

)
dt+ 1

X (t)σX (t) dW (t)

=
(
µ− 1

2σ
2
)

dt+ σ dW (t)

27We have f (t, x) = lnx, ∂tf (t, x) = 0, ∂xf (t, x) = x−1 and ∂2
xf (t, x) = −x−2.
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where Y (0) = ln x0. We deduce that Y (t) is a Gaussian random process28:

Y (t) = ln x0 +
∫ t

0

(
µ− 1

2σ
2
)

ds+
∫ t

0
σ dW (s)

= ln x0 +
(
µ− 1

2σ
2
)
t+ σW (t)

It follows that:
lnX (t) = ln x0 +

(
µ− 1

2σ
2
)
t+ σW (t)

or:

X (t) = exp
(

ln x0 +
(
µ− 1

2σ
2
)
t+ σW (t)

)
= x0e

(µ− 1
2σ

2)t+σW (t)

We obtain a log-normal random process, whose first moments are:

E [X (t)] = exp
(

ln x0 +
(
µ− 1

2σ
2
)
t+ 1

2σ
2t

)
= x0e

µt

and:

var (X (t)) = e2 ln x0+2(µ− 1
2σ

2)t+σ2t
(
eσ

2t − 1
)

= x2
0e

2µt
(
eσ

2t − 1
)

A.3.8.2 Ornstein-Uhlenbeck process

We consider the SDE:{
dX (t) = a (b−X (t)) dt+ σ dW (t)
X (0) = x0

where a > 0. We notice that E [dX (t) | Ft] = a (b−X (t)) dt. It follows that:

• if X (t) < b, then E [dX (t) | Ft] ≥ 0 implying that E [X (t) + dX (t) | Ft] ≥ X (t);

• if X (t) > b, then E [dX (t) | Ft] ≤ 0 implying that E [X (t) + dX (t) | Ft] ≤ X (t).

The coefficient b is the mean-reversion parameter (or the long-term mean) whereas a is the
speed of reversion. If we apply the Itô’s lemma to Y (t) = (b−X (t)) eat, we obtain29:

dY (t) =
(
a (b−X (t)) eat − a (b−X (t)) eat

)
dt− eatσ dW (t)

= −σeat dW (t)

and:
Y (t) = b− x0 − σ

∫ t

0
eas dW (s)

28We have:
Y (t) ∼ N

(
lnx0 +

(
µ−

1
2
σ2
)
t, σ2t

)
29We have f (t, x) = (b− x) eat, ∂tf (t, x) = af (t, x), ∂xf (t, x) = −eat and ∂2

xf (t, x) = 0.
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Therefore, Y (t) is a Gaussian random process, because
∫ t

0 e
as dW (s) is a Gaussian random

variable. We deduce that:

X (t) = b− e−atY (t)

= e−atx0 + b
(
1− e−at

)
+ σ

∫ t

0
e−a(t−s) dW (s)

X (t) is also a Gaussian random process, whose first two moments are:

E [X (t)] = e−atx0 + b
(
1− e−at

)
and:

var (X (t)) = E
[
σ2
∫ t

0
e−2a(t−s) ds

]
= σ2

[
e−2a(t−s)

2a

]t
0

= σ2

2a
(
1− e−2at)

A.3.8.3 Cox-Ingersoll-Ross process

The CIR process is the solution of the SDE:{
dX (t) = a (b−X (t)) dt+ σ

√
X (t) dW (t)

X (0) = x0

where a > 0. It can be viewed as a modified Ornstein-Uhlenbeck process where the diffusion
coefficient is σ

√
X (t). This implies that the CIR process is positive, and explains that

this process is frequently used for interest rate modeling. If we apply the Itô’s lemma to
Y (t) = (b−X (t)) eat, we obtain:

dY (t) =
(
a (b−X (t)) eat − a (b−X (t)) eat

)
dt− eatσ

√
X (t) dW (t)

= −σeat
√
X (t) dW (t)

and:

X (t) = b− e−atY (t)

= e−atx0 + b
(
1− e−at

)
+ σ

∫ t

0
e−a(t−s)

√
X (s) dW (s) (A.25)

We can show that:
X (t) = 1

c
χ2
ν (ζ)

where:
c = 4a

(1− e−at)σ2

and χ2
ν (ζ) is the noncentral chi-squared random variable where ν = 4abσ−2 is the number

of degrees of freedom and ζ = cx0e
−at is the noncentrality parameter. It follows that the

probability density function of X (t) is equal to:

f (x) = cf

(
cx; 4ab

σ2 , cx0e
−at
)
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where f (y; ν, ζ) is the probability density function of the noncentral chi-squared random
variable χ2

