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Preface

This text has developed from courses that I have taught on analysis to university
students of mathematics in their first semester. However, it has grown to be much
more than a course for first year students. Although the 11 chapters (beginning at
Chap. 2) include the material usually to be found in beginning courses of analysis, I
have also had further objectives that are not usually communicated to beginning
students.

In my view mathematics underwent a transformation in the late nineteenth
century and early twentieth, indeed a revolution, that could not have been foreseen.
Previously there had not been general agreement about standards of proof except
perhaps in classical Euclidean geometry. The logical basis of arguments used to
prove results about calculus and infinite series, indeed about most mathematics
since the Renaissance, was not understood, and there was some anxiety as to
whether the edifice of mathematical knowledge might come crashing down. Some
mathematicians issued warnings, but the speed and momentum of new discoveries
was fortunately unstoppable, and the results seemed correct; they certainly passed
all empirical tests of correctness. The idea that analysis was transformed, from a
subject with shaky foundations, to become a flagship of correct mathematical
argument, and that this change occurred over a rather short period, is something that
I regard as important for understanding its nature. Suddenly there was general
agreement over what constituted a correct proof, provided only that the details
could be taken in by a human reader. Historically, analysis was a great success
story.

The objective implied by the last paragraph, to communicate to the reader the
success of analysis in overcoming previously held doubts, is not attained by
pedantic rigour or a painstaking level of formality. Nor does it call for any genuine
attempt to recount the history of analysis or follow a historical development of the
subject. Nor does it call for any novel approach to any topic. It does, though, colour
the way the topics are presented. It calls for clarity and meaning in the proofs,
honesty about what has been achieved and the ever present awareness that the
reader is an intelligent adult who genuinely is trying to understand what analysis is
about and why it is important.
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Set theory has played a basic role in the evolution of analysis. A text of this kind
has to present a certain amount of set theory at the outset. But a proper axiomatic
treatment of set theory would alienate many readers. The alternative to this has
usually been the awfully named naive set theory, involving a careless approach to
difficult ideas. But this too can alienate readers (though probably not the same
group of readers). Some middle approach is needed that is honest about set theory
but not pedantically detailed. The reader should be made aware that there is a need
for clear principles for building sets, including many sets that mathematicians take
for granted, even if these principles are not all explained in detail. How can anal-
ysis, as it is usually understood, exist unless it is accepted that an infinite set exists?
This a major stumbling block for those not trained in mathematics and a “look it’s
obvious” approach will not win any converts. And why should it? In an accurate
treatment an infinite set is introduced by a set-building axiom. When set theory is
naive, non-mathematicians can appear foolish, and mathematicians can appear
doctrinaire.

Every text of this kind has its red lines, introduced by the hackneyed phrase
‘beyond the scope of this book’. The word ‘fundamental’ of the title is supposed to
be taken seriously and construed as meaning a certain portion of analysis. What bits
of analysis are fundamental? They must include the following items: an accurate
description of the real numbers, limits, infinite series, continuity, derivatives,
integrals and the elementary transcendental functions. These are standard contents
of a first university course in analysis. Very broadly, the boundaries of fundamental
analysis lie where the key to further progress requires certain far-reaching theories
that are introduced to students after a first course, typically, complex analysis,
metric spaces, multivariate calculus or the Lebesgue integral.

In this text there is no discussion of countability versus uncountability for sets.
There are no open or closed sets (apart from intervals), and therefore no topology or
metrics; and certainly no Heine–Borel theorem, though we go dangerously close to
requiring it. This means that we stop short of a nice, necessary and sufficient
condition for integrability. The integral is Riemann-Darboux; though I freely
confess my view that the Lebesgue integral is the greatest advance in analysis of the
twentieth century. There is no general treatment of any class of differential equa-
tions; though some very special and important equations appear at crucial places in
the narrative. There is no complex analysis (though there is a chapter introducing
complex numbers) and almost no functions of several variables; certainly no final
chapter, so beloved by authors of analysis texts, entitled ‘Extension to several
variables’. Surely several variables deserve a book of their own.

Missing is any construction of the real numbers or the complex numbers. My
view is clear: neither construction is needed for analysis. They serve only two
purposes: logically, to prove that the axioms of analysis are consistent; and peda-
gogically, to answer students who obstinately want to know what the square root of
two and the square root of minus one are in reality, and who are not necessarily
convinced by the answers. Moreover, giving prominence to constructions tends to
suggest that there is only one right way to understand real numbers or complex
numbers.
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After reading two paragraphs devoted to what is not included, the reader may
well wonder what the author considers fundamental analysis to be. To see what is
included the reader is referred to the rather thorough list of contents.

Analysis is like the trunk of a great tree that gives rise to branches, some small,
some large and some still growing. I have included a number of sections marked
with the symbol ð}Þ and referred to as nuggets (as in nugget of wisdom, though I'm
actively searching for a different name). These take up fascinating topics that can be
explored using fundamental analysis, but can be omitted without losing the main
thread. They go in some cases far beyond what a beginning student would ordi-
narily encounter. They serve to enrich the narrative and often point to a whole
subject area that springs out of the main trunk of the tree. They are not needed in the
main text of sections not so marked; however, they may be needed for some of the
exercises. Some push the boundaries of the main text and encroach on areas where
one really starts to need complex analysis or multivariate calculus to make sig-
nificant progress. Mostly they can be omitted in a first course of analysis. These
sections, and exercises elsewhere that may need material from them, are marked
with the nugget symbol ð}Þ. Most conclude with a short subsection called ‘Pointers
to further study’ listing topics or whole subject areas that the reader can look up if
they wish to pursue the topic of the nugget further.

Advice for Instructors

This text began life as lectures for a first course of analysis, which was taught a
number of times to mathematics students in their first year at the University of
Iceland, and consisted of 23 lectures of 80 min each. Material from all 12 chapters
was covered in the lectures, in the same order of presentation, omitting the content
of sections marked with the nugget symbol ð}Þ. Some of the topics that ended up in
the nuggets were assigned to students as study projects on which they were required
to give a presentation.

Thus, in spite of a considerable expansion, and because the additional and more
demanding material is clearly marked, the text can be used as the basis for a course.
The instructor would only have to agree with the author on a number of key
pedagogical issues, that can give rise to heated disputes and to which the answer is a
matter of personal preference. For example, over whether or not to construct the real
numbers; or over whether to present sequences and series before functions of a real
variable; or whether uniform convergence should be covered in a first course; or
how to define the circular functions. The first issue is discussed in the nugget
(Sect. 3.10) ‘Philosophical implications of decimals’ and elsewhere in this preface;
the elementary transcendental functions are rigorously defined and studied at the
earliest point in the text at which it is possible in a practical and meaningful manner.

The text contains many exercises mostly collected together into exercise sec-
tions. However, some isolated exercises interrupt the text with the purpose of
inviting the reader to engage immediately and constructively with the material. It
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will be noticed that many of the exercises are challenging and some of them present
results of independent interest. It is expected that the instructor can provide addi-
tional routine exercises for the purpose of practising the basic rules.

Scattered throughout the text are some pictures. The philosophy behind them is
that they may help the reader to visualise an idea or a proof, but are never a
necessary part of the discourse. They were hand-drawn using the free graphics
software IPE and are intended to resemble nice impromptu sketches that a teacher
might make in class.

Reykjavik, Iceland
November 2019

Robert Magnus
Professor Emeritus
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Chapter 1
Introduction

1.1 What Is Mathematical Analysis?

Mathematical analysis, or simply analysis, is the study of limits, series, functions
of a real variable, calculus (differential calculus and integral calculus) and related
topics, on a logical foundation and using methods that are considered acceptable by
modern standards. The aims of analysis were attained by two main achievements: an
exact formulation of the properties of the real numbers, and a correct definition of the
notion of limit. Analysis is both very reliable, in that its conclusions are considered
correct with considerable confidence, and very useful; modern science would be
unthinkable without calculus, for example.

John von Neumann wrote: “The calculus was the first achievement of modern
mathematics and it is difficult to overestimate its importance. I think it defines more
unequivocally than anything else the inception of modern mathematics; and the
system of mathematical analysis, which is its logical development, still constitutes
the greatest technical advance in exact thinking.”

1.2 Milestones in the History of Analysis

The dates in the following list are approximate.
c. 300 BC Euclid publishes a proof that

√
2 is not a rational number (Elements,

theorem 117, book 10).
c. 300 BC Euclid publishes Eudoxus’ theory of irrational numbers (Elements,
book 5).
c. 250 BC Archimedes solves several problems, such as that of calculating the area
of a parabolic segment, using methods that foreshadow integration.
1660–1690 Newton and Leibniz invent calculus (differential and integral calculus).
They base it on the idea of infinitesimals. These are quantities that are smaller than
any positive real number, yet are still positive and non-zero.
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2 1 Introduction

1660–present The sensational solution of the Kepler Problem is only the first of an
inexhaustible supply of problems in applied mathematics, science and technology
that are solved using calculus.
1734 George Berkeley criticises the foundations of calculus. He asks what infinitesi-
mals really are, andwrites: “Maywe not call them the ghosts of departed quantities?”
1600–1800 Infinite series are used although a clear definition of convergence is lack-
ing. Many exciting results are obtained by using infinite series as if they were finite
sums (most noteworthy is the work of Euler). It is known even so that uncritical use
of series can lead to contradictions, such as that 1 = 2.
1817 Bolzano gives a definition of limit not based on infinitesimals. It attracts little
attention.
1820 Fourier introduces Fourier series which make it possible to represent a dis-
continuous function as an infinite series of trigonometric functions. The problem is
that there is still no clear concept of function, no clear concept of continuity or the
convergence of a series.
1828 Abel expresses the view that in all mathematics there is not a single infinite
series whose convergence has been established by rigorous methods, and comments
that the most important parts of mathematics lack a secure foundation. He gives the
first proof establishing the sum of the binomial series that is recognisably correct.
1820–1850 Cauchy takes on the task of placing calculus on a secure foundation. He
uses some form of the modern ε, δ arguments but still frequently relies on infinitesi-
mals. He invents complex analysis and proves Taylor’s theorem. In 1821 he publishes
Cours d’Analyse, the forerunner of all modern books on mathematical analysis. He
famously makes the mistake of claiming that the limit of a sequence of continuous
functions is continuous.
1872 Dedekind defines Dedekind sections. He carries out an exact study of the
nature of the real numbers, the first since Eudoxus. The notion of irrational number
is clarified. In this way a secure foundation is obtained for analysis.
1860–1880 Weierstrass completes the work of Cauchy. The concept of uniform
convergence is clarified. He creates famous counterexamples that show the dangers
that lurk in uncritical thinking. One such is a continuous function that is nowhere
differentiable.
1860–1890 Dedekind and Cantor create set theory. It proves to be the correct lan-
guage in which to express the conclusions of analysis.



Chapter 2
Real Numbers

As professor in the Polytechnic School in Zurich I found
myself for the first time obliged to lecture upon the
elements of the differential calculus and felt, more keenly
than ever before, the lack of a really scientific foundation
for arithmetic.

R. Dedekind. Essays on the theory of numbers

2.1 Natural Numbers and Set Theory

Natural numbers are used to count the members of finite sets. They are 0, 1, 2, 3
and so on. They constitute a set denoted by N. We consider 0 a natural number; it is
needed to count the members of the empty set. The set of positive natural numbers
(that is 1, 2, 3, etc.) is denoted by N+.

We cannot undertake an exact treatment of analysis without set theory.We assume
the reader understands the following formulas concerning sets:

(a) x ∈ A This says that x is an element of the set A. Its negation, the statement
that x is not an element of A, is written x /∈ A.

(b) A ⊂ B This says that the set A is a subset of the set B, that is, every element of
A is an element of B. It does not preclude the possibility that A = B.

(c) A ∪ B The union of the sets A and B, that is, the set of elements x such that
x ∈ A or x ∈ B.

(d) A ∩ B The intersection of the sets A and B, that is, the set of all elements x
such that x ∈ A and x ∈ B.

(e) ∅ The empty set, mentioned above as the set with 0 elements.

If A ⊂ B we also say that B includes A, but never that B contains A. The latter
would always mean that the set A is an element of the set B. In this text we shall
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4 2 Real Numbers

mention sets of sets only rarely. Principally, the sets we need have as their elements
numbers of some kind, for example real numbers or natural numbers.

It is worth reminding the reader that the logical disjunction of two propositions p
and q, written symbolically p ∨ q and read “p or q”, is true when either proposition
is true, including when both are. Thus A ∪ B includes the set A ∩ B.

Union and intersection are simple ways to build new sets out of old. But we will
need much more powerful ways which we will not try to justify. For example we
need the natural numbers to form a set. Only if this is readily believable can we
proceed to analysis. It is a common experience of mathematicians that attempts to
explain analysis to someonewithoutmathematical training get stranded on this point.
The interlocutor does not accept the existence of an infinite set, although they may
readily accept the fact that the natural numbers are infinitely many, apprehending
that there is an unlimited supply of them. They may find it hard to admit that there
is any sense in treating the natural numbers as a totality, as a completed whole. This
is not foolish; that the natural numbers form a set cannot be proved; it requires an
axiom of set theory (axiom of infinity). Without this fact there is no analysis. We
will see ample confirmation of this, in the great emphasis placed on sequences for
example.

We can also form the intersection and union of infinitely many sets (the latter
requires an axiom in proper accounts of set theory). We will look at these construc-
tions, and other operations on sets, if and when they are needed, but they are readily
acceptable as common sense once the notion of an infinite set is accepted.

In simple cases we can list the elements of a set, enclosing them in curly brackets.
For example

A = {0, 1, 4, 16}

builds a set whose elements are 0, 1, 4 and 16. The order of the elements does not
count, nor do repetitions. Thus the sets

{1, 2}, {2, 1}, {2, 1, 2}

are all equal to each other. The reason is that two sets A and B are defined to be equal
when they have the same members, that is, when x ∈ A if and only if x ∈ B.

We might try to build the set of all even numbers by writing

B = {0, 2, 4, 6, 8, ...}

and such formulations are readily understandable if used sensibly. However, the set of
all even numbers is more correctly formed using a prescription called specification,
that builds the set of all elements of a given set that have a specified property. Using
the property “n is divisible by 2”, we can form the set B of even numbers by

B = {n ∈ N : n is divisible by 2}.

The general form of this construction is
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B = {x ∈ E : P(x)}.

Here E is a given set and P(x) is a property (called by logicians a predicate) which
may or may not be true for different assignments of elements of E to the variable x .
So we are singling out the set of all elements x of E for which P(x) is true.

Using thiswe can build lots of subsets of the setN of natural numbers; for example,
the set of even numbers, odd numbers, prime numbers, square numbers and so on.
But we never get anywhere near all the possible subsets of N by this means because
we cannot form enough predicates. We may want to make a statement about all
subsets of N. These form the elements of a set so vast that it defeats our imagination
to encompass it (though that is nothing compared to the really big sets of set theory).
Although we will not need it in this text, the set of all subsets of N is an important
set for analysis, so it had better exist (again it requires a special axiom of set theory,
the power-set axiom).

We now state an important property of the natural numbers. We shall consider it
an axiom. It refers to completely arbitrary subsets of N.

Principle of induction. If A is a set of natural numbers (that is, A ⊂ N) such that
0 ∈ A, and such that x + 1 ∈ A whenever x ∈ A, then A = N.

Axiomatic set theory usually has an axiom that makes infinite sets possible (the
axiom of infinity mentioned earlier). It posits the existence of a set that contains 0,
and for all natural numbers x , it contains x + 1 if it contains x . From this one can
construct the set N by defining it as the intersection of all sets that have the property
stated in the previous sentence. If one accepts this definition of N, then the principle
of induction follows as a theorem about N. However, it is also quite natural to take
the existence of N as a set for granted, and the principle of induction as an axiom
that singles out the essential nature of the natural numbers: that you can reach any
natural number from 0 by successively adding 1; and anything that you reach in this
way is a natural number.

Another version of the induction principle, one that has more practical value, uses
predicates that can be applied to the natural numbers, instead of subsets. An example
of a predicate could be “n is divisible by 5”.

Principle of induction with predicates. Let P(n) be a predicate applicable to the
natural numbers (that is, it is true or false for each substitution of a natural number
for n). Assume that P(0) is true, and that for every n it is the case that P(n) implies
P(n + 1). Then P(n) is true for all natural numbers n.

The principles are equivalent. Suppose that we assume the principle of induction.
Let P(n) be a predicate with the properties that P(0) is true and that P(n) implies
P(n + 1). We form the set A = {n ∈ N : P(n)} and see that 0 ∈ A, and, for every
x , if x ∈ A then x + 1 ∈ A. We deduce by the principle of induction that A = N,
that is, that P(n) is true for all n, thus establishing the principle of induction with
predicates.

Conversely, let us assume the principle of induction with predicates. Let A ⊂ N.
We apply the principle of inductionwith predicates to the predicate “n ∈ A” to obtain
the principle of induction.
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Instead of assuming that P(0) is true we could assume that there is a natural
number k such that P(k) is true. Then the conclusion would be that P(n) is true for
all natural numbers n ≥ k.

Our first proposition says something immensely important about all possible sub-
sets of N, in their unimaginable variety.

Proposition 2.1 Every non-empty subset of N contains a lowest element.

More informally: in every collection of natural numbers there is a smallest number.
This result is often used without being explicitly mentioned; and the present work is
probably no exception.

Proof Given the non-empty subset A of N, let B be the set

B = {x ∈ N : x ≤ y for all y ∈ A}.

The specification says that B is the set of all natural numbers x , with the property
that x ≤ y for all y in A. Elements of B are called lower bounds for A.

Now 0 ∈ B. On the other hand B is not all of N, since there exists some z ∈ A
(as A is not empty) and then z + 1 /∈ B. Now we turn the induction principle on its
head and conclude that there exists u in B such that u + 1 is not in B (for otherwise
B would be all of N). So u is a lower bound for A but u + 1 is not.

Now u must be in A. For u ≤ y for all y ∈ A, so that if u is not in A we would
have u < y for all y in A. Since we are only considering integers we would have
u + 1 ≤ y for all y in A and u + 1 would be a lower bound—which it is not. We
conclude that u ∈ A and hence u is the lowest element of A. �

2.1.1 Exercises

1. Show that the following predicates are true for all natural numbers:

(a) Either n is divisible by 2 or n + 1 is divisible by 2.
(b) 2n > n.

2. (a) Prove that 2n > n2 whenever n is a natural number greater than or equal to 5.
(b) Prove that 2n > n3 whenever n is a natural number greater than or equal to 10.

3. Let a be a natural number. Prove the following by induction:

(a) For all natural numbers n, the number (a + 1)n − 1 is divisible by a.
(b) For all even natural numbers n, the number (a − 1)n − 1 is divisible by a.

Note. This follows most naturally from the binomial theorem, which will be the topic of several

exercises in the coming pages.

4. Prove that the following version of the induction principle, which appears to have
a weaker premise than the usual one, follows from the usual induction principle:
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Let P(n) be a predicate for the natural numbers. Assume that P(0) is true,
and that whenever P(k) is jointly true for all of k = 0, 1, 2, ..., n then
P(n + 1) is true. Then P(n) is true for all n.

Hint.Consider the predicate Q(n) that says that P(k) is jointly true for all natural
numbers k such that 0 ≤ k ≤ n.
Note. Use of this rule is called proof by complete induction.

5. The locus classicus of proof by complete induction. Show that every natural
number greater than or equal to 2 is divisible by some prime number.

6. The Fermat numbers are defined by the formula an = 22
n + 1, for n = 0, 1, 2,....

(a) Show that if n 
= m then the numbers an and am have no common prime
divisor. In short, they are coprime. Note that 1 is not considered a prime.

(b) Deduce that the set of primes is infinite.

Note. Euclid published a proof that the set of primes is infinite that the reader is probably more

familiar with.

2.2 Axioms for the Real Numbers

We shall describe the set R of real numbers by axioms, listing the properties that it
should have from which we are confident that it is possible to derive the whole of
analysis. We shall not attempt to build such a set, although this can be done using
set theory. Intuitively, the real numbers model a line in Euclidean geometry, or more
precisely, a coordinate line, like the x-axis of coordinate geometry standing alone.
This picture is the reason why we often refer to a real number as a point. The basic
intuition is that the line is marked off by a selection of real numbers for the purpose
of measurement, and most importantly, any degree of accuracy can be attained by
increasing the density of markings.

We shall not make any essential use of this picture. Instead we set out properties
of the real numbers in the form of axioms. These fall into three distinct groups. We
will introduce them in stages interspersed with deductions of familiar rules, together
with reasons why further axioms are needed.

2.2.1 Arithmetic Axioms

The first group of axioms concerns arithmetic.

Axioms A. R is a field.

These axioms specify the algebraic operations we can perform with real numbers,
together with their properties. There are two binary operations, x + y (addition) and
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x · y (multiplication), and two distinct constants 0̄ and 1̄, that satisfy the six axioms
in the following list:

(A1) (Commutative laws) For all x and y we have

x + y = y + x and x · y = y · x .

(A2) (Associative laws) For all x , y and z we have

(x + y) + z = x + (y + z) and (x · y) · z = x · (y · z).

(A3) (Neutral elements) For all x we have

x + 0̄ = x and x · 1̄ = x .

(A4) (Additive inverses) For all x there exists y, such that

x + y = 0̄.

(A5) (Multiplicative inverses) For all x not equal to 0̄ there exists y, such that

x · y = 1̄.

(A6) (Distributive law) For all x , y and z we have

x · (y + z) = (x · y) + (x · z).

Later we shall identify 0̄ and 1̄ with the natural numbers 0 and 1. For the moment
it seems possible that they could have properties quite unlike 0 and 1. This is the
reason for placing bars over them.

From axioms A1–A5 we can derive some common algebraic rules:

(i) (Cancellation in sums) If x + y = x + z then y = z.
(ii) (Cancellation in products) If x · y = x · z and x 
= 0̄ then y = z.

It follows from the cancellation rules that, given an element x , an element y that
satisfies x + y = 0̄ is uniquely determined by x . It therefore makes sense to denote it
by −x . Similarly an element y that satisfies x · y = 1̄, given that x 
= 0̄, is uniquely
determined by x . We denote it by x−1.

Exercise Prove the cancellation rules from the axioms.

Further familiar rules can be derived with the help of axiom A6 also:

(iii) (Multiplication by 0̄) For all x we have x · 0̄ = 0̄.
(iv) (Multiplication by −1̄) For all x we have (−1̄) · x = −x .
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Exercise Prove the stated rules from the axioms.

Now we define subtraction by

x − y := x + (−y),

and division by
x

y
:= x · y−1,

given of course that y 
= 0̄. As is usual the colon in the equation signifies that the
right-hand side is the definition of the left-hand side, although we are not overly
insistent over its use.

The sum and product of n real numbers,

x1 + x2 + · · · + xn, x1 · x2 · ... · xn
are well defined, without the need for brackets, because of the associative laws.
Strictly speaking this should be proved. The proof, using induction and a goodhelping
of patience, is surprisingly long. We will simply accept these facts.

Let n be a positive natural number and x an element of R. We define

xn := n factors
x · x · ... · x

nx := n summands
x + · · · + x .

Up to now there is no way to prove that 21̄ (that is, 1̄ + 1̄) is not equal to 0̄. A set
of elements that satisfy axioms A1–A6 is called a field. There are many examples
of fields that are nothing like the real numbers. For example there exists a field with
only 7 elements. In such a field we must have 71̄ = 0̄.

Real numbers must therefore possess some other defining properties in addition
to axioms A1–A6.

2.2.2 Axioms of Ordering

The second group of axioms concerns the ordering properties of the real numbers.

Axioms B. R is an ordered field.

There exists an order relation that can apply to pairs of elements ofR, written (when
applicable) x < y. This relation satisfies the following axioms:
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(B1) (Trichotomy) For each x and y exactly one of the following three possibilities
must hold:

x = y, x < y, y < x .

(B2) (Transitivity) For all x, y, z, if x < y and y < z then x < z.
(B3) For all x, y, z, if x < y then x + z < y + z.
(B4) For all x, y, z, if 0̄ < z and x < y then x · z < y · z.
Note that axioms B3 and B4 relate ordering and algebraic properties.

We define further relations:

x > y means y < x,
x ≤ y means (x < y or x = y),
x ≥ y means (x > y or x = y).

We define the concepts of positive and negative. If x > 0̄ we say that x is positive.
If x < 0̄ we say that x is negative.

The following familiar rules are consequences of the axioms:

(i) x is positive if and only if −x is negative.
(ii) x > y if and only if x − y is positive.
(iii) 1̄ is positive.
(iv) If x is positive then x−1 is positive.
(v) For all x not equal to 0̄ the number x2 is positive.
(vi) If x < y and z < 0̄ then x · z > y · z.
We shall give the proof of rule (iii), leaving the others as exercises.

Proof of Rule (iii) We note that by trichotomy either 0̄ < 1̄ or 1̄ < 0̄ (since equality
is ruled out by the assumption of distinctness in axioms A). Assume if possible that
1̄ < 0̄. Then −1̄ is positive (by rule (i), which we suppose was already proved) and
we have (−1̄) · 1̄ < (−1̄) · 0̄ by axiom B4, that is −1̄ < 0̄, leading to 0̄ < 1̄. This
contradicts the assumption 1̄ < 0̄ and proves rule (iii). �

Exercise Prove the remaining rules.

An ordered field includes a copy of N. Because 1̄ > 0̄ we have, for each x , that
x < x + 1̄. This leads to a strictly increasing sequence 0̄, 1̄, 21̄, 31̄, ..., that is,

0̄ < 1̄ < 21̄ < 31̄ < · · · < n1̄ < (n + 1)1̄ < · · ·

We can never reach 0̄, because if we did, we could conclude that 0̄ < 0̄, which is
impossible. By the same argument any two terms in the sequence are distinct.

The set {n1̄ : n ∈ N+} ∪ {0̄}, that is to say all elements n1̄ where n = 1, 2, ...,
together with 0̄, is therefore a copy of the natural numbers included in R. So we
can identify n1̄ with the natural number n. From now on we write 0 instead of 0̄, 1
instead of 1̄, 2 instead of 21̄ and so on. We will not distinguish between the natural
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number n and the real number n. We will also usually omit the dot in the product
x · y, writing it instead as xy.

This is beginning to look like the familiar coordinate line. Next we must fill the
gaps between the integers.

2.2.3 Integers and Rationals

Elements of the set N ∪ −N, that is, of

{0, 1, 2, 3, ...} ∪ {−1,−2,−3, ...},

are called integers. The set of integers is denoted by Z.
Elements of the set

Q :=
{m
n

: m ∈ Z, n ∈ N+

}

are called rational numbers. The (first) colon signifies as usual that the right-hand
member is the definition of the left-hand member. The notation mixes specification
and the listing of a set’s elements within curly brackets. A more correct, but less
transparent formulation is

{
x ∈ R : there exist integers m, and n > 0, such that x = m/n

}
.

A remarkable fact emerges: Q is an ordered field. The reader should check that
all the axioms A and B are satisfied byQ. It is virtually enough to show that the sum,
product, difference and quotient of two rational numbers are rational. An even more
remarkable conclusion follows:

There is no way to show that R contains elements other than those in Q, by
means of the axioms A and B alone.

2.2.4 Q is Insufficient for Analysis

It was an early discovery that Euclidean geometry is inconsistent with the assumption
that all segments have rational length. It was found that the diameter of a unit square
is not rational. SoQ is not enough for practical tasks like drawing up plans for a new
kitchen. The following proposition is in Euclid’s Elements.

Proposition 2.2 The real number 2 has no square root in Q. In other words, there
does not exist in Q any number x that satisfies x2 = 2.

Proof We are going to use an elementary fact of number theory, that any two natural
numbers have a highest common divisor. This implies that a positive element of Q
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may be written as m/n, where m and n are positive integers with highest common
divisor 1.

Suppose, if possible, that 2 has a rational square root. We express it in the form
m/n, where m and n are positive integers with highest common divisor 1. Then
m2/n2 = 2, so that m2 = 2n2. Then 2 divides m2, and therefore also m, as is easy to
see. Hencewe canwritem = 2k where k is a natural number.We find that 4k2 = 2n2,
so that 2k2 = n2. By the same argument 2 divides n also. This is a contradiction
because m and n have highest common divisor 1. �

This conclusion is a special case of a theorem of Gauss on polynomial equations,
usually called Gauss’s lemma. See the exercises in this section.

A real number that is not rational is called an irrational number. By using only
the axioms for an ordered field it is impossible to show that any irrational number
exists, for the simple reason that Q satisfies all the axioms for an ordered field. As
we saw, any number that is a square root of 2 must be irrational.

It would be inconvenient if no square root of 2 existed. We would not be able to
assign a length, as a real number, to the diagonal of a unit square. So R is not merely
an ordered field. We need a new axiom to ensure that irrational numbers, such as the
square root of 2, exist. To express this axiom we need to look at subsets of R.

2.2.5 Dedekind Sections

The set of all subsets of R is dizzyingly large, but it seems to enter analysis in an
essential way. The existence of this set is guaranteed by an axiom of set theory, the
power set axiom. For fundamental analysis we canmostly get by without needing the
set of all subsets of R, since many important subsets can be defined by specification.
To keep things simpler we first look at certain subsets of R with a simple structure.

Definition ADedekind section ofR is a partition ofR into two disjoint sets, Dl and
Dr (left set and right set), such that R = Dl ∪ Dr , neither Dl nor Dr is empty, and
for all x ∈ Dl and y ∈ Dr we have x < y.

Recall that a set can be empty.We are explicitly excluding that Dl or Dr can be the
empty set ∅. The definition requires that Dl and Dr have no common elements. This
is expressed by the formula Dl ∩ Dr = ∅, or in words: Dl and Dr are disjoint. The
syntax is conventional but confusing, as this is not a property of the sets individually
but a property of the pair of sets.

In order to give an example of a Dedekind section it is convenient to use a new
binary operation on sets, the set difference A \ B. This is the set of all elements of
A that are not elements of B. In the case that A = R and B ⊂ R, it is usual to call
A \ B the complement of the set B.
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Example of a Dedekind Section Let Dl be the set of all positive real numbers x
that satisfy x2 < 2, together with all negative real numbers and 0. Let Dr = R \ Dl .

Exercise Check that this defines a Dedekind section.

2.2.6 Axiom of Completeness

The final axiom for the real numbers is expressed in terms of Dedekind sections.

Axioms C. R is a complete ordered field.

There is one additional axiom that turns an ordered field into a complete ordered
field:

(C1) For each Dedekind section R = Dl ∪ Dr there exists a real number t , such
that x ≤ t for all x ∈ Dl and t ≤ y for all y ∈ Dr .

We know that t is either in Dl or in Dr , but not in both. That means that either t
is the highest element of Dl or it is the lowest element of Dr .

Exercise Show that t is uniquely defined by the Dedekind section.

Often the definition of Dedekind section includes a stipulation that Dl has no
highest element. This is to ensure that there is a one-to-one correspondence between
Dedekind sections and real numbers.

2.2.7 Square Root of 2

The trouble began with
√
2. We can settle the issue straight off.

Consider the Dedekind section that we defined before:

Dl = {x ∈ R : x ≤ 0} ∪ {x ∈ R : x > 0, x2 < 2}
Dr = {x ∈ R : x > 0, x2 ≥ 2}.

According to axiom C1 there exists t , that is either the highest element of Dl or
the lowest element of Dr . It is clear that t > 0, this being obvious if t is the lowest
element of Dr , and if t is the highest element of Dl then t ≥ 1 since 1 ∈ Dl .

We intend to show that t2 = 2 by excluding the possibilities t2 < 2 and t2 > 2.
Then axiom B1 gives t2 = 2. We show in detail that t2 < 2 is impossible. The reader
is asked to give the details for excluding t2 > 2 (Exercise1 below).

Suppose that t2 < 2. Then t is in Dl , and is therefore its highest element. We shall
produce a contradiction by exhibiting a real number z such that z > t but z2 < 2.
Such a number z would be an element of Dl higher than t . The tricky thing is that
we have to do this without assuming that the number

√
2 exists.
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The least cunning approach is to let z = t + ε where ε > 0. We want if possible
to choose ε so that (t + ε)2 < 2, and this is equivalent to

t2 + 2εt + ε2 < 2,

which in turn is equivalent to

ε <
2 − t2

2t + ε
.

Let us agree to look for ε in the interval 0 < ε < 1. For such ε we have

2 − t2

2t + ε
>

2 − t2

2t + 1
.

Therefore it suffices if ε also satisfies

ε <
2 − t2

2t + 1
.

The conclusion is that the number

ε = 1

2
min

(
1,

2 − t2

2t + 1

)

will work, where min(a, b) denotes the lower of the two numbers a and b. The
number ε is positive and quite explicitly defined.

2.2.8 Exercises

1. Exclude the possibility that t2 > 2 in the above argument for the existence of
√
2

using a similar approach. This concludes the proof that
√
2 exists.

2. Suppose that t > 0 and let s = (2t + 2)/(t + 2). Show that if t2 < 2, then t < s
and s2 < 2; moreover if t2 > 2, then t > s and s2 > 2. This gives another, and
purely algebraic way, to prove that the number t of the previous section is

√
2.

3. We take the idea of the previous exercise a step further. Let t1 = 1 and for n =
1, 2, 3, ... we set

tn+1 = 2tn + 2

tn + 2
.

Calculate tn using a calculator up to t7 (or further if you have the patience). The
results suggest that tn approaches

√
2 with increasing n and could be used to

approximate
√
2 by rational numbers. The germ of the limit concept is apparent

here.



2.2 Axioms for the Real Numbers 15

4. Prove that if n is a positive integer, and x and y are real numbers satisfying
0 < x < y, then xn < yn . This shows that the function xn is strictly increasing
on the domain of all positive real numbers.

5. Show that in any ordered field the inequality x + x−1 ≥ 2 holds for all positive x .
6. Let F be afield, that is, F is a setwith operations, and constants 0̄ and 1̄, that satisfy

the axioms A1–A6. Let P be a subset of F that has the following properties:

(a) 0̄ is not in P .
(b) If x and y are in P then x + y is in P .
(c) If x and y are in P then x · y is in P .
(d) If x 
= 0̄ then either x is in P or −x is in P .

Define a relation in F ,written x < y, as follows: x < y shallmean that y − x ∈ P .
Show that this is an order relation that makes F into an ordered field for which
P is the set of all positive elements.

2.2.9 The Functions Max, Min, and Absolute Value

The functions min (used in the last section) and max are examples of functions of
two real variables. They are defined by

min(a, b) :=
{
a, if a < b
b, if b ≤ a,

max(a, b) :=
{
a, if a > b
b, if b ≥ a.

The absolute value of x , denoted by |x |, is defined by

|x | :=
{

x, if x ≥ 0
−x, if x < 0.

Some useful rules for manipulating absolute value and the functions max and min
are

(i) |ab| = |a||b|
(ii) |a + b| ≤ |a| + |b| (triangle inequality for real numbers)
(iii) |a − b| ≥ ∣∣|a| − |b|∣∣
(iv) max(a, b) = 1

2 (a + b + |a − b|)
(v) min(a, b) = 1

2 (a + b − |a − b|).
Often the correct approach when dealing with absolute values, or max and min,

is to consider cases. For example, if a > 0 then |a| = a; if a < 0 then |a| = −a; if
a > b then max(a, b) = a; if a < b then max(a, b) = b and so on.
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Rule (ii) can be proved by cases but a more elegant approach is available. It begins
by noting that a ≤ |a|.

Exercise Prove rules (i–v).

The functions max(a, b) and min(a, b) can be extended by induction to any finite
non-zero number of real variables. Thus for n = 2, 3, 4, 5, ... and so on, we set

max(x1, x2, ..., xn+1) = max
(
max(x1, x2, ..., xn), xn+1

)
min(x1, x2, ..., xn+1) = min

(
min(x1, x2, ..., xn), xn+1

)
.

Defining a sequence of objects by induction means that the nth object is defined
in terms of the preceding ones and we shall see more examples of this in the next
chapter.

The sum of n numbers and the product of n numbers are also, strictly speaking,
defined by induction, though we drew no attention to this when introducing them.
Thus correctly, the definitions for all natural numbers n of the sum x1 + · · · + xn and
the product x1...xn should be given by a scheme which could be written as

x1 + · · · + xn+1 = (x1 + · · · + xn) + xn+1, (n ≥ 1)
x1...xn+1 = (x1...xn)xn+1, (n ≥ 1)

or in a more formal notation that avoids the dots:

n+1∑
k=1

xk =
n∑

k=1
xk + xn+1, (n ≥ 1)

n+1∏
k=1

xk =
( n∏

k=1
xk

)
xn+1, (n ≥ 1).

Given a sequence of numbers x1, x2, x3 and so on, the expression
∑n

k=1 xk intro-
duced here denotes the sum of all the numbers xk as k runs from 1 up to, and
including, n. Similarly,

∏n
k=1 denotes the product of the numbers xk as k runs from

1 up to, and including n.
The notation for sums and products, doubtless familiar to the reader, is capable of

some flexibility. For example the expression
∑n

k=m xk denotes the sum of all numbers
xk as k runs from m up to n, inclusive. This would normally be used in cases where
m ≤ n. If this is not known beforehand we can still use the expression but interpret it
to be 0 ifm > n. In short, the sum of an empty set of numbers is 0. The corresponding
convention for product is that the product of an empty set of numbers is 1.

Given the n numbers x1, ..., xn it should be obvious that max(x1, ..., xn) picks out
their maximum, whilst min(x1, ..., xn) picks out their minimum. In fact the inductive
definition even gives us a nice algorithm for computing these values. This makes it
obvious that these quantities do not depend on the ordering of the numbers. We can
even define max(x) = x = min(x), thus defining these quantities for one variable.
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The rather obvious fact that, of a finite set of real numbers, there is one that is
highest and one that is lowest is often very important; and it is equally important that
of an infinite set of numbers there may be no highest, or no lowest.

2.2.10 Mathematical Analysis

Mathematical analysis is the branch of mathematics that is based on the axiom of
completeness of the real numbers, axiom C1. Most common functions, including
those used in schoolmathematics, can only be adequately defined usingmathematical
analysis. A thorough treatment of functions and their role in analysis really starts in
Chap.4, but we give here a derivation of the nth root function, where n is a natural
number, and more generally, the function xa , where a is a rational exponent. The
basic role of the completeness axiom will be apparent.

We saw that by means of axiom C1 we could prove that the equation x2 = 2 has
a positive root; and that without it, or more precisely, on the basis of axioms A and
B alone, we could not. It is easy to see that there is only one positive root. Indeed we
can observe that the function x2 is strictly increasing for positive values of x . So if
it takes the value 2 it can do so only once for a positive x .

We can use the same logic to show that the equation x2 = y has a unique positive
root for each positive real number y. We can therefore define the function

√
y, the

square root of y, as follows: for each positive real number y the number
√
y is the

unique positive root of x2 = y.
In the same way we can define the nth root of y (where n is a natural number

greater than 1 and y > 0) as the unique positive real number x that satisfies xn = y.
One can imitate the method used to show that

√
2 exists, defining the left-hand set

of a Dedekind section as the set of all real numbers x such that x > 0 and xn < y,
together with all non-positive numbers. The binomial theorem is useful to finish the
argument (see Exercises11, 12 and 13).

Later in this text, in Chap.4, an argument of a more general nature will be pre-
sented, based on continuity and deploying a powerful result called the intermediate
value theorem. This is preferable to the rather clumsy approach using Dedekind sec-
tions. However it is done, the outcome is a function n

√
y that produces the positive

nth root of the positive number y.
It now turns out that k

√
y� depends only on the ratio �/k (see the exercises). We

denote it by y�/k , thus defining a fractional power of y. The scheme is extended
to negative powers by setting y−a = (ya)−1. And to the zeroth power y0 = 1. In
this way we can define ya for rational a and positive y. Although certain powers of
negative numbers make sense, for example (−2)1/3, it is safest to assume that y > 0.
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The laws of exponents (such as ya+b = ya yb) are satisfied, and one can piece
together a cumbersome proof of them (Exercise19). It may be thought better to wait
until arbitrary real powers have been defined (Chap.7) and give a nice, smooth proof
of these.

2.2.11 Exercises (cont’d)1

7. Prove the distributive rules for max and min:

max(x,min(y, z)) = min(max(x, y),max(x, z)),

min(x,max(y, z)) = max(min(x, y),min(x, z)).

8. Let a and b be rational numbers such that
√
a + √

b is rational. Show that
√
a

and
√
b are both rational.

9. The Fibonacci numbers are the sequence of integers 1, 1, 2, 3, 5, 8, 13, ... and
so on, in which each integer from 2 onwards is the sum of the two that precede
it. Sequences will be studied thoroughly in Chap.3. The sequence of Fibonacci
numbers satisfies the recurrence relations

an+2 = an+1 + an, n = 1, 2, 3, ... (2.1)

There are many different sequences that satisfy these relations. The Fibonacci
numbers are distinguished by the initial conditions a1 = 1, a2 = 1. The purpose
of this exercise is to develop a formula for the nth Fibonacci number. You will
see that it requires the use of irrational numbers. You can use the following steps:

(a) Show that there exist exactly two distinct real numbers, r1 and r2, such that if
λ = r1 or λ = r2 then the sequence an = λn , (n = 1, 2, 3, 4, ...) satisfies the
recurrence relations (2.1). Find r1 and r2 and show that they are irrational.

(b) Show that further solutions of the recurrence relations can be obtained by
setting an = Arn1 + Brn2 where A and B are real constants.

(c) The Fibonacci numbers form the uniquely defined sequence of natural num-
bers that satisfy the recurrence relations together with the initial values
a1 = a2 = 1. Find A and B such that the solution an = Arn1 + Brn2 satisfies
a1 = a2 = 1, thus producing a formula for the nth Fibonacci number.

10. The binomial coefficients
(n
k

)
where n and k are natural numbers and 0 ≤ k ≤ n

are defined as (
n

k

)
= n!

k!(n − k)! .

1This is the second group of exercises in Sect. 2.2. For this reason the numbering is continued from
the previous set.
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The exclamation mark used here is the factorial symbol, doubtlessly familiar to
the reader. For completeness we recall that given a positive integer n we denote
by n! the product of all positive integers less than or equal to n. We define 0! to
be 1.
Prove the addition formula:

(
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
, 1 ≤ k ≤ n.

Note. The formula to be proved is the basis of Pascal’s triangle, a nice way to compute the

binomial coefficients, and an obvious indication that they are all integers.

11. Prove the binomial rule: for all natural numbers n and real a and b we have

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk .

Hint. Induction is one possibility, making use of the previous exercise.
12. Suppose that y > 0, x > 0 and xn < y, where n is a positive integer. Without

using the existence of the nth root of y, show that there exists z, such that z > x
and zn < y.
Hint. You can let z = x + ε and imitate the argument that established the exis-
tence of

√
2. The binomial rule can be useful. The result is essentially a proof

that n
√
y exists. See the next exercise.

13. Let y > 0. Write out an argument for the existence of n
√
y, where n is a positive

integer, based on the Dedekind section of R whose left set is the set

Dl = {x ∈ R : x ≤ 0} ∪ {x ∈ R : x > 0, xn < y}.

14. Prove that if the square root of a natural number n is rational then the square
root is a natural number.
Hint.You will need a theorem of number theory: if a is a natural number greater
than 1 and a prime p divides a2 then p divides a.

15. Prove Gauss’s lemma. If a polynomial with leading coefficient 1

xn + cn−1x
n−1 + cn−2x

n−2 + · · · + c0

has integer coefficients, then every rational root is an integer.
Hint. If a is an integer and a prime p divides an then p divides a.
Note. This generalises the result of the previous exercise. It also leads to a simple algorithm

for finding all the rational roots of such a polynomial: if c0 
= 0 test all integral divisors of c0
for roothood.

16. Prove the formulas:

(a)
∑n

k=1 k = 1
2n(n + 1)

(b)
∑n

k=1 k
2 = 1

6n(n + 1)(2n + 1)



20 2 Real Numbers

(c)
∑n

k=1 k
3 = 1

4n
2(n + 1)2

(d)
∑n

k=1(2k − 1) = n2.

17. Prove the Cauchy–Schwarz inequality. Let ak and bk be real numbers for k =
1, 2, ..., n. Then

n∑
k=1

akbk ≤
( n∑

k=1

a2k

) 1
2
( n∑

k=1

bk

) 1
2

.

Equality holds if and only if the two n-vectors (a1, ..., an) and (b1, ..., bn) are
linearly dependent; putting it differently, equality holds if and only if either
bk = 0 for all k or else there exists t such that ak = tbk for all k.
Hint.Let P(t) = ∑n

k=1(ak + tbk)2 and note that P(t) ≥ 0 for all t , whilst, unless
all the bk are 0, P(t) is a second-degree polynomial. Recall some school algebra
about second-degree polynomials that never take negative values.

18. Show that k
√
y� depends only on the ratio �/k. Here we assume that y is a positive

real number, and that k and l are positive integers.
19. Let x > 0, y > 0 and let a and b be rational numbers. Prove the three laws of

exponents
ya+b = ya yb, (ya)b = yab, xa ya = (xy)a .

Hint. Planning is everything. First prove the laws in the case that a, b and c are
natural numbers. That’s just amatter of counting factors and using the associative
and commutative laws. Next do the case when the powers are the reciprocals of
natural numbers, after that the case of positive rational powers, finally rational
powers; or else wait until arbitrary powers, possibly irrational, have been defined
in Chap.7.

20. Prove the following useful properties of rational powers:

(a) If a > 0 and 0 < x < 1 then 0 < xa < 1.
(b) If a > 0 and x > 1 then xa > 1.
(c) If a > 1 and 0 < x < 1 then xa < x .
(d) If a > 1 and x > 1 then xa > x .
(e) If 0 < a < 1 and 0 < x < 1 then xa > x .
(f) If 0 < a < 1 and x > 1 then xa < x .

2.3 Decimal Fractions

Every positive real number has a representation typified by

x = 1001.3835104779...
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where the digits to the right of the point, taken from the numbers 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, continue indefinitely. Conversely, every expression of this kind defines a real
number. Negative numbers are included by writing a minus sign at the front.

These facts are consequences of axiomC1. The concept of limit is needed tomake
the nature of the decimal representation precise. The reader is certainly familiar with
decimal fractions2 and they do provide a valuable basis for one’s intuition about
real numbers. The following discussion, which logically should come later, uses
the notion of an infinite series, to be fully explained in a subsequent chapter. The
purpose for giving it here is to forge an immediate link between the real numbers and
objects of the reader’s experience. The subject of decimals will be taken up again
after infinite series have been properly introduced.

A repeating decimal (also called a recurring decimal) is one of the form (to give
an explanatory example by way of definition)

x = 1001.3835104779477947794779...

the recurrence being that the string 4779 is supposed to repeat indefinitely.We specify
this by the notation

x = 1001.3835104779.

A terminating decimal is one of the form

x = 1001.383510

and is written more simply
x = 1001.38351.

2.3.1 Practical and Theoretical Meaning of Decimals

Practically, decimals are invaluable. They make it possible to calculate using real
numbers. Theoretically, a decimal is a sequence of rational approximations to a real
number, that are of the form a/10m , where a and m are integers. As an example
consider √

2 = 1.4142135623...

where more digits can be found by a simple algorithm which may be repeated indef-
initely. It is an example of an infinite series

√
2 = 1 + 4

10
+ 1

102
+ 4

103
+ 2

104
+ 1

105
+ 3

106
+ 5

107
+ 6

108
+ 2

109
+ · · ·

2Often the term “decimal fraction” is used to mean a rational number whose denominator is a power
of 10. We use the term to mean a real number between 0 and 1 in its decimal representation.
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Truncating to a finite number of terms gives a rational approximation to
√
2. A

commonly used approximation to
√
2 is 1.414 = 1414/1000, obtained by truncating

the series after the fourth term.
The rational numbers stand out in this scheme. They are the repeating decimals.

Examples are
1

16
= 0.0625 = 0.06250

3

52
= 0.05769230.

2.3.2 Algorithm for Decimals

Let x be a positive real number. The following algorithm produces the decimal
representation of x .

First we find the highest natural number less than or equal to x . The existence of
this natural number is a consequence of axiom C1 as we shall see in a later section.
Write this natural number in the decimal system (we assume that the procedure for
this is known) and place a decimal point after it, for example

1001.

Subtract this from x . There remains a number x1 in the interval 0 ≤ x1 < 1. We call
this the first remainder. Now we have 0 ≤ 10x1 < 10. Let d1 be the integer part of
10x1, that is, the highest integer that is less than or equal to 10x1. It is one of the
numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Call it the first decimal digit and write it after the
decimal point, thus

1001.3

Subtract it from 10x1. This leaves the second remainder x2 = 10x1 − d1, also in the
interval 0 ≤ x2 < 1. Next form 10x2, then its integer part, called the second decimal
digit d2, and the third remainder x3 = 10x2 − d2 and so on.

In each step the remainder determines the next decimal digit and the next remain-
der, according to the scheme

dn = [10xn], xn+1 = 10xn − dn.

In this notation [y] denotes in general the highest integer (in this case it must be a
natural number) less than or equal to y. The algorithm ends if the remainder is 0 at
some step.
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2.3.3 Decimal Representation of Rational Numbers

Why is the decimal representation of a rational number a repeating decimal?
If x = m/n (with positive integersm and n) the remainder at each step is a rational

number of the form a/n in the interval 0 ≤ a/n < 1. But there are only n of these,
namely

0 ,
1

n
,
2

n
, . . . ,

n − 1

n
.

When the n + 1st remainder is reached two of the remainders that have already
been calculated must be equal, for example xk = xl . The decimal digits that are
determined by xk, ...., xl−1 then repeat themselves.

If the decimal representation thus obtained is not terminating, the remainders are
never 0. The length of the repeating string, called the period, is therefore at most
n − 1; similarly the length of the initial string (before the repeats commence) cannot
exceed n − 1.

2.3.4 Repeating Decimals and Geometric Series

Repeating decimals are examples of geometric series (about which more later). This
is why they represent rational numbers. Look at the example

0.05769230

This is the number x that satisfies

100x = 5.769230

= 5 + 769230 ×
(

1

106
+ 1

1012
+ 1

1018
+ · · ·

)

(if you don’t know how to sum the series don’t worry; you’ll learn this later)

= 5 + 769230 × 1

106
×

(
1

1 − 1
106

)

= 5 + 769230

999999

= 5769225

999999

Perhaps unexpectedly this simplifies drastically to 75
13 . So that x = 75

1300 = 3
52 . This

typifies the conversion of repeating decimals to ordinary fractions.
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2.3.5 Exercises

1. Convert the following vulgar fractions to decimals.

(a) 1
11

(b) 1
99

(c) 1
32

(d) 3
17

Note. The perspicacious reader may have noticed that the decimal algorithm is really the same

as the long division algorithm as it was taught in primary schools two generations ago. This

provides a convenient way to organise the calculation with pencil and paper.

2. If you know how to sum a geometric series you can practise by converting the
following repeating decimals to vulgar fractions.

(a) 0.10
(b) 0.510
(c) 0.55101

2.4 Subsets of R

Subsets of the real line play a fundamental role in analysis. Most of the many equiv-
alent versions of the completeness axiom involve properties of subsets of R. On a
more elementary level, most functions treated in calculus are defined on a subset of
R, which in many cases is not all of R.

2.4.1 Intervals

A subset of R is called an interval if it is of one of the following ten types (take note
of the notation introduced in each line):

(1) ]a, b[ := {x ∈ R : a < x < b}
(2) [a, b] := {x ∈ R : a ≤ x ≤ b}
(3) ]a, b] := {x ∈ R : a < x ≤ b}
(4) [a, b[ := {x ∈ R : a ≤ x < b}
(5) ]a,∞[ := {x ∈ R : a < x}
(6) ]−∞, b[ := {x ∈ R : x < b}
(7) [a,∞[ := {x ∈ R : a ≤ x}
(8) ]−∞, b] := {x ∈ R : x ≤ b}
(9) ]−∞,∞[ := R

(10) ∅ (the empty set).
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The numbers a and b are called the endpoints of the interval (though not ±∞;
they are not numbers). Open intervals are ones that contain no endpoints, although
they may have endpoints (items 1, 5, 6, 9, 10). Closed intervals are ones that contain
all their endpoints (items 2, 7, 8, 9, 10), and they do this trivially if they have none.

The notation for open intervals varies somewhat in the literature. The use of the
reverse bracket is sometimes disparaged. Instead of writing “]a, b[” it is probably
more usual to prefer “(a, b)”, particularly in the English speaking world, with similar
changes for the other types of interval. In fact both notations are specified in ISO
standard 31-11.Moreover the reverse bracket is used by thatmost authoritative author
Bourbaki. None of this particularly recommends it of course. However, there is a long
history of using the expression “(a, b)” to denote the point in a coordinate plane with
first coordinate a and second coordinate b. The same notation is customarily used
for an ordered pair in set theory.

From a practical point of view, the risk of misunderstanding the reverse bracket
notation is near to zero. That is why it is preferred in this text.

2.4.2 The Completeness Axiom Again

The notation of intervals enables us to express the completeness axiom in a concise
form.

Axiom C1 restated

Let a Dedekind section be given with left set Dl and right set Dr . Then there exists
a real number t such that, either

Dl = ]−∞, t], Dr = ]t,∞[

or
Dl = ]−∞, t[, Dr = [t,∞[.

2.4.3 Bounded Subsets of R

As examples of subsets of R we have seen the various intervals. From them we can
form more subsets by intersection and union. Even so the variety of the set of all
subsets of R is mind-dazzling, and there are many unsolved problems about them.

We now define some important properties that subsets of R may possess; they
involve the ordering of the real numbers.

(a) A subset A ofR is said to be bounded above if there exists y ∈ R such that x ≤ y
for all x ∈ A. A number y that has this property is called an upper bound of A.
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(b) A subset A ofR is said to be bounded below if there exists y ∈ R such that y ≤ x
for all x ∈ A. A number y that has this property is called a lower bound of A.

(c) A subset A of R is said to be bounded if it is both bounded above and bounded
below.

2.4.4 Supremum and Infimum

We prove an important consequence of axiom C1 that applies to arbitrary subsets of
R that are either bounded above or bounded below.

Proposition 2.3

(1) Let A be a non-empty subset of R that is bounded above. Then the set of all
upper bounds of A is an interval of the form [u,∞[.

(2) Let A be a non-empty subset of R that is bounded below. Then the set of all
lower bounds of A is an interval of the form ]−∞, v].

Proof It suffices to prove the result for case 1, from which case 2 is a simple deduc-
tion. Let the non-empty set A be bounded above. Then there exists an upper bound y.
Every z > y is also an upper bound. However, not every number is an upper bound.
Since A is not empty there exists x ∈ A, and then x − 1 is not an upper bound. Let
Dr be the set of all upper bounds and let Dl be the complement of Dr . It is clear that
the pair Dl and Dr form a Dedekind section. By axiom C1 there exists a number u,
such that either u is the lowest element of Dr or else it is the highest element of Dl .

However, Dl cannot have a highest element. There cannot be a number which is
the highest of all numbers that are not upper bounds of A. For if v is not an upper
bound of A there must exist x ∈ A, such that v < x ; and then the number 1

2 (v + x)
lies between v and x , is equal to neither, is not an upper bound of A, but is higher
than v.

We conclude that u is the lowest element of Dr . The set of upper bounds is then
the interval [u,∞[. �

Exercise Derive case 2 of Proposition2.3 from case 1.

We can paraphrase Proposition2.3 as follows. If a non-empty set of real numbers
is bounded above, then among all upper bounds there is one that is lowest, often
called the least upper bound. If a non-empty set of real numbers is bounded below,
then among all lower bounds there is one that is highest, often called the greatest
lower bound.

Definition Let A be a non-empty subset of R that is bounded above. The lowest
upper bound of A is called the supremum of A. It is denoted by sup A.

Definition Let A be a non-empty subset of R that is bounded below. The highest
lower bound of A is called the infimum of A. It is denoted by inf A.
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The notions of supremumand infimum,whichProposition2.3 enables us to define,
are immensely important. The proposition is a consequence of axiom C1, but in most
applications we use the proposition rather than the axiom. In fact this is probably
the last time we use the axiom. Many mathematicians actually use Proposition2.3
as an axiom, an alternative to axiom C1 (to which it is in any case equivalent). More
precisely it is the first part (stating that every non-empty set that has an upper bound
has a least upper bound) that is often used as an axiom, the second part being an
obvious corollary of the first.

Exercise Show that the statement italicised in the last paragraph implies axiom C1.

There are dozens (and that can be taken literally) of equivalent formulations of
the completeness of the real numbers. Probably the most common is the postulate
that every non-empty subset of R, that is bounded above, has a supremum. It is a
matter of psychology which is preferred, but in this text axiom C1 is preferred. It is
doubtful if anyone has a mental picture of an arbitrary subset of R. Maybe a sort of
diffuse, one-dimensional cloud. Moreover an axiom that says something about all
bounded subsets of real numbers seems to require the set of all subsets of R, which
is a set vastly bigger than R itself. An axiom about all Dedekind sections is much
simpler. A Dedekind section of R is both intuitive and highly graphic: we just cut
the x-axis with a transversal line.

2.4.5 Exercises

1. Show that A is bounded if and only if there exists k > 0 such that |x | ≤ k for all
x ∈ A.

2. Determine which of the intervals listed 1–10 are bounded, bounded above, or
bounded below. In each case find all upper bounds and all lower bounds.

3. Let u < x . Prove that u < 1
2 (u + x) < x . (This was a key step in the proof of

Proposition2.3.)
4. It is important to acquire the feeling that Proposition2.3 is not obvious. To help

with this acquisition we can consider replacing R by Q. The notions of upper
bound and lower bound can be defined for subsets of Q just as they were for
subsets of R. Consider the set A = {x ∈ Q : x2 < 2}. Show that A is bounded
but has neither a least upper bound nor a greatest lower bound (in Q that is).

2.4.6 Supremum or Maximum?

Let us consider some examples of supremum and infimum.

(a) Let A = [0, 1]. Then sup A = 1.
(b) Let B = [0, 1[. Then sup B = 1 also.
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In the first case 1 is the highest element of A, or the maximum of A. In the second
case B has no highest element, but it has a supremum.

Anon-empty set that is bounded above always has a supremum, but not necessarily
amaximum, though if amaximum exists they are equal. The same applies to infimum
and minimum. Confusion of the two caused many problems in the early days of
analysis, and still does today among students of mathematics. Even the greatest
mathematicians have come unstuck; Riemann’s failed proof of the existence of a
solution to the Dirichlet problem involved the confusion of infimum and minimum.

2.4.7 Using Supremum and Infimum to Prove Theorems

Muchof analysis consists of proofs that certain desirable objects exist. These are often
solutions to equations. We have already considered the square root of 2. This is the
positive solution to the equation x2 = 2. It is just a simple example of a polynomial
equation. The treatment we gave was rather clumsy; necessarily so since useful tools
were yet to be introduced.

Supremum and infimum are precisely such tools that enable us to mobilise the
completeness axiom. When we want to prove for example that an equation has a
solution, these tools can hand us a number that is a candidate for a solution.

Arguments using supremum or infimum often proceed in the following way. Sup-
pose that A is a set of real numbers that is bounded above. Let t = sup A. There are
two important things we can say about t and in most applications both are needed.
Firstly, for all x ∈ Awe have x ≤ t (because t is an upper bound). Secondly, suppose
that ε > 0. Then t − ε is not an upper bound (since t is the lowest one). This means
that there exists x ∈ A such that t − ε < x . Another way of expressing this is to say
that if y < t there exists x ∈ A such that y < x .

The reader is invited to convince themselves that sup A is precisely the unique
number t that has these two properties.

Consider again the square root of 2. Let us run through the argument again but
this time we use least upper bound. We can let A be the set defined by

A := {
x ∈ R : x > 0, x2 < 2

}
.

Then A is bounded above; it is easily seen for example that 2 is an upper bound.
So let t = sup A. Now we can show that t2 = 2. If t2 > 2 then we can find by the
argument of Sect. 2.2 (under “Square root of 2”) a number z such that 0 < z < t and
z2 > 2. It follows that z is an upper bound of A but is lower than t , in contradiction to
the assumption that t was the least upper bound. Again if t2 < 2 we can find by the
argument of the same section a number y such that t < y and y2 < 2. Then y ∈ A,
so that t is not even an upper bound of A, again a contradiction. The only conclusion
available (by trichotomy) is that t2 = 2.

Later we shall exploit continuity to carry out arguments like this one in a stream-
lined fashion.
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2.4.8 The Archimedean Property of R

The property considered in this section further supports our intuition that the axioms
adequately convey the notion of the real coordinate line. It may be viewed as the
theoretical underpinning of the measuring tape.

Proposition 2.4 For every real number x there exists a natural number n such that
n > x.

Proof Assume, to the contrary, that there exists a real number x , such that every
natural number n satisfies n ≤ x . The setN is then bounded above inR and therefore
has a supremum t . But then there exists a natural number m such that m > t − 1
(otherwise t would not be the least upper bound ofN). It follows thatm + 1 > t , and
we have the contradiction that t is not an upper bound of N. �

Here we have a result which, like Proposition2.3, is apt to seem obvious and not
needing proof. However it is impossible to prove the Archimedean property of R by
using the axioms A and B alone. To show this one has to produce an example of an
ordered field, a so-called non-Archimedean field, in which the set of natural numbers
(always included in an ordered field) is bounded above. This can be done.

Although axiom C1 was used in the proof of Proposition2.4, it is not equivalent
to it. Putting it differently we cannot use the Archimedean property as an axiom
replacing axiom C1 and expect to produce all the desired properties of the real
numbers, although dozens of usable replacements for axiom C1 are known. In fact
the field Q alone has the Archimedean property, but contains no irrational numbers,
and we have seen that at least some irrationals are needed for analysis.

Nevertheless Proposition2.4 supports the intuition that the real numbers, based on
the axiomsA, B andC, satisfactorily describe the coordinate line, in as far as the latter
contains no points lying entirely to the right of all points with integer coordinates.

We can go further in producing a satisfactory model of the coordinate line as we
understand it intuitively. A simple consequence of Proposition2.4 is that if x is a
positive real number, there exists a highest natural number, usually denoted by [x],
that is lower than or equal to x . This number is n − 1, where n is the lowest natural
number strictly greater than x (which exists by Propositions2.4 and 2.1). Finding it is
the first step in constructing the decimal representation of a number x . Furthermore it
is easy to extend the function [x] to all real numbers (see the following exercises). For
every real number x there exists a unique elementm ofZ, such thatm ≤ x < m + 1.
Every real number falls within an interval whose endpoints are consecutive integers.

2.4.9 Exercises (cont’d)

5. Find the supremum, infimum, maximum and minimum of the following sets of
numbers, whenever they exist, justifying your conclusions:
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(a) [0, 1]
(b) [0, 1[
(c) {x ∈ R : x2 < 2 and x is rational}
(d) {x ∈ R : x2 ≤ 2 and x is rational}
(e) {x ∈ R : x2 < 4 and x is rational}
(f) {x ∈ R : x2 ≤ 4 and x is rational}
(g) {x ∈ R : x2 + x + 1 < 0}
(h) {x ∈ R : x2 + x − 1 < 0}.

6. Let A and B be subsets ofR, both bounded, and suppose that A ⊂ B. Show that
sup A ≤ sup B and inf A ≥ inf B.

7. Let A be a set of real numbers with the following property: whenever a and b are
distinct points of A and a < x < b then x is in A. Prove that A is an interval.
Hint. In the case when A is bounded and non-empty one can let u = inf A and
v = sup A. Show that A is then one of the intervals with endpoints u and v. This
result is often useful.

8. Show that if we work only with the rational numbers (for which intervals can be
defined by the same formulas as were used in the case of the real numbers) then
the conclusion of the previous exercise fails in general.
Note. The statement of the previous exercise has sometimes been proposed as a completeness

axiom, that is, as a replacement for axiom C1.

9. Extend the function [x] (as defined above for positive x) to all real arguments.
Show that one may unambiguously define [x] as the unique integer such that
[x] ≤ x < [x] + 1.

10. Let a > 0. Show that for every real x there exist a unique integerm and a unique
number r , such that 0 ≤ r < a and x = ma + r .

11. Let A ⊂ Z. Show that if A is bounded above it has a highest element, and if A
is bounded below it has a lowest element.

2.5 Approximation by Rational Numbers

We can interpret Proposition2.4 as saying that there are no infinitely large real num-
bers, that is, no numbers that exceed every natural number. The counterpart to this
is that there are no infinitely small numbers either, that is, no real numbers that are
at the same time positive and are smaller than 1/n for every natural number n. This
is essentially a denial that infinitesimals exist in the real realm.

Proposition 2.5 For each real number ε > 0 there exists a natural number n such
that 0 < 1/n < ε.

Proof By Proposition2.4 there exists a natural number n such that n > 1/ε. But
then 0 < 1/n < ε. �

Proposition 2.6 Each real number x is the supremum of the set of rational numbers
that are lower than x.
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Proof Let A = Q ∩ ]−∞, x[ (that is, A is the set of rational numbers lower than
x). It is clear that x is an upper bound of A and we want to show that it is sup A.
Suppose, on the contrary, that sup A, let us call it t , is actually lower than x , and let
us derive a contradiction. Then x − t > 0 and we can find a natural number n by
Proposition2.5 such that 0 < 1/n < x − t . Since t = sup A, there exists a number
r ∈ A, such that t − 1/n < r ≤ t . But then r + 1/n is rational, r + 1/n > t and
r + 1/n ≤ t + 1/n < x . That is, r + 1/n is an element of A that is strictly above t .
This contradicts the fact that t is an upper bound for A. �

Proposition 2.7 Between any two distinct real numbers there exist infinitely many
rational numbers.

Proof Let x < y. We create an increasing sequence of rationals between x and y in
order to build the required infinite set. Sequences will be studied thoroughly in the
next chapter.

We first show that there exists a rational number r1 such that x < r1 < y. Con-
sider the midpoint z = 1

2 (x + y), which satisfies x < z < y. By Proposition2.6, z
is the supremum of the set of all rational numbers less than z. Hence there exists a
rational number r1 such that x < r1 ≤ z. We therefore have x < r1 < y. Repeating
this argument using r1 instead of x we find a rational r2 such that r1 < r2 < y, then
a rational r3 such that r2 < r3 < y, and so on. In this way we construct an increasing
sequence of rationals rn , n = 1, 2, 3, ..., such that x < rn < y. The elements of this
sequence form an infinite set. �

These propositions assure us that we may always approximate a real number by
rational numbers, and make the error of the approximation as small as we like. This
leads into the notions of limit and limit point, taken up in the next chapter. They
reinforce our impression that the real numbers are a good model for the coordinate
line, where adding more points increases accuracy of measurement. Technically we
say that the rational numbers are dense in the set of real numbers.

All of this is important for practical calculations with real numbers. One way to
approximate a real number is to use the decimal representation (or the representation
in another number base).However, there are otherways thatmaybemore precise. The
subject of approximation by rational numbers is called diophantine approximation
and is considered a branch of number theory.

2.5.1 Exercises

1. Let a and b be real numbers such that a < b. Show that a rational number between
a and b can be obtained by the following argument, which is perhaps more
intuitive than the proof of Proposition2.7. Let n be a natural number, such that
0 < 1/n < b − a, and let m be the lowest integer (possibly negative) such that
na < m. Show that a < m/n < b.
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2. Before the advent of calculus, arguments were used that involved neglecting
quantities small with respect to other quantities. So for example, if a quantity h
appeared in a formula, and h was small (on some scale) then h2 might be neglected
as being super small. This led to useful methods of approximation.
As an example, if x is an approximation to

√
a, we can write x + h for the actual√

a. Then (x + h)2 = a so that x2 + 2hx + h2 = a. If we suppose that the term
h2 can be neglected we might conclude that h is approximately (a − x2)/2x , or
rather suggestively

h

x
≈ 1

2

a − x2

x2
.

In words we have the well known rule that the proportional deficit of x is approx-
imately half the proportional deficit of x2.

(a) Derive a similar rule for approximating a cube root: the proportional deficit
of x is approximately one-third the proportional deficit of x3.

(b) Approximate the cube root of 1729. With 12 as a first approximation use
mental arithmetic to get a better approximation, which should prove to have
three correct digits after the decimal point and the fourth very nearly correct.
Note. This example is the basis of an amusing anecdote in “Lucky numbers” in the book

“Surely you must be joking Mr Feynman”.

3. Let k1 and k2 be real numbers, neither of which is 0.

(a) Show that if the set of all numbers of the form mk1 + nk2, as m and n range
over the integers, contains a lowest positive number a, then k1 and k2 are
both integer multiples of a.

(b) Suppose that k1/k2 is irrational. Prove the following: for each ε > 0, there
exist integers m and n such that 0 < mk1 + nk2 < ε.

4. There exist ordered fields (non-Archimedean fields) in which the natural numbers
are bounded above. Of course they do not satisfy axiom C1. To describe one we
will need a little algebra. The field we shall describe, let us denote it by F , consists
of all rational functions in one variable with real coefficients. These have the form
of fractions

pmxm + pm−1xm−1 + · · · + p0
qnxn + qn−1xn−1 + · · · + q0

where the coefficients p0,...,pm , q0,...,qn are real. The algebraic operations are the
usual ones for fractions. The element x should not be thought of as a number; it is
an indeterminate, and outside the systemof real numbers. To describe the ordering
we suppose that the fraction is written in lowest terms, that is, the numerator and
denominator have no common factors except scalars (polynomials of degree 0).
The fraction f/g is defined to be positive if the leading coefficients pm and qn
have the same sign. Then f < g is supposed to mean that g − f is positive.
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(a) Show that the relation f < g is an ordering in the sense of axioms B.
Hint. It can help to use Sect. 2.2 Exercise6.

(b) The natural number � is identified with the zero-degree polynomial �. Show
that for all natural numbers � we have � < x . Hence the element x is an
upper bound for the set N.

(c) Show that for all natural numbers � we have 0 < 1/x < 1/�. So we can
think of 1/x as an infinitesimal.

(d) Find a non-empty subset of the ordered field F that is bounded above but
does not have a least upper bound.



Chapter 3
Sequences and Series

To those who ask what the infinitely small quantity in
mathematics is, we answer that it is actually zero. Hence there
are not so many mysteries hidden in this concept as there are
usually believed to be.