ν (ζ). Using Equation (A.25), we can also show that:

E [X (t)] = e−atx0 + b
(
1− e−at

)
and:

var (X (t)) = E
[
σ2
∫ t

0
e−2a(t−s)X (s) ds

]
= σ2e−2at

∫ t

0
e2asE [X (s)] ds

= σ2e−2at
∫ t

0
(x0 − b) eas + be2as ds

= σ2e−2at
[

(x0 − b)
a

eas + b

2ae
2as
]t

0

= σ2e−2at
(

(x0 − b)
a

eat + b

2ae
2at − (x0 − b)

a
− b

2a

)
= σ2b

2a
(
1− 2e−at + e−2at)

A.3.8.4 Multidimensional processes

The multidimensional geometric Brownian motion is defined as:{
dXj (t) = µjXj (t) dt+ σjXj (t) dWj (t) for j = 1, . . . , n
X (0) = x0

where X (t) = (X1 (t) , . . . , Xn (t)) and W (t) = (W1 (t) , . . . ,Wn (t)) is a n-dimensional
Brownian motion with E

[
W (t)W (t)>

]
= ρ t. The solution of the multidimensional SDE

is a multivariate log-normal process with:

Xj (t) = Xj (0) · exp
((

µj −
1
2σ

2
j

)
t+ σjWj (t)

)
where W (t) ∼ Nn (0, ρ t).

Other multivariate stochastic processes are not very useful in finance, except stochastic
volatility models. For instance, the Heston model is defined as follows:{

dX1 (t) = µX1 (t) dt+
√
X2 (t)X1 (t) dW1 (t)

dX2 (t) = a (b−X2 (t)) dt+ σ
√
X2 (t) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. Therefore, the process X1 (t) is a geometric Brownian motion
with a stochastic volatility σ (t) =

√
X2 (t) and the stochastic variance X2 (t) is a CIR

process. Another related process is the SABR model:{
dX1 (t) = X2 (t)Xβ

1 (t) dW1 (t)
dX2 (t) = νX2 (t) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t and β ∈ [0, 1]. We notice that the stochastic volatility is a
geometric Brownian motion and there are two special cases: X1 (t) is a log-normal process
(β = 1) or a normal process (β = 0).



1078 Handbook of Financial Risk Management

A.4 Exercises
A.4.1 Discrete-time random process

1. We consider the discrete-time random process Xt defined by:

Xt = Xt−1 + εt

where X0 = 0 and εt is an iid random process.

(a) We assume that εt is a Bernoulli random variable B (p). Give the filtration Ft
for t = 0, 1, 2.

(b) We assume that εt ∼ N
(
0, σ2). Show that Xt is a martingale.

2. We consider the AR(1) process:

Xt = φXt−1 + εt

where |φ| < 1 and εt is an iid random process with εt ∼ N
(
0, σ2).

(a) Show that Xt is a weak-sense stationary process.
(b) Show that Xt is a strong-sense stationary process.
(c) Is Xt a Markov process?
(d) Same questions with the MA(1) process:

Xt = εt + θεt−1

A.4.2 Properties of Brownian motion
We consider the standard Brownian motion W (t).

1. Demonstrate the three properties:

(a) E [W (t)] = 0;
(b) cov (W (s)W (t)) = min (s, t);
(c) W (t) is a martingale.

2. Show that W (t) is continuous.

3. Calculate E
[
W 2 (t)

]
, E

[
W 2 (t)

∣∣Fs], E
[
W 3 (t)

]
, E

[
W 4 (t)

]
, E

[
eW (t)] and

E
[
eW (t)

∣∣Fs].
4. Calculate the mathematical expectation of Wn (t) for n ∈ N?.

A.4.3 Stochastic integral for random step functions
We assume that f (t) and g (t) are two random step functions on [a, b]:{

f (t) = f (ti)
g (t) = g (ti)

if t ∈ [ti, ti+1[

where t0 = a and tn = b.
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1. Demonstrate the linearity property and Chasles decomposition of the stochastic inte-
gral

∫ b
a
f (t) dW (t).

2. Show that:

E

[∫ b

a

f (t) dW (t)
]

= 0

and:

E

[∫ b

a

f (t) dW (t)
∫ b

a

g (t) dW (t)
]

= E

[∫ b

a

f (t) g (t) dt
]

3. Deduce that:

var
(∫ b

a

f (t) dW (t)
)

=
∫ b

a

E
[
f2 (t)

]
dt

A.4.4 Power of Brownian motion
Let W (t) be a standard Brownian motion.

1. Show that:
dW 2 (t) = dt+ 2W (t) dW (t)

2. Deduce the solution of I (t) =
∫ t

0 W (s) dW (s) and calculate the first two moments
of I (t).

3. Let n ∈ N?. Show that:

dWn (t) = 1
2n (n− 1)Wn−2 (t) dt+ nWn−1 (t) dW (t)

4. Calculate the first two moments of the Itô integral In (t) =
∫ t

0 W
n (s) dW (s).

5. Calculate the first two moments of the stochastic process Jn (t) = Wn (t).

6. Calculate the first moment of the random process Kn (t) =
∫ t

0 W
n (s) ds.

7. Explain why it is difficult to calculate the second moment of Kn (t).

8. Find the variance of K1 (t), K2 (t) and K3 (t).

9. What is the relationship between In (t), Jn (t) and Kn (t)?

A.4.5 Exponential of Brownian motion
Let W (t) be a standard Brownian motion.

1. Find the stochastic differential deW (t).

2. Calculate the first two moments of X (t) = eW (t), Y (t) =
∫ t

0 e
W (s) ds and Z (t) =∫ t

0 e
W (s) dW (s).

3. Deduce the correlation between Y (t) and Z (t).
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A.4.6 Exponential martingales
1. Show that X (t) = eW (t) is a not martingale.

2. Find the function m (t) such that M (t) = m (t)X (t) is a martingale.

3. We assume that X (t) = g (t) is non-random. Let Y be a Ft-adapted process with:

dY (t) = −1
2g

2 (t) dt+ g (t) dW (t)

Find the solution of M (t) = eY (t). Show that M (t) is a martingale.

4. We now assume that X (t) = g (t) is random. How can we show that M (t) is a
martingale?

A.4.7 Existence of solutions to stochastic differential equations
1. We consider the following SDE:

dX (t) = (1 +X (t)) dt+ 4 dW (t)

Show that it has a unique solution.

2. Let a, b and c be three scalars. Show that the following SDE has a unique solution:

dX (t) = a (b−X (t)) dt+ cX (t) dW (t)

A.4.8 Itô calculus and stochastic integration
1. Find the solution of:

dX (t) = −X (t)
1 + t

dt+ 1
1 + t

dW (t)

2. Find the solution of30:

dX (t) = X (t) dt+X2 (t) dW (t)

3. Find the stochastic differential of:

X (t) =
∫ t

0

1− t
1− s dW (s)

4. Deduce the stochastic differential of Y (t) = (1− t)−1
X (t). Find the solution of Y (t).

5. Let X (t) = f (t,W (t)). Using Itô’s lemma, find a necessary condition such that X (t)
is an Ft-martingale.

6. Verify that the necessary condition is satisfied for the cubic martingale:

X (t) = W 3 (t)− 3tW (t)

and the quartic martingale:

X (t) = W 4 (t)− 6tW 2 (t) + 3t2

7. Show that X (t) = et/2 cosW (t) is a martingale.
30Hint: use the transform function f (t,X (t)) = 1/X (0)− 1/X (t).
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A.4.9 Solving a PDE with the Feynman-Kac formula
We assume that: {

dX (t) = dt+ dW (t)
X (0) = x

Let V (t, x) be the solution of the following partial differential equation:{
−∂tV (t, x) + 3V (t, x) = 1

2∂
2
xV (t, x) + 2∂xV (t, x) + 4

V (5, x) = x
(A.26)

1. Using Girsanov theorem, show that:

dX (t) = 2 dt+ dZ (t)

where Z (t) = W (t)−
∫ t

0 ds is a Brownian motion.

2. Compute E [X (5)| Ft] and E [X (5)| Gt] where Ft is the natural filtration and Gt is
the filtration generated by the Brownian motion Z (t). Find E [X (5)| G0].

3. Solve the PDE (A.26) and compute V (0, x). Check that the solution satisfies the
PDE.

4. What does the solution become when the terminal value V (5, x) of the PDE is equal
to ex? Check that the solution satisfies the PDE.

A.4.10 Fokker-Planck equation
1. We consider the Ornstein-Uhlenbeck process:

dX (t) = a (b−X (t)) dt+ σ dW (t)

How can we calculate the density function using the Feynman-Kac representation?
Same question if we consider the Fokker-Planck equation. Solve numerically the two
PDEs and draw the density function P {X (1) = x | X (0) = 0} when a = 1, b = 10%
and σ = 20%.