L. Euler

3.1 Sequences

What are sequences? How do we talk about them? We have already seen examples
of sequences, such as the Fibonacci numbers (studied in Sect. 2.2 Exercise 9), or the
decimal digits of a real number. As always for the most important ideas, we have a
choice of ways to express ourselves.

3.1.1 The Notion of Sequence

A scientist might make a table of measurements such as

1 2 3 4 5 6 7
0.707 0.577 0.5 0.447 0.408 0.378 0.354

We can easily read from this the first measurement or value, the second and so on.We
can read the nth value for each natural number n from 1 to 7. These natural numbers
have the role of place numbers. Each measurement has a place number.

We can also exhibit this example as a coordinate vector, without showing the place
number, but allowing us to infer the place number by counting from left to right:
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(0.707, 0.577, 0.5, 0.447, 0.408, 0.378, 0.354).

For each natural number n from 1 to 7 we let an denote the number with place
number n in the above table. We have here an example of a sequence with 7 terms.
We express this as follows: (an)7n=1 is a sequence for which an is given by the value
with place number n in the table. The use of ordinary parentheses, with subscript
and superscript showing the range of the place numbers, is quite typical here. Curly
brackets are sometimes used, but should be discouraged, as they usually specify sets,
in which the order of elements is immaterial and repetitions irrelevant (recall the
discussion in Sect. 2.1).

The value with place number n is called the nth term of the sequence. In a finite
sequence there is a first term, a second term, a third term and so on up to some place
number N . Different terms may have the same value, though the place numbers are
different.

We can also specify a sequence using a formula. For example, let (an)7n=1 be a
sequence for which an = 1/

√
n + 1 for each natural number n from 1 to 7. We have

a formula instead of a table. In this example there is no reason to stop at 7 terms. We
can continue indefinitely. We then have an infinite sequence (an)∞n=1.

It bears repeating that a sequence should not be confused with a set. For example,
the coordinates of a point in coordinate geometry form a sequence. The points (1, 2)
and (2, 1) in a coordinate plane are distinct sequences each with two terms. Their
values constitute the same set of numbers {1, 2}. Again, the sequence (1, 1) is not
the same as the set {1, 1}; the latter is the same as {1} and has only one element.
This demonstrates again the different uses of parentheses and curly brackets—for
the former the order matters; for the latter neither order nor repetitions make any
difference.

We can give a reasonableworking definition of sequence as follows.Here it clearly
appears why the natural numbers must constitute a set.

Definition A sequence is an assignment of an element to each natural number of a
given range, called the index set.

The index set is usually the set of all integers n such that 1 ≤ n ≤ N , giving rise
to a finite sequence, or the set N+, giving rise to an infinite sequence. We shall often
speak of a sequence (an)Nn=1 (in the case of a finite sequence), or a sequence (an)∞n=1
(in the case of an infinite sequence), prior to explaining how the value an is to be
assigned to the place number, or index, n.

We are being deliberately vague over the precise meaning of assignment. It could
be a formula. It could be a table. However, we want to admit other cases when we
do not have a practical method to calculate an for a given n. Therefore we avoid
speaking of a “rule”, which has connotations of a formula, suggesting a practical
procedure.

We saw that a sequence is not the same as a set. Values appearing as terms in a
sequence can be repeated. Sometimes we wish to consider the set of all values that
appear as terms in a sequence (an)Nn=1 or (an)∞n=1. There is a notational trick. We
write the set as
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{an : 1 ≤ n ≤ N } or {an : 1 ≤ n ≤ ∞}

depending on the case. When considered as a set, the elements have forgotten their
place numbers.

Consider some examples of sequences, in order of decreasing practicality. The
first is the sequence

(1, 1.4, 1.41, 1.414, 1.4142, ...)

of approximations to
√
2 obtained by truncating its decimal representation. It is not

easy to write down a formula for the nth term of this sequence, but the term can be
calculated by a fairly easy algorithm.

The second is the sequence (an)∞n=1 where an = 1 if n is prime and an = 0 if n is
composite. This is an infinite sequence because the index set is infinite. Even so each
term is either 0 or 1, so that the values form a finite set. There seems at present to
be no practical way to calculate an since it asks us to determine whether or not n is
prime, a problem that for large n is still prohibitively costly to solve on a computer.

The third example is to let an = 1 if the equation xn + yn = zn has a solution for
which x , y, z are positive integers, and an = 0 if there is no such solution. Before
1995 it was known that a1 = 1, a2 = 1 and an = 0 for a known but finite number
of places n. It was suspected that an = 0 for all n ≥ 3 but no practicable way was
known to calculate an for a given n. In 1995 Andrew Wiles published the proof of
Fermat’s Last Theorem, as a result of which we now know that an = 0 for all n ≥ 3.

A common variant of sequence, that we shall make much use of, is to allow the
place numbers to start at n = 0, with a0 instead of a1. We then have a sequence
(an)∞n=0 for example. This is useful when n denotes discrete time, beginning at the
instant n = 0.

A further variation is to admit negative place numbers. For example (an)10n=−10,
or a sequence infinite on both sides, (an)∞−∞.

In a later chapter we will define functions, like sequences, by using the undefined
term “assignment”. It turns out that the notion of assignment can be defined by
set theory, and then what assignments are admissible depends on what set building
axioms we wish to allow, or whether we want to allow some really weird sets. It is
therefore still possible for two people to disagree over what constitutes an admissible
assignment. But it does mean that sequences and functions are both examples of the
same thing. Our mental pictures may still be quite different.

3.1.2 Defining a Sequence by Induction

Wecan define an in terms of ak for k = 1, 2, ..., n − 1. This could havemore practical
value than a formula for an . We need to specify some initial values to get the process
started.
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Example The Fibonacci numbers constitute a sequence (an)∞n=1 defined by letting
a1 = 1, a2 = 1 and

an = an−1 + an−2, (n = 3, 4, 5, ...).

Using this one can generate the Fibonacci numbers more simply than by using the
formula for the nth Fibonacci number obtained in Sect. 2.2 Exercise 9.

Example Let a1 = 1 and

an = √
an−1 + 1, (n ≥ 2).

In these examples the sequence is said to be defined by induction, or by recursion.
We have a rule for finding an from the terms ak with place numbers k < n, and an
appropriate set of initial values to start the ball rolling.

Many important operations on a finite number of objects, that we often take for
granted, are defined formally by induction. We can name the sum of n numbers, the
product of n numbers, the union of n sets and the intersection of n sets.

3.1.3 Infinite Series

Let (an)∞n=1 be an infinite sequence of real numbers and define inductively a new
sequence (sn)∞n=1 by

s1 = a1, and sn = sn−1 + an, (n ≥ 2).

Informally we sometimes write

sn = a1 + a2 + · · · + an

but the formal symbol (which we have already used several times and is doubtless
familiar to the reader) is

sn =
n∑

k=1

ak .

But what can ∞∑

k=1

ak

mean? It seems to ask us to add infinitely many numbers and on the face of it means
nothing. Whether or not it means anything such an expression is called an infinite
series.
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3.2 Limits

One of the greatest achievements of analysis was to give the expression
∑∞

k=1 ak a
precise meaning so that mathematicians could obtain valid and trustworthy conclu-
sions. The key to this is the concept of limit. After the elucidation of the nature of
the real numbers, the notion of limit is the second main foundation stone of analysis.
So it is worth devoting some time and effort to understanding it. We first define the
notion of limit of a sequence, and develop it at some length before applying it to
infinite series.

Let (an)∞n=1 be an infinite sequence of real numbers.

Definition A number t is called the limit of the sequence (an)∞n=1 if the following
condition is satisfied:

For every ε > 0, there exists a natural number N , such that |an − t | < ε for
all n ≥ N .

The inequality |an − t | < ε appearing in this definition is equivalent to

t − ε < an < t + ε,

and for practical purposes (such as carrying out a proof) this may be by far the most
convenient form. It may also be written, using set theory, as

an ∈ ]t − ε, t + ε[.

We write
lim
n→∞ an = t

to denote that t is the limit of the sequence (an)∞n=1.
The limit t may, or may not, be equal to an for some n. There may even be

infinitely many places n, such that an = t ; or there may be none at all. This may seem
an obvious point, but early thinking about limits often assumed that a limit might
not be a value of the sequence of which it is a limit. The sequence was supposed to
approach arbitrarily near to its limit without ever reaching it. This thinking was an
early obstacle to finding the correct definition of limit.

Not all sequences have limits. A sequence that has a limit is said to be convergent.
We also say that an converges to t , or that an tends to t , and sometimes write an → t .
Thus when we say that a sequence (an)∞n=1 is convergent, we mean: there exists a
real number t , such that limn→∞ an = t .

Often we are dealing with particular sequences where we have a formula. Exam-
ples are

an = 1

n
, an = 2−n, or an = n + 1

n
.
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In such cases we do not write “limn→∞ an where an = 1/n”, and so on (though we
might), but instead (for these examples)

lim
n→∞

1

n
, lim

n→∞ 2−n, lim
n→∞

n + 1

n
.

A sequence that does not have a limit, that is, a sequence that is not convergent, is
often said to be divergent. Strictly speaking, when we are presented with a sequence
(an)∞n=1, it is not goodmathematical grammar to write the formula “limn→∞ an” until
we have ascertained that the limit exists. The expression “limn→∞” is not a function
symbol that can be stuck in front of an arbitrary sequence. This is perhaps a little
awkward, but there are ways to alleviate this (see the nugget “Limit inferior and limit
superior”).

3.2.1 Writing the Definition of Limit in English, and in Logic

The property of a sequence embodied in the definition of limit involves quantifiers,
that is, the expressions “there exists” and “for all”, in fact three of them. It seems
that there is no escaping this, and it is perhaps the reason why the correct definition
of limit was so long emerging. It is also a significant challenge to define the property
in ordinary language.

The definition of limn→∞ an = t is written in natural English that contains some
in-linemathematical formulas. It is not hard to produce a non-mathematical sentence,
again in natural English, that has the same syntactical structure and the same logical
structure:

In every class was a pupil, who obtained full marks in all their examinations.

The definition of limit can be expressed entirely in amathematical language called
first-order logic. It has the form (slightly simplified for greater ease of reading):

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n ≥ N ⇒ |an − t | < ε).

A literal translation of this into rather unnatural English, keeping to the same phrase
order, might be

Forall ε > 0 there exists a natural number N , such that, for all natural numbers
n, n ≥ N implies |an − t | < ε.

It will be noticed that in the logical sentence all quantifiers (“there exists”, “for all”,
symbolised by “∃”, “∀”) are placed at the front, whereas in idiomatic English one of
them is placed at the end. The order of the quantifiers is most important.

Let us examine the example of the pupils who obtained full marks. This may be
expressed using formal quantifiers by
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(∀a)(∃b)(∀c)(F(a, b, c)). (*)

Here we are using “a” for a variable that ranges over all classes, “b” for a variable
that ranges over all pupils and “c” for a variable that ranges over all examinations.
The expression “F(a, b, c)” stands for

b was in class a, and if b took the examination c they achieved full marks in it.

The conditional clause (introduced by “if” ) is needed because it is not implied that
all the pupils took the same examinations. But it has a slightly odd implication. In
logic the claim:

if b took the examination c they achieved full marks in it

which is a part of F(a, b, c) is true if b did not in fact take the examination c.
So the sentence (*) is true in the (perhaps exceptional and possibly unintended)
circumstances that in every classwas a pupil who took no examinations at all, because
it is true that such a pupil got full marks in all that they took. In mathematics one
has to be on the lookout for such circumstances, where a statement can be true by
default because it directs one to test something of which there are no instances, like
the examinations taken by that absentee pupil.

Whilst the phrasing of the definition of limit given in the last section was common
in the early twentieth century (Hardy, Whittaker and Watson, Burkill), in the latter
half of the century there began a tendency to write the quantifiers in the English
sentence in the position in which they occur in the formal logical definition. It even
seems that the older phrasing of the definition is disparaged. It may be thought that
placing a quantifier at the end of the sentence, as is common in idiomatic English, is
ambiguous, as it is arguably not clear where it should be placed in the precise first-
order logical sentence that is supposed to express the same idea. Amisunderstanding
could arise that the intended logical sentence is

(∀n ∈ N)(∀ε > 0)(∃N ∈ N)(n ≥ N ⇒ |an − t | < ε).

This proposition is completely different from the condition for a limit. It is trivially
true, since given n and ε we can choose N so that n < N , and then the proposition
“n ≥ N ⇒ |an − t | < ε” is true, because in propositional logic an assertion of the
form “p ⇒ q” is true if p is false, as we saw in the case of the pupil who took no
examinations, but got full marks in all that they took. It therefore says nothing about
the sequence (an)∞n=1.

In fact the risk of this misunderstanding of the definition is negligible, and is
rendered even more so by placing a comma after “N”, which ties the quantifier “for
all n ≥ N” firmly to the formula “|an − t | < ε”.

Nevertheless let us look at ways that have been used to make the literal translation
of the logical formula more natural whilst keeping the order of its mathematical
elements.

The problem lies in the awkward juxtaposition of two formulas “n” and “n ≥ N”.
This must be avoided. Here is one way:
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Forall ε > 0 there exists a natural number N , such that, for all natural numbers
n ≥ N we have |an − t | < ε.

The phrase “we have” is perhaps acceptable but is rather artificial. Even so we shall
sometimes use this type of formulation for the sake of variation. Here is another way:

For all ε > 0 there exists a natural number N such that, for all natural numbers
n, if n ≥ N then |an − t | < ε.

The juxtaposition “n, if n” jars but is perhaps acceptable. Some writers adhere to this
form but reduce the jarring effect by using a centred display, even going so far as to
enclose it in a box (though not shown here):

For all ε > 0 there exists a natural number N , such that, for all natural
numbers n,

if n ≥ N then |an − t | < ε.

This is again rather artificial. Yet another way is to drop the third quantifier entirely,
whilst implying its presence:

For all ε > 0 there exists a natural number N , such that if n ≥ N then
|an − t | < ε.

This is acceptable if we make the quite reasonable assumption that the reader under-
stands from the context that “if n ≥ N then |an − t | < ε” means “for all n, if n ≥ N
then |an − t | < ε”. However failure to understand it in this way is hardly less plau-
sible than a misunderstanding of the older phrasing of the definition.

In fact nobody would dream of saying:

In every class was a pupil, such that in all their examinations they got full
marks.

3.2.2 Limits are Unique

If a sequence has a limit then it has only one. This was implicit in the way we talked
about limits in the last section. We must show that two distinct numbers t and s
cannot both be limits of the same sequence (an)∞n=1. In fact if s �= t we can choose
ε > 0 smaller than |s − t |/2. Then there is no number common to the intervals
]t − ε, t + ε[ and ]s − ε, s + ε[. So it is impossible that there could exist N1 and N2

such that an ∈ ]t − ε, t + ε[ for all n ≥ N1 and an ∈ ]s − ε, s + ε[ for all n ≥ N2.

3.2.3 Exercises

1. Write the argument of the last paragraph using inequalities, that is, show that
|an − t | < ε and |an − s| < ε cannot be simultaneously true if ε is chosen as we
described.



3.2 Limits 43

2. Check the assertion that the inequality |x − a| < ε is equivalent to the two
inequalities a − ε < x < a + ε. This reformulation is often helpful.

3. Find some other examples of non-mathematical assertions that require three quan-
tifiers.

3.2.4 Free Variables and Bound Variables

In the formula

lim
n→∞

n + 1

n

the variable n can be replaced by any other letter without changing the sense or value.
Thus

lim
n→∞

n + 1

n
= lim

β→∞
β + 1

β
,

provided it is understood that the variables n and β range over the natural numbers.
It is not just that the quantities are equal, the expressions have the same meaning.

In the formula 1/n we can put in values for n (from the realm of natural numbers,
for example) and calculate in this way instances of the formula. The variable n is
free. But putting “limn→∞” before “1/n” ties n down. It makes no sense to ask:
“What is the value of limn→∞ 1/n for n = 5?” The variable n has become bound
by the prefix “limn→∞”. It is for this reason that any other letter may replace “n”
without changing the meaning.

Another example of bound and free variables is the expression

n∑

k=1

k p.

Here k is bound but n and p are free. We may replace k by any other letter, except
for n and p as they are in use, and the meaning remains unchanged. But although we
may ask about the value of this expression for p = 2 and n = 10, there is no sense
in asking about its value for p = 2, n = 10 and k = 5.

The test for a free variable is to ask yourself whether the following questionmakes
sense:

What is the value of the expression if I substitute 1 (or some other value within
the allowed range) for the variable?
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Here are some other commonly occurring expressions involving bound variables:

(a) max
1≤k≤n

ak The maximum of the numbers a1, a2, ...,an; the variable k is
bound, but n is free.

(b) min
1≤k≤n

ak The minimum of the numbers a1, a2, ...,an; the variable k is
bound, but n is free.

(c) sup
1≤n≤∞

an The supremum of the set of terms of the infinite sequence
(an)∞n=1.

(d) inf
1≤n≤∞ an The infimum of the set of terms of the infinite sequence

(an)∞n=1.

A slightly different case is that of logical statements involving quantifiers. An
example is

(∀x)(x < y ⇒ x < 1).

This says, in words, that for all x , if x is a real number less than y, then x is less
than 1. Here x is a bound variable; any other letter may replace it. But y is a free
variable, for it makes sense to ask whether the statement is true or false for given
values of y. For example, is it true or false for y = 0, or 1, or 2?

3.2.5 Proving Things Using the Definition of Limit

In order to prove that limn→∞ an = t directly from the definition of limit, we have
to produce, or show that it is possible to produce, for each ε > 0, an integer N ,
such that for all n ≥ N we can show that |an − t | < ε (or something equivalent to
this inequality). What does this mean in practice? What is required in an acceptable
argument that is supposed to justify that a sequence has the limit t?

It is extremely important to write out the argument so that the reader (equipped
with enough mathematical knowledge) can convince themselves that it is correct. It
is often not enough for the writer to be convinced. This applies to all mathematical
writing of course.

The most important thing is to demonstrate that something is possible for every
positive real number ε. To accomplish this it is best to write clearly at the beginning
of the argument:

“Let ε > 0.”

(including the full stop), and if not at the beginning (see below for a discussion of
this), at least starting a new paragraph or in some way giving it prominence.

The next thing is to produce an N . Some ingenuity may be needed, or some
informed guessing. In any case one must verify that just in virtue of n ≥ N it will
follow that |an − t | < ε.
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Finally it must be made apparent that you can produce such an N for any given
positive ε. Here it is generally enough to make it clear that no special assumptions
about ε are needed (apart from its being positive).

Actually that last remark can be modified in the light of good sense. For example
it might be alright to assume (if it helps; and it often does) that ε < 1. The reason
is that, if an N works for one ε, it will work for any bigger ε. In the same way we
might want to reduce ε to below some value (if it is not already below it) if it helps
to produce N .

An observation similar to that of the last paragraph: if N works for a given ε, then
any number bigger than N would work as well (as an alternative N so to speak). This
raises the question of whether we want to regard N as a function of ε; that is, should
N be seen to be determined by ε? The answer is, that as far as the definition of limit
is concerned, we do not have to display N as explicitly determined by ε. It is true
that sometimes we may want this, for example if we wish to obtain explicit estimates
of errors; but that is another issue, beyond that of proving that a sequence has the
limit t . To produce N we may make some arbitrary choices along the way, without
defining them explicitly. For example if we know that a certain set of numbers is not
empty we can choose an element of it, without further explanation. And of course,
the lowest N that works is uniquely determined by ε, though it may be impractical
to give a formula for it, and, as we have seen, it is not needed to prove that a limit
exists.

It is often a good idea to place some preliminary observations before introducing
ε, but they should not refer to ε of course. For example one might want to construct
a sequence bn , such that |an − t | ≤ bn . Then in the body of the argument we might
produce N , such that bn < ε for all n ≥ N , if that should be simpler than dealing
directly with |an − t |.

3.2.6 Denying That limn→∞ an = t

Proof by contradiction is an important mathematical tool, in fact one can nearly
define mathematics as the domain of human discourse where proof by contradiction
is completely accepted. One assumes that the conclusion of a proposition is false and
deduces from this assumption a false statement, or a statement inconsistent with the
proposition’s premises.

Imagine that the conclusion is the statement limn→∞ an = t . To prove this by
contradiction we have to begin by negating the statement limn→∞ an = t . What does
this entail?

It is not simply equivalent to asserting that the limit of an is not t , for, literally,
this asserts that an has a limit but the limit is not t . Rather we wish to assert the
following: either the limit does not exist, or it exists and is not t .

To say that the limit exists and equals t means that for every ε that is positive
we can accomplish a certain task. So to deny this means that there exists ε that is
positive, and for which the task cannot be accomplished. This could be established by
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exhibiting just one value ε for which the task is impossible. But what is the task? It is
to produce N that has a certain property. Therefore to say that the task is impossible
means that for every N the property in question is not available. What is the property
that N may or may not possess? It is that for all n ≥ N we have |an − t | < ε. So for
N not to possess this property entails that there exists at least one n, such that n ≥ N
and |an − t | ≥ ε.

Finally we can set out what it means to negate the sentence limn→∞ an = t . It
means the following: there exists ε > 0, such that for all natural numbers N there
exists n ≥ N , such that |an − t | ≥ ε.

This can bewritten as a sentence of first-order logic (somewhat simplified tomake
it readable):

(∃ε > 0)(∀N ∈ N)(∃n)(n ≥ N ∧ |an − t | ≥ ε).

3.2.7 Two Fundamental Limits

We now calculate two very important limits. The proofs are our first real use of the
definition of limit.

Proposition 3.1

(1) limn→∞
1

n
= 0.

(2) If 0 < x < 1 then limn→∞ xn = 0.

Proof of the First Limit Let ε > 0. By Proposition2.4 there exists a natural number
N such that N > 1/ε. If n ≥ N we have 1/n ≤ 1/N < ε so that |1/n| < ε. �

We do not have to produce the lowest N that works, although here that would be
easy. Just take as N the lowest natural number greater that 1/ε.

Proof of the Second Limit First some preparation. Let 0 < x < 1. Then 1/x > 1
and we let 1/x = 1 + h where h > 0. By the binomial rule (Sect. 2.2 Exercise 11)

1

xn
= (1 + h)n > 1 + nh

(we drop all terms except the first and second). Therefore

0 < xn <
1

1 + nh
.

Now we tackle the limit. Let ε > 0. To guarantee that 0 < xn < ε it is enough to
have 1/(1 + nh) < ε, and that will be the case if n ≥ N , where N is the least natural
number above ((1/ε) − 1) /h. �

The N we found for the given ε was much bigger than was necessary since
(1 + h)n is far above 1 + nh. But we did not need to find the smallest N that works.



3.2 Limits 47

3.2.8 Bounded Sequences

Various notions of boundedness for sequences parallel the corresponding notions for
sets of numbers, as defined in Sect. 2.5:

(a) A sequence (an)∞n=1 is said to be bounded above if there exists K , such that
an < K for all n.

(b) A sequence (an)∞n=1 is said to be bounded below if there exists K , such that
an > K for all n.

(c) A sequence (an)∞n=1 is said to be bounded if there exists K such that |an| ≤ K
for all n.

Obviously a sequence is bounded if and only if it is both bounded above and bounded
below. As usual it is sometimes convenient to write the inequality as−K ≤ an ≤ K ,
or using set theory as an ∈ [−K , K ].
Proposition 3.2 A convergent sequence is bounded.

Proof Assume that limn→∞ an = t . Apply the definition of limit with ε = 1. There
exists N , such that |an − t | < 1 for all n ≥ N . But then |an| < |t | + 1 for all n ≥ N .
Choose k = max1≤n≤N−1 |an| and we then have for all n that |an| ≤ K where K =
max(k, |t | + 1). �

3.2.9 The Limits ∞ and −∞

Definition The sequence (an)∞n=1 tends to infinity (or has the limit∞), and we write
limn→∞ an = ∞, if the following condition is satisfied:

For each real number K there exists a natural number N , such that an > K
for all n ≥ N .

Definition The sequence (an)∞n=1 tends to minus infinity (or has the limit −∞), and
we write limn→∞ an = −∞, if the following condition is satisfied:

For each real number K there exists a natural number N , such that an < K
for all n ≥ N .

A sequencewith limit∞ or−∞ is not considered to be convergent.We sometimes
say that it is divergent to ∞, or −∞. The elements ∞ and −∞ are not numbers, but
they may be limits. We still say of such a sequence, though not convergent, that the
limit exists.

Often, instead of saying “The sequence (an)∞n=1 is convergent” we say “The limit
limn→∞ an exists and is a finite number”. Here “finite number” means the same as
“real number”, or, “neither ∞ nor −∞”.

In general a sequence is said to be divergent when it has no finite limit. This
includes oscillating sequences such as an = (−1)n , as well as a vast assortment
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of wild behaviour, but also sequences that tend to ∞ or tend to −∞. In this way
“divergent” is genuinely the negation of “convergent”.

3.2.10 Exercises (cont’d)

4. For each of the following limits find a suitable N for each positive ε:

(a) lim
n→∞

n + 1

n − 1
= 1

(b) lim
n→∞

n2 + 1

n2 − 1
= 1

(c) lim
n→∞

1√
n

= 0

(d) lim
n→∞

n2 − n + 1

n2 + n − 1
= 1

(e) lim
n→∞

√
n + 1 − √

n = 0.

Hint.There is a trick for doing this using themathematics teacher’s favourite
identity: (a + b)(a − b) = a2 − b2. It can often be used in connection with
square roots to avoid the use of continuity arguments. Write

√
n + 1 − √

n = (
√
n + 1 − √

n)(
√
n + 1 + √

n)√
n + 1 + √

n
.

(f) lim
n→∞

√

1 + 1

n
= 1

(g) lim
n→∞

√
hn = √

a where limn→∞ hn = a and a > 0.

5. Give a precise proof that the sequence an = (−1)n is divergent and has neither
the limit ∞ nor −∞. In brief, it has no limit.

6. Show that if a > 1 then limn→∞ an = ∞.
7. Show that if a > 0 then limn→∞ a1/n = 1.

Hint. If a > 1 write a1/n = 1 + bn and estimate bn .
8. Show that limn→∞ n1/n = 1.
9. Let A be a closed interval (recall that there are five types of closed intervals;

see Sect. 2.4). Let (an)∞n=1 be a sequence in A that is convergent and let t be its
limit. Show that t is in A. Prove also the converse of this: if A is an interval that
is not closed, then there exists in A a convergent sequencewhose limit is outside A.

Note. This probably explains the appellation “closed”. You cannot exit a closed interval by
going to the limit of a convergent sequence lying in the interval.
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3.3 Monotonic Sequences

Although a convergent sequence is always bounded, it is far from the case that a
bounded sequence is always convergent. There is though one important case when a
bounded sequence is convergent. It gives us a tool that is used over and over again;
a simple instance of the structure of a sequence ensuring its convergence. Its proof
is perhaps the first really important application of supremum and infimum.

Definition A sequence (an)∞n=1 is said to be increasing if an ≤ an+1 for all n. It is
said to be decreasing if an ≥ an+1 for all n. A sequence that is either increasing or
decreasing is said to be monotonic (or monotone).

We shall sometimes refer to a sequence as being strictly increasing. This will
mean rather obviously that an < an+1 for all n, similarly for strictly decreasing.
A sequence can be both increasing and decreasing, if it is constant; a fact that we
just have to live with. The terminology varies somewhat, but we want the simpler
terminology for the more frequently encountered cases; and they are that an ≤ an+1

for each n, or an ≥ an+1 for each n.

Proposition 3.3 Let (an)∞n=1 be a monotonic sequence. Then exactly one of the fol-
lowing is the case:

(1) It is convergent.
(2) It tends to +∞.
(3) It tends to −∞.

These three conclusions correspond respectively to the cases:

(1) It is bounded.
(2) It is unbounded and increasing.
(3) It is unbounded and decreasing.

Proof Consider the case where (an)∞n=1 is bounded and increasing. The set

A = {an : n ∈ N}

is then bounded. Note carefully that A is the set of values that occur in the sequence.
This is shown by the use of curly brackets. Let t = sup A. We shall show that
limn→∞ an = t .

Let ε > 0. Since t is the supremum there exists N , such that t − ε < aN ≤ t . As
the sequence is increasing and t is an upper bound, we have t − ε < an ≤ t for all
n ≥ N . We conclude that limn→∞ an = t .

Consider next the case when (an)∞n=1 is unbounded but increasing. We shall show
that limn→∞ an = ∞.

Let K be a real number. As the sequence is unbounded and increasing it is not
bounded above. So there exists N , such that aN > K . But then an > K for all n ≥ N .
We conclude that limn→∞ an = ∞.

The case when the sequence is decreasing is similar and is left to the reader. �
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Example Weshall define a sequence by a process called iteration,which is extremely
important and has many practical applications. Iteration is a simple case of inductive
definition where there is a fixed function f (x) and an+1 = f (an) for each n. The
example is a very typical application of Proposition3.3. We use the fact that the
function

√
x is strictly increasing, meaning that if x < y then

√
x <

√
y.

Using induction we define the sequence (an)∞n=0 by

a0 = 1, an = √
an−1 + 2 for n ≥ 1.

We shall show that (an)∞n=0 is increasing and convergent.
We use induction to show that it is increasing, in fact strictly increasing. First

of all we have a1 = √
3 so that a0 < a1. Assume that an−1 < an for a given n ≥ 1.

Since the function
√
x is strictly increasing we have

an = √
an−1 + 2 <

√
an + 2 = an+1.

We deduce that (an)∞n=0 is an increasing sequence.
We use induction also to show that the sequence is bounded, that in fact an < 2

for all n. In the first place a0 = 1. Assume that an < 2 for a given n ≥ 0. Then we
find

an+1 = √
an + 2 <

√
2 + 2 = 2,

and conclude that an < 2 for all n.
By Proposition3.3 the sequence is therefore convergent, and what is more

limn→∞ an = t = supn≥0 an . Sincean < 2 for allnwehave t ≤ 2.Wecannot exclude
the possibility t = 2 and later we shall see that this is indeed the case.

3.3.1 Limits and Inequalities

We saw in the example of the last section that an < 2 for all n, and concluded, without
giving any justification, that limn→∞ an ≤ 2. We have to assume that equality might
hold for the limit, even though the inequalities are strict for the terms of the sequence.

Here is a general rule (not requiring the sequences to be monotonic):

Let (an)∞n=1 and (bn)∞n=1 be convergent sequences such that an ≤ bn for each
n. Then limn→∞ an ≤ limn→∞ bn .

Exercise Prove this and also show that if an < bn for all n it is still possible for the
limits to be equal.

The rule sometimes goes under the name of preservation of inequalities. Similar
ideas are involved in the commonly used squeeze rule, covered in the section on
limit rules.
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3.3.2 Exercises

1. The following result is often used to establish a limit; in particular it is useful in
some of the succeeding exercises, after making an informed guess about the limit.

Suppose that for a given sequence (an)∞n=1 there exist t and k, such that 0 < k < 1
and |an − t | ≤ k|an−1 − t | for n = 2, 3, .... Prove that limn→∞ an = t .

Note. Often it happens in applications that |an − t | ≤ k|an−1 − t | only holds for all n from

some index n0. This makes no difference to the conclusion.

2. Show that the limit is 2 for the sequence (an)∞n=0 defined above by the relation
an = √

an−1 + 2, with starting value a0 = 1.

3. A sequence (an)∞n=1 is defined by an+1 = 1
4 (a

2
n + 1), with starting value a1 = 0.

Show that an is increasing and is bounded above by 2 − √
3. Deduce that the

sequence is convergent. Then prove that the limit is 2 − √
3.

Hint. It may help to observe that 2 − √
3 is a root of x = 1

4 (x
2 + 1).

4. A sequence is defined by xn+1 = 2/(xn + 1), with starting value x1 = 0. Since
the equation x = 2/(x + 1) has only one positive root, and that is 1, the only
reasonable candidate for a limit is 1. Prove that the limit is 1.

Hint. It may help to observe that xn ≥ 2
3 for all n ≥ 3.

5. The ratio xn = an+1/an of successive Fibonacci numbers satisfies the relation

xn+1 = 1 + 1

xn
.

As in the previous exercise a reasonable candidate for a limit is the positive root
of the equation x = 1 + 1/x , or equivalently, x2 − x − 1 = 0. This root is the
famous number φ, or the Golden Ratio. Prove that the limit is φ without using
the formula for the Fibonacci numbers obtained in Sect. 2.2 Exercise9.

Hint. Show that |xn+1 − φ| < |xn − φ|/φ.
6. Define a sequence inductively by

xn+1 = 2xn + 2

xn + 2
,

with starting value x1 = 1. Show that limn→∞ xn = √
2. Compare Sect. 2.2

Exercise3.
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3.4 Limit Rules

In this section we derive the most important limit rules, which enable us to find new
limits from previously known ones, without the need to find N for each positive ε.
They can be used to calculate limits involving rational functions of n, using as input
only the two limits given in Proposition3.1: limn→∞ 1/n = 0, and limn→∞ xn = 0
given that 0 < x < 1. Actually a third limit is needed, which onemay think not worth
stating:

lim
n→∞C = C,

the limit of the constant sequence with all values equal to C .

Proposition 3.4 (Absolute value rule) Let limn→∞ an = t . Then limn→∞ |an| = |t |.
The rule holds also for t = ±∞ if we define |−∞| = ∞.

Proof We consider the case t �= ±∞, leaving the remaining cases to the reader. We
have the inequality (see Sect. 2.2.9)

∣∣|an| − |t |∣∣ ≤ |an − t |.

Let ε > 0. Choose N , such that |an − t | < ε for all n ≥ N . Then for all n ≥ N we
have

∣∣|an| − |t |∣∣ < ε and we are done. �

Exercise Do the cases t = ±∞.

Proposition 3.5 (Sum and product rules) Let (an)∞n=1 and (bn)∞n=1 be convergent
sequences, let limn→∞ an = s and limn→∞ bn = t . Then the sequences (an + bn)∞n=1
and (an · bn)∞n=1 are convergent, and

lim
n→∞ an + bn = s + t, lim

n→∞ an · bn = s · t.

Note carefully that the sequences are supposed to be convergent, the limits ±∞ not
allowed.

Proof for the Sum Let ε > 0. There exists N1, such that |an − s| < ε/2 for all
n ≥ N1; and there exists N2, such that |bn − t | < ε/2 for all n ≥ N2. Let N =
max(N1, N2). For all n ≥ N we have

|(an + bn) − (s + t)| ≤ |an − s| + |bn − t | <
ε

2
+ ε

2
= ε.

We conclude that limn→∞ an + bn = s + t , thus completing the proof of the sum
rule. �

This argument has some features that occur quite often. Firstly, after introducing
ε we produced an N , calling it N1, that worked for ε/2. This was with hindsight.
Other multiples of ε might be preferred in other contexts.
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Secondly, we produced N that worked for two sequences simultaneously. It is
clear that we could have any finite number of convergent sequences, and find N that
works for a given ε for all the sequences at the same time. This is because if one N
works for a given ε, then any integer bigger than N will also work. Moreover a finite
set of natural numbers has a highest member. From now on, when working with a
finite number of sequences we will usually take this trick for granted.