2. We consider the geometric Brownian motion:

dX (t) = µX (t) dt+ σX (t) dW (t)

How can we calculate the density function using the Feynmac-Kac representation?
Same question if we consider the Fokker-Planck equation. Solve numerically the two
PDEs and draw the density function P {X (1) = x | X (0) = 100} when µ = 10% and
σ = 20%.

A.4.11 Dynamic strategy based on the current asset price
We assume that the price process S (t) follows a diffusion process given by the following

SDE:
dS (t) = µ (t, S (t)) dt+ σ (t, S (t)) dW (t)

where S (0) = S0. We consider a dynamic strategy V (t) that consists in being long or short
on the asset S (t). We note n (t) the number of shares at time t and we assume that it only
depends on the current asset price:

n (t) = f (S (t))
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1. Define dV (t).

2. We define the function F (S) as follows:

F (S) =
∫ S

c

f (x) dx

where c is a constant. Find the stochastic differential of Y (t) = F (S (t)).

3. Deduce an expression of the terminal value V (T ).

4. Show that V (T ) is composed of two terms:

V (T ) = G (T ) + C (T )

where G (T ) only depends on the initial and terminal values of S and C (T ) depends
on the trajectory of S. How to interpret these two terms?

5. We consider the stop-loss strategy: n (t) = 1 {S (t) > S?} where S? is the level of the
stop31. Show that the option profile of this strategy is a long-only exposure to the
asset plus a put option. What is the value of the option strike? What is the cost of
this trading strategy?

6. We consider the stop-gain strategy: n (t) = 1 {S (t) < S?} where S? is the level of
the gain32. What is the option profile of this strategy? Why the cost of this trading
strategy is positive?

7. We assume the following reversal strategy:

n (t) = m
S? − S (t)
S (t)

where S? is the price target of the asset and m > 0 is the leverage.

(a) Explain the rationale of this strategy.
(b) Find the value of V (T ).
(c) We assume that the diffusion coefficient σ (t, S (t)) is equal to σ (t)S (t). Show

that:
C (T ) = m

2 S? IV (T )

where IV (T ) is the integrated variance.
(d) Explain why the vega of the strategy is positive.

A.4.12 Strong Markov property and maximum of Brownian motion
1. Let M (t) = sups≤tW (s) be the maximum of the Brownian motion. Show that:

Pr {M (t) ≥ x} = 2
(

1− Φ
(
x√
t

))
2. Let x ≥ 0 and y ≤ x. Show that:

Pr {W (t) ≥ 2x− y} = Pr {M (t) ≥ x,W (t) ≤ y}
31We assume that S (0) > S?.
32We assume that S (0) < S?.
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3. Calculate the joint density of (M (t) ,W (t)).

4. We now consider the maximum MX (t) of the process X (t):
X (t) = µt+W (t)

Using Girsanov theorem, find the joint distribution of (MX (t) , X (t)).

5. Deduce the density function of MX (t).

6. Verify that the distribution F (x) of the maximum is given by:

Pr {MX (t) ≤ x} = Φ
(
x− µt√

t

)
− e2µxΦ

(
−x− µt√

t

)

A.4.13 Moments of the Cox-Ingersoll-Ross process
We consider the CIR process defined by:{

dX (t) = a (b−X (t)) dt+ σ
√
X (t) dW (t)

X (0) = x0

We recall that X (t) is related to the noncentral chi-squared distribution. Indeed, we have:

X (t) = 1
c
Y

(
4ab
σ2 , cx0e

−at
)

where Y (ν, ζ) is a noncentral chi-squared random variable whose number of degrees of
freedom is ν and noncentrality parameter is ζ, and:

c = 4a
(1− e−at)σ2

1. Calculate the mathematical expectation of X (t).

2. Find the variance of X (t).

3. Determine the skewness and excess kurtosis coefficients of X (t).

A.4.14 Probability density function of Heston and SABR models
1. We consider the Heston model:{

dX1 (t) = µX1 (t) dt+
√
X2 (t)X1 (t) dW1 (t)

dX2 (t) = a (b−X2 (t)) dt+ σ
√
X2 (t) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. Write the Fokker-Planck equation.

2. We consider the SABR model:{
dX1 (t) = X2 (t)Xβ

1 (t) dW1 (t)
dX2 (t) = νX2 (t) dW2 (t)

where E [W1 (t)W2 (t)] = ρ t. Write the Fokker-Planck equation.

3. Solve numerically the Fokker-Planck equation for the Heston and SABR models. The
parameters are the following:

(Heston) µ = 0, a = 2, b = 4%, σ = 20% and ρ = −75%;
(SABR) β = 1.00, ν = 0.5 and ρ = −75%.