Proof for the Product The convergent sequence (an)∞n=1 is bounded (Proposition
3.2). Hence there exists K > 0, such that |an| ≤ K for all n.

Let ε > 0. The most obvious way to begin is to use the definition of limit to find a
natural number N , such that |an − s| < ε and |bn − t | < ε for all n ≥ N . For these
values of n we have

|an · bn − s · t | = |an · bn − an · t + an · t − s · t |
≤ |an · bn − an · t | + |an · t − s · t |
≤ |an| · |bn − t | + |an − s| · |t |
< (K + |t |)ε.

We interrupt the proof to interpose some discussion. We have arrived at the con-
clusion that for each ε > 0 there exists N , such that |an · bn − s · t | < Cε for all
n ≥ N ; in this case C = K + |t |. It is clear that C does not depend on ε; nor does it
depend on n or N . That is why we were careful to define the constant K before we
introduced ε. It is always a good idea to introduce and define any constants, that one
may want to use later, in the preamble, before the key phrase “Let ε > 0”.

We restart the proof by backtracking to the point “Let ε > 0”, and choose a
slightly different N . There exists N , such that |an − s| < ε/C and |bn − t | < ε/C
for all n ≥ N . For the same N we have |an · bn − s · t | < ε for all n ≥ N . This
concludes the proof. �

Of course the backtracking requires the benefit of hindsight. Since we know that
it can be done we can scrap it altogether in our proofs. From now on we will be
content, in proving that limn→∞ an = t , to find N for each given ε > 0, such that
for all n ≥ N we have |an − t | < Cε, provided we have made it clear that C is
independent of ε, n and N .

Proposition 3.6 (Reciprocal rule) Let (an)∞n=1be a convergent sequence, let
limn→∞ an = t and assume that t �= 0. Then

lim
n→∞

1

an
= 1

t
.

Before we give the proof some explanatory discussion is needed. The terms 1/an
form a sequence in the following sense: there exists n0 such that an �= 0 for all n ≥ n0
and the reciprocals form a sequence (1/an)∞n=n0 . In fact we know that limn→∞ |an| =
|t | and |t | > 0. Hence there exists n0, such that for all n ≥ n0 we have |an| > 1

2 |t |,
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and therefore also an �= 0 (we are taking ε = 1
2 |t | here). The reciprocal 1/an is then

defined for all n ≥ n0. In this way we sidestep the possibility that an may be 0 for
certain place numbers n.

Proof of Proposition 3.6 We have

1

an
− 1

t
= t − an

t · an .

Let ε > 0. There exists n1 such that |an − t | < ε for all n ≥ n1. We have seen that
there exists n0, such that |an| > 1

2 |t | for all n ≥ n0. Let N = max(n0, n1). For all
n ≥ N we have ∣∣∣∣

1

an
− 1

t

∣∣∣∣ = |t − an|
|t | · |an| <

2

|t |2 ε.

The multiplier 2/|t |2 is independent of n, N and ε. We conclude (see the discussion
following the proof for the product rule) that limn→∞ 1/an = 1/t . �

By using the rule for product and the rule for reciprocal we obtain the rule for
quotient.

Proposition 3.7 (Quotient rule) Let convergent sequences (an)∞n=1 and (bn)∞n=1 be
given. Let limn→∞ an = s and limn→∞ bn = t , and assume that t �= 0. Then we have

lim
n→∞

an
bn

= s

t
.

Example Prove that lim
n→∞

n2 + 1

2n2 + 3
exists and find it.

We shall write the argument in excruciating detail referencing all rules. First we
have

n2 + 1

2n2 + 3
=

1 + 1

n2

2 + 3

n2

.

We know that limn→∞ 1/n = 0. By the product rule limn→∞ 1/n2 = 0 and
limn→∞ 3/n2 = 0. By the sum rule

lim
n→∞

(
1 + 1

n2

)
= 1 and lim

n→∞

(
2 + 3

n2

)
= 2.

Finally by the quotient rule

lim
n→∞

1 + 1

n2

2 + 3

n2

= 1

2
.
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Actually the quotient rule tells you that the limit exists, as well as yielding its
value. Usually in calculations using the rules of this section, we take the existence
of the limit for granted, knowing that it is guaranteed by the rules being used. After
a bit of practice most of the above steps can be carried out mentally.

Next we have the squeeze rule.1

Proposition 3.8 (Squeeze rule)Suppose that (an)∞n=1, (bn)
∞
n=1, (cn)

∞
n=1 are sequences

and that
an ≤ cn ≤ bn

for all n. Suppose that (an)∞n=1 and (bn)∞n=1 are convergent with the same limit,
limn→∞ an = limn→∞ bn = t . Then limn→∞ cn = t .

Proof Let ε > 0. There exists N , such that |an − t | < ε and |bn − t | < ε for all
n ≥ N , (again, two sequences, same N ). Hence, for all n ≥ N , we have an > t −
ε and bn < t + ε, from which we find that t − ε < cn < t + ε. We conclude that
limn→∞ cn = t . �

For the case of squeezing with infinite limits, the following easily proved rules
can be used.

Suppose that an ≤ bn for each n ≥ 1. If lim
n→∞ an = ∞ then lim

n→∞ bn = ∞; and

if lim
n→∞ bn = −∞ then lim

n→∞ an = −∞.

Exercise Prove the squeeze rules with infinite limits.

Example We assume the reader is familiar with the function sin x . All we need here
is the fact that | sin x | ≤ 1 for all x . Set an = sin n/n. We have

0 ≤ |an| = | sin n|
n

≤ 1

n
.

We conclude that limn→∞ |an| = 0, which is equivalent to limn→∞ an = 0.

3.4.1 Exercises

1. Prove some rules involving infinite limits:

(a) Suppose that limn→∞ an = t , limn→∞ bn = ∞ and t is a finite number. Then
limn→∞ an + bn = ∞.

(b) Suppose that limn→∞ an = t , limn→∞ bn = ∞ and t is a finite number, but
is not 0. Then limn→∞ anbn equals ∞ if t > 0 and −∞ if t < 0.

(c) Suppose that limn→∞ an = ∞. Then limn→∞ 1/an = 0.

1Also known as the sandwich principle, or the two policemen and a drunk rule.
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(d) Suppose that limn→∞ an = 0. Is it the case that limn→∞ 1/an = ∞? Explain
what happens.

2. Find the limit

lim
n→∞

(6n + 1)(5n + 2)(4n + 3)(2n + 4)(2n + 5)(n + 6)

(n − 1)(n + 7)(n − 11)(n + 15)(n − 21)(n + 101)
.

3. Let (an)∞n=1 be the sequence of Fibonacci numbers (that is, a1 = a2 = 1, an =
an−1 + an−2 for n ≥ 3). Compute the limit limn→∞ an+1/an using the formula
for an derived in Sect. 2.2 Exercise 9.

4. Let the sequence (an)∞n=1 satisfy the recurrence relations

an = βan−1 + γ an−2, n = 3, 4, 5, ...

where a1 and a2 have prescribed values. Assume that the second-order equation
λ2 − βλ − γ has two real roots r1 and r2, and that 0 < |r1| < |r2|. Show that
limn→∞ an+1/an = r2 except in the case when a2 = r1a1.

5. Let a and b be positive constants. Find limn→∞(an + bn)1/n .

6. Let a and b be positive constants. Find limn→∞
an − bn

an + bn
.

7. Find limn→∞(n!)1/n .

Hint. First show that if 1 ≤ k < n then

(n!) 1
n > (k + 1)1−

k
n (k!) 1

n .

You might find Sect. 3.2 Exercise7 useful.

8. Find limn→∞ n − √
(n + a)(n + b).

9. Let (hn)∞n=1 be a sequence of positive numbers such that limn→∞ hn = 1. Let α
be a non-zero rational. Prove that limn→∞ hα

n = 1.

Hint. You will need the laws of exponents for rational powers (Sect. 2.2 Exer-
cise19). By the reciprocal rule one may assume that α > 0. If α is an integer it’s
easy. If α is not an integer onemay reduce it to the case 0 < α < 1 by subtracting
an integer and using the product rule. Now use the squeeze rule, observing that
if 0 < x < 1 then x < xα < 1 whilst if 1 < x then 1 < xα < x .

10. Recall the inequality of arithmetic and geometric means proved in elementary
algebra. For positive real numbers a and b this states that

√
ab ≤ a + b

2

with equality if and only if a = b.
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Let a and b be positive and distinct. Define sequences (an)∞n=0 and (bn)∞n=0
recursively by

a0 = a , b0 = b
an+1 = 1

2 (an + bn) , bn+1 = √
anbn

for n = 0, 1, 2, ....

(a) Show that
bn < bn+1 < an+1 < an

for all n ≥ 1.
(b) Show that the limits limn→∞ an and limn→∞ bn exist and are equal.

Note. The common limit is called the arithmetic-geometric mean of a and b and is some-
times denoted by M(a, b). It was studied by Gauss and has some surprising applications in
computation theory. It will be revisited, in Sect. 5.2 and again in Sect. 11.2.

3.5 Limit Points of Sets

In this section we shall study an important property that pertains to completely arbi-
trary subsets ofR.We shall also exhibit a second important application of supremum.
The distinction between finite and infinite will play an important role in our consid-
erations.

Definition Let A be a subset of R. A number t is called a limit point of the set A if
the following condition is satisfied:

For each ε > 0 there exists x ∈ A, such that x �= t but x lies in the interval
]t − ε, t + ε[.

Do not confuse limit point of a set with limit of a sequence. A set may have many
limit points, or none. Do note the following points listed here:

(a) A limit point t of A is not necessarily in A, though it may be in A.
(b) The condition that x lies in the interval ]t − ε, t + ε[ and is not equal to t may

be written as the inequalities 0 < |x − t | < ε.
(c) We can express the definition using set theory: for each ε > 0 the set

A ∩
(

]t − ε, t + ε[ \ {t}
)

is non-empty.
(d) It is easy to see that the set in the last item, if non-empty for every ε > 0, must

be infinite for every ε > 0.

Exercise Prove this claim. By way of a hint: if the set is finite for a certain ε, what
can you say about the set of numbers |x − t | for which x is in the set?
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(e) Informally, t is a limit point of the set A if we may approximate t by points in
A, that are distinct from t if it happens that t is in A.

3.5.1 Weierstrass’s Theorem on Limit Points

In this section the predicates “finite” and “infinite” will be used in proofs. We need
to be a little clearer about their precise meaning without going too deeply into set
theory.

As a working definition of finite set, we can use the following.

Definition A set A is finite if either it is empty, or, if not empty, there exists a natural
number N and a sequence (an)Nn=1, such that A is the set {an : 1 ≤ n ≤ N }.

The set {an : 1 ≤ n ≤ N }, as the curly brackets indicate, is just the set of values
appearing as terms of the sequence (an)Nn=1, ignoring all repetitions. To conclude that
the set has N elements we must assume that the terms of the sequence are distinct.
Children know that you have to be careful not to count the same sweet twice.

We could of course incorporate into the definition of finite set the requirement
that the terms of the sequence are already distinct. However, it should be obvious
that if A is finite according to our definition, and not empty, then there exists some
natural number L ≤ N , such that A can be presented as a sequencewith distinct terms
and index set {1, ..., L}; just proceed from left to right throwing out repetitions. The
number L , the cardinality of A, is uniquely defined by A, a fact that should be proved
if this was a rigorous text on set theory, but whichwe shall simply accept as intuitively
obvious.

There is then little mystery about the following notion.

Definition A set is infinite if it is not finite.

Thankfully, we have a plentiful supply of infinite sets: for example N, R, the
intervals ]a, b[ for a < b, and loads of sets formed from these using set-building
operations. This is just the start.

A number of properties pertaining to the dichotomy of infinite set versus finite set
will be frequently used. Maybe they are obvious, but it is useful to list them here. In
a proper account of set theory they are theorems.

(a) A subset of a finite set is finite.
(b) If A is an infinite set and B is a set such that A ⊂ B then B is infinite.
(c) The union of two finite sets is finite.

Some useful, and equally obvious (or otherwise) facts follow from these two.

(d) If A is an infinite set and B is a finite set then the set difference A \ B (the set
of all elements of A that are not in B) is infinite.

(e) The union of a finite number of finite sets is finite.
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The following result is sometimes calledWeierstrass’s theoremon limit points.We
will use it only once: to prove the Bolzano–Weierstrass theorem (Proposition3.10),
and, even so, another proof is suggested in the exercises that does not depend on
Weierstrass’s theorem. The dichotomy of finite set versus infinite set is essential
here, and we apply it to completely arbitrary subsets ofR and not only to sequences;
Cantor showed us that these notions are different, there being sets of real numbers not
expressible as sequences. Going beyond sequences might put Weierstrass’s theorem
outside fundamental analysis, except that there is a long tradition of including it,
going back to Hardy’s “A Course of Pure Mathematics”.

Proposition 3.9 Let A be an infinite but bounded set of real numbers. Then A has
at least one limit point.

Proof Define a subset B ⊂ R using the specification:

B = {x ∈ R : the set of all y ∈ A, that satisfy y < x, is finite}.

Now B is not empty; it contains all lower bounds of A and such points exist. And
B is bounded above, since, A being infinite, all upper bounds of A (and such also
exist) are also upper bounds of B. Hence the supremum t = sup B exists. We shall
show that t is a limit point of A.

Let ε > 0. Then t + ε is not in B so that infinitely many elements of A are below
t + ε. On the other hand there must exist an element of B in the interval ]t − ε, t]
(for otherwise it would not be true that t = sup B). By rule (a) in the list preceding
the proposition, we see that at most finitely many elements of A are below t − ε.
By rule (d) we the see that infinitely many elements of A must lie in the interval
]t − ε, t + ε[. At least one of them is not the same as t . �

The proof was a typical use of supremum, and a particularly elegant one. We want
to show that the set A has a limit point. The definition of limit point refers to a point
t , so we need to conjure up a point on which to test the definition. It is supremum
(or in other cases infimum) that does the conjuring, providing a likely candidate for
limit point.

Compare this to the slightly simpler case of Proposition3.3. A candidate for the
limit of a sequence was needed; it was again provided by supremum. Ultimately it
is axiom C1 that guarantees us that elements of R, the existence of which we need,
do in fact exist. As a matter of fact the set B in the proof of Proposition3.9 is the left
set of a Dedekind section, so we could have produced the point t by a direct appeal
to axiom C1.

3.5.2 Exercises

1. Show that the limit points of an interval are all the points of the interval as well as
the endpoints (whether or not the endpoints are in the interval); the only exception
being the degenerate interval [a, a] = {a}, which has no limit points.
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2. Find all limit points of the following subsets of R:

(a) N

(b) Q

(c) The set of all rationals of the form a/10n , where a is an integer and n a
natural number.

(d) R \ Q (the set of all irrationals)
(e) The set A, where A is finite.
(f) The set R \ A, where A is finite.

3. Let k1 and k2 be real numbers, neither 0. Suppose that k1/k2 is irrational. Let A
be the set of all real numbers that can be written as mk1 + nk2 for some integers
m and n. Prove that every real number is a limit point of A.

Hint. See Sect. 2.5 Exercise 3.

4. Show that if t is a limit point of a set A of real numbers, then there exists a
sequence (an)∞n=1 of points in A, all distinct from t (if t should be in A), such that
limn→∞ an = t .

Hint. Apply the definition of limit point to a sequence of ε’s of the form 1/n.

Note. Actually a new axiom of set theory, the axiom of choice, is required to build the sequence

for a set A in all generality. The use of this axiomgoes beyond the scope of this book and the need

for it has usually not bothered analysts. We shall rarely mention it. For most sets that we shall

consider here, such as intervals, or finite unions of intervals, the sequence can be constructed

more or less explicitly.

3.6 Subsequences

Let (an)∞n=1 be a sequence of real numbers. Let (kn)∞n=1 be a strictly increasing
sequence of natural numbers, that is, kn < kn+1 for each n. The sequence (akn )

∞
n=1 is

called a subsequence of the sequence (an)∞n=1.
Thus starting with the sequence of natural numbers (n)∞n=0, we can form the

sequence of even natural numbers by taking kn = 2n. We can form the sequence
of primes by taking kn = πn , the latter being a common symbol for the nth prime.
Clearly there is immense freedom to construct subsequences of a given sequence.

We have seen that a convergent sequence is always bounded, but that a bounded
sequence is not always convergent, although it is if alsomonotonic.About an arbitrary
bounded sequence we have the following proposition, the start of a story that extends
far into analysis and topology.

Proposition 3.10 (Bolzano–Weierstrass theorem) Every bounded sequence of real
numbers has a convergent subsequence.
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Proof Let the real number sequence (an)∞n=1 be bounded. If the same value t
appears infinitely often in it, so that for example akn = t for k1 < k2 < k3 < · · · ,
then limn→∞ akn = t and we have a convergent subsequence.

Assume next that no real number appears infinitely often in the sequence. Then
the set of all values in the sequence, let us call it A, is an infinite set of real numbers.
(If that is not obvious, try to prove it using the properties of finite sets and infinite
sets given in the last section.) The set A is bounded, and so has a limit point t (by
Proposition3.9). We construct a subsequence with limit t using induction. Find an
index k1 such that

0 < |t − ak1 | < 1.

Suppose that we have found an increasing sequence of natural numbers k1, k2, ..., kn
such that

0 < |t − ak j | < 1/j

for j = 1, 2, ..., n. There exists an integer, higher than kn , which we can call kn+1,
such that

0 < |t − akn+1 | < 1/(n + 1).

The subsequence (akn )
∞
n=1 thus constructed converges to t . �

This proposition is immensely important. We do not want any mistakes in the
proof. How could we be sure in the first step, when t occurred infinitely often in the
sequence (an)∞n=1, that the sequence (kn)∞n=1 really existed? In the induction argument
of the second step, how could we be sure that kn+1 really existed?

This is one of those cases when there are hidden appeals to Proposition2.1. In
the first step there is an infinite set of natural numbers B, comprising the set of all k
such that ak = t . We need to arrange B as an increasing sequence (kn)∞n=1 of natural
numbers. We take k1 as the lowest member of B, then k2 as the lowest member
after removing k1, then k3 as the lowest member after removing k1 and k2, and so
on. Because B is infinite we never empty it in a finite number of steps; there are
always some numbers remaining and we can choose the lowest as the next term in
the sequence. This can be expressed formally by the inductive definition:

kn+1 = min(B \ {k1, ..., kn}).

In the second step, because t is a limit point of the set A, we know that for each
ε > 0 there exists x in A, that satisfies 0 < |t − x | < ε. In particular there exists x
in A that satisfies 0 < |t − x | < 1/(n + 1). But we also want x to have an index
higher than kn . Consider the numbers |t − am | as m ranges from 1 up to kn . Some of
these may be 0, whilst others are certainly non-zero, for example |t − akn |. Choose
ε > 0 smaller than 1/(n + 1) and smaller than all those numbers |t − am | which are
non-zero and for whichm ≤ kn (there are only finitely many of these). We could give
a formula for ε using the min-function, but it would not be very readable. The set
of natural numbers m such that 0 < |t − am | < ε is not empty (because t is a limit
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point of A) and all such m satisfy m > kn (because of the way we selected ε). We
can choose the lowest of them as kn+1.

Of course describing the proof in such fine detail might be thought rather pedantic,
but as we defined a sequence as an assignment of terms to the natural numbers it may
seem wise at least once to describe the assignment, especially where the stakes are
so high. We can in future omit these details since for most purposes the first version
we gave of the proof is quite sufficient. But it is worth reflecting on the mistakes that
the great mathematicians of the past have made in analysis, so we should not allow
ourselves to become too complacent.

Proposition3.10 is often called the Bolzano–Weierstrass theorem. Another proof
of this proposition depends on showing that every sequence has a monotonic sub-
sequence. This bypasses the use of Weierstrass’s theorem on limit points, but still
depends on the dichotomy of finite set versus infinite set (see the exercises).

Another important use of subsequences arises in the negation of the statement
limn→∞ an = t , often needed for constructing proofs by contradiction. Recall that
the negation is equivalent to saying that there exists ε > 0, such that for every N
there exists n ≥ N , such that |an − t | ≥ ε.

We can go further for the ε in question. We can produce a subsequence (akn )
∞
n=1

such that |akn − t | ≥ ε. Consider the set of all n greater than N such that |an − t | ≥ ε.
The whole point is that this set is not empty. We can therefore assign to N the
lowest number k (using here Proposition2.1) greater than or equal to N for which
|ak − t | ≥ ε. We use this assignment to define the subsequence (akn )

∞
n=1 inductively.

We start at N = 1 and assign k1. Having assigned kn we reset N to kn + 1 and assign
kn+1, and so on. The result of this discussion is as follows:

Proposition 3.11 The negation of the statement limn→∞ an = t is equivalent to the
following: there exists ε > 0 and a subsequence (akn )

∞
n=1, such that |akn − t | ≥ ε for

all n.

3.6.1 Exercises

1. Prove that every sequence has a monotonic subsequence. Use this to give another
proof of the Bolzano–Weierstrass theorem.

Hint. Consider the set of all integers n with the property that am ≤ an for all
m ≥ n, and reflect on the consequences of its being finite or infinite.

2. Show that if a sequence (an)∞n=1 is not bounded above then there is a subsequence
(akn )

∞
n=1 such that limn→∞ akn = ∞. A similar result holds if the sequence is not

bounded below, but −∞ replaces ∞.
3. Prove the following proposition. Suppose a sequence has the limit t (which may

be ±∞). Show that every subsequence also has the limit t .
4. Prove a converse to the result of the previous exercise, with a twist. Assume that

every subsequence of the sequence (an)∞n=1 has a limit, but we do not assume that
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they all have the same limit. We also allow ∞ and −∞ here as limits. Prove that
the sequence (an)∞n=1 has a limit.

5. Let (an)∞n=1 be a sequence of real numbers and suppose that the set of values
A = {an : n = 1, 2, ...} appearing in the sequence has a limit point t . Show that
there exists a subsequence (akn )

∞
n=1, possessing distinct terms, that converges to t .

3.7 Cauchy’s Convergence Principle

We introduce a condition that is both necessary and sufficient for a sequence to be
convergent, but does not mention a candidate for the limit. We can identify whether
or not a sequence is convergent without going outside it; by studying in fact the
terms alone. The condition has important,mainly theoretical, applications throughout
analysis and allied subjects, and will reappear in this text in the context of limits of
functions.

Proposition 3.12 (Cauchy’s convergence principle) A sequence (an)∞n=1 of real
numbers is convergent if and only if it satisfies the following condition (Cauchy’s
condition): for all ε > 0 there exist a natural number N, such that for all m ≥ N
and n ≥ N we have |am − an| < ε.

Proof As is often appropriate when proving that a condition is necessary and suffi-
cient, we split the proof into two parts.
(a) Cauchy’s condition is necessary for convergence. Assume limn→∞ an = t . Let
ε > 0. Choose N , such that |an − t | < ε/2 for all n ≥ N . If now n ≥ N and m ≥ N
we have

|an − am | ≤ |an − t | + |t − am | <
1

2
ε + 1

2
ε = ε.

(b)Cauchy’s condition is sufficient for convergence. Assume that Cauchy’s condition
is satisfied. First we show that the sequence (an)∞n=1 is bounded. We let ε = 1, find
a corresponding N and let m = N in Cauchy’s condition. For all n ≥ N we have
|aN − an| < 1, which gives |an| < |aN | + 1. That is to say, all terms of the sequence,
except perhaps a finite number, satisfy |an| < K where K = |aN | + 1.

By the Bolzano–Weierstrass theorem (Proposition3.10) there exists a convergent
subsequence, (akn )

∞
n=1, and we let t = limn→∞ akn . Combined with Cauchy’s condi-

tion this forcesan to converge to t . For let ε > 0.Choose N , such that |am − an| < ε/2
for all n ≥ N and m ≥ N . We can find a term in the convergent subsequence, for
example ak j , with index k j ≥ N , and which satisfies |ak j − t | < ε/2. But then for
all n ≥ N we have

|an − t | ≤ |an − ak j | + |ak j − t | <
1

2
ε + 1

2
ε = ε.

This ends the proof. �
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2
The importance of Cauchy’s principle for analysis and its further developments

is such, that it is desirable to exhibit Cauchy’s condition, separately from Proposi-
tion3.12; for the reader’s closer perusal:

Cauchy’s condition. For all ε > 0 there exist a natural number N , such that
for all m ≥ N and n ≥ N we have |am − an| < ε.

Cauchy’s condition requires that |am − an| should be smaller than ε, only in virtue of
m ≥ N and n ≥ N . The separation of m and n can be vast, in fact there is no upper
limit on it. It is a common beginner’s error to think that Cauchy’s condition is satisfied
if, for each ε > 0, there exists N , such that |an − an+1| < ε for all n ≥ N . One can
rephrase the condition throwing more emphasis on the arbitrariness of m − n. This
leads to a useful alternative formulation:

Cauchy’s condition, second version. For every ε > 0 there exists a natural
number N , such that for all n ≥ N , and for all natural numbers p, we have
|an+p − an| < ε.

3.8 Convergence of Series

In all mathematics there is not a single infinite series whose convergence has
been established by rigorous methods. (Letter from N. H. Abel (1828))

The correct definition of convergence of the infinite series
∑∞

k=1 ak is one of the
main achievements of analysis and it dispersed a great deal of nonsense that had
beset mathematics.

Let (an)∞n=1 be a real number sequence and let sn = ∑n
k=1 ak for n = 1, 2, 3, ....

Definition If the sequence (sn)∞n=1 is convergent and limn→∞ sn = t , we say that the
infinite series

∑∞
k=1 ak is convergent, and write

∞∑

k=1

ak = t.

We call t the sum of the series. The numbers sn are called partial sums. A series
that is not convergent is said to be divergent.

Note that t is supposed to be a finite number when the series is convergent. If
limn→∞ sn = ∞ or limn→∞ sn = −∞ we write

∑∞
k=1 ak = ∞ or

∑∞
k=1 ak = −∞,

but the series in both these cases is divergent.
A series can be formed by starting at other indices than k = 1, for example k = N .

Then to say
∑∞

k=N ak = t means that the partial sums sn = ∑n
k=N ak have the limit t .

It is then easy to see that
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∞∑

k=1

ak =
N−1∑

k=1

ak +
∞∑

k=N

ak,

given that either of the two infinite series appearing in this equation is convergent.

3.8.1 Rules for Series

Some simple facts about series follow easily from the limit rules for sequences given
in Sect. 3.4. The reader is invited to supply the proofs.We obtain important and useful
rules for manipulating series.

(i) (Multiplication by a constant) Let
∑∞

k=1 ak be a convergent series and let its sum
be t . Let α be a real number. Then the series

∑∞
k=1 αak is convergent and

∞∑

k=1

αak = αt.

(ii) (Sum of two series) Let
∑∞

k=1 bk be a second convergent series, and let its sum
be s. Then the series

∑∞
k=1(ak + bk) is convergent and

∞∑

k=1

(ak + bk) = t + s.

3.8.2 Convergence Tests

A big part of the theory of infinite series consists of the so-called convergence tests.
These enable us to establish that a series is convergent (or in some cases divergent)
by examining the sequence of terms, but without proposing a candidate for the sum.

Proposition 3.13 If
∑∞

k=1 ak is convergent then limk→∞ ak = 0.

Proof Let s = ∑∞
k=1 ak and let sn = ∑n

k=1 ak for each n. Then limn→∞ sn = s but
we also have limn→∞ sn−1 = s. It follows that

lim
n→∞(sn − sn−1) = s − s = 0.

But sn − sn−1 = an , so that limn→∞ an = 0. �

The condition limk→∞ ak = 0 is, in view of Proposition3.13, a necessary condi-
tion for convergence of the series. It is far from being sufficient. Proposition3.13 is
thus a divergence test and a useful one. If limn→∞ an does not exist, or if it exists
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but is not 0, then the series
∑∞

k=1 ak is divergent. But if limn→∞ an = 0, one cannot
conclude from that alone that

∑∞
k=1 ak is convergent (it is a common beginner’s error

to think otherwise).

3.8.3 The Simplest Convergence Tests: Positive Series

A series
∑∞

k=1 ak is said to be a positive series if ak ≥ 0 for each k. The partial sums
sn then form an increasing sequence. By Proposition3.3 an increasing sequence is
either convergent or it tends to ∞. So we have the following basic results.

Proposition 3.14 Let
∑∞

k=1 ak be a positive series. Then it is convergent if and only
if there exists K > 0, such that

∑n
k=1 ak ≤ K for each n.

The proposition can be paraphrased loosely by saying that a positive series is con-
vergent if and only if its partial sums are bounded.

Proof The sequence of partial sums is increasing and so is convergent if and only if
it is bounded above. �

Proposition 3.15 (The comparison test) Assume that
∑∞

k=1 ak and
∑∞

k=1 bk are
positive series and ak ≤ bk for each k. Then we have

(1) If
∑∞

k=1 bk is convergent then
∑∞

k=1 ak is also convergent.
(2) If

∑∞
k=1 ak is divergent then

∑∞
k=1 bk is also divergent.

Proof We use the inequalities

n∑

k=1

ak ≤
n∑

k=1

bk ≤
∞∑

k=1

bk,

in which the third member could be ∞. If
∑∞

k=1 bk is convergent then the sums∑n
k=1 ak are bounded above by the finite number

∑∞
k=1 bk , and the series

∑∞
k=1 ak is

therefore convergent. If
∑∞

k=1 ak is divergent then the sums
∑n

k=1 ak are not bounded
above (they tend to ∞), and so the sums

∑n
k=1 bk also tend to ∞. �

Proposition 3.16 (Limit comparison test) Given positive series
∑∞

k=1 ak and∑∞
k=1 bk, in which no terms are zero, we assume that the limit 	 = limk→∞ ak/bk

exists and satisfies 0 < 	 < ∞. Then either the series
∑∞

k=1 ak and
∑∞

k=1 bk are both
convergent or they are both divergent.

Proof Assume that
∑∞

k=1 bk is convergent. There exists N , such that for all k ≥ N we
haveak/bk < 	 + 1, and therefore alsoak < (	 + 1)bk . But the series

∑∞
k=1(	 + 1)bk

is convergent so that, by the comparison test, the series
∑∞

k=1 ak is also convergent.
Next assume that

∑∞
k=1 ak is convergent. We note that limk→∞ bk/ak = 1/	 and

use the same argument. �
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3.8.4 Geometric Series and D’Alembert’s Test

In order to use the comparison test we need some series, whose convergence status
is already known, to use as a yardstick.

A series
∑∞

k=1 ak is called a geometric series, if there exists r independent of k,
such that ak = rak−1 for each k. In short, the ratio ak/ak−1 is constant, provided no
term is zero. It is convenient to write a geometric series with the starting index k = 0.
Then ak = rka0 and the series has the form

∞∑

k=0

a0r
k .

From algebra we know that

n∑

k=0

rk =
⎧
⎨

⎩

rn+1 − 1

r − 1
if r �= 1

n + 1 if r = 1.

Exercise Prove this formula.

The formula for the sumof a convergent geometric series is a basic result generally
taught in school mathematics.

Proposition 3.17 Assume that a0 �= 0. Then the geometric series
∑∞

k=0 a0r
k is con-

vergent if and only if |r | < 1. In this case its sum is

∞∑

k=0

a0r
k = a0

1 − r
= First term

1 − ratio
.

Proof If |r | < 1 we have that

n∑

k=0

a0r
k = a0

rn+1 − 1

r − 1

and the limit is a0/(1 − r). If |r | ≥ 1 the term a0rn does not converge to 0; hence
the series diverges. �

Proposition 3.18 (The ratio test or D’Alembert’s test) Let
∑∞

k=1 ak be a positive
series in which no term is 0. Assume that the limit

t := lim
k→∞

ak+1

ak

exists. Then

(1) The series is convergent if t < 1.
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(2) The series is divergent if t > 1.
(3) There is no conclusion if t = 1.

Proof (1) Assume that t < 1. Choose a number r such that t < r < 1. There exists
N , such that ak+1/ak < r for all k ≥ N . For such k we have that ak+1 < rak , from
which we find ak ≤ aNrk−N for k = N , N + 1, N + 2 and so on (a sound proof can
be made by induction from k = N ). But now the series

∑∞
k=N ak is convergent as we

see by comparing it to the convergent geometric series
∑∞

k=N aNrk−N . We restore
the missing terms a1,...,aN−1 and conclude that

∑∞
k=1 ak is convergent.

(2) Assume next that t > 1. Then there exists N , such that ak+1/ak > 1 for all k ≥ N ,
and so ak is increasing for k ≥ N and cannot have the limit 0.
(3) See below. �

If limk→∞ ak+1/ak = 1 no conclusion can be obtained from the ratio test. We
included this claim in the statement of the proposition, to provide some necessary
emphasis, for it is intended to be used as a test and to be referenced as such. Although
item 3 may appear to be an exceptional case, we are forced to come to grips with
it. This will be abundantly clear from the material later in this chapter, and more
especially in the study of power series in Chap. 11.

If the problem is that the limit does not exist, then it is sometimes possible to use a
more delicate version of the ratio test that does not require the limit. Or else it may be
possible to use Cauchy’s root test, which involves calculating the usually rather hard
limit limn→∞ a1/nn . But if limk→∞ ak+1/ak = 1 some other test is needed. There are
many such tests known, thanks to the labours of nineteenth century mathematicians;
for example Raabe’s test or Gauss’s test. These topics will be touched upon in
Chap.10.

Generally the ratio test is the first thing to try when faced with testing a series for
convergence.

3.8.5 Exercises

1. Test the following series for convergence:

(a)
∞∑

n=0

n2−n

(b)
∞∑

n=0

n1002−n

(c)
∞∑

n=0

n−1002n

(d)
∞∑

n=0

1

n! .
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2. Let

an =
(
1 + 1

n

)n

for n = 1, 2, 3, .... Show that an is increasing and that for each n we have

an <

∞∑

k=0

1

k! .

Deduce that the limit

lim
n→∞

(
1 + 1

n

)n

exists and is a finite number.
3. Continuation of the previous exercise. Show that for each m ≤ n we have

(
1 + 1

n

)n

≥ 1 +
m∑

k=1

(
1 − 1

n

)(
1 − 2

n

)
...

(
1 − k−1

n

)

k! .

Deduce that

lim
n→∞

(
1 + 1

n

)n

=
∞∑

k=0

1

k! .

4. Draw conclusions for the following series using the ratio test. The conclusions
may depend on the number x . You may assume that x is positive.

(a)
∞∑

n=0

(2n + 1)!xn
(n!)2

(b)
∞∑

n=0

n!xn
nn

(c)
∞∑

n=0

(2n + 1)!(3n)!xn
(n!)5

(d)
∞∑

n=0

√
2n + 3n xn

(e)
∞∑

n=0

a(a + c)...(a + nc)

b(b + c)...(b + nc)
xn , (a, b, c positive constants).

5. Test for convergence the series

∞∑

k=0

(4k)!
(k!)4

26390k + 1103

3964k
.
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It is a result of S. Ramanujan that the sum of this series is

9801

2
√
2

1

π
.

Using a “hand-held” calculator approximate π using first one term, then two
terms, of the series. The results are astonishing.

3.8.6 The Series
∑∞

n=1 1/n
p

Let p > 0. The ratio test gives no conclusion for the series
∑∞

n=1 1/n
p since the

quotient tends to 1. This type of series is sometimes called rather quaintly a p-series.
We are going to estimate the sum directly.

We could straight away suppose that p is rational. We defined rational powers in
2.2, without giving the details, and we need the laws of exponents (ya)b = yab and
ya yb = ya+b. The fact that the quotient tends to 1, that is,

lim
n→∞

np

(n + 1)p
= 1,

follows from Sect. 3.4 Exercise 9.
The conclusions also hold for real p but proving them requires a definition of real

powers, which will be fully covered together with the laws of exponents in Chap. 7.
Consider the terms from n = 2k to 2k+1 − 1; there are 2k of themand they decrease

with increasing n. Therefore we have

2k+1−1∑

n=2k

1

np
≤ 2k · 1

(2k)p
= 1

2k(p−1)
.

It follows that
2N+1−1∑

n=1

1

np
≤

N∑

k=0

1

2k(p−1)
.

On the right is a geometric series with ratio 21−p. For p > 1 it is convergent and
this implies that the sums on the left-hand side are bounded above independently
of N . Since the terms are positive it follows that the partial sums

∑N
n=1 1/n

p are
also bounded above independently of N . We conclude that the series

∑∞
n=1 1/n

p

converges if p > 1.
We also obtain the estimate
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∞∑

n=1

1

np
<

1

1 − 21−p
.

Exercise Prove the estimate.

In particular we find that
∑∞

n=1 1/n
2 < 2. Euler solved the Basel problem in 1735

by showing that
∞∑

n=1

1

n2
= π2

6
= 1.6449...

Some very crafty proofs of this are known using only fundamental analysis, but it
is best proved using Fourier series, which also yield formulas for

∑∞
n=1 1/n

p in the
cases when p is an even number.

When p = 1 we have the harmonic series
∑∞

n=1 1/n. The nth term tends to 0,
but we cannot deduce convergence from this. We estimate the terms for n = 2k to
2k+1 − 1 from below and obtain

2k+1−1∑

n=2k

1

n
≥ 2k · 1

2k+1
= 1

2

and so
2N+1∑

n=1

1

n
≥ N + 1

2
.

The sums on the left therefore tend to infinity with increasing N and we conclude
that the harmonic series

∑∞
n=1 1/n is divergent. We even have an estimate of the size

of the partial sums, though it greatly underestimates the rate of growth, which is,
even so, rather small.

In the case 0 < p < 1 the series
∑∞

n=1 n
−p diverges by the comparison test, since

n−p > n−1.

3.8.7 Telescoping Series

This method can be used for series that are not necessarily positive. Given the
sequence (ak)∞k=1 one can sometimes find another sequence (bk)∞k=1 such that

ak = bk − bk+1, k = 1, 2, 3, ....

Then we have
n∑

k=1

ak =
n∑

k=1

(bk − bk+1) = b1 − bn+1.
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The series
∑∞

k=1 ak is therefore convergent if and only if the limit limn→∞ bn exists,
and if so then ∞∑

k=1

ak = b1 − lim
n→∞ bn.

3.8.8 Exercises (cont’d)

6. Examine the following series for convergence:

(a)
∞∑

n=1

n(n + 1)

(n + 2)2

(b)
∞∑

n=1

n(n + 1)

(n + 2)3

(c)
∞∑

n=1

n(n + 1)

(n + 2)4

(d)
∞∑

n=1

1√
n
.

7. Let p be a natural number. Using the telescoping series

∞∑

n=1

(
1

np
− 1

(n + 1)p

)

as a comparison series give another proof that the series
∑∞

n=1 1/n
p+1 converges.

8. Using the method of the previous exercise, but taking p = 1
2 , give another proof

that the series
∑∞

n=1 n
−3/2 converges.

9. Examine for convergence the series

∞∑

n=1

(n + 1)(n + 2)

n3
√
n

.

10. Find N such that
∑N

n=1 1/n > 100. It does not have to be the smallest N that
works; that can be found by methods explained in the final chapter.

11. Let

s =
∞∑

n=1

1

n2
.

Express in terms of s the sums of the series
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∞∑

n=1

1

(2n)2
,

∞∑

n=1

1

(2n − 1)2
,

∞∑

n=1

(−1)n

n2
.

The calculation would include a proof that the third series is convergent.
12. Prove Cauchy’s condensation test. Let

∑∞
n=1 an be a positive series such that the

terms an form a decreasing sequence. Then the series
∑∞

n=1 an is convergent if
and only if the series

∑∞
n=1 2

na2n is convergent.

Hint.Themethodwe used to study the series
∑∞

n=1 n
−p was essentially Cauchy’s

condensation test.
13. Use Cauchy’s condensation test to study the series

∑∞
n=1 n

−p ln n.

Note. The function ln x is the natural logarithm of x and will be properly defined in a later

chapter. Many readers will be familiar with it from school algebra. The only thing you need

to know here is the formula ln(2n) = n ln 2.

14. What can be said about the series
∑∞

n=1 n
−p(ln n)q?

15. Prove the following theorem of Abel. Let the positive series
∑∞

n=1 an be conver-
gent and assume that the sequence an is decreasing. Then limn→∞ nan = 0.

Note. This is a necessary condition for convergence that can stand beside Proposition3.13 and

settles the harmonic series.

16. As we have seen, the harmonic series
∑∞

n=1 1/n diverges. Suppose we remove
all terms for which the decimal representation of n includes the digit 9. Show
that the resulting series converges.

3.9 Decimals Reprised

We now give an exact treatment of decimals based on infinite series. We consider a
real number x in the interval 0 ≤ x < 1 and study its decimal representation. By this
is meant a representation as the sum of an infinite series

x = d1
10

+ d2
102

+ d3
103

+ · · · =
∞∑

k=1

dk
10k

(3.1)

where each coefficient dk is one of the natural numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The
usual notation for the series is

0.d1d2d3...,
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an expression that we shall call a decimal fraction,2 or in short, a decimal. The
coefficients are called decimal digits. Usage varies between countries as to whether
a full-stop, a comma, or a centred dot is used.

We begin by showing that every decimal fraction represents a real number.

Proposition 3.19 Let (dk)∞k=1 be a sequence in which each dk is one of the natural
numbers 0, 1, ..., 9. Then the series

∑∞
k=1 dk/10

k is convergent and its sum is in the
interval [0, 1].
Proof It is enough to point out that

0 ≤ dk
10k

≤ 9

10k

and the geometric series
∑∞

k=1 9/10
k is convergent with sum 1. �

We have to make an irritating but necessary distinction between the real number
x and the decimal fraction 0.d1d2d3... that represents it, since two distinct decimal
fractions can represent the same real number. This follows from the fact, just used,
that ∞∑

k=1

9

10k
= 1,

or in the usual notation
0.9̄ = 1.

This is why we included 1 in the set of real numbers under consideration in Propo-
sition3.19. From this it follows that if dk < 9 then the decimals

0.d1...dk−1dk9 and 0.d1...dk−1(dk + 1)0

represent the same real number.

Exercise Prove the claims made in the previous paragraph.

Let us call a decimal, of the kind that appears here on the left, a decimal that
is eventually 9. We shall see that it is only in such cases that two distinct decimals
represent the same real number.

We recall the algorithm for determining the decimal digits. For a given number
x in the interval [0, 1[ we define, by induction, sequences (xk)∞k=1 (the remainders)
and (dk)∞k=1 (the digits), where 0 ≤ xk < 1 and dk is one of the natural numbers in
the range 0, ..., 9. Firstly we set x1 = x . When xk (a real number in the interval

2The terminology here is unconventional. Usually by a decimal fraction is meant a rational number
whose denominator is a power of 10.
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0 ≤ xk < 1) has been defined, we let dk be the highest natural number less than or
equal to 10xk , and set xk+1 = 10xk − dk . At each step the kth remainder determines
the digits d j for j ≥ k and the remainders x j for j ≥ k + 1.

Proposition 3.20 Let 0 ≤ x < 1 and let the sequences (xk)∞k=1 and (dk)∞k=1 of
remainders and digits be defined by the decimal algorithm. Then for each natural
number n we have

x −
(
d1
10

+ d2
102

+ · · · + dn
10n

)
= xn+1

10n
.

Proof We use induction. The result holds for n = 0 by the definition of x1 (and
note that the sum within parentheses, being empty, is 0). Suppose that it holds for a
given n. Then xn+2 = 10xn+1 − dn+1, so that

xn+2

10n+1
= xn+1

10n
− dn+1

10n+1
= x −

(
d1
10

+ d2
102

+ · · · + dn+1

10n+1

)
.

�

An obvious consequence is that the decimal algorithm accomplishes what it is
intended to do.

Proposition 3.21 Let 0 ≤ x < 1 and let the sequences (xk)∞k=1 and (dk)∞k=1 be
defined by the decimal algorithm. Then

x = 0.d1d2d3... =
∞∑

k=1

dk
10k

.

Proof Since 0 ≤ xn < 1 for all n, it is clear by Proposition3.19 that

0 ≤ x −
(
d1
10

+ d2
102

+ · · · + dn
10n

)
<

1

10n

and the conclusion follows since limn→∞ 10−n = 0. �

We conclude that every real number in the interval [0, 1[ can be represented as a
decimal fraction. We even have the error estimate that using n digits gives an error
less than 10−n . Moreover every real number in the interval [0, 1[ can be represented
by a decimal that is not eventually 9. This is because a decimal that is eventually 9
can be replaced by one that is not eventually 9, and represents the same real number,
as we have seen.

We come to the main conclusion regarding decimal fractions.

Proposition 3.22 The decimal algorithm sets up a one-to-one correspondence
between real numbers in the interval 0 ≤ x < 1 and decimal fractions that are not
eventually 9.
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Proof Consider a decimal 0.d1d2d3... that is not eventually 9, and suppose it repre-
sents the real number x . Then 0 ≤ x < 1. For we know that

9

10
+ 9

102
+ 9

103
+ · · · = 1

and at least one of the coefficients dk is not 9. Hence we have

d1
10

+ d2
102

+ d3
103

+ · · · < 1.

Next consider a real number x in the interval 0 ≤ x < 1. We saw that x can be
represented by a decimal that is not eventually 9. Let

x = d1
10

+ d2
102

+ d3
103

+ · · ·

be such a representation. Now we can show that the decimal algorithm, applied to
x , produces for the kth digit the displayed coefficient dk , and the kth remainder is

xk = dk
10

+ dk+1

102
+ dk+2

103
+ · · · (3.2)

The proof of this claim is by induction. By definition

x1 = x = d1
10

+ d2
102

+ d3
103

+ · · · ,

so (3.2) holds for the case k = 1. Suppose that (3.2) is known to hold for a given k.
Then

10xk = dk + dk+1

10
+ dk+2

102
+ · · ·

and the highest natural number less than or equal to this is dk ; it cannot be dk + 1
since at least one of the succeeding digits is not 9, which implies

dk+1

10
+ dk+3

102
+ dk+4

103
+ · · · < 1.

Hence

xk+1 = dk+1

10
+ dk+2

102
+ dk+3

103
+ · · ·

and the next digit is dk .
These arguments show that the decimal algorithm produces the unique represen-

tation of each x in the interval [0, 1[ as a decimal that is not eventually 9. �
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3.9.1 Exercises

1. The duodecimal systemuses the base 12. There are various suggestions forwriting
the digits denoting 10 and 11. We shall simply use A and B. In the rest of this
exercise we use the duodecimal system and express numbers using the base 12
(written “10” in the duodecimal system). Now express the following fractions as
duodecimal expansions:

1

3
,

1

7
,

1

A
,

1

B
,

A

B
.

2. The study of decimals has close links to number theory and algebra. This is
apparent in the decimal expansion of 1/p where p is a prime. You might like to
compute the decimal expansion of 1/p for prime p, up to, say, p = 31. You will
see that, excepting the cases p = 2 and p = 5 (the prime divisors of 10), there is
no initial string, and the period length divides p − 1.

You can check the following if you are patient. For 1/7 the period is 6, the max-
imum possible. The maximum period occurs again for the prime denominators
17, 19, 23, 29, 47, 59, 61, 97 (these are the only ones under 100 for which the
period is the maximum possible).

Note. The explanation, which requires some very basic group theory, is briefly as follows. The

sequence (xn)∞n=1 generated by the decimal algorithm is given by xn = an/p, where an is the

remainder obtained on dividing p into 10n−1. The numbers an are certain elements of the set

{1, 2, ...p − 1}. It is known from number theory that this set forms a cyclic group G (usually

denoted by (Z/pZ)∗) of order p − 1, under the operation of multiplication modulo p. The

elements an are the remainders of the successive powers of 10; they form a subgroup of G,

the one generated by 10 (or 10 reduced modulo p; that only makes a difference for p < 10).

Starting at a1 = 1, no repetition can occur until we reach 1 again. There is therefore no initial

string. The order of the subgroup of G generated by 10 is therefore the length of the period in

the decimal expansion of 1/p, and, by Lagrange’s theorem of group theory, it divides the order

of G, that is, it divides p − 1. If 10 actually generates G we get a period of length p − 1, the

maximum possible. It is an unsolved problem whether or not this happens for infinitely many

primes (Artin’s conjecture in number theory would imply that it does).

3.10 (♦) Philosophical Implications of Decimals

Everyone knows the practical importance of decimals for doing calculations with
real numbers. In this nugget we will consider an importance of a quite different kind.

We have not constructed the set of real numbers, instead we posited the existence
of a set with certain properties. The indefinite article is important. In older treatises on
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analysis, it was common to construct such a set and prove that it satisfied the axioms
A, B and C. The axioms are then theorems, as we might say. To construct such a
set some raw materials are needed. These are commonly the natural numbers, and a
good dose of set theory allowing the building of some sets. One quickly builds the
rational numbers, as the set of fractionsm/n, with the usual caveat about cancellation
of factors. So let us assume that we already have a set representing Q. We will look
at a couple of constructions of R from Q that are historically important. It will be
seen that quite a lot of set theory is needed to build the required sets, but we will not
explain it in any detail.

Dedekind’s construction. We have seen the notion of Dedekind section. Now we
can apply the same notion to Q. A Dedekind section of Q is a partition of Q into
two subsets, Dl and Dr such that neither is empty, every rational belongs to Dl or
Dr but not to both, and for all rationals x and y, if x ∈ Dl and y ∈ Dr then x < y.
It is common to add the requirement, and we do so, that Dl has no highest member.

According to Dedekind a real number is a Dedekind section of the rationals. The
rationals are viewed as particular reals by embedding the set of rationals into the set
of reals as follows. The rational q is identified with the Dedekind section {Dl, Dr }
for which Dl = {s ∈ Q : s < q}.

This leaves the daunting task of defining algebraic operations with, and ordering
of, the Dedekind real numbers and proving the axioms A, B and C as theorems.
Actually it turns out that ordering and the completeness axiom are really easy. If we
have two Dedekind real numbers x and x ′, being the sections {Dl, Dr } and {D′

l, D
′
r },

then x ≤ y shall mean Dl ⊂ D′
l . The supremum of a set A of Dedekind real numbers

that is bounded above always exists. It is the Dedekind section whose left set is the
union of the left sets of the members of A.

Cantor’s construction. Cantor had a completely different view of the real numbers.
He saw sequences of rationals as the key to defining them. We have seen that every
real number is the limit of a sequence of rationals. Sowe can think of a real number as
a sequence of rationals, that either converges to a rational, or else wants to converge
but has no rational to converge to.

This can be made precise. We single out those sequences of rationals that satisfy
Cauchy’s condition, in a form that mentions only rationals. Thus a sequence (ak)∞k=1
of rationals can be called a Cauchy sequence if it satisfies the following condition.
For every rational ε > 0 there exists a natural number N , such that |am − an| < ε

for all m ≥ N and n ≥ N .
Now we could say: a real number is a Cauchy sequence of rationals. However

there is a problem. Different sequences of rationals could have the same limit when
that limit is rational, which for starters makes it impossible to embed the rationals
into the reals. Which Cauchy sequence of rationals are we to identify 1

2 with? This is
overcome by bunching Cauchy sequences of rationals, that we think should converge
to the same limit, into sets, so-called equivalence classes. Two Cauchy sequences
(ak)∞k=1 and (bk)∞k=1 belong to the same equivalence class if limk→∞ ak − bk = 0 (the
limit being interpreted in a way that mentions only rationals).



3.10 (♦) Philosophical Implications of Decimals 79

According to Cantor’s point of view, a real number is an equivalence class of
Cauchy sequences of rationals.

Dedekind and Cantor might have had a most interesting argument over who had
the nicer version of real numbers. Butwe can also imagine that theymeet and have the
following conversation (in German presumably, but a translation has most helpfully
been provided). Cantor says “I’m thinking of a real number”, (that is, an equivalence
class of Cauchy sequences of rationals) “and it lies between the natural numbers 0
and 1”. Dedekind says “I too am thinking of a real number” (that is, a Dedekind
section of the rationals) “and it too lies between 0 and 1”. Cantor asks “What are the
decimal digits of your number”? Dedekind replies “They are 0, 1, 0, 2, 0, 3, 0, 4, and
so on”. “Interesting” says Cantor, “mine has the same digits. We are thinking of the
same number”.

We now see the force of Proposition3.21. All versions of the real numbers are
really the same, though they may look very different. We can identify a real number
in Alice’s version with a real number in Bill’s version if they have the same decimal
digits. This is a big comfort for we want the real numbers to be in some sense unique.
In contrast, a field (a set with binary operations that satisfy axioms A) is not in any
sense unique. There exists a fieldwith 2 elements and another with 4. They are clearly
in no way the same.

Only one thing can spoil this beautiful uniqueness of the real numbers. As decimal
digits are nothing but a sequence of natural numbers in the range 0 to 9, Alice and
Bill have to agree about what a sequence is. More precisely, although they may agree
that a sequence is an assignment of terms to the natural numbers, they may disagree
as to what constitutes an admissible assignment. For example it is possible that Bill
requires the terms of a sequence to be in some sense computable for the assignment to
be admissible. Alicemay say “For each n the nth digit is 0 if the twin prime conjecture
is true and it is 1 if it is untrue”. Alice’s number is either 0 or 1

9 . Presumably Alice
does not know which it is (if she did she might qualify for a Fields Medal as the twin
prime conjecture is unsolved at the time of writing), but has, according to standard
thinking about sets, successfully defined a sequence of digits, and a very simple one
at that, being entirely constant. Over this Bill may disagree.

Logicians say that in each model of set theory there is a unique model of the real
numbers. This is just a way of saying that if Alice and Bill agree over how to assign
terms in a sequence, they will have essentially the same real numbers. This is the
philosophical importance of decimals.

3.10.1 Pointers to Further Study

→ Mathematical logic
→ Models of the real numbers
→ Axiomatic set theory
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3.11 (♦) Limit Inferior and Limit Superior

A sequence (an)∞n=1 that is bounded is not necessarily convergent. Logically it is not
correct to write the expression “limn→∞ an” without having first shown that the limit
exists (though we often do so without coming to harm). In this uncomfortable situ-
ation we can use lim supn→∞ an (limit superior) and lim infn→∞ an (limit inferior),
quantities that always exist if the sequence is bounded but not necessarily convergent.
If we allow the values∞ and−∞ then they exist for all sequences whether bounded
or not.

Limit inferior and limit superior are often used to prove that a limit exists and to
calculate it. On the other hand most, if not all, calculations that use these notions can
be carried out without them, and are not thereby appreciably longer. Use of these
operations is very much a matter of personal preference, and one can usually get
on quite well without them. However, it is right to mention that limit inferior and
limit superior do appear in certain important formulas (such as that for the radius of
convergence of a power series), and certain theorems (such as in Fatou’s lemma of
integration theory).

Let (an)∞n=1 be a bounded sequence. We define the limit superior of the sequence
(an)∞n=1 by

lim sup
n→∞

an := lim
n→∞(sup

k≥n
ak).

To explain this better we let

hn := sup
k≥n

ak = sup{an, an+1, an+2, ...}.

As the sequence (an)∞n=1 is bounded above, the number hn is certainly finite. In fact
we have hn ≤ supk≥1 ak . As the sequence (an)∞n=1 is bounded below, the sequence
(hn)∞n=1 is bounded below; in fact hn ≥ infk≥1 ak . Moreover hn is decreasing, being
the supremum of a set that shrinks with increasing n. The limit limn→∞ hn therefore
exists and is a finite number.

In a similar way we define the limit inferior by

lim inf
n→∞ an := lim

n→∞(inf
k≥n

ak).

Now it is easy to obtain the following rules. For the moment all the sequences are
supposed to be bounded.

(i) inf
n≥1

an ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ sup

n≥1
an .

(ii) A sequence (an)∞n=1 is convergent if and only if

lim inf
n→∞ an = lim sup

n→∞
an .
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Given this equality the common value is limn→∞ an .
(iii) If an ≤ bn ≤ cn we have

lim sup
n→∞

an ≤ lim sup
n→∞

bn ≤ lim sup
n→∞

cn

and
lim inf
n→∞ an ≤ lim inf

n→∞ bn ≤ lim inf
n→∞ cn.

Exercise Prove these rules.

We can also allow the values ∞ and −∞. If an is not bounded above we set
lim supn→∞ an = ∞. If an is bounded above, but supk≥n an tends to −∞, we set
lim supn→∞ an = −∞. Similarly we can assign infinite values to lim infn→∞ an . By
this means we can define limit inferior and limit superior for arbitrary sequences.

Examples

(a) (1, −1, 1, −1, 1, −1, ...).

Limit inferior is −1, limit superior 1.

(b) ( 12 , 2, 2
3 , 2, 3

4 , 2, 4
5 , 2, 5

6 , 2, 6
7 , ...).

Limit inferior is 1, limit superior 2.

(c) ( 12 , − 1
2 ,

2
3 , − 2

3 ,
3
4 , − 3

4 ,
4
5 , − 4

5 ,
5
6 , − 5

6 , ...).

Limit inferior is −1, limit superior 1.

(d) (1, 3, 2, 4, 3, 5, 4, 6, 5, 7, ...).

Limit superior and limit inferior are both ∞, which is also the limit.

(e) an = sin n, n = 1, 2, 3, ....

Limit inferior is −1, limit superior 1.

Exercise Check the above claims. For example (e) you will need to know that sin x
is continuous, periodic, has maximum value 1, minimum −1, and its period 2π
is irrational. So you might like to wait until these concepts have been properly
treated in later chapters. You might also find useful Sect. 2.5 Exercise 3 and Sect. 3.5
Exercise 3.

We can show limit superior in action by proving the following result (though
actually a proof avoiding it is not longer).

Proposition 3.23 Let (an)∞n=1 be a real sequence such that limn→∞ an = t . Let σn =(∑n
k=1 ak

)
/n. Then limn→∞ σn = t . The conclusion also holds if t = ∞ or t = −∞.
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Proof We write the proof for the case when t is a finite number, leaving the cases
t = ±∞ as an exercise. We first write

|σn − t | =
∣∣∣∣

(
1

n

n∑

k=1

ak

)
− t

∣∣∣∣ =
∣∣∣∣
1

n

n∑

k=1

(ak − t)

∣∣∣∣ ≤ 1

n

n∑

k=1

|ak − t |.

Let ε > 0. Choose N , such that |an − t | < ε for all n ≥ N . For a given n ≥ N we
split up the sum into terms with k ≤ N − 1 and terms with k ≥ N . We find

|σn − t | ≤ 1

n

N−1∑

k=1

|ak − t | + n − N + 1

n
ε. (3.3)

This holds for all n ≥ N . Let n → ∞ (but hold N and ε fixed). The right-hand side
has the limit ε and we conclude (without knowing whether the left-hand side has a
limit)

lim sup
n→∞

|σn − t | ≤ ε.

Now this must hold for all ε > 0 so in fact lim supn→∞ |σn − t | must be 0, that is,
limn→∞ |σn − t | exists and is 0. This gives limn→∞ σn = t . �

3.11.1 Exercises

1. Prove the cases t = ±∞ of Proposition3.23.
2. Finish the proof of Proposition3.23 from Eq. (3.3) without using limit superior

(it shouldn’t be longer).
3. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences and let their limits be s and

t respectively. Let the sequence (cn)∞n=1 be defined by cn = 1
n

∑n
k=1 akbn−k+1.

Prove that limn→∞ cn = st .
4. Prove the following generalisation of Proposition3.23. Suppose that all terms of

the sequence (cn)∞n=1 are positive and that the series
∑∞

n=1 cn diverges. Let (an)
∞
n=1

be a sequence with limit t (may be ±∞). Define

σn =
∑n

k=1 ckak∑n
k=1 ck

.

Show that limn→∞ σn = t .
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3.11.2 Uses of Limit Inferior and Limit Superior

The dichotomy of finite versus infinite often lurks behind the appearance of limit
inferior or limit superior. Given a sequence (an)∞n=1, and a predicate P(x) applicable
to real numbers, we shall say that P(an) is eventually true if there exists N , such
that P(an) is true for all n ≥ N . This is the same as saying that P(an) is false for, at
most, finitely many place numbers n. We shall say that P(an) is infinitely often true
if P(an) holds for infinitely many place numbers n.

Now let (an)∞n=1 be a bounded sequence. The reader is invited to prove the fol-
lowing characterisations of limit inferior and limit superior:

(i) lim infn→∞ an = t if and only if the following condition holds: for each ε > 0
the inequality an > t − ε is eventually true and the inequality an < t + ε is
infinitely often true.

(ii) lim supn→∞ an = t if and only if the following condition holds: for each ε > 0
the inequality an < t + ε is eventually true and the inequality an > t − ε is
infinitely often true.

Certain frequently cited properties that a sequence may possess can be expressed
succinctly with limit superior or limit inferior. In the following table we exhibit four
such properties opposite their equivalent, and less wordy, formulations using limit
superior. The abbreviation ‘i.o.’ stands for ‘infinitely often’.

(a) lim supn→∞ < t There exists t ′ < t , such that an < t ′ eventually.
(b) lim supn→∞ ≤ t For all ε > 0, an < t + ε eventually.
(c) lim supn→∞ > t There exists t ′ > t , such that an > t ′ i.o.
(d) lim supn→∞ ≥ t For all ε > 0, an > t + ε i.o.

The reader is invited to prove these claims, and formulate similar ones using limit
inferior.

The ratio test can be generalised using limit inferior and limit superior, in a form
that does not require that an+1/an converges.

Proposition 3.24 Let
∑∞

n=1 an be a positive series in which no term is 0. The fol-
lowing conclusions hold:

(1) If lim supn→∞
an+1

an
< 1 the series is convergent.

(2) If lim infn→∞
an+1

an
> 1 the series is divergent.

Proof In case 1 there exists t < 1, such that an+1/an < t eventually. This implies
(as the reader should check) that there exist n0 and C , such that an < Ctn for all
n ≥ n0. We obtain convergence of the series

∑∞
n=1 an by comparison with the series∑∞

n=1 t
n .

In case 2 there exist t > 1, such that an+1/an > t eventually. This implies diver-
gence since an cannot tend to 0. �
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One sometimes encounters limits of the form limn→∞ a1/nn and their treatment can
be puzzling. The following result is often useful. It is another casewhere limit inferior
or limit superior can be used optionally in the proof. We will need the known limit,
for a given positive constant b, that limn→∞ b1/n = 1. About the nth root function
x1/n: we will show in detail later that every positive real number has a unique positive
nth root. Moreover the nth root function is increasing.

Proposition 3.25 Let (an)∞n=1 be a real sequence such that an > 0 for all n. Assume
that limn→∞ an/an−1 = t . Then limn→∞ a1/nn = t . The conclusion also holds if
t = ∞.

Proof Obviously t ≥ 0. We shall write out the proof in the case that t is a finite,
positive number. The cases t = 0 and t = ∞ are left to the exercises.

Let ε > 0. Reduce ε, if necessary, so that ε < t (it is here that we want t > 0).
There exists N , such that

t − ε <
an
an−1

< t + ε

for all n ≥ N . Then, for all n ≥ N , we have

(t − ε)an−1 < an < (t + ε)an−1

and by induction we find

(t − ε)n−NaN < an < (t + ε)n−NaN

for all n ≥ N + 1. Taking the nth root, and using the fact that the nth root function is
increasing, we find

(t − ε)1−
N
n a

1
n
N < a

1
n
n < (t + ε)1−

N
n a

1
n
N

for all n ≥ N + 1. Let n → ∞. Now

(t − ε)1−
N
n → t − ε, (t + ε)1−

N
n → t + ε, a

1
n
N → 1

(all three follow from the limit limn→∞ b1/n = 1). We conclude that

t − ε ≤ lim inf
n→∞ a

1
n
n ≤ lim sup

n→∞
a

1
n
n ≤ t + ε.

This holds for all ε > 0. We conclude that lim infn→∞ a1/nn and lim supn→∞ a1/nn are
equal to t . �
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3.11.3 Exercises (cont’d)

5. What minor modification is needed in the proof of Proposition 3.25 for the case
t = 0?

6. Finish the proof of Proposition3.25 by considering the case t = ∞.
7. Let lim supn→∞ an = t . Show that there exists a subsequence (akn )

∞
n=1, such

that limn→∞ akn = t . Here we may have t = ±∞. A similar result holds for
lim infn→∞ an .

8. Give another (actually the third of this text) proof of the Bolzano–Weierstrass
theorem (Proposition3.10) using the previous exercise.

9. Give another proof that a sequence (an)∞n=1 that satisfies Cauchy’s condition
(Sect. 3.7) is convergent, by showing that lim infn→∞ an = lim supn→∞ an .

3.11.4 Pointers to Further Study

→ Semi-continuous functions
→ Radius of convergence
→ Fatou’s lemma

3.12 (♦) Continued Fractions

Decimals provide the best known, and perhaps themost practical, way to approximate
a real number by rational numbers. But they come at a price. Consider the following
example:

x = 0.797997999799997999997....

The sequence of digits consists of isolated instances of the digit “7” interspersed
with lengthening strings of the digit “9”. This ensures that the number is irrational.
If we truncate at the nth digit we obtain a rational approximation of the form a/10n ,
and an error between 7/10n+1 and 1/10n .

The price of this error is the size of the denominator. To ensure an error less than
1/10n we have to use a fraction with denominator 10n . This is an expensive error,
but it is possible to do much better. Approximations are possible with fractions a/b
for which the error is less than 1/b2. They can be obtained through the continued
fraction algorithm.

Whereas a decimal representation of a number x uses a sequence of digits from
the range 0, 1, ..., 9, a continued fraction uses a sequence of integers, which can be
arbitrarily large. This sequence is finite if and only if x is rational, unlike a decimal
expansion, which can have infinitely many non-zero digits whilst representing a
rational. The integers of the continued fraction are generated from the number x by
a simple algorithm, which we describe in the next paragraph.
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Let x be a real number. Using the notation [x] for the highest integer less than or
equal to x , we set

a0 = [x] and x1 = x − a0.

If x1 �= 0 we set

a1 =
[
1

x1

]
and x2 = 1

x1
− a1.

We continue inductively. Having reached an−1 and xn , and assuming that xn �= 0, we
set

an =
[
1

xn

]
, xn+1 = 1

xn
− an.

The process terminates if, for some n, we have xn = 0. Since xn lies in the interval
0 ≤ xn < 1 for every n ≥ 1, it is clear that all the integers an , except possibly for a0,
are positive.

If the sequence terminates with an (because xn+1 = 0) then x must be rational. In
fact, unravelling the reciprocals we find that

x = a0 + 1

a1 + 1

a2 + 1

a3 + 1

... 1

an

This expression is known as a continued fraction. The study of them is really old
with hints of them in ancient mathematics; for example they are closely related to
the Euclidean algorithm.

There is a short notation for a continued fraction.We denote the above expression,
whether or not the entries are integers, by

[a0, a1, a2, ..., an].

If x is irrational then the sequence of integers cannot terminate. We would then
like to write

x = [a0, a1, a2, ...].

The right-hand side can be interpreted as the limit

lim
n→∞[a0, a1, a2, ..., an]

if the limit exists. In fact the limit does exist, and it really does equal x . The proof is
a bit lengthy and substantial parts of it will be left to the exercises.
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We begin by writing
pn
qn

= [a0, a1, a2, ..., an]

where pn and qn are coprime integers (that is, integers with highest common divi-
sor 1). The fraction [a0, a1, a2, ..., an] is called a convergent (anticipating the result;
but it is convenient already to have a name for it).

There is a simple way to calculate the sequences (pk)nk=0 and (qk)nk=0 from the
sequence (ak)nk=0 without having to pick one’s way through a pile of nested recipro-
cals. Both sequences satisfy the same recurrence relations, namely

pk = ak pk−1 + pk−2, qk = akqk−1 + qk−2, k = 2, 3, .... (3.4)

with the initial values p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1.

Proof of the Recurrence Relations We prove that pk and qk satisfy the recurrences
(3.4) by induction.As induction hypothesiswe assume that for any continued fraction
of length less than or equal to m, the corresponding numerators and denominators
satisfy the recurrence relations (3.4).

For our given x we let

p′
k

q ′
k

= [a1, a2, a3, ..., ak], k = 1, 2, 3, ...

where the integers p′
k and q ′

k are coprime. The induction hypothesis is supposed to
hold for the fraction [a1, a2, a3, ..., am], which is of length m, so that we have

p′
m = am p

′
m−1 + p′

m−2, q ′
m = amq

′
m−1 + q ′

m−2.

Furthermore, by the definition of continued fraction, the relation

pk
qk

= a0 + q ′
k

p′
k

holds for all k and, recalling that p′
k and q

′
k are coprime, we see that

pk = a0 p
′
k + q ′

k, qk = p′
k .

Therefore, after some algebraic manipulation, we find

pm = am pm−1 + pm−2, qm = amqm−1 + qm−2

and the proof of (3.4) is complete. �

The rest of the proof that limn→∞ pn/qn = x is given in steps in Exercise 1 and
builds almost entirely on the relations (3.4).
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3.12.1 Exercises

1. Complete the proof that limn→∞ pn/qn = x in the following steps:

(a) Show that
pnqn+1 − pn+1qn = (−1)n+1 n = 0, 1, 2, ...

(b) Show that ∣∣∣∣
pn
qn

− pn+1

qn+1

∣∣∣∣ = 1

qnqn+1
.

(c) Show that if the sequence an does not terminate then the integer sequences
pn and qn are strictly increasing and satisfy limn→∞ pn = limn→∞ qn = ∞.

(d) Assume that the fraction does not terminate and set yn = 1/xn . Show that,
for each n, we have

x = [a0, a1, ..., an−1, yn].

Here an is replaced by yn .
(e) Assume that the fraction does not terminate. Then for each n the number x

lies between [a0, a1, ...an] and [a0, a1, ..., an, an+1].
(f) Show that ∣∣∣∣

pn
qn

− x

∣∣∣∣ ≤ 1

q2
n

, n = 0, 1, 2, ...

This completes the proof that pn/qn → x . It givesmuchmore.Weget an infinite
sequence of rational approximations a/b to x such that the error is at most 1/b2.
The price of an error less than ε is a denominator at most 1/

√
ε. This is much

better than what can be achieved by decimal expansions.

2. Show that the continued fraction of a rational number terminates.

Hint. Show that if x is rational there can be at most finitely many rational approx-
imations a/b that satisfy ∣∣∣x − a

b

∣∣∣ ≤ 1

b2
.