The initial values are X1 (0) = 1 and X2 (0) = 6%. Draw the bivariate probability
density function for t = 1/2.
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A.4.15 Discrete dynamic programming
We assume that:

s (k + 1) = g (k, s (k) , c (k)) = s (k)

and:

f (k, s (k) , c (k)) = − 1
s (k) ln s (k)− α

k
(c (k)− s (k))2 + βc (k) + γ

√
s (k)esin s(k)

The terminal value f (K, s (K)) is equal to 2s (K) − 1. The state variable s (k) takes the
values si = 1+(i− 1) /2 where i = 1, . . . , nS while the control variable c (k) takes the value
vj = j where j = 1, . . . , nC .

1. We set α = 0.02, β = 0.1 and γ = 0.01.

(a) Compute the matrices J and C when K = 5, nS = 4 and nC = 8.
(b) Deduce the optimal value J (1, 1).
(c) How do you explain that c? (k) ≯ 3?

2. We set α = 0.02, β = 0.1 and γ = 0.01.

(a) Draw the values taken by J (k, s (k)) when K = 100, nS = 100 and nC = 25.
(b) What is the optimal state at time k = 1?
(c) Find the optimal control c? (k) when s (k) is equal to 3, 13 and 22. Comment on

these results.

A.4.16 Matrix computation
1. We consider the following matrix:

A =

 1.000 0.500 0.700
0.500 0.900 0.200
0.700 0.200 0.300


(a) Find the Schur decomposition.
(b) Calculate eA and lnA.
(c) How to compute cosA and sinA? Calculate cos2A+ sin2A.
(d) Calculate A1/2.

2. We consider the following covariance matrix:

Σ =


0.04000 0.01500 0.00200 −0.00600
0.01500 0.02250 −0.00375 −0.00750
0.00200 −0.00375 0.00250 −0.00250
−0.00600 −0.00750 −0.00250 0.01000


Compute the nearest covariance matrix Σ̃.

3. We consider the matrix B = C5 (−50%). Find the nearest correlation matrix ρ (B).
What do you observe? Generalize this result.
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4. We consider the following matrix:

C =


1.0
0.9 1.0
0.5 0.6 1.0
0.2 0.9 0.0 1.0
0.9 0.0 0.9 0.0 1.0


Compute the nearest correlation matrix ρ (C).
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288, 404
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K-means clustering, 944–946, 1023
k-nearest neighbor (k-NN), 974–975
Kalman filter, 647, 647–648, 649–656,

667–670, 709–711
Kendall’s tau, 717, 724–728, 733, 736, 738,

743–747, 749, 779
Kernel method
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· Density estimation, 71–72, 84,

637–640
· Non-parametric regression, 112,

641–645
· Quantile estimation, 71–72, 124

Kolmogorov-Smirnov test, 321, 692, 1015
KPSS test, 662
kth-to-default swap, 151–153, 157, 247
Kurtosis, 84, 86, 87, 122, 236, 600, 666,

1054, 1055, 1061, 1083

L
L-CAPM, 355–357
Lack of memory property, 202, 1054
LAD regression, 613, 614, 997
Lagrange function, 626, 706, 864, 934, 967,

992, 997, 1027, 1046, 1049
Lamperti transform, 824
Laplace transform, 332, 734, 735, 803, 805
Lasso regularization, 934–938, 972,

1021–1022
LCR, 21, 360–365, 376, 462
LDA, 312–342, 788
Least absolute deviation, see LAD
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Least squares, 203, 541, 604–608, 612, 642,

650, 705, 957, 996, 1021, 1026,
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Legal risk, 305, 307
Lehman Brothers collapse, 10, 19, 21, 48,

146, 257, 453, 458, 899
Leverage ratio, 20–22, 214, 360, 367, 408,

457, 459, 472–474, 926
Leverage risk, 52, 360, 367, 456–458
LGD, 56, 168, 172, 177, 179, 185, 191–201,

242, 248, 250, 268, 284, 618, 629,
749, 750, 805, 894, 910

Libor market model, 526, 597–598
Libor scandal, 307
Linear congruential generator (LCG), 788
Linear correlation, see Correlation matrix

or Pearson’s correlation
Linear discriminant analysis (LDA),

961–966
Linear regression, 111, 232, 572, 603–614,

621, 632, 654, 657, 662, 691, 699,
704, 705, 707, 852–855, 909–910,
921, 936–941, 951, 974, 997, 1022,
1025, 1063

Liquidation ratio, 350–352
Liquidity coverage ratio, see LCR
Liquidity gap, 376–393, 412–415
Liquidity risk, 2, 9, 20, 21, 40, 49, 58, 103,