From a non-terminating fraction we get infinitely many such approximations.
3. Show that √

2 = [1, 2].

The overline means that the entry “2” repeats indefinitely. Tabulate values of pk
and qk and observe that p5/q5 = 99/70, which gives

√
2 with an error less than

10−4.
4. With yk as defined in Exercise 1(d), show that for all k we have
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x = pk−1yk + pk−2

qk−1yk + qk−2
.

5. With yk as defined in Exercise 1(d), show that yk = [ak, ak+1, ak+2, ...], where
x = [a0, a1, a2, ...].

6. Suppose that the continued fraction of x is periodic, that is to say, it is of the form
[a0, a1, ...an], the overline indicating that the string of entries repeats indefinitely.
Show that x satisfies a quadratic equation with integer coefficients.

7. Calculate the values of the following continued fractions.

(a) [1], that is, [1, 1, 1, ...]. This is surely the simplest continued fraction that
represents an irrational number.

(b) [1, 2]
(c) [1, 2, 1].

8. Show that if the continued fraction of x has the form

[a0, a1, ...am, am+1, ...am+n],

consisting of a string that repeats indefinitely after an initial string, then x is an
irrational root of a quadratic equation with integer coefficients.
Hint. Use Exercises4, 5 and 6, and observe that if yk is the root of a quadratic
equation then so is x .

Note. The converse is also true. Every quadratic irrational has a continued fraction of this form.

This was shown by Lagrange. The proof is not hard but requires a little number theory.

9. The continued fraction algorithm gives a handy way of finding integers x and y
that satisfy ax − by = 1 for a given pair of coprime integers a and b.
Hint. Stare at the result of Exercise 1(a). This also shows that continued fractions
are closely related to the Euclidean algorithm; the latter is often used to find x
and y.

3.12.2 Pointers to Further Study

→ Number theory
→ Irrationality theory
→ Diophantine analysis



Chapter 4
Functions and Continuity

A function of a variable quantity is an analytic expression
composed in any way whatsoever of the variable quantity and
numbers or constant quantities

L. Euler

4.1 How Do We Talk About Functions?

A function or mapping assigns to each point in a set A a point in a set B. We shall
allow a rather wide scope for the understanding of “assigns”. It does not have to be
an assignment using a formula in the ordinary sense, though that is very often the
case in analysis.

An exact definition of the concept of function can be based on set theory. It
seems to dispel all mysteries connected with the meaning of assignment, identify-
ing a function with a certain set (its graph in fact), but the clarity thus gained is a
little misleading for it raises the question of what sets are to be allowed. It is ques-
tionable whether the set-theoretical definition of function is needed for fundamental
analysis.

As with any other object of interest in mathematics, we use letters to symbolise
functions; “ f ” is often the first choice, if available, followed by “g”. The set A is
called the domain of the function whilst the set B is called its codomain. We write

f : A → B

which is read “ f is a function with domain A and codomain B” or “ f maps A to B”.
If x ∈ A (that is, if x is an element of A), we denote the element of B that f assigns
to x by f (x) and call it the value of f at x .
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Although it should be clear from the definition, it is worth emphasising that a
function assigns only one value to each point in its domain. If we wish to say that
the square root of 4 is plus 2 or minus 2, then we are not using a function.

The words “function” and “mapping” mean the same but “function” is mostly
used when the codomain consists of numbers, rather than vectors or more exotic
objects.

4.1.1 Examples of Specifying Functions

Here are some examples of how we specify a function. They show some acceptable
ways to assign values of varying degrees of formality.

(a) f : R → R, f (x) = x2.

This says that f maps R to R and assigns to each x its square x2. We say informally
“ f is the function x2”.

(b) f : [0,∞[→ R, f (x) = √
x .

This says that f maps the set of positive real numbers, together with 0, to R, and
assigns to each such number x its square root

√
x . We say informally “ f is the

function
√
x”.

(c) f : ]0, 500] → R, f (x) =
{
10, if 0 < x < 100
20, if 100 ≤ x ≤ 500

The presentation here is called specifying a function by cases. This function could
be a list of postal charges.

(d) The function f : [0, 1[→ R, where f (x) = 1 if the digit 9 appears in the
decimal representation of x and f (x) = 0 otherwise. We use a decimal
representation that does not end in repeating 9’s.

There seems to be no practical generalway to compute f (x) in this example, although
we do have an algorithm for the decimal digits, so things are not as bad as they might
be.

Another convenient, and less formal, way to specify functions is typified by the
example:

(e) f (x) = √
x, (x > 0).

The codomain is not given (it is not always important), but the domain is indicated,
although sets are not mentioned.
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Fig. 4.1 Two views of a
function

Often the domain is not mentioned at all when we specify a function informally,
but it is inferred, as in the example:

(e)
(x − 1)(x − 2)

(x − 3)(x − 4)
.

Here we mean the function f with domain A = R \ {3, 4} and codomain R, such
that

f (x) = (x − 1)(x − 2)

(x − 3)(x − 4)
, (x ∈ A).

The graph of a function f with domain A ⊂ R and codomain R is the set of all
pairs (x, y) such that x ∈ A and y = f (x). We can view the graph as a curve (of
some sort) in the plane with coordinates x and y, and this is a useful way to visualise
f . An example of Weierstrass of a continuous function that is nowhere differen-
tiable, and the space filling curves of Peano, show the limitations of such a picture.
Figure 4.1 illustrates the two ways to view a function: as a graph or as an assignment.

The domains of functions considered here will be subsets of R. It is clearly too
limiting to consider only functions with domainR; the above examples illustrate this.
However the typical domains for calculus are intervals, or finite unions of intervals.

Sometimes we speak of a function y = f (x), instead of just f , as if we have the
graph in mind. Or else we are thinking of x and y as variables and expressing a
relation between them, a point of view common in physics (think of pressure P and
volume V , and Boyle’s Law of ideal gases). We may even say “the function f (x)”,
although strictly speaking f (x) would be the value that f assigns to the number x .
It offers a visual cue that a function is referred to, rather than a number that might
be denoted by f . One should bear in mind that mathematics is not only a mode of
thinking, but also a mode of communication.

4.2 Continuous Functions

If a parcel weighs 100 grammes, and the postal charges are as in example (c) of the
last section, we will not be happy to pay 20 pounds in postage. We might object that
it really weighs 99.99 grammes and the post office should have their scales checked.
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The problemhere is that the function in question is discontinuous. The definition of
continuity of a function f at a point x0 seems at first glance to be designed to exclude
a jump in the graph of the function at x0. This is a bit of an oversimplification; we
will see later that it does more than this and excludes some other types of undesirable
behaviour as well. The implications of the definition are not very obvious and will
only gradually become clear. Until then the reader is asked to take on trust that the
definition of continuity presented here is appropriate.

In the definitions below, the domain of the function is a subset A of R. In most
practical cases A is an interval or a finite union of intervals.

Definition Let f : A → R where A is a subset of R. Let x0 ∈ A. We say that the
function f is continuous at x0, or that x0 is a point of continuity of f , if the following
condition is satisfied:

For each ε > 0 there exists δ > 0, such that | f (x) − f (x0)| < ε for all x in A
that satisfy |x − x0| < δ.

If f is not continuous at x0 we say that f is discontinuous at x0, or that x0 is a point
of discontinuity of f .

Definition Let f : A → R where A is a subset of R. We say that the function f is
continuous if it is continuous at every point of A.

As in the definition of limit of a sequence, we have made a small concession to
natural English. It would be more precise, but less natural, to define the condition of
continuity as follows: for each ε > 0 there exists δ > 0, such that for all x in A that
satisfy |x − x0| < δ we have | f (x) − f (x0)| < ε. In a simplified first-order logic
notation we can lay bare the logical structure of this condition:

(∀ε > 0)(∃δ > 0)(∀x ∈ A)
(|x − x0| < δ ⇒ | f (x) − f (x0)| < ε

)
.

In most cases A is an interval. Even so, this is not quite general enough for our
purposes. In the following pages, when we write f : A → R we shall mean that A
is a subset of R (not necessarily an interval).

The definition of continuity, like the definition of limit and the nature of the real
numbers, took a long time to crystalise into its present form. It seems to have been
thought that continuity must be seen as a property of the function as a whole, akin
to saying that its graph hangs together in one piece; or even more loosely, that the
graph can be drawnwithout lifting the pencil from the paper. It finally became clearer
that the way forward was to define continuity at a point first, and only then to define
continuity as a whole to mean that the function was continuous at each point. None
of this was originally at all obvious.
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4.2.1 Exercises

1. Because the set A is quite arbitrary the definition of continuity has a perhaps
unexpected consequence. We say that a point x0 ∈ A is an isolated point of A
if there exists δ > 0 such that x0 is the only point both in A and in the interval
]x0 − δ, x0 + δ[. This means that if x ∈ A and |x − x0| < δ then x = x0.

Show that if f : A → R and x0 is an isolated point of A then f is automatically
continuous at x0.

2. Is 0 a point of discontinuity for the function 1/x?

3. For each x0 in its domain, and for each ε > 0, find a suitable δ, thus proving that
the following functions are continuous:

(a) f (x) = 1
(b) f (x) = x
(c) f (x) = x2

(d) f (x) = 1

x
.

4. Let f : [0, 1[→ R be the function defined in Sect. 4.1 Example (d), that assigns
1 to x if the decimal expansion of x contains the digit 9, using if possible the
terminating expansion, and assigns 0 otherwise.
Show that f is continuous at x if and only if f (x) = 1.

5. Suppose that the function f : A → R is continuous at the point c and that
f (c) < d [respectively f (c) > d]. Show that there exists δ > 0, such that
f (x) < d [respectively f (x) > d] for all x in A that satisfy |x − c| < δ.

6. A function f with domain A is said to be upper semi-continuous [respectively,
lower semi-continuous] at a point x0 in A if the following condition is satisfied:
for all ε > 0 there exists δ > 0, such that f (x) < f (x0) + ε

[respectively, f (x) > f (x0) − ε] for all x in A that satisfy |x − x0| < δ.

(a) Show that f is continuous at x0 if and only if it is both upper semi-continuous
and lower semi-continuous at x0.

(b) Suppose that f is upper semi-continuous [respectively lower semi-
continuous] at a point c. Suppose that f (c) < d [respectively f (c) > d].
Show that there exists δ > 0, such that f (x) < d [respectively f (x) > d]
for all x in A that satisfy |x − c| < δ.

4.2.2 Limits of Functions

Let f : A → Rwhere A is a subsetR. In practice A is often an interval, or an interval
minus a finite set of points. The reader should recall the definition of limit point of
a set (see Sect. 3.5).
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Definition Let c be a limit point of the set A and let t be a real number. We say that
the limit of f at c exists and equals t , and we write

lim
x→c

f (x) = t,

if the following condition is satisfied:

For every ε > 0 there exists δ > 0, such that | f (x) − t | < ε for all x in A that
satisfy 0 < |x − c| < δ.

We sometimes write more informally

f (x) → t as x → c

to express that the limit of f at c equals t .

Note the following points:

(a) Because c is required to be a limit point, there exists x in Awith 0 < |x − c| < δ.
This means that the situation, that the limit exists and equals t , cannot arise by
default, which would happen with any number t whatsoever if there were no
points x to be tested.

(b) If A is an interval (commonly the case), then c is either in A or else c is an
endpoint (or both).

(c) If c is in A then the value f (c) has no influence on the limit.
(d) The variable x in the expression “limx→c f (x) = t” is a bound variable. Any

other letter may be used instead of “x”, for example “limq→c f (q) = t” has the
same meaning as “limx→c f (x) = t”.

(e) The limit t may, ormay not, be a value of the function f at some x not equal to c. It
is quite possible for f to take the value t at points in the interval ]c − h, c + h[,
excluding c, for every h > 0. Confusion over this caused problems in early
thinking about limits (as was also pointed out in connection with the limit of a
sequence).

Although it might be thought nice to display δ as a function of ε, for example to
get explicit error estimates, this is not necessary to verify the definition of limit, nor
is it always helpful. To produce a δ that works for a given ε some arbitrary choices
may have to be made, such as that of selecting in a non-explicit fashion a number
from a non-empty set. It is not hard to see that the set of possible δ’s for a given ε,
if bounded above, is an interval of the form ]0, δmax]. In such a case we could, if we
wished, define the function δ(ε) = δmax, but this is not necessarily useful.

Exercise Check the claim made at the end of the last paragraph about the set of
possible δ’s forming an interval.

The following result is often needed:
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Proposition 4.1 Let c be a limit point of the set A and suppose that the limit
limx→c f (x) exists (and is a finite number). Then there exists h > 0, such that f
is bounded on the set ]c − h, c + h[ ∩ A.

Proof Using ε = 1 we see that there exists h > 0, such that | f (x) − t | < 1 for
all x in A that satisfy 0 < |x − c| < h. For such x we have | f (x)| < 1 + |t |. Let
K = 1 + |t | if c /∈ A and K = max(1 + |t |, | f (c)|) if c ∈ A. Then | f (x)| < K for
all x in ]c − h, c + h[ ∩ A. �

The limit limx→c f (x), if it exists, is unique. This was anticipated in our use
of the definite article. It is impossible for distinct real numbers s and t , that both
limx→c f (x) = s and limx→c f (x) = t . If it was so we could choose ε, such that
0 < ε < 1

2 |s − t |, and find δ > 0, such that | f (x) − s| < ε and also | f (x) − t | < ε

for all x in A that satisfy 0 < |x − c| < δ. Such points x exist since c is a limit point
of A. But then we would have

|s − t | ≤ |s − f (x)| + | f (x) − t | < 2ε < |s − t |,

which is impossible.

4.2.3 Connection Between Continuity and Limit

Arguments about continuity can often be rephrased as arguments about limits. This
is due to the following result.

Proposition 4.2 Let f : A → R and let c be a point in A that is also a limit point
of A. Then f is continuous at c if and only if f (c) = limx→c f (x).

Proof Assume first that f is continuous at c. Let ε > 0. There exists δ > 0, such
that | f (x) − f (c)| < ε if x ∈ A and |x − c| < δ, and therefore in particular if x ∈ A
and 0 < |x − c| < δ. This says that f (c) = limx→c f (x).

Next assume that f (c) = limx→c f (x). Let ε > 0. There exists δ > 0, such
that | f (x) − f (c)| < ε if x ∈ A and 0 < |x − c| < δ. But then we also have
| f (x) − f (c)| < ε if x ∈ A and |x − c| < δ, since it obviously holds when x = c.

�
If c is in A but is not a limit point of A, then f is automatically continuous at c.

We can choose δ > 0 so small that the conditions |x − c| < δ and x ∈ A are only
satisfied when x = c, and then f (x) − f (c) = 0.

4.2.4 Limit Rules

Limit rules allow us to establish new limits from old ones, usually without having
to use the definition of limit. The limit rules for functions are similar to those for
sequences, and the similarity extends to their proofs.
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Proposition 4.3 Let f : A → R, g : A → R, let c be a limit point of A and let
limx→c f (x) = s, limx→c g(x) = t . We have the following rules:

(1) (Sum) limx→c f (x) + g(x) = s + t
(2) (Product) limx→c f (x) · g(x) = s · t
(3) (Absolute value) limx→c | f (x)| = |s|
(4) (Reciprocal) If s �= 0 then lim

x→c

1

f (x)
= 1

s
.

Note. In rule 4 the function 1/ f (x) is possibly not defined for all x ∈ A because
f can have zeros. However, if limx→c f (x) �= 0 the zeros of f , if any, other than
possibly c itself, are a safe distance from c. More precisely there is an interval
I = ]c − h, c + h[, such that f has no zero in I ∩ A \ {c}, on which domain we may
define 1/ f .

Proof of the Limit Rules (1) Let ε > 0.We choose δ > 0, such that | f (x) − s| < ε/2
and |g(x) − t | < ε/2 for all x ∈ A that satisfy 0 < |x − c| < δ (the same δ for both
f and g). For such x we have

| f (x) + g(x) − (s + t)| ≤ | f (x) − s| + |g(x) − t | <
ε

2
+ ε

2
= ε.

(2) Since the limit limx→c f (x) exists, there exist K > 0 and h > 0, such that for all
x in ]c − h, c + h[ ∩ A we have | f (x)| < K .

Let ε > 0. Choose δ1 > 0, such that | f (x) − s| < ε and |g(x) − t | < ε for all
x ∈ A that satisfy 0 < |x − c| < δ1. Set δ = min(δ1, h). If 0 < |x − c| < δ we have

| f (x)g(x) − st | = | f (x)g(x) − f (x)t + f (x)t − st |
≤ | f (x)||g(x) − t | + |t || f (x) − s|
< K ε + |t |ε
< (K + |t |)ε.

We conclude that limx→c f (x) · g(x) = s · t . It may help to reread the discussion in
the proof of Proposition 3.5 in connection with the product of sequences.

(3) The proof is almost identical to the corresponding one for sequences.

(4) We have ∣∣∣∣ 1

f (x)
− 1

s

∣∣∣∣ = |s − f (x)|
|s|| f (x)| .

By assumption limx→c | f (x)| = |s| and s �= 0. There therefore exists h > 0, such
that | f (x)| > 1

2 |s| for all x that satisfy 0 < |x − c| < h. For such x we have

∣∣∣∣ 1

f (x)
− 1

s

∣∣∣∣ ≤ 2

|s|2
∣∣s − f (x)

∣∣.
The conclusion follows from that fact that the right-hand side has the limit 0. �
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The justification for the last line of the proof of rule 4 is left to the reader. In
fact there is a choice. One can give an argument starting “Let ε > 0” as in rules
1 and 2. Alternatively one can avoid mentioning ε at all by using a version of the
squeeze rule for limits of functions; compare the corresponding rule for sequences,
Proposition 3.8. The rule for functions reads as follows:

Let f , g and h be functions with domain A, and let c be a limit point of A.
Assume that there exists δ > 0, such that g(x) ≤ f (x) ≤ h(x) for all x in A
that satisfy 0 < |x − c| < δ, and that limx→c g(x) = limx→c h(x) = t . Then
limx→c f (x) = t .

The proof of the squeeze rule is also left to the reader.

4.2.5 Continuity Rules

The limit rules give rise to continuity rules. Let f : A → R and g : A → R be
continuous at c. Then

(i) The sum f + g is continuous at c.
(ii) The product f · g is continuous at c.
(iii) The absolute value | f | is continuous at c.
(iv) If f (c) �= 0 then the reciprocal 1/ f is continuous at c (where 1/ f is defined

sufficiently close to c to avoid zeros of f ).

To begin the wholesale production of continuous functions we need to settle two
initial cases, left to the reader to verify:

(a) The constant function f : R → R, f (x) = C for all x is everywhere continuous.
(b) The function f (x) = x (identity function) is everywhere continuous.

From these and the continuity rules (i–iv), we immediately obtain a large number of
continuous functions:

(c) The function xn (where n is a fixed natural number) is continuous.
(d) The polynomial f (x) = anxn + an−1xn−1 + · · · + a0 is continuous.
(e) If f and g are polynomials then the rational function f (x)/g(x) is continuous

(on its domain naturally, which excludes the zeros of g).

4.2.6 Left and Right Limits

Let f : ]a, b[ → R and let a < c < b. We can consider separately the two functions

f1 : ]a, c[ → R, f1(x) = f (x), (a < x < c)

f2 : ]c, b[ → R, f2(x) = f (x), (c < x < b).
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Fig. 4.2 The simplest
discontinuities

They are called the restrictions of f to the intervals ]a, c[ and ]c, b[.
The limits limx→c f1(x) and limx→c f2(x) are called the left-hand and right-hand

limits of f at c. They are jointly called one-sided limits. The usual notation, which
does not mention f1 or f2, refers to them by

lim
x→c− f (x) and lim

x→c+ f (x),

or else even more simply, by

f (c−) and f (c+).

Furthermore when f has the domain ]a, b[ it is quite common to denote the
limits limx→a f (x) and limx→b f (x), quite unnecessarily, by limx→a+ f (x) and
limx→b− f (x), as a notational reminder that x can only approach a from the right
and b from the left.

Proposition 4.4 The function f : ]a, b[ → R is continuous at c ∈ ]a, b[ if and only
if the one-sided limits f (c−) and f (c+) exist and are equal to f (c).

The proof of this is rather obvious, but the proposition is worth stating because it
suggests somewhat graphically one of the characteristic ways we think about failure
of continuity. If the left and right limits both exist but are unequal we say that f has
a jump discontinuity at x = c. The difference f (c+) − f (c−) is called the height
of the jump, or simply the jump, at c. This being non-zero is the simplest way that a
function f can be discontinuous, but it is by no means the only way.

It is possible for a function to be discontinuous at c because one or both of the
one-sided limits limx→c− f (x) and limx→c+ f (x) fail to exist. It is also possible that
the one-sided limits are equal, so that there is no jump, but they are different from
f (c). Then f is discontinuous at c because, somehow, the “wrong value” is assigned
to f at c. This is sometimes called a removable discontinuity; by changing the value
at c the function can be made continuous there (Fig. 4.2).
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4.2.7 The Limits limx→∞ f (x) and limx→−∞ f (x)

Let us suppose that the domain of f includes an interval of the form ]a,∞[.
Definition We say that the limit limx→∞ f (x) exists and equals t if the following
condition is satisfied:

For each ε > 0 there exists K , such that | f (x) − t | < ε for all x that satisfy
the inequality x > K .

In a similar way, limx→−∞ f (x) = t means that for each ε > 0, there exists K ,
such that | f (x) − t | < ε for all x that satisfy x < K (of course we assume that the
domain of f includes an interval of the form ]−∞, a[).

The limit rules of Proposition 4.3 and the squeeze rule all hold with obvious
modifications for limits of the kind limx→∞ f (x) and limx→−∞ f (x). The reader
should write out the proofs.

Geometrically, saying that limx→∞ f (x) = t , or limx→−∞ f (x) = t , means that
the line y = t is a horizontal asymptote to the curve y = f (x).

4.2.8 The Limits ±∞

Let f : A → R and let c be a limit point of A. Most often A is an interval and c a
point in A or an endpoint of A (or both).

Definition We say that f tends to ∞, or has the limit ∞ as x tends to c, and we
write limx→c f (x) = ∞, when the following condition is satisfied:

For each K there exists δ > 0, such that f (x) > K for all x ∈ A that satisfy
0 < |x − c| < δ.

To define limx→c f (x) = −∞ we require f (x) < K instead of f (x) > K .

Geometrically, saying that limx→c f (x) = ∞, or limx→c f (x) = −∞,means that
the line x = c is a vertical asymptote to the curve y = f (x), although in practice
we usually speak of an asymptote when the limit is one-sided, for example, when
limx→c− f (x) = ∞ (Fig. 4.3).

The reader should supply definitions for the notion limx→∞ f (x) = ∞, and three
other similar ones obtained by inserting minus signs.

Although one says “tends to infinity” one never says “converges to infinity”, the
verb “converge” or the adjective “convergent” always implying a finite limit. Some
say “diverges to infinity” in the cases limn→∞ an = ∞ or limx→c f (x) = ∞. The
elements∞ and−∞ are not numbers, but they can be limits. So one has to be careful
about saying “The limit limx→c f (x) exists”, always adding “and is a finite number.”
if that is necessary for clarity.
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Fig. 4.3 Asymptotes as
infinite limits

4.2.9 Exercises (cont’d)

7. Find the following limits or explain why they do not exist:

(a) lim
x→1

x3 + x2 + x + 1

(b) lim
x→0

1

x

(c) lim
x→0

1

|x |
(d) lim

x→1

x3 − 1

x − 1

(e) lim
x→1

√
x − 1

x − 1
(f) lim

x→∞
√
x

(g) lim
x→∞

√
x + 1 − √

x

(h) lim
x→∞

√
x(x + 1) − x

(i) lim
x→∞

3
√
x2(x + 1) − x

(j) lim
x→1

min(x, 2 − x).

8. Prove that limx→∞ x3 − x2 + x − 1 = ∞ by showing how to find M , given K ,
such that x3 − x2 + x − 1 > K for all x > M . It does not have to be the best M .

9. Let f be a function whose domain includes an interval of the form ]a,∞[. Show
that limx→∞ f (x) = limt→0+ f (1/t), in the sense that if either limit exists then
so does the other and they are then equal; the limits±∞ are allowed. This result,
although simple, is used so much that it is worth pointing it out.

10. Another often used device is the following. Let f be a function defined on an
interval A that contains 0, except possibly at 0 itself. Let λ �= 0. Show that
limx→0 f (x) = limx→0 f (λx). Again we imply that if one limit exists then so
does the other.
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Note. This is really an example of a composite function, where f (x) is composed with the

function λx , and is capable of countless variations.

11. Many readers may have been introduced at school to an important example of a
limit, including a proof (of a sort) using the squeeze rule. We refer to the limit

lim
x→0

sin x

x
= 1.

It is essential here that the angle is measured by the arc of the unit circle that
it sweeps out (that is, the angle is given in radians). The limit implies that x is
an approximation to sin x when x is small. It is surprisingly good; for example
sin 0.1 = 0.0998 (0.1 rad, about 6◦, is really not so small). The explanation for
this unexpected accuracy is to be found in the power series expansion of sin x ,
studied in Chap. 11.
The proof of this limit offered in school mathematics is in two steps. In the first
the inequalities

sin x < x <
sin x

cos x

are established for 0 < x < π/2, using a geometrical argument involving com-
paring the areas of three plane figures.
Complete the proof of the limit, assuming these inequalities and the continuity
of cos x .

4.2.10 Bounded Functions

Let f : A → R, where A is an arbitrary subset ofR. We define the following notions
of boundedness for a function, paralleling those for sets and for sequences:

(a) The function f is said to be bounded above, if there exists K , such that f (x) < K
for all x ∈ A.

(b) The function f is said to be bounded below, if there exists K , such that f (x) > K
for all x ∈ A.

(c) The function f is said to be bounded, if it is both bounded above and bounded
below. It is equivalent to saying that there exists K > 0, such that | f (x)| < K
for all x ∈ A.

If f is bounded above we set

sup f := sup{ f (x) : x ∈ A}.

If f is bounded below we set

inf f := inf{ f (x) : x ∈ A}.
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More generally, if B ⊂ A we denote the supremum (or infimum, with obvious
changes) of f in B by

sup
B

f, or sup
x∈B

f (x), or sup
a≤x≤b

f (x);

the last if B is the interval [a, b]. There are many variations on these notations, more
or less self-explanatory.

If f is continuous at x0 then there exists h > 0, such that f is bounded in the set
]x0 − h, x0 + h[ ∩ A. Because of this we say that a continuous function is locally
bounded.

Exercise Prove this claim.

4.2.11 Monotonic Functions

The notions of increasing and decreasing for functions parallel those for sequences.

Definition A function f : ]a, b[ → R is said to be increasing if, for all s and t such
that a < s < t < b, we have f (s) ≤ f (t). It is said to be decreasing if, for all s and
t such that a < s < t < b, we have f (s) ≥ f (t). A function that is either increasing
or decreasing is said to be monotonic.

As for sequences, we shall speak of a strictly increasing, or strictly decreasing,
function when the inequalities are strict (that is, when equality is ruled out).

The terms “monotonic ” and “monotone” are completely equivalent. It is a matter
of taste, or even ease of speech, which one uses.

Proposition 4.5 Let f : ]a, b[ → R be an increasing function that is bounded above
or a decreasing function that is bounded below. Then limx→b f (x) exists and is a
finite number (not ±∞). The conclusions also holds if b = ∞.

Proof Suppose that f is an increasing function bounded above. There exists K > 0,
such that f (x) < K for all x ∈ ]a, b[. The set M of all values taken by the function
f is bounded above. Let t = supM . We shall show that limx→b f (x) = t .
Let ε > 0. By the definition of supremum, there exists x1 ∈ ]a, b[ such that

t − ε < f (x1). Since f is increasing and bounded above by t , we must have
t − ε < f (x) ≤ t for all x in the interval ]x1, b[. We conclude that limx→b f (x) = t .
For example, we can take δ = b − x1.

If b = ∞ a similar argument works. The case when f is decreasing is similar,
using infimum instead of supremum. �

Obviously similar conclusions hold for the limit limx→a f (x). Furthermore it
should be clear that if f is increasing, but not necessarily bounded above, then
the limit limx→b f (x) exists if we allow ∞ as a limit; and similarly a decreasing
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function not necessarily bounded below approaches a limit if we allow −∞. With
this understanding we can say that a monotonic function approaches limits at both
ends of its interval of definition.

4.2.12 Discontinuities of Monotonic Functions

Let f : ]a, b[ → R be an increasing function and let a < c < b. By Proposition 4.5
the one-sided limits limx→c− f (x) and limx→c+ f (x) exist, and

f (c−) = lim
x→c− f (x) ≤ f (c) ≤ lim

x→c+ f (x) = f (c+).

If f (c−) = f (c+) then f is continuous at c, but otherwise f is discontinuous at c
and has an upward jump discontinuity. The difference f (c+) − f (c−) is called the
height of the jump. Similar conclusions hold for decreasing functions.

It appears that a monotonic function can only fail to be continuous by having
a jump, upwards for an increasing function, downwards for a decreasing one. As
a corollary we can conclude that a monotonic function f : [a, b] → R, that takes
all values between f (a) and f (b), or, as we might say, has no gaps in its range, is
continuous. A rigorous proof of this is illustrated in Fig. 4.4. The converse is also
true, a monotonic, continuous function has no gaps in its range. This is a simple
consequence of the intermediate value theorem that we consider in detail later.

Most functions in practical applications are monotonic, or are increasing and
decreasing piece-wise, switching between increasing and decreasing on successive
intervals. So the commonest discontinuities are jumps. But it is easy to give an
example of a function that is discontinuous without having a jump; the reader may
consult the exercises.

Fig. 4.4 A monotonic
function with no jumps is
continuous at x0
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4.2.13 Continuity of
√
x

The function f : ]0,∞[ → R, f (x) = √
x is defined in such a way that

√
x is the

unique positive real number y that satisfies y2 = x .

Exercise Let B = {t ∈ R : t > 0 and t2 < x} and let y = sup B. Show that y satis-
fies y2 = x and is the only positive solution.

It is easy to see that the function x2 is increasing on the domain ]0,∞[ and the
same is true for

√
x . We show next that

√
x is continuous at the point c, where c > 0.

Let ε > 0 and reduce ε, if necessary, so that ε <
√
c. Because

√
x is an increasing

function we see that if
(
√
c − ε)2 < x < (

√
c + ε)2

then √
c − ε <

√
x <

√
c + ε.

We can therefore specify δ as follows:

δ = min
(
(
√
c + ε)2 − c, c − (

√
c − ε)2

)
.

Actually the continuity of
√
x can be viewed in the light of the fact that an

increasing function without jumps is continuous, as was pointed out in the previous
section. The function

√
x has no jumps because every positive real number is the

square root of another positive real number, namely that of its square.

4.2.14 Composite Functions

Let f : A → R and g : B → R. If f (A) ⊂ B we may compose the functions to
obtain a function from A to R:

g ◦ f : A → R, (g ◦ f )(x) = g( f (x)), x ∈ A.

Figure 4.5 illustrates a way to visualise the composition of functions, using the notion
of a function as an assignment.

We have a new continuity rule.

Proposition 4.6 If x0 ∈ A, f is continuous at x0 and g is continuous at f (x0), then
g ◦ f is continuous at x0.

Proof Set y0 = f (x0). Let ε > 0. Since g is continuous at y0 there exists δ1 > 0, such
that if |y − y0| < δ1 and y ∈ B then |g(y) − g(y0)| < ε. But since f is continuous
at x0 there exists δ > 0, such that if |x − x0| < δ and x ∈ A then | f (x) − f (x0)|
< δ1. This implies that |g( f (x)) − g( f (x0))| < ε for all x ∈ A that satisfy |x − x0|
< δ. �
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Fig. 4.5 A view of the
composition g ◦ f

This continuity rule greatly increases our stock of continuous functions. As an
example,

√
1 − x2 is continuous on its domain [−1, 1].

When taking a limit of a composite function, limx→a(g ◦ f )(x), given the two
premises that limx→a f (x) = b and limy→b g(y) = t , one has to be careful because
for the second premise the value of g(b) is immaterial. So in general the expected
result, that the limit is t , can only be obtained on the assumption that there exists δ,
such that f avoids the value b for all x that satisfy 0 < |x − a| < δ.

4.2.15 Limits of Functions and Limits of Sequences

We begin to explore the important role of sequences in considerations involving
continuous functions.

Proposition 4.7 Let f : A → R. Let c be a limit point of A and assume that
limx→c f (x) = t . If (xn)∞n=1 is a sequence in A \ {c} such that limn→∞ xn = c, then
limn→∞ f (xn) = t .

Proof Let ε > 0. There exists δ > 0, such that | f (x) − t | < ε for all x in A that
satisfy 0 < |x − c| < δ. There exists a natural number N , such that |xn − c| < δ for
all n ≥ N . But xn �= c, so that for all n ≥ N we also have | f (xn) − t | < ε. �

It is interesting to ponder the question as to whether, given that c is a limit point of
A, there must always exist a sequence (xn)∞n=1 in A \ {c} such that limn→∞ xn = c.
In fact such a sequence always exists. It is a consequence of an axiom of set theory:
the axiom of choice. This is a set-building axiom that is used to produce sequences
in some cases when an assignment cannot be specified by any explicit procedure and
requires an infinite number of arbitrary choices. In the cases which interest us, for
example when A is an interval, or a finite union of intervals, it is not needed, as the
existence of the sequence can be seen by an explicit procedure (though this may not
be very obvious). For this reason we consider the axiom of choice to be beyond the
scope of this text.

Proposition 4.7 has an important andmuch used consequence.We allow the reader
to elucidate its proof.
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Proposition 4.8 Let f be continuous in its domain A, let c ∈ A and let (xn)∞n=1 be
a sequence in A such that limn→∞ xn = c. Then limn→∞ f (xn) = f (c).

Note that in the proposition we do not have to assume that xn is never equal to c. Nor
that c is a limit point of A, though if it is not, then the proposition has little practical
value.

4.2.16 Iterations

Suppose that the function f is continuous in its domain A and that a sequence (xn)∞n=1
in A satisfies xn+1 = f (xn) for each n. Assume that the limit limn→∞ xn exists, is
equal to t and that t lies in A. Then by Proposition 4.8 we have f (t) = t .

Sequences are often defined in this fashion, called iterating the function f , but
it is really just a simple instance of inductive or recursive definition. Iterations are
commonly used to solve the equation f (x) = x . For the method to succeed, two
things are needed which can be tricky to check:

(a) The initial point x1 must be chosen in such a way that each term of the sequence
xn is in A. We do not want xn to land outside A for then we cannot continue
the sequence with xn+1. In short we must choose x1 so that the whole sequence
(xn)∞n=1 exists.

(b) The limit limn→∞ xn should exist and it should lie in A.

In the chapter on sequences we saw that a positive sequence can be defined
recursively by

a0 = 1, an+1 = √
2 + an,

and that an converges to a limit t . Nowwe see, thanks to the continuity of the function√
x , that t must satisfy t = √

2 + t , so that in fact t = 2, as expected.
Another example of such an iteration is

x1 = 1, xn+1 = 1 + 1

1 + xn
.

The limit is
√
2, the unique positive root of 1 + 1/(1 + x) = x .

Yet another, and quite important, example is furnished byNewton approximations.
These are widely used to approximate solutions of equations that cannot be obtained
in closed form. The scheme

x1 = 1, xn+1 = 1

2

(
xn + 2

xn

)
,

converging to
√
2 (sometimes called the Babylonian method for calculating

√
2 and

apparently known to the ancients) results from applying Newton’s method to the
equation x2 − 2 = 0. Newton approximations will be studied in Chap. 5.
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4.2.17 Exercises (cont’d)

12. Write out a nice proof of the claim made earlier in this section that a monotonic
function with no gaps in its range is continuous.

13. Let f and g be continuous functions with the same domain A. Define the func-
tions max( f, g) and min( f, g), with domain A by

max( f, g)(x) = max( f (x), g(x)), min( f, g)(x) = min( f (x), g(x)).

Show that max( f, g) and min( f, g) are continuous.
Hint. You can use the definition of continuity, or else you can express these
functions in terms of other functions and use limit-rules.

14. Let f : R → Rbe defined by f (x) = sin(1/x) if x �= 0 and f (0) = 0. Show that
f is discontinuous at x=0, but the limits limx→0+ sin(1/x) and limx→0− sin(1/x)
do not exist.
Note. The function sin x will be familiar to the reader from school trigonometry. It will be

rigorously defined later but for now all we need to know is that sin x is continuous and periodic

(with period 2π , but that is not important), its maximum is 1 and its minimum −1.

15. Let f : R → R be defined by f (x) = 1 if x is rational and by f (x) = 0 if x is
irrational. Show that f is everywhere discontinuous.

16. What can you say about the continuity or otherwise of the function f , given by
f (x) = x for rational x and f (x) = 0 for irrational x?

17. Show that the function f defined by f (x) = x sin(1/x) for x �= 0 and f (0) = 0
is everywhere continuous.

18. Let f be the function with domain ]0, 1[ defined by the following prescription:
if x is irrational then f (x) = 0; if x is rational then f (x) = 1/b, where b is the
denominator of x when it is expressed as a fraction in lowest terms. Show that
for all c in the domain we have limx→c f (x) = 0. Deduce from this that f is
continuous at each irrational x , but discontinuous at each rational x .

19. For each real number x we denote by [x] the highest integer n, such that n ≤ x .
Define the function f : [0,∞[→ R by

f (0) = 0, f (x) =
∞∑

n=[1/x]
2−n, (x > 0).

(a) Show that f is increasing.
(b) Show that f is continuous at all points x ≥ 0 except at those of the form

x = 1/n for some n ∈ N+.
(c) Calculate the jump of the function at x = 1/n.
(d) Which of the following is true:

(i) limx→ 1
n − f (x) = f

(
1
n

)
?

(ii) limx→ 1
n + f (x) = f

(
1
n

)
?

(iii) Neither?
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20. A function with domain all ofR is called periodic if there exists a number k �= 0,
such that f (x + k) = f (x) for all x . A non-zero number k with this property is
called a period of f .

(a) Let k1 and k2 be periods and letm and n be integers (not necessarily positive).
Show that mk1 + nk2 is either 0 or else it is a period.

(b) Suppose there exists a lowest positive period T . Show that the set of all
periods is precisely the set of non-zero multiples nT as n ranges over the
non-zero integers.

(c) Suppose that f is periodic but there is no lowest positive period. Show that the
set of periods has the following property: every open interval ]a, b[, however
small b − a is, contains a period.

(d) Suppose that f is periodic, continuous, and that there exists no lowest positive
period. Show that f is constant.

Note. A lowest positive period, if it exists, is called the fundamental period. Compare this

exercise with Sect. 2.5 Exercise 3.

21. Let an = sin n for n = 1, 2, .... Show that for every t in the interval [−1, 1] there
exists a subsequence (akn )

∞
n=1 that converges to t .

Hint. Use your knowledge of sin x from school mathematics. In particular it
oscillates between −1 and 1 with period 2π . In addition you will need two facts
of analysis, to be proved later: sin x is continuous; and π is irrational. See also
Sect. 2.5 Exercise 3.

22. (�) The notions of limit inferior and limit superior can be defined for functions.
Suppose that f has domain A and c is a limit point of A. We define

lim sup
x→c

f (x) := lim
h→0+

(
sup

x∈A, 0<|x−c|<h
f (x)

)

lim inf
x→c

f (x) := lim
h→0+

(
inf

x∈A, 0<|x−c|<h
f (x)

)
.

Draw up a list of properties analogous to those stated for sequences in Sect. 3.11.
Look for opportunities to use them.

23. The notions of upper semi-continuity and lower semi-continuity were defined in
Exercise 6.

(a) Let ( fk)∞k=1 be a sequence of functions and suppose that they are all upper
semi-continuous at x0. Define the function g by g(x) = inf1≤k<∞ fk(x).
Show that g is upper semi-continuous at x0. The same holds if “upper semi-
continuous” is replaced by “lower semi-continuous” and “inf” by “sup”.

(b) Find an example of a sequence ( fk)∞k=1 of continuous functions such that
the function g(x) := inf1≤k<∞ fk(x) fails to be lower semi-continuous at at
least one point.
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4.3 Properties of Continuous Functions

In this section we prove a number of general propositions about continuous functions
using the full weight of the completeness axiom C1. In all cases it is the existence of
supremum and infimum of bounded non-empty sets that is exploited. These propo-
sitions flaunt the success of analysis and show that axiom C1 and the definition of
continuity, which took so long to evolve to their present forms, are correct.

Itmight be agood idea for the reader to reprise the contents ofSect. 2.4, particularly
the paragraphs under the heading “Using supremumand infimum to prove theorems”,
before reading on.

4.3.1 The Intermediate Value Theorem

If a continuous function is defined on an interval and among its values are the real
numbers y1 and y2, then among its values is every real number between y1 and y2.
Its range (the set of all its values) includes the interval with endpoints y1 and y2.

Proposition 4.9 Let f : [a, b] → R be continuous and suppose that η is a real
number between f (a) and f (b); in other words we suppose that f (a) < η < f (b)
or f (b) < η < f (a). Then there exists t ∈ ]a, b[ such that f (t) = η.

Proof We preface the proof by pointing out how continuity is used in it. Let a <

t < b and assume that f (t) < η. We can deduce from this that there exists δ > 0,
such that f (x) < η for all x in the interval ]t − δ, t + δ[. For there exists ε > 0 such
that f (t) + ε < η. By the continuity of f there exists δ > 0, such that

f (t) − ε < f (x) < f (t) + ε

for all x in the interval ]t − δ, t + δ[. In particular for such x we have f (x) < η.
In a similar way, if f (t) > η there exists δ > 0, such that f (x) > η for all x in the
interval ]t − δ, t + δ[.

Similar considerations are valid for the endpoints. For example if f (a) < η then
there exists δ > 0, such that f (x) < η for all x in the interval [a, a + δ[.

Let us prove the proposition on the assumption that f (a) < η < f (b). Let A be
the set of all x in [a, b], such that f (s) < η for all s in [a, x]. The set A is bounded (it
is a subset of [a, b]) and is not empty (it contains a). Let t = sup A (the supremum
exists by Proposition 2.3). We shall show that f (t) = η.

We showfirst that t lies in the open interval ]a, b[. By the considerations of the first
and second paragraphs, since f is continuous and f (a) < η there exists δ1 > 0, such
that f (x) < η for all x in [a, a + δ1]. Hence t ≥ a + δ1. Since f is continuous and
f (b) > η there exists δ2 > 0, such that f (b − δ2) > η. We deduce that t ≤ b − δ2.
For if t was strictly above b − δ2, there would be an element of A above b − δ2 and
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wewould have f (b − δ2) < η, contrary to the definition of δ2. From these arguments
we conclude that a + δ1 ≤ t ≤ b − δ2, that is, t is in the open interval ]a, b[.

We shall eliminate the possibilities f (t) < η and f (t) > η, by showing that each
leads to a contradiction. This will prove that f (t) = η, as required.

Assume first that f (t) < η. Then there exists δ > 0, such that f (x) < η for all x
in the interval ]t − δ, t + δ[. But there exists s ∈ A such that t − δ < s < t (because
t = sup A) and therefore f (x) < η for all x in [a, s].We deduce that f (x) < η for all
x in [a, t + δ[ so that A contains a number strictly higher than t . That is impossible
since t is an upper bound of A.

Assume next that f (t) > η. Then there exists δ > 0, such that f (t − δ) > η. This
implies that t − δ is an upper bound of A, for otherwise A would have an element
strictly above t − δ and we would have f (t − δ) < η, contrary to the definition of δ.
But it is impossible that t − δ is an upper bound of A, since t is its lowest upper
bound.

Both assumptions, that f (t) < η and that f (t) > η, have led to contradictions.
Finally we conclude that f (t) = η.

The case f (a) > η > f (b) is handled in a similar fashion; or else the former
conclusion can be applied to the function − f . �

4.3.2 Thoughts About the Proof of the Intermediate Value
Theorem

We cannot prove the intermediate value theorem without using axiom C1 (or some-
thing equivalent to it like the existence of the least upper bound). The theorem is not
valid in Q. The equation x2 = 2 has no solution in Q although 12 < 2 < 22.

The set A used in the proof can be replaced by the set B of all x in [a, b], such that
f (x) ≤ η. Then t := sup B is a solution of f (x) = η, by an argument very similar to
that used to prove Proposition 4.9. The difference is that this solution is the highest
one in the interval whilst the solution given in the proof is the lowest. Of course they
can be the same solution.

Another proof can be given using what is called the method of bisection. This is
based on the fact that an increasing sequence that is bounded above is convergent,
itself a consequence of axiom C1. We shall meet this method in the next proposition.

The property of continuous functions encapsulated in the intermediate value the-
orem was long considered a possible defining feature of continuity. We shall say that
a function defined on an interval A has the intermediate value property if it satisfies
the following condition:

For all a and b in A such that a < b, if η is such that f (a) < η < f (b) or
f (a) > η > f (b), then there exists x , such that a < x < b and f (x) = η.

The intermediate value property seems to assert that the graph of the function is
in one piece; it can be drawn without lifting the pencil from the paper. However,



4.3 Properties of Continuous Functions 113

we have to give up any idea of using this property as an alternative definition of
continuity, despite its appealing character. It turns out that there are discontinuous
functions that have the property. See the exercises in this section.

Finally, do not confuse the intermediate value theorem with the mean value the-
orem of calculus.

4.3.3 The Importance of the Intermediate Value Theorem

The intermediate value theorem is very powerful. It gives convenient conditions for
concluding that an equation f (x) = η has a solution. It does not say that the solution
is unique, and indeed, multiple solutions can exist. However, additional arguments
can imply uniqueness.

Solving an equation is a common problem of applied mathematics, perhaps even
the commonest, and so a theoretical proof that a solution exists is useful. Frequently
one has to resort to an approximation method that in a sequence of steps produces
more and more correct decimal digits of a solution. It is important to know that
there is a number there that is being approximated, and it is this that the theorem
guarantees.

As an example of the theorem in action, we can let n be a positive integer greater
than or equal to 2, and deduce that every positive real number has a unique positive nth
root. For let f : [0,∞[→ R be the function f (x) = xn , and let c > 0. A solution
of xn = c exists in the interval ]0,∞[ because firstly, f is continuous; secondly,
f (0) = 0; and thirdly, as limx→∞ xn = ∞ theremust exist b such that f (b) > c. The
solution is unique because f is an increasing function, more precisely, if 0 ≤ x1 < x2
then xn1 < xn2 .

This defines at a stroke the function n
√
y that assigns to each positive y its unique

positive nth root.

4.3.4 The Boundedness Theorem

Continuous functions defined on bounded and closed intervals are bounded. This is
the content of the boundedness theorem.

Proposition 4.10 Let f : [a, b] → R be continuous. Then f is a bounded function.

Proof We assume that f is unbounded on [a, b] and derive a contradiction. The
argument, based on the method of bisection, though intuitive, is rather long; so some
patience may be required. For this reason we first give a rough description of the
proof.

If we divide the interval [a, b] into two equal parts the function f must be
unbounded on at least one of them.We can therefore choose one of the two intervals,
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such that f unbounded on it. The length of the new interval is half that of the orig-
inal interval. Now we repeat this procedure, divide the new interval into two equal
parts and choose one part, such that f is unbounded on it. Repeating this procedure
we obtain a sequence of intervals, with length that tends to 0, and such that f is
unbounded on each. The intervals shrink down to a single point t . We obtain a con-
tradiction because f is continuous at t and is therefore bounded on an interval of the
form ]t − δ, t + δ[.

In this roughdescription itmaynot be clear how the completeness axiom is needed;
so we proceed to describe the proof more precisely. Recall that f is supposed to be
unbounded on [a, b] and from this we wish to obtain a contradiction.

Set a1 = a and b1 = b. Let c1 be the midpoint 1
2 (a1 + b1). Then f is unbounded

either on [a1, c1] or on [c1, b1] (or on both; that is not excluded here). Let a2 = a1,
b2 = c1 if f is unbounded on [a1, c1], and let a2 = c1, b2 = b1 if f is bounded on
[a1, c1] (because then f is unbounded on [c1, b1]). In both cases a1 ≤ a2 < b2 ≤ b1,
the function f is unbounded on the new interval [a2, b2], and the length of [a2, b2] is
half the length of [a1, b1]. We repeat this step and obtain an interval [a3, b3] which
is either [a2, c2] or [c2, b2], where c2 = 1

2 (a2 + b2), and f is unbounded on [a3, b3].
Furthermore a1 ≤ a2 ≤ a3 < b3 ≤ b2 ≤ b1.

From this procedure there result two sequences in the interval [a, b], an increas-
ing sequence (an)∞n=1, and a decreasing sequence (bn)∞n=1. Moreover an < bn , and
because bn+1 − an+1 = 1

2 (bn − an) we have bn − an → 0. Finally f is unbounded
on [an, bn] for each n. By Proposition 3.3 concerning bounded,monotonic sequences,
the proof of which depended on the completeness axiom, both sequences are con-
vergent, and since bn − an → 0 they have the same limit t , which lies in the interval
[a, b] (the reader should check the last claim; see, for example Sect. 3.2 Exercise 9).

Now f is continuous at t . So there exists δ > 0, such that | f (x) − f (t)| < 1
for all x in [a, b] that satisfy |x − t | < δ. For such x we have | f (x)| < | f (t)| + 1,
so that f is bounded on the set [a, b] ∩ ]t − δ, t + δ[. But we know that an and bn
both converge to t . Hence there exists N , such that an and bn both lie in the interval
]t − δ, t + δ[ for n ≥ N ; and this is the same as saying that the interval ]t − δ, t + δ[
includes the interval [an, bn] for all n ≥ N . But then f is also bounded on [an, bn].
This is a contradiction since we chose an and bn so that f was unbounded on
[an, bn]. �

It is essential for the general validity of the boundedness theorem that the domain
is a bounded and closed interval. The boundedness theorem does not hold on intervals
of other kinds.

Exercise For each type of interval A, except the bounded closed interval, and
the empty interval, find an example of a unbounded, continuous function f with
domain A.
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4.3.5 Thoughts About the Proof of the Boundedness Theorem

Continuity was not used in its full strength in the proof of the boundedness theorem;
it only mattered that f was locally bounded (which is a consequence of continuity).
Local boundedness is the property that for each x0, there exists δ > 0, such that f is
bounded in the set ]x0 − δ, x0 + δ[ ∩ [a, b].

It is also possible to prove the boundedness theorem using a method similar to
that used for the intermediate value theorem. Let A be the set of all x in [a, b], such
that f is bounded on [a, x]. Then setting t = sup A, one proceeds to show that t = b
and t ∈ A.

Exercise Write out the details of the proof of the boundedness theorem suggested
in the previous paragraph.

By the same token it is possible to prove the intermediate value theorem by the
method of bisection. Just divide the interval into two equal parts and choose the
one for which f (x) − η has a different sign at the endpoints and continue. This is a
practical method for approximating a solution. If the interval is [0, 1] we can divide
into 10 equal parts, and repeating the process obtain a decimal expansion of one of
the solutions.

Exercise Write out the details of the proof of the intermediate value theorem sug-
gested in the previous paragraph.

A rather short proof of the boundedness theorem can be based on Proposition
3.10, the Bolzano–Weierstrass theorem, which states that a bounded sequence has
a convergent subsequence. Here is a sketch of it, omitting some subtle set-theoretic
details. Suppose f is unbounded. Then there must exist a sequence (xn)∞n=1 in [a, b]
such that the sequence ( f (xn))∞n=1 is unbounded. By Bolzano–Weierstrass there is
a convergent subsequence (xkn )

∞
n=1 of (xn)∞n=1, say with limit t . Next it is shown

that t is in the interval [a, b] (important here that the interval is closed; see Sect. 3.2
Exercise 9), so that f (xkn ) → f (t) by continuity, whilst at the same time f (xkn ) is
unbounded, which is a contradiction.

The sketched proof just given is not just an academic curiosity. The Bolzano–
Weierstrass theorem is capable of great generalisation, into the area of multivariate
calculus, and even beyond, into the realm of infinite-dimensional spaces. It means
that versions of the boundedness theorem, and the extreme value theorem of the next
section, emerge repeatedly in advanced work.

4.3.6 The Extreme Value Theorem

A continuous function defined on a bounded and closed interval is not just bounded.
It attains a maximum and a minimum. This is the extreme value theorem.
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Proposition 4.11 Let f : [a, b] → R be continuous. Then there exist c1 in [a, b],
such that f (x) ≤ f (c1) for all x in [a, b]; and c2 in [a, b], such that f (x) ≥ f (c2)
for all x in [a, b].
Proof We know that f is bounded in [a, b]. Let M = supa≤x≤b f (x) (that is, M
is the supremum of the set of all values of f ). Assume that f does not attain a
maximum. Then f (x) < M for all x in [a, b]. The function g(x) := 1/(M − f (x))
is then continuous in [a, b] (since the denominator is nowhere 0). However g cannot
be bounded; however large we choose K there exists x ∈ [a, b] such that f (x) >

M − 1/K (because M is the supremum of f ) and then g(x) > K . This contradicts
the boundedness theorem because g, being continuous in [a, b], must be bounded.
We conclude that there exists x in [a, b] such that f (x) = M ; that is, f attains a
maximum value in [a, b].

Similar arguments show that f attains a minimum value. �
We sketch a second proof of the extreme value theorem based on Bolzano–

Weierstrass, ignoring again some subtle set theoretical details. We know that f
is bounded; so let M = sup f . For each positive integer n there exists xn in [a, b],
such that f (xn) > M − 1/n. The sequence (xn)∞n=1 has a convergent subsequence,
say, (xkn )

∞
n=1. Let its limit be t . Then t ∈ [a, b] and by continuity of f we have

f (t) = limn→∞ f (xkn ) ≥ M . We conclude that f (t) = M . A similar argument
shows that the infimum of f is also attained.

The argument of the last paragraph can even be modified to prove the bounded-
ness theorem and the extreme value theorem simultaneously. We let M = sup f and
rewrite the last paragraph to allow the a priori possibility ofM = ∞. The conclusion,
that f (t) ≥ M , shows at once that M is finite and is attained. All of this is capable
of much generalisation.

4.3.7 Using the Extreme Value Theorem

Seeking the maximum or minimum of a function is a common problem of applied
mathematics. Just as the intermediate value theorem can justify that what is sought,
a solution of an equation, actually exists, so also the extreme value theorem can
guarantee that what is sought, a maximum value or a minimum value, actually exists.

The limitation of the extreme value theorem to a bounded closed interval can
sometimes be overcome. It is often possible to gain some knowledge of themaximum
or minimum of a continuous function f (x) on an unbounded interval, if we can
control the function as x → ±∞.

As an example we suppose that f is continuous on all ofR, and that limx→∞ f (x)
= limx→−∞ f (x) = 0. If now f takes a positive value somewhere, then it must attain
a maximum. For suppose that f (a) > 0. We can find K , such that for |x | > K we
have | f (x)| < f (a). But then the maximum value of f on the interval [−K , K ],
which is attained by the extreme value theorem, is the maximum value of f on all
of R. This argument is easily adapted to different cases.
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4.3.8 Exercises

1. Let f (x) = xn + an−1xn−1 + · · · + a1x + a0 be a polynomial function with
leading coefficient 1, and with odd degree n.

(a) Show that limx→∞ f (x) = ∞ and limx→−∞ f (x) = −∞.
(b) Show that the equation f (x) = y has at least one real root for every y.

2. Let f (x) = xn + an−1xn−1 + · · · + a1x + a0 be a polynomial function with
leading coefficient 1, and with even degree n.

(a) Show that limx→∞ f (x) = limx→−∞ f (x) = ∞.
(b) Show that the function f (x) attains a minimum value m at some point.
(c) Show that for y > m the equation f (x) = y has at least two solutions in R,

whereas for y < m it has no solution.

3. Prove the following fact, used several times in this section: if A is a closed
interval, then no sequence in A can converge to a point outside A.
Note. The interval does not have to be bounded. This is really the same as Sect. 3.2 Exercise 9.

4. Show that the equation x5 − x2 + 1 = 0 has a root in the interval −1 < x < 0.
5. Let f : [a, b] → [a, b] be continuous. Show that there exists x in [a, b] such

that f (x) = x .
6. Let f be a continuous function defined in an interval A (or, more generally, f

is a function that satisfies the intermediate value property). Let t1, t2, ..., tm be
points in A, and let c1, c2, ..., cm be positive numbers. Set

w :=
∑m

j=1 c j f (t j )∑m
j=1 c j

.

Show that there exists ξ in A such that f (ξ) = w.
7. Consider the function f with domain R given by

f (x) = sin

(
1

x

)
, (x > 0), f (x) = 0, (x ≤ 0).

Show that f is discontinuous but has the intermediate value property.
Hint. You will need to know that sin x is continuous, periodic (the period is 2π
but that is not needed) and that sin x oscillates between its maximum 1 and its
minimum −1. These facts will be established properly in a later chapter.

8. Let A be an interval and let f : A → R be continuous.

(a) Show that the range of f (the set of all its values) is an interval.
Hint. See Sect. 2.4 Exercise 6.

(b) Suppose that A is closed and bounded. Show that the range of f is a closed
and bounded interval.
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9. Let f be continuous and defined in an interval A. A line segment joining two
points (a, f (a)) and (b, f (b)) in the graph y = f (x), where a and b are distinct
points in A, is called a chord. As is usual in analytic geometry the slope of the
chord is the number

p := f (a) − f (b)

a − b
.

Let B be the set of all numbers p, such that there exists a chord with slope p.
Show that B is an interval.
Hint. Given two chords, the first whose endpoints have x-coordinates a0 and
b0, and the second whose endpoints have x-coordinates a1 and b1, consider the
variable chord whose endpoints have x-coordinates at and bt , where

at = (1 − t)a0 + ta1, bt = (1 − t)b0 + tb1, 0 ≤ t ≤ 1.

10. Let A be an interval and f : A → R. Show that f has the intermediate value
property if and only if, for every interval B such that B ⊂ A, the set f (B) (the
set of all y such that y = f (x) for some x ∈ B) is an interval. In short, f has
the intermediate value property if and only if it maps intervals to intervals.

11. (�) The notions of upper and lower semi-continuity were defined in Sect. 4.2
Exercise 6. Let f : [a, b] → R be upper semi-continuous (that is, it is upper
semi-continuous at all points of its domain).

(a) Let a ≤ c ≤ b and let (xn)∞n=1 be a sequence in [a, b] such that xn → c.
Show that

lim sup
n→∞

f (xn) ≤ f (c).

Note that the limit superior may have infinite absolute value.
(b) Show that f attains a maximum value in [a, b].

Hint. Let M = sup[a,b] f (allowing ∞ as a possible value). Let (xn)∞n=1 be a
sequence in [a, b], such that f (xn) → M . Revisit the last paragraph of the
section “The extreme value theorem”.

(c) Obtain similar results in the case that f is lower semi-continuous, replacing
limit superior with limit inferior, reversing the inequality sign, and conclud-
ing that f attains a minimum.

4.4 Inverses of Monotonic Functions

Let us run over some important concepts about functions. They all contribute to
understanding the set of solutions of an equation f (x) = y.

Let f : A → B where A and B are quite arbitrary sets. Onemay think of f purely
as an assignment of an element in B to each element in A. The concepts we shall
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define are set-theoretical in nature, although we shall apply them in this text almost
entirely to functions of a real variable.

(a) The function f is said to be injective if it maps distinct elements in A to distinct
elements in B. This is equivalent to saying that if x1 and x2 are elements of A,
and f (x1) = f (x2), then x1 = x2. Equivalently, if y is an element of B and the
equation f (x) = y has a solution, then the solution is unique.

(b) The function f is said to be surjective, if the equation f (x) = y has a solution
for all y in B. We also say that f maps A on to B, since every element of B
appears as a value f (x) for some x in A.

(c) The function f is said to be bijective if it is both injective and surjective. This is
equivalent to saying that the equation f (x) = y has a unique solution for every
y in B.

(d) Even if f is not surjective we can make it so by restricting the codomain to those
elements y such that the equation f (x) = y has a solution. These form a subset
of B called the range of f (already mentioned in Sect. 4.3). A function always
maps its domain on to its range.

Given that the function f : A → B is bijective we can define the inverse function
f −1 : B → A, also bijective. For each y ∈ B we simply let f −1(y) be the unique
x in A such that f (x) = y. The important cases in this text are when A and B are
sets of real numbers. The key observation is that a strictly monotonic function is
injective.

Proposition 4.12 Let f : ]a, b[ → R be continuous and strictly increasing, allow-
ing here the possibilities a = −∞ and b = ∞. Let

c = lim
x→a+ f (x) and d = lim

x→b− f (x)

(again allowing c = −∞ or d = ∞ so that the limits always exist). Then the range
of f is the interval ]c, d[ and f is a bijective function from ]a, b[ to ]c, d[. The
inverse function

f −1 : ]c, d[ →]a, b[

is strictly increasing and continuous.

Proof Let y ∈ ]c, d[. Then the equation f (x) = y has a solution by the intermediate
value theorem. To see this let y1 and y2 satisfy

c < y1 < y < y2 < d.

We have
c = lim

x→a+ f (x) and d = lim
x→b− f (x).

Therefore we can find x1 and x2, such that
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a < x1 < x2 < b, f (x1) < y1, f (x2) > y2.

So the equation f (x) = y has a solution between x1 and x2. The solution is unique
because f is strictly increasing. Note how the phrasing of this paragraph works just
as well for infinite values of a, b, c or d, as for finite ones.

The inverse function
f −1 : ]c, d[ → ]a, b[

is therefore defined and is bijective. It is easy to see that f −1 is strictly increasing.
The proof that it is continuous is really the same as the one that we used to prove that√
x is continuous. Let c < y0 < d and x0 = f −1(y0). Then y0 = f (x0). We shall

prove that f −1 is continuous at y0.
Let ε > 0. Let y1 = f (x0 − ε) and y2 = f (x0 + ε) (reduce ε if necessary so that

x0 − ε and x0 + ε fall within the interval ]a, b[ ). Now we set

δ = min(y2 − y0, y0 − y1).

Because of monotonicity, if

y0 − δ < y < y0 + δ

then
x0 − ε < f −1(y) < x0 + ε. �

Another proof, perhaps simpler, that f −1 is continuous, is based on the observation
that f −1 is monotonic and its range, the interval ]a, b[, is without gaps. Therefore
f −1 has no jumps, and must be continuous as the discontinuities of a monotonic
function consist only of jumps.

Proposition 4.12 provides uswith themost commonly used tool to produce inverse
functions in the calculus of functions of one variable. Here are some examples:

(a) We consider the function f (x) = xn on the domain ]0,∞[ (given that n is a fixed
positive integer). Then f is continuous, strictly increasing and, as is easily seen,
maps ]0,∞[ on to ]0,∞[. The inverse function, f −1(y) = y1/n , is continuous
and maps ]0,∞[ on to itself. It is also written as n

√
y. This short paragraph could

replace all our previous lengthy deliberations about the nth root function.
(b) The function f (x) = sin x is not monotonic but we can restrict it to an interval

where it is strictly increasing, for example ]−π/2, π/2[. It maps this interval
on to the interval ]−1, 1[; so we get an inverse function arcsin y, that maps the
interval ]−1, 1[ on to the interval ]−π/2, π/2[, and is also increasing.

(c) A result similar to Proposition 4.12 holds for strictly decreasing functions; the
reader is invited to formulate it. It can be used to produce an inverse function
arccos y for cos x , using the interval ]0, π [ on which cosine is decreasing.
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4.4.1 Exercises

1. Let α be a rational number. Prove that the function

f (x) = xα, (0 < x < ∞)

is continuous.
2. Let A and B be sets and let f : A → B be bijective. Show that

f ◦ f −1 = idB, f −1 ◦ f = idA

where idA : A → A and idB : B → B are the identity functions: idA(x) = x
and idB(y) = y.

3. For each of the following functions, describe inverse functions, restricting the
domain if necessary:

(a) f (x) = x + 1

x
, (x > 0)

(b) f (x) = x3 + x, (x ∈ R).
You may not be able to give a formula here, but describe the domain and
range of an inverse.

(c) f (x) = x4 + x2 + 1, (x ∈ R).

4. Let A be an interval, let f be a function with domain A and suppose that f is
continuous and injective. Prove that f is monotonic.
Hint. Use the intermediate value theorem. It may be simpler to consider first the
case A = [a, b].

4.5 Two Important Technical Propositions

The contents of this section, Cauchy’s principle for the limit of a function, and the
small oscillation theorem, may be read later when they are required. We also meet
the notion of uniform continuity.

Proposition 4.13 (Cauchy’s principle) Let f : A → R and let c be a limit point
of A. Then the limit limx→c f (x) exists and is a finite number if and only if the
following condition (Cauchy’s condition) holds: for each ε > 0 there exists δ > 0,
such that | f (x1) − f (x2)| < ε for all x1 and x2 in A that satisfy 0 < |x1 − c| < δ

and 0 < |x2 − c| < δ.

Proof That Cauchy’s condition is necessary for the existence of a finite limit follows
byvirtually the sameargument aswas used to proveCauchy’s principle for sequences,
Proposition 3.12.

Let us prove that the condition is sufficient. Assume that Cauchy’s condition is
satisfied. Let (an)∞n=1 be a sequence in A that converges to c and is such that no term an
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is equal to c.1 The sequence ( f (an))∞n=1 satisfies Cauchy’s condition for sequences,
and so the limit limn→∞ f (an) = t exists and is finite. If (bn)∞n=1 is another sequence
in A \ {c} with limit c then the limit limn→∞ f (bn) = s exists by the same token.
But now we must have s = t . For we can construct a third sequence with limit c
whose terms, (dn)∞n=1, are taken from (an)∞n=1 and (bn)∞n=1 alternately. Then the limit
limn→∞ f (dn) exists, but this is only possible if s = t .

We see therefore that limn→∞ f (an) exists, and is finite, for every sequence in
A \ {c} that converges to c, and the limit t is the same for every such sequence.

Now we prove that limx→c f (x) = t . Let ε > 0. There exists δ > 0, such that
| f (x1) − f (x2)| < ε/2 for all x1 and x2 in A that satisfy 0 < |x1 − c| < δ and 0 <

|x2 − c| < δ. There exists y in A, such that 0 < |y − c| < δ and | f (y) − t | < ε/2
(simply choose a sequence in A \ {c} with limit c, and choose for y a term in the
sequence sufficiently near to c). If now x is in A and 0 < |x − c| < δ, we obtain

| f (x) − t | ≤ | f (x) − f (y)| + | f (y) − t | <
ε

2
+ ε

2
= ε

as needed. �

Let us display Cauchy’s condition for limits of functions so that the reader can
better compare it to Cauchy’s condition for limits of sequences, given in Sect. 3.7:

For each ε > 0 there exists δ > 0, such that | f (x1) − f (x2)| < ε for all x1
and x2 in A that satisfy 0 < |x1 − c| < δ and 0 < |x2 − c| < δ.

There is a version of Cauchy’s principle for the limit limx→∞ f (x), and with
obvious changes, for limx→−∞ f (x). It is very useful for studying improper integrals
(Chap. 12). In the following, it is reasonable to assume that f is defined in an interval
of the form ]a,∞[.

The limit limx→∞ f (x) exists and is finite if and only if the following condition
is satisfied: for all ε > 0 there exists K , such that | f (x) − f (y)| < ε for all
x and y that satisfy x > K and y > K .

Exercise Prove the last assertion.

4.5.1 The Oscillation of a Function

Let f : [a, b] → R be a bounded function. The difference sup[a,b] f − inf [a,b] f is
called the oscillation of f on the interval [a, b]. Recall that sup[a,b] f is the supremum
and inf [a,b] f the infimum of the set { f (x) : x ∈ [a, b]}.

1It is obvious that such sequences exist if A is an interval, and this is the case in all applications
considered in this text. For general sets we must appeal to the so-called axiom of choice of set
theory.



4.5 Two Important Technical Propositions 123

More generally we define the oscillation of f on a subset A of its domain as the
difference:

	A f := sup
A

f − inf
A

f.

It is easy to see that f is continuous at the point c if and only if for each ε > 0
there exists δ > 0, such that the oscillation of f on the set ]c − δ, c + δ[ ∩ A is less
than ε. The proof is left to the exercises, but we shall use this fact in the proof of the
small oscillation theorem.

The following proposition will be needed to prove that continuous functions are
integrable.

Proposition 4.14 (The small oscillation theorem) Let f : [a, b] → R be continu-
ous. Let ε > 0. Then it is possible to partition the interval [a, b] with finitely many
points

a = t0 < t1 < t2 < · · · < tm = b

such that the oscillation of f on each interval [t j , t j+1], j = 0, 1, 2,m − 1, is less
than ε.

Proof Let ε > 0. Partition the interval into two parts [a, c] and [c, b] using the
midpoint c = 1

2 (a + b). If, for the given ε, the conclusion of the proposition is true
for both the intervals [a, c] and [c, b], then it is true for [a, b].

Turn this around and use the method of bisection. We suppose, for the given ε,
that the conclusion of the proposition is not true for the interval [a, b]. Then either it
is not true for [a, c] or it is not true for [c, b], and we choose that interval for which
it is not true (we can choose the left interval if it fails for both). We repeat this for
the new interval, and so on.

We can therefore construct an increasing sequence (an)∞n=1 and a decreasing
sequence (bn)∞n=1, such that a1 = a, b1 = b, an < bn , bn − an tends to 0, and for
each n there is no partition of [an, bn] into finitely many intervals on each of which
the oscillation of f is less than ε.

Now (an)∞n=1 and (bn)∞n=1 converge to the same limit t in [a, b]. Suppose first that
a < t < b. Since f is continuous at t there exists an interval [t − h, t + h] on which
the oscillation of f is less than ε. But when n is sufficiently large we have t − h <

an < bn < t + h. The interval [t − h, t + h] then includes the interval [an, bn], so
that the oscillation of f on [an, bn] must be less than ε also. The conclusion of the
proposition holds for the interval [an, bn] and the given ε; without even partitioning
it. This contradicts the definition of the sequences an and bn .