129, 141, 146, 347–367, 376–393,
459, 478, 591–592, 893

Lloyd’s algorithm, 945, 1023
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Local volatility model, 103, 546–559, 599
Logistic regression, see Logit model
Logit model, 200, 449, 910, 925, 941,
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Lorenz curve, 1016–1018
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LTCM, 257, 457, 458, 474
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461, 898
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· CDX, 154, 158
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Markov chain
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· Discrete-time, 206–210, 1009
· Simulation, 814–817
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1009
Markov chain Monte Carlo (MCMC), 670,

870–882
Markov generator, 210–213, 226, 251–253
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Maximum likelihood estimation, 193, 232,
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614–627, 649, 653, 654, 662–663,
666, 686–688, 706–708, 745–748,
758, 907, 933, 969–973, 980, 1025,
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Maximum peak exposure (MPE), 264, 301
MBS, 5, 129, 137–140, 154, 361, 437
MCR, 24
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MES, 467–468, 472–474
Method of moments, 85, 193, 195, 250, 316,

323, 324, 341, 344, 628–631, 707,
743, 749, 750

Metropolis-Hastings algorithm, 873–877
Mezzanine tranche, 155–157, 185, 187, 188
Micro-prudential regulation, 11, 20, 461,

462
MiFID, 25, 462
Milstein scheme, 821–824, 835–838
Min-stable multivariate exponential

distribution, 779
Minimum capital requirement, see Pillars
Minimum capital requirement (insurance),

see MCR
Minkowski distance, 948
Mixture distribution, 197, 236, 540,

624–627, 707, 798, 803, 877
MMF, 10, 27, 458, 478, 486
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· CVA, 282, 290–291
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799–802
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Moral hazard, 454, 478
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443, 445, 446, 450–452
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Multiplication factor, 46, 50, 60, 88–90, 119
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91, 1057–1058

· Skew t distribution, 88, 1059
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NBNI SIFI, 26, 27, 460, 466, 478
Nelson-Siegel model, 131, 133, 150, 205,

398, 402, 517–518
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Net interest margin, 414, 422–424
Net interest spread, 423, 424
Net investment hedge (NIH), 374
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Netting agreement, 259, 265, 269, 300
Network risk, 455, 458–459, 462–463,

474–477
Neural network, 973, 975–989, 998,

1025–1026, 1029
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1025, 1047
NII, 373, 393, 395, 411, 412–418, 419, 422
Non-linear optimization, 1047–1049
Non-maturity deposit (NMD), 366, 371,

394, 398, 401, 427–437, 451
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Non-parametric estimation, 66, 71, 553,

637–645, 724, 741–743, 746, 776,
974–1008

Non-parametric VaR, see VaR
NSFR, 21, 365–367, 376, 462
Numerical integration, 86, 135, 578, 584,

787, 825, 838, 910, 1037–1041
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161, 163, 165, 179, 183, 190–191,
358, 365, 367, 371, 393, 397

Omnibus estimator, 746–748
On-balance sheet item, 21, 37, 161,

190–191, 367, 384, 388, 421
Operational risk, 9, 17–18, 22, 24, 103, 104,

305–346, 636, 788, 805, 885, 890,
898, 909

Optimization, 1046–1051
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· American, 437, 439
· Asian, 853–856
· At-the-money (ATM), 493, 499, 506,

510, 513, 551, 569–574, 591, 600
· Barrier, 531–532, 541–546, 559, 589,

813, 833
· Best-of, 585
· Binary, 541–545
· Call, 93–101, 119, 121, 214, 260,

492–494, 497, 502, 562, 581–583,
594, 598–600, 854, 856, 867, 869

· Cega, 585–586
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OTC, 5–9, 21, 25, 92, 102, 141, 257–260,

278, 300, 462, 485, 491
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Own risk and solvency assessment, see
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P
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investment products, see PRIIPS
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Parametric VaR, see VaR
Partial differential equation (PDE), 492,

496–497, 504, 514, 530–531,
534–535, 548–549, 558–560, 562,
576, 578, 579, 584–587, 593–594,
601, 1041–1045, 1070–1072, 1081
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PD, 125, 126, 136, 144, 162, 168–170,

173–181, 201–220, 235, 253, 268,
276, 283, 284, 302, 357, 910, 912,
921, 924, 926, 942
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Peak over threshold, 340, 773–777
Pearson’s correlation, 727–729
Penalized maximum likelihood, 341, 972
Periodogram, 683–686, 687, 689, 692, 693,