If t = a we use the interval [a, a + h] instead of [a − h, a + h], and if t = b the
interval [b − h, b], in the argument of the last paragraph. �
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4.5.2 Uniform Continuity

There is another form of the small oscillation theorem that is useful. It concerns the
notion of uniform continuity. Suppose the function f is continuous in its domain A.
This means it is continuous at each point a in A. Suppose we consider its continuity
at a. For each ε > 0 there exists δ > 0, such that for all x in A that satisfy |x − a| < δ

we have | f (x) − f (a)| < ε.
If we move to a different point b, instead of a, but keep the same ε, it is not certain

that the same δ will work. But if it does not work we can make it work by decreasing
it, since we know that some δ will work for b (and the same ε as at a). We can clearly
look simultaneously at a finite number of points a1, a2,..., am , and find one δ that
works for them all (always for the same ε as before). We just take the lowest of the
m values of δ that we found for the points individually. But to treat infinitely many
points, for example all points of the domain A, and find one δ that works for them
all, may be impossible. Tolkien’s One Ring can rule the others only so long as the
others are finitely many.

The upshot of the discussion of the last paragraph is to define the notion of uniform
continuity. We say informally that a function is uniformly continuous on its domain
A, if it is continuous in A, and for each ε > 0 a single δ can be found that works for
all points of A.

This can be expressed in a different way, which is nicer, and more symmetrical.
We have to make | f (x) − f (a)| small only in virtue of |x − a| being small, and
without pinning down a in advance. We therefore say that a function f is uniformly
continuous on the domain A if it satisfies the following condition:

For all ε > 0 there exists δ > 0, such that for all x and y in A that satisfy
|x − y| < δ we have | f (x) − f (y)| < ε.

Proposition 4.15 Let f : [a, b] → R be continuous. Then f is uniformly continu-
ous.

Proof Let ε > 0. There exists a partition of [a, b], such that the oscillation of f is
less than ε/2 on each subinterval. Let δ be smaller than the length of the shortest
subinterval of the partition. If |x − y| < δ then either x and y belong to the same
subinterval, so that | f (x) − f (y)| < ε/2; or else x and y belong to adjacent subin-
tervals, in which case | f (x) − f (y)| < ε. �

4.5.3 Exercises

1. Let f be a function on the domain ]a, b[. We suppose that b is finite. Suppose
that there exists a constant K , such that for all x and y in the domain we have
| f (x) − f (y)| ≤ K |x − y|. Show that limt→b− f (t) exists and is a finite
number.
Note. The condition on f is called a Lipschitz condition. It is a strong version of continuity.
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2. Prove that if a function f satisfies a Lipschitz condition (see Exercise 1) on a
domain A then it is uniformly continuous on A.

3. It is important for the validity of Propositions 4.14 and 4.15 that the domain of
f is a closed and bounded interval. For each type of interval A, that is not closed
and bounded, find an example of a continuous function with domain A that is
not uniformly continuous.

4. Prove that 	A f = supx,y∈A | f (x) − f (y)|, where the supremum is taken over
all pairs of points x and y in A. This characterisation of oscillation is often useful.

In the remaining exercises it is simplest and most useful to assume that the domain
A is an interval.

5. Prove that a function f is continuous at a point c in A if and only if the
following condition is satisfied: for all ε > 0 there exists δ > 0, such that
	]c−δ,c+δ[ ∩ A f < ε.

6. Given that f is a bounded function, show that for each c in A the limit

ω f (c) := lim
h→0+ 	]c−h,c+h[ ∩ A f

exists and is a finite number. This enables us to define the function ω f , called
the point oscillation of f .

The point oscillationω f of a function f is studied in the next three exercises. Assume
that the domain of f is an interval.

7. Show that f is continuous at c if and only if ω f (c) = 0.
8. Show that if the left limit limx→c− f (x) exists and is a finite number then

limx→c− ω f (x) = 0. Show that the converse is false. (Similar results hold for
the right limit.)

9. Give an example to show that the function ω f is not necessarily continuous.
However, it is upper semi-continuous. This means that for each point c, and for
each ε > 0, there exists δ > 0, such thatω f (x) < ω f (c) + ε for all x that satisfy
|x − c| < δ. Prove this.

4.6 (�) Iterations of Monotonic Functions

We present some simple, practical and general conclusions about iterations. The
main object is to exploit continuity and monotonicity to compute a solution of a
fixed point problem f (x) = x , given that we know that the solution exists. Further
developments (such as the study of convergence rates) require derivatives and will
be taken up later.

Let f : A → R be a continuous function, where A is a subset of R. We assume
that we can define an infinite sequence in A by the iteration scheme an+1 = f (an),
using some initial point a1. We know that if the sequence converges to t , and if t is
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Fig. 4.6 Picture of the
proof. Iterating an increasing
function; the case a1 < a2

in A, then t is a solution to f (x) = x . In practice an iteration scheme such as this is
used to approximate a solution to f (x) = x .

The problem is to see whether the sequence (an)∞n=1 is convergent. Even if the
equation f (x) = x is known to have exactly one solution in A, it is not guaranteed
that the iterations converge. Here are two conclusions that are sometimes useful.
They are capable of some variation, which increases their practicality, but it is left
to the reader to explore this. Both depend on monotonicity and continuity of the
function iterated.

(i) Let f : ]0,∞[→ R, where f (x) > 0 for all x in its domain and f is continuous
and increasing. Suppose it is known that the equation f (x) = x has exactly one
solution t . Then the following conclusions hold. If a1 < t and a1 < a2, then an
is increasing and converges to t ; if a1 > t and a1 > a2, then an is decreasing and
converges to t .

(ii) Let f : ]0,∞[ → R, where f (x) > 0 for all x in its domain and f is continuous
and decreasing. Assume that the equation f (x) = x has exactly one solution
t and that t is also the unique solution of f ( f (x)) = x . Then the following
conclusions hold. If a1 < t and a1 < a3, then a2n−1 (the subsequence with odd
place numbers) is increasing and converges to t whilst a2n (the subsequence with
even place numbers) is decreasing and converges to t .

Proof of the First Rule In the case a1 < t and a1 < a2 it is seen by induction (left to
the reader to verify) that an < an+1 for all n, and an < t for all n. The sequence an
is therefore increasing and bounded above; it therefore converges, to s say. But now
f (s) = s, and since there is only one solution we must have s = t . The case a1 > t
and a1 > a2 is similar. �
Proof of the Second Rule The second rule follows from the first. Let g = f ◦ f .
Assume that a1 < t . Now g is increasing and t is the sole solution of g(x) = x . The
sequence bn = a2n−1 satisfies bn+1 = g(bn). We apply the first rule to g. If b1 < b2,
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Fig. 4.7 Picture of the
proof. Iterating a decreasing
function; the case a1 < a3

(that is a1 < a3) then bn = a2n−1 is increasing and tends to t . The sequence cn =
a2n also satisfies cn+1 = g(cn). We see that c1 = a2 > t since f is decreasing and
f (t) = t . Moreover c2 = a4 = f (a3) < f (a1) = a2 = c1. The sequence cn = a2n is
therefore decreasing and tends to the limit t . �

The proofs of these rules are pictured in Figs. 4.6 and 4.7.

4.6.1 Exercises

1. Draw conclusions about the results of iterating the following functions, using a
positive starting value.

(a) f (x) = √
2 + x

(b) f (x) = √
2x

(c) f (x) = 2x + 2

x + 2

(d) f (x) = 1 + 1

x
(connected with the ratio of successive Fibonacci numbers).

(e) f (x) = 1 + 1

1 + x
(connected with the continued fraction of the limit; see the nugget “Contin-
ued fractions”).

4.6.2 Pointers to Further Study

→ Numerical analysis
→ Dynamical systems



Chapter 5
Derivatives and Differentiation

Big fleas have little fleas upon their backs to bite ’em, And little
fleas have lesser fleas, and so, ad infinitum.

Augustus de Morgan

There’s a problemwith continuity. Suppose that f is continuous at a point x0. Suppose
we want to compute f (x0) with an error less than ε, for example ε = 10−5, but we
do not know x0 exactly. We know that there exists δ, such that if |x − x0| < δ then
| f (x) − f (x0)| < 10−5. We do not therefore have to know x0 exactly; a certain
number of decimal places will suffice.

But what if δ needed to be uncomfortably small compared to ε in order to achieve
the desired accuracy? What, for example, if δ was 10−10, or 10−100 or even less....?
The function may be continuous but continuity does not seem so useful here.

The problem is that f could be increasing or decreasing very rapidly at the
point x0. But what does that mean—the rate of increase or decrease of a function at
a point?

The concept of the rate of growth of a function at a point is the key to the calculus
ofNewton andLeibniz and iswhatwe call the derivative. As soon as it was introduced
it became possible to solve important problems in geometry and physics with the
new calculus, in spite of the fact that an acceptable definition of derivative was not
given for some 200 years.

5.1 The Definition of Derivative

The average rate of growth of a function f between distinct points x0 and x is the
quotient

f (x) − f (x0)

x − x0
.
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The rate of growth at the point x0 is defined as the limit.

Definition Let f : ]a, b[ → R and a < x0 < b. If the limit

lim
x→x0

f (x) − f (x0)

x − x0
= A

exists and is a finite number we say that f is differentiable at x0 and call A, the
derivative of f at x0.

We emphasise that A is a finite number; if the limit is∞ or−∞wemay sometimes
say that the derivative is ∞ or −∞ respectively, but we will never say that f is
differentiable at x0.

Another version of the definition of derivative, that arises by replacing x − x0 by
h, is

lim
h→0

f (x0 + h) − f (x0)

h
,

provided that the limit exists and is a finite number. The quotient appearing here is
called a difference quotient. It is defined for both positive and negative values of h,
though not for h = 0, but |h| should not be so big that x0 + h falls outside the domain
of f .

If f is differentiable at x0 we denote its derivative at x0 by f ′(x0). We say that the
function f is differentiable in the interval ]a, b[ if f is differentiable at every point
of the interval.

The definition of derivative follows a pattern that we have set in defining limit
and the sum of an infinite series, and will continue in defining integral. The quantity
in question that we wish to define does not necessarily exist. The definition of the
quantity states when it exists, and given that it exists defines its value. Just as it
is illogical to write limx→a f (x) without first ascertaining whether the limit exists
(thoughweoften do this),we should notwrite f ′(c)without first ascertainingwhether
f is differentiable at c.
If f is differentiable in the interval ]a, b[ we get a new function

f ′ : ]a, b[ → R, f ′(x) = derivative of f at x .

The operation of creating f ′ from f is called differentiation of the function f .

5.1.1 Differentiability and Continuity

Proposition 5.1 Let the function f be differentiable at the point x0. Then f is
continuous at x0.

Proof We have, for x �= x0,
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f (x) − f (x0) =
(

f (x) − f (x0)

x − x0

)
. (x − x0)

so that, by the rule for the limit of a product,

lim
x→x0

( f (x) − f (x0)) = lim
x→x0

(
f (x) − f (x0)

x − x0

)
. lim
x→x0

(x − x0) = f ′(x0) . 0 = 0.

In other words
lim
x→x0

f (x) = f (x0)

which says that f is continuous at x0. �

Continuity is therefore necessary for differentiability, but it is far from being suffi-
cient.

5.1.2 Derivatives of Some Basic Functions

Nowwe can begin to differentiate functions from first principles, that is, by applying
the definition of derivative as the limit of the difference quotient.

(a) Let f be the constant function, f (x) = C for all real numbers x . Then

f (x + h) − f (x)

h
= C − C

h
= 0

and so f ′(x) = 0.
(b) Next let f be the so-called identity function, defined by f (x) = x for all real

numbers x . Then
f (x + h) − f (x)

h
= x + h − x

h
= 1

and so f ′(x) = 1.
(c) Next let f be the function f (x) = x2. Then

f (x + h) − f (x)

h
= (x + h)2 − x2

h
= 2hx + h2

h
= 2x + h

and so, by the rule for the limit of a sum,

f ′(x) = lim
h→0

(2x + h) = 2x .

We could go on, but it is far better to use the differentiation rules, as set out in
the next paragraphs. These allow one to differentiate without considering difference
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quotients and limits. They make differentiation an almost mechanical procedure, and
are of immense practical and historical importance. Without them there would be no
calculus justifying the name.

5.1.3 Exercises

1. Differentiate from first principles, that is, using the definition of derivative as limit
of the difference quotient:

(a) ax + b, where a and b are constants.
(b) x3

(c) xn (n a natural number)
(d)

√
x

(e) 3
√
x .

Hint. Use algebraic properties of these functions. The only analytic input
needed is their continuity.

2. Differentiate the circular functions sin x and cos x from first principles (that is,
by calculating the limit of the difference quotient). You will need algebraic input
in the form of the addition formulas

sin(u + v) = sin u cos v + cos u sin v,

cos(u + v) = cos u cos v − sin u sin v,

and two facts of analysis to be proved later: the continuity of both functions, and
the limit

lim
x→0

sin x

x
= 1.

Note. The circular functions will be defined analytically in a later chapter. The reader has

doubtlessly been introduced to them through school mathematics, in which it is usual to obtain

the addition formulas by geometry and the limit of sin x/x by geometric intuition.

3. Differentiate the exponential function ex from first principles. You will need the
algebraic input that ex satisfies the first law of exponents:

ex+y = ex . ey,

and the analytic input that

lim
x→0

ex − 1

x
= 1,

equivalent to giving the derivative of ex at x = 0; this essentially pins down the
special base e.



5.1 The Definition of Derivative 133

Note. Just like the circular functions the exponential function and its inverse the natural logarithm

will be defined analytically in a later chapter. We do not have to take for granted the existence

of a function with these properties.

4. An exponential function ax can be defined for any positive base a. It satisfies the
law of exponents ax+y = axay . For the sake of this exercise we shall adopt the
notation Ea(x) = ax . Assuming that Ea is differentiable derive the formula

E ′
a(x) = ka Ea(x)

where ka = E ′
a(0).

Note. The special base e could be defined as the number that satisfies ke = 1, though there

would be difficulties involved—for example, why does such a number exist and why is it

unique? Compare the previous exercise.

5. The natural logarithm ln x is the inverse function to the exponential function
(Exercise 3) and from it ln x inherits the law of logarithms: ln(xy) = ln x + ln y.
Differentiate ln x from first principles.
Hint. You may need to figure out first why limh→0 ln(1 + h)/h = 1.

6. Let f (x) = |x |. Show that f is differentiable at all points except x = 0. Show
that f ′(x) = x/|x | if x �= 0.

7. Let a1, a2,..., an be a strictly increasing sequence of real numbers. Let f (x) =∑n
j=1 |x − a j | for each real x .

(a) Show that f is continuous at every point x , whereas it is differentiable
everywhere except at the points a j , ( j = 1, ..., n).

(b) Show that the derivative is constant in each of the open intervals ]ak, ak+1[,
as well as in ]−∞, a1[ and in ]an,∞[, and find a formula for it.

(c) Sketch the graphs in the cases

y = |x + 1| + |x | + |x − 1|

and
y = |x + 2| + |x + 1| + |x − 1| + |x − 2|.

8. Let f be the function with domain R defined by letting f (x) = x if x is rational
and f (x) = 0 if x is irrational.

(a) Are there any points at which f is differentiable?
(b) Are there any points at which the function g(x) := x f (x) is differentiable?

9. Let f : ]0, 1[→ R be the function defined in Sect. 4.2, Exercise 18. Recall that
f (x) = 0 if x is irrational and f (x) = 1/b if x is the fraction a/b expressed in
lowest terms. Show that f is nowhere differentiable.
Hint. Show that if x is irrational then there exist arbitrarily small h such that∣∣( f (x + h) − f (x)

)
/h

∣∣ > 1.
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5.2 Differentiation Rules

The elementary differentiation rules put the calculus into analysis. There are two
groups of rules. The first deals with functions constructed by algebraic operations,
addition, multiplication and division, from other functions. The second comprises
the rule for differentiating composite functions (the chain rule) and the rule for
differentiating inverse functions.

Let f : ]a, b[ → R, g : ]a, b[ → R. Sum, product and quotient of functions are
defined pointwise:

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),

(
f

g

)
(x) = f (x)

g(x)
.

Take care not to confuse product f g and composition f ◦ g.
We state thefirst groupof differentiation rules in the following lengthyproposition.

In the proofs we rely entirely on the limit rules of Sect. 4.2; we never have to say
“Let ε > 0”.

Proposition 5.2 Let f : ]a, b[ → R, g : ]a, b[ → R. Let c be in the interval ]a, b[
and assume that both f and g are differentiable at the point c. Let α be a numerical
constant. Then α f , f + g and f g are differentiable at c and we have

(1) (α f )′(c) = α f ′(c) (Multiplication by a constant)
(2) ( f + g)′(c) = f ′(c) + g′(c) (Sum of functions)
(3) ( f g)′(c) = f ′(c)g(c) + f (c)g′(c) (Product of functions; Leibniz’s rule).

If moreover g(c) �= 0, then 1/g and f/g are differentiable at c, and we have the
further rules:

(4)

(
f

g

)′
(c) = g(c) f ′(c) − g′(c) f (c)

(g(c))2
(Quotient rule)

(5)

(
1

g

)′
(c) = − g′(c)

(g(c))2
(Reciprocal rule).

Proof The rule for the derivative of α f is a special case of the rule for f g and that
for 1/g a special case of that for f/g (left to the reader to see why).

Now for the proofs of rules 2, 3 and 4. Firstly the sum. We examine the difference
quotient:

( f + g)(c + h) − ( f + g)(c)

h
= f (c + h) − f (c) + g(c + h) − g(c)

h

= f (c + h) − f (c)

h
+ g(c + h) − g(c)

h

and taking the limit we obtain the rule ( f + g)′(c) = f ′(c) + g′(c).
Secondly the product. We transform the difference quotient:
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( f g)(c + h) − ( f g)(c)

h
= f (c + h)g(c + h) − f (c)g(c)

h

= f (c + h)g(c + h) − f (c)g(c + h) + f (c)g(c + h) − f (c)g(c)

h

= f (c + h) − f (c)

h
g(c + h) + f (c)

g(c + h) − g(c)

h
.

We take the limit as h → 0, using the rules for the limits of sums and products, and
remembering that limh→0 g(c + h) = g(c) since g, being differentiable, is continu-
ous at c. Thus we obtain the rule for the product, ( f g)′(c) = f ′(c)g(c) + f (c)g′(c).

Next the quotient. Again we transform the difference quotient by algebra:

(
f

g

)
(c + h) −

(
f

g

)
(c)

h
= 1

h

(
f (c + h)

g(c + h)
− f (c)

g(c)

)

= 1

h

(
f (c + h)g(c) − f (c)g(c + h)

g(c + h)g(c)

)

=

(
f (c + h) − f (c)

h

)
g(c) − f (c)

(
g(c + h) − g(c)

h

)

g(c + h)g(c)
.

We let h → 0, use the rules for limits of sums, products and quotients, remember
that limh→0 g(c + h) = g(c) and obtain the limit

g(c) f ′(c) − g′(c) f (c)
(g(c))2

.

�

5.2.1 Differentiation of the Power Function

If n is a positive integer and f is the function xn then we have

f ′(x) = nxn−1.

This is now easy to prove without considering the limit of a difference quotient. We
use induction. The rule is known for n = 1. Let us assume it holds for a particular
integer n and write xn+1 = x · xn . Using the rule for differentiating a product we
obtain for the derivative of xn+1 the formula

1 · xn + x · nxn−1 = (n + 1)xn .
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This proves the rule generally for positive integers n.
Next we consider f (x) = x−n = 1/xn . The rule for the derivative of a quotient

gives the formula

f ′(x) = −nxn−1

x2n
= −nx−n−1.

So we have now shown that the derivative of xa is axa−1 in all cases when a is an
integer (positive or negative).

What about the power x1/n , which denotes the nth root n
√
x , or the fractional power

xm/n = n
√
xm? For these we need the rule for differentiating inverse functions, and

the celebrated chain rule, often referred to somewhat misleadingly as the rule for
functions of a function. The latter rule, which we take first, is used to differentiate
composite functions and is perhaps the most remarkable of the differentiation rules.

5.2.2 The Chain Rule

Proposition 5.3 Let f : A → R, g : B → R, where A and B are open intervals
and f (A) ⊂ B. Form the composition g ◦ f : A → R,

(g ◦ f )(x) = g( f (x)), (x ∈ A).

Let x0 ∈ A, assume that f is differentiable at x0 and g is differentiable at f (x0).
Then g ◦ f is differentiable at x0 and

(g ◦ f )′(x0) = g′(( f (x0)) f ′(x0).

The chain rule is illustrated in Fig. 5.1

Fig. 5.1 A view of the chain rule
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Proof of the Chain Rule Let y0 = f (x0). As for the previous rules we start by
applying some algebra to the difference quotient:

(g ◦ f )(x0 + h) − (g ◦ f )(x0)

h

= g
(
f (x0 + h)

) − g
(
f (x0)

)
f (x0 + h) − f (x0)

· f (x0 + h) − f (x0)

h
.

(5.1)

The second factor on the right-hand side has the limit f ′(x0). As for the first factor
it looks as if it should have the correct limit g′(y0). For we can think of f (x0 + h)

as y0 + k (effectively defining the new quantity k) and then the first factor is the
quotient

g(y0 + k) − y0
k

.

As h → 0 we have k → 0 also and we seem to have a proof.
But there is a problem here. Although h is not 0 (as befits a correctly formed

difference quotient) the denominator k, defined to be the difference f (x0 + h) −
f (x0), can be 0, and the first factor is then not defined for such values of h. There
could even exist such values of h that are arbitrarily small which are then impossible
to escape.

To save the proof we shall define a function R, the domain of which is a suitably
small interval ]−α, α[, in such a way that formula (5.1) for the difference quotient
is correct if R

(
f (x0 + h) − f (x0)

)
replaces the first factor.

For α > 0 and suitably small (the reader should try to figure out what “suitably
small” means in this context and why we have to say it) we set

R(t) =
{ g(y0 + t) − g(y0)

t
if 0 < |t | < α

g′(y0) if t = 0.

Note that R is continuous at the point t = 0 because

lim
t→0

g(y0 + t) − g(y0)

t
= g′(y0).

Moreover
g(y0 + t) − g(y0) = R(t)t

both when t �= 0 and when t = 0. In this equation we replace t by the difference
f (x0 + h) − f (x0). This is allowed if |h| is sufficiently small and then we have

g
(
f (x0 + h)

) − g
(
f (x0)

) = R
(
f (x0 + h) − f (x0)

)(
f (x0 + h) − f (x0)

)
.

Division by h when the latter is not 0, but still sufficiently small, gives
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g
(
f (x0 + h)

) − g
(
f (x0)

)
h

= R
(
f (x0 + h) − f (x0)

) (
f (x0 + h) − f (x0)

h

)
.

Now we may let h tend to 0 and by the limit rules the right-hand side has the limit

(
lim
h→0

R
(
f (x0 + h) − f (x0)

))
f ′(x0) = R(0) f ′(x0) = g′( f (x0)) f ′(x0).

In slightly more detail (we seriously want this proof to be correct) we can intro-
duce the function φ(h) := f (x0 + h) − f (x0). Then φ is continuous at h = 0, and
φ(0) = 0. Moreover the function R is continuous at 0 as we saw. Hence the com-
position R ◦ φ is continuous at 0 and so limh→0 R(φ(h)) = R(φ(0)) = R(0), as we
wrote above. �

5.2.3 Differentiation of Inverse Functions

This is the last of the elementary differentiation rules. The lengthy preamble repeats
the conditions (see Proposition 4.12) under which the inverse function exists and
should not distract the reader from the extraordinary simplicity of the formula that
is the conclusion.

Proposition 5.4

Preamble. Let f : ]a, b[ → R be continuous and strictly increasing (the point a may
be −∞ and b may be ∞). Let c = limx→a+ f (x) and d = limx→b− f (x) (the limits
exist if we allow c = −∞ and d = ∞). The inverse function g : ]c, d[ → R therefore
exists, is continuous, and maps the interval ]c, d[ on to the interval ]a, b[.
Conclusion. Let a < x0 < b and assume that f is differentiable at x0, and that
f ′(x0) �= 0. Then g is differentiable at f (x0) and

g′( f (x0)) = 1

f ′(x0)
.

A similar conclusion holds if f is strictly decreasing; the only difference is that d < c
and g has the domain ]d, c[.
Proof Let y0 = f (x0). We have to show that g′(y0) = f ′(x0)−1. Connect the vari-
ables h and k by the equation

y0 + k = f (x0 + h), equivalently h = g(y0 + k) − g(y0)

(recall that g(y0) = x0). The second equation here shows h as a function of k; it is
a continuous, injective function of k, defined when k is sufficiently small. Moreover
h = 0 when k = 0.

We also have
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g(y0 + k) − g(y0)

k
= h

k
= h

f (x0 + h) − f (x0)
.

Let k → 0 and think of h as a function of k, as defined above. Then h tends to 0, but
is not 0 as long as k �= 0. By the rule for the limit of a reciprocal, the right-hand side
has the limit f (x0)−1. �

Assuming that f ′(x) �= 0 for all x in the interval ]a, b[, we have the conclusion that

( f −1)′(y) = 1

f ′( f −1(y))
(5.2)

for all y in the interval ]c, d[ (or in ]d, c[ if f is decreasing).
We shall see later (Sect. 5.6) that if f ′(x) > 0 for all x in the open interval A, then

f is strictly increasing in A, so that Proposition 5.4 is immediately applicable.

5.2.4 Differentiation of Fractional Powers

Let f (x) = x1/n , where n is a positive natural number. We have here the inverse
function of the function g(x) = xn . The domain is the interval ]0,∞[. By the rule
for differentiating an inverse function (that is, we apply (5.2) to the function g with
x instead of y) we have

f ′(x) = (g−1)′(x) = 1

g′(g−1(x))
= 1

n(x
1
n )n−1

= n−1x
1−n
n = 1

n
x

1
n −1.

Next we consider the function f (x) = xm/n , where m is an integer, positive or
negative. This is the composition (xm)1/n . By the chain rule we have

f ′(x) = 1

n
(xm)

1
n −1mxm−1 = m

n
x

m
n −1.

The conclusion is striking. The derivative of the power function xa is axa−1 for every
rational power a.

It is a further task to define the power function xa for irrational powers and prove
that the same differentiation formula continues to be valid.

5.2.5 Exercises

1. Differentiate the following functions. You may assume that the domain of each
function is the set of all x for which the formula makes sense.

(a)
1

x2 + 2
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(b)
x2 − x + 1

x2 + x − 1

(c)

√
x2 − x + 1

x2 + x − 1

(d) 4

√
x2 − x + 1

x2 + x − 1

(e)
√
1 + √

x

(f)

√
1 +

√
1 + √

x

(g)

√
1 +

√
1 +

√
1 + √

x .

2. Define the function f on the whole real line by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x, (x ≤ 0)
1 − 2

√
1 − x, (0 < x < 1)

x, (1 ≤ x ≤ 2)√
x2 + 5 − 1, (2 < x).

Determine where f is differentiable, and where it is, find its derivative.
Hint. In this, and in similar examples where a function is defined by cases, the
differentiation rules are only useful in the open intervals between the partition
points. At the partition points something else is required, such as arguing by
examination of the difference quotient.

3. For this exercise we assume some knowledge of the circular functions sin x and
cos x , including their derivatives (see Sect. 5.1, Exercise 2). Determine where the
following functions are differentiable and calculate the derivative when it exists:

(a) f (x) =
{
sin 1

x , (x > 0)
0, (x ≤ 0).

(b) f (x) =
{
x sin 1

x , (x > 0)
0, (x ≤ 0).

(c) f (x) =
{
x2 sin 1

x , (x > 0)
0, (x ≤ 0).

4. Show that the function f (x) = x5 + x is strictly increasing on the whole real line
and calculate ( f −1)′(2).

5. Let fk , (k = 1, 2, ..., n) be differentiable functions. Let g be their product,
f1 f2... fn . Show that

g′(x)
g(x)

=
n∑

k=1

f ′
k(x)

fk(x)

at every point x at which none of the denominators is 0.



5.3 Leibniz’s Notation 141

5.3 Leibniz’s Notation

There are several notational systems in use for derivatives. They reflect the differing
views of Newton and of Leibniz. Newton used dots to signify the derivative, as in
ẋ and ẏ. One might say that the various dashes, as in f ′ and f ′′, popularised by
Lagrange, reflect Newton’s notation. Leibniz introduced the expressions dx and dy,
signifying in his view infinitesimal changes in the variables x and y (“d” for Latin
“differentia”), and leading to the differential quotient dy/dx . He also introduced
the integral sign “

∫
”, an elongated “S” (for Latin “Summa”). Each notation has its

advantages and it is best to learn how to use both.

5.3.1 Tangent Lines

We often think of a function f as a curve in the (x, y)-plane. The curve in question
is the set of all points (x, y) that satisfy y = f (x), in other words the graph of f .
Leibniz’s notation reflects the geometric intuition behind the idea of a tangent line
to a curve.

A line is a curve of the form y = mx + c with constants m (the slope) and c (the
intercept). The curve x = a is also a line but it is not a graph of a function in the
above sense. It is though a graph if we think of x as a function of y (in this case a
constant function).

We could ask whether every curve in the plane can be described (perhaps locally;
in small sections at a time) as a graph, in which y is a function of x , or x is a function
of y. The question arises even for familiar everyday curves like the circle and shows
the limitation of thinking of a curve simply as a graph. This gets us into the area of
differential geometry. We would have to give a general definition of curve, a task
that is not so straightforward.

The ancient Greek geometers tried to define a tangent line to a curve as a line that
meets the curve in only one point. This works for circles (and more generally conic
sections) but not for more complicated curves. Differential calculus allows us to give
a correct definition of tangent line to a curve when that curve is a graph y = f (x),
and its extension to differential geometry does the job for more general curves. For
this reason it is said that differentiation solved the problem of tangents.

Consider a differentiable function f . The tangent line to the curve y = f (x), at a
point (x0, y0) on the graph (that this point lies on the graph means that y0 = f (x0)),
is the line through the point (x0, y0) that has the slope f ′(x0). In other words it is the
line

y − y0 = f ′(x0)(x − x0)
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Fig. 5.2 Leibniz’s
differential quotient

or equivalently
y = f ′(x0)x + (y0 − f ′(x0)x0).

The intuitive thinking behind this is that the tangent line at (x0, y0) is the limit of
a secant line through the two points, (x0, y0) and (x0 + �x, y0 + �y), both on the
graph y = f (x), the limit being taken as �x → 0. The slope of the secant line is
�y/�x and we want to make �x , and as a result �y, tend to 0.

In the view of seventeenth century mathematicians, who did not possess a defi-
nition of limit, the quantity �x was actually supposed to become infinitely small,
the tangent being thought to intersect the curve at two distinct points infinitely close
together. For the slope of the tangent we obtain a quotient of infinitely small quan-
tities, or infinitesimals. This intuition lies behind Leibniz’s notation for derivatives
(Fig. 5.2).

5.3.2 Differential Quotients

Leibniz proposed setting an infinitesimal dx in place of �x , as the notion of limit
was not available to him. He would have said that y underwent a corresponding
change, which was also an infinitesimal dy, and the derivative was the quotient
dy/dx . Although dx and dy are infinitesimals (whatever that means) the quotient
is an ordinary real number. He called the infinitesimals dx and dy differentials. The
derivative was then the differential quotient.

According to the prevailing modern view the derivative is not a quotient; it is
though the limit of a quotient, namely the limit of the difference quotient. In spite of
this it is possible to define differentials, expressed in the classical notation dx and
dy, without resorting to the mysterious infinitesimals. This is very useful for calculus
in several variables and differential geometry of surfaces and their generalisations,
manifolds. It means, for example, that classical formulas, such as dy = f ′(x) dx ,
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remain valid with an appropriate interpretation of their symbols. However, that is a
whole new topic.1

Here are some examples of statements written using Leibniz’s notation. It will
be seen that they have certain advantages, notably brevity and flexibility, over their
equivalents using function symbols:

(a) If y = x3 then
dy

dx
= 3x2.

That is, if f is the function f (x) = x3 then f ′(x) = 3x2.

(b)
d

dx
x3 = 3x2.

Same meaning as the previous item. We again avoid using a symbol for the function,
as well as mentioning the variable y.

(c)
d

dx
x3

∣∣∣
x=1

= 3.

In other words if f is the function f (x) = x3 then f ′(1) = 3. The vertical stroke
with the subscript “x = 1” means evaluate the preceding expression at x = 1.

5.3.3 The Chain Rule and Inverse Functions in Leibniz’s
Notation

Many calculations using the chain rule or the inverse-function rule are easier to carry
out using Leibniz’s notation. This makes it particularly useful for effecting a change
of variables in a differential equation, a subject not covered in the present text.

Functions f and g are given and we wish to differentiate the composed function
g ◦ f . We consider that the function f sets up a relation between variables x and
y, namely y = f (x), whilst g sets up a relation between variables y and z, namely
z = g(y). Then the composition g ◦ f sets up the relation z = (g ◦ f )(x).

We can differentiate the composition g ◦ f using the chain rule. In Leibniz’s
notation we are finding the differential quotient dz/dx and this is given by the
striking formula

dz

dx
= dz

dy

dy

dx
.

This is of course just the formula

(g ◦ f )′(x) = g′( f (x)) f ′(x).

1This has nothing to do with what is known as non-standard analysis. In the latter the real number
system is extended by including infinitely small quantities and infinitely large quantities.
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The first factor on the right-hand side, that is dz/dy, must be interpreted with some
care. We first differentiate z with respect to y, but then express this as a function of
x , using the relationship between y and x .

We illustrate these steps by differentiating
√
1 − x2. We set y = 1 − x2 and z =√

y. Then
dz

dx
= dz

dy

dy

dx
= 1

2
√
y
(−2x) = − x√

1 − x2
.

Consider next inverse functions. If y is a function of x , namely y = f (x), we can
turn this round and look at x as a function of y, namely x = f −1(y). The rule for
differentiating f −1 takes the memorable form

dx

dy
= 1

/dy

dx
.

This is the same formula as the less intuitive

( f −1)′(y) = 1

f ′( f −1(y))
.

As an example we shall differentiate the function x1/n . Let y = x1/n and turn it
around giving x = yn . Then

dx

dy
= nyn−1

so that by the rule we find

dy

dx
= 1

nyn−1
= 1

nx
n−1
n

= 1

n
x

1
n −1.

5.3.4 Tangents to Plane Curves

In analytic geometry, the simplest way to represent a circle with centre (a, b) and
radius r is by means of the equation (x − a)2 + (y − b)2 = r2. Here the curve is not
seen as a graph; in order to do so we must solve for y as a function of x , or for x as a
function of y. To represent a curve in analytic geometry as a graph, we usually have
to break it into pieces.

A simple example is that of the unit circle x2 + y2 = 1. Solving for y we obtain
two solutions, and two graphs:

y =
√
1 − x2, (−1 ≤ x ≤ 1) the upper semicircle

y = −
√
1 − x2, (−1 ≤ x ≤ 1) the lower semicircle.
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Now we can differentiate these formulas in order to compute the tangents to the
circle, using the appropriate formula for each semicircle.

However, there is another way to calculate the tangent at a point (x0, y0) on the
curve without solving for y as a function of x . Suppose that we are looking at a part
of the circle that can be represented as a graph y = f (x), where f is differentiable,
and contains the point (x0, y0). Then y0 = f