712, 714
PFE, 264–266, 269–271, 274, 280, 301, 302
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209, 219, 249, 251, 253, 293, 792
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25, 181
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1), 17–18, 20, 25, 159, 241, 246
· Supervisory review process (Pillar 2),

17, 20, 22, 25, 181, 190, 241, 246,
249, 342, 393, 396, 893
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346, 793, 824–827
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615–617, 791, 873, 970, 1051,
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618, 652, 717, 754, 805, 873, 886,
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1051
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1056
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765, 768, 770, 778
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Probit model, 200, 925, 972, 1025
Procyclicality, 20, 21, 177
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number generation
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QQ plot, 321, 692
Quadratic discriminant analysis (QDA),

961–966
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1026–1028, 1046–1047, 1049

Quantile, 16, 63, 65, 67, 71, 86, 242,
264–265, 300, 321, 328, 334, 431,
467, 590, 716, 731, 737–740, 771,
773, 784, 805–807, 912–916, 920,
924, 1062

Quantile regression, 613–614, 643–645,
912–916, 920

Quantitative impact study (QIS), 176–177
Quasi-Monte Carlo simulation, 880–884
Quasi-Newton algorithm, 1048, 1049

R
Random correlation matrix, 809–813
Random covariance matrix, 809
Random forests, 1003–1004, 1008
Random number generation, 787–798
Random orthogonal matrix, 807–809
Rank statistic, 69, 109, 465, 725, 741–746
Rare event simulation, 859
RAROC, 2, 105
Ratchet option, 532–536
Rating, 18, 39, 56, 158, 162, 163, 168, 182,

188, 206–215, 251–253, 284, 361,
814–817, 923, 942

Recovery rate, 63, 91–93, 134–136, 142, 155,
168, 191–192, 197, 200, 216–219,
247, 249, 250, 280, 284, 289, 302

Recursive least squares, 650–652
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Regularization technique, 111–113, 972
Regulatory arbitrage, 17, 27, 162
Rejection sampling, 794–797, 875, 887–888
Repo, 9, 38, 54, 183, 459, 478, 480, 487
Reputational risk, 305
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Residual risk, 53, 57, 288, 506
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Reverse stress testing, 916–919
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1021–1023
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894–896, 899–903, 921, 925
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· Convexity, 62, 107
· Definition, 61–64, 118
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· Monotonicity, 62
· Subadditivity, 62–64, 106, 118
· Translation invariance, 62–63
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Risk-based capital, see RBC
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265, 280–284, 439, 492, 499,
508–511, 514, 516, 519, 522–523,
529, 537, 546, 560, 562, 575, 581,
583, 589, 596, 602
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RiskMetrics, 37, 80–81
Risky PV01, 143, 148–151, 247
RMBS, see MBS
Robust regression, 612–614
ROC curve, 1017–1020
Rogue trading, 9, 305, 307, 318, 898
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396, 412
RW/RWA, 14–15, 18, 40, 53–57, 160–163,

166–167, 177–183, 186–189, 254,
268, 285–289, 361, 366, 486, 894
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SA-CR, 162–167, 181–184
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SA-TB, 53–57
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1077, 1083
Scenario analysis, 339–341, 894–897
Schur decomposition, 1034–1036, 1037,
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SCR, 23–25
SEC, 12, 26, 461, 476
Securities and Exchange Commission, see
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Securitization, 5, 17, 20, 45, 57, 137–141,

183, 185–189, 481, 485, 487
Senior tranche, 155–158, 185–189
Sequential Monte Carlo, see Particle filter
Sequential quadratic programming (SQP),

1049
Shadow banking, 27, 460, 478–487
Shannon entropy, 1009–1011
Sherman-Morrison-Woodbury formula, 651
Shifted log-normal model, 535–546, 598
SIFI, 12, 26–27, 460, 463–477
Simulated method of moments (SMM),

635–637
Simulated VaR, see VaR Monte Carlo
Single loss approximation (SLA), 333–336
Single supervisory mechanism, see SSM
Skewness, 84–87, 122, 193, 236, 600, 707,

1054, 1061, 1083
Sklar’s theorem, 589, 715–716, 723, 778
Slowly varying function, see Regular

variation
SM-CCR, 270
SM-CVA, 284–285
SMA, 22, 311–312
SMM, 15, 38–45, 70, 116
Sobol sequence, 882–884
Softmax function, 973, 981, 983, 1008,

1026
Solvency capital requirement (insurance),

see SCR
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Solvency I, 23
Solvency II, 22–24, 456
Solvency ratio (Insurance), 25
Spearman’s rho, 724–728, 736, 738, 744,

747–749
Special purpose vehicle (SPV), 138
Specific risk, 38–40, 48, 53, 116
Spectral analysis, 670–704
Spectral density function, 672–673,

677–682, 688–691, 696–698, 703,
713–714
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· Bond, 135
· CDO, 157
· CDS, 143–151, 205–206, 247, 249,

250, 281, 283, 292
· CDX, 154
· Credit curve, 146
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· Risk, 37, 42, 53, 58, 60, 396, 403

Spread option, 585–587, 590, 849, 884
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Cox-Ingersoll-Ross process
Square-root-of-time rule, 46, 73, 266
SREP, 181, 461
SRISK, 471–475
SSM, 461
Standard deviation-based risk measure, 62,

74, 106
Standardized approach (counterparty credit

risk), see SA-CCR
Standardized approach (credit risk), see

SA-CR
Standardized approach (credit valuation

adjustment), see SA-CVA
Standardized approach (trading book), see

SA-TB
Standardized measurement approach

(operational risk), see SMA
Standardized measurement method (market

risk), see SMM
Standardized method (counterparty credit

risk), see SM-CCR
Standardized method (credit valuation

adjustment), see SM-CVA
State space model, 647–656, 661, 669,

679–681, 688, 709–711, 713, 815,
817, 818, 880

Static hedging, 542
Stochastic correlation model, 235

Stochastic differential equation (SDE), 492,
499, 522, 525, 530, 539, 546, 562,
596–598, 708, 819–824, 827, 835,
842, 849, 1067–1070, 1074–1076,
1080–1083

Stochastic integral, see Itô integral
Stochastic volatility, 104, 554, 560–575,

599–601, 667–670, 1077
Stopping time, 1073–1074
Strategic risk, 305
Stratified sampling, 862–870
Stress scenario, 60, 394–402, 455, 456,

472–473, 894, 897, 899–904
Stress testing, 45, 47–48, 395, 462, 893–921
Stressed value-at-risk (SVaR), see VaR
Strong Markov property, 1073, 1082
Subexponential distribution, 333–336
Super senior tranche, 155–158
Supervised learning, 958–1008
Supervisory review and evaluation process,

see SREP
Supervisory review process, see Pillars
Support vector machine, 989–1001,

1026–1028, 1030
Survival function, 92, 135, 143, 151–152,

201–205, 209, 212, 215, 218, 220,
225, 247, 249, 251–253, 275,
281–283, 304, 383, 386–392,
442–446, 448, 450, 452, 730, 749,
762, 779, 792

SVI model, 554–558
SVM regression, 996–997, 1028
Swap market model (SMM), 529
Swaption, 274, 519, 522, 529, 578
Systematic risk factor, 220, 253, 291,

454–455, 468, 909
Systemic risk, 7–11, 26–27, 347, 359,

453–477, 899, 1031
Systemic risk contribution, see SRISK
Systemically important financial institution,

see SIFI

T
Tail dependence, 730–731, 735, 737–740,

748, 749, 751, 783–785
Tail risk, 76, 456–458, 753
Technical provision, 23–25
Term deposit redemption ratio (TDRR),

400
The Federal Reserve Board of Governors,

see FRB
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The standardized approach (operational
risk), see TSA

Time domain maximum likelihood
(TDML), 687

TLAC, 462, 465–466
Tobit model, 708
Total loss absorbing capacity, see TLAC
Trade repository, 25, 462, 485
Trading book, 19, 22, 38, 52, 288, 311, 373,

385, 894
Trading volume, 130, 349–350, 352
Transition probability matrix, 206–212,

252, 253
TSA, 18, 308–310
Turnover, 7, 350, 353
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UCITS, 25, 487
Uncertain volatility model (UVM), 530–536
Undertakings for collective investment in

transferable securities, see UCITS
Underwriting risk, 24
Unexpected loss (UL), 178, 185, 251, 310,

333, 470
Unit root, 82, 572, 655, 660, 661–662,

665–666, 693
Unsupervised learning, 944–959

V
Value-at-risk, see VaR
VaR
· Analytical (or parametric) VaR, 66,

72–90, 90, 121
· Cornish-Fisher VaR, see

Cornish-Fisher expansion
· Credit portfolio, 92–93, 169–176,

241–246, 248–249, 253–255
· Definition, 15, 46, 61–63, 64–65, 118
· Gaussian VaR, 73, 123, 1037
· GEV method, 771–773

· Historical (or non-parametric) VaR,
66, 66–72, 90, 110, 119–120, 124,
894

· Hybrid method, 101
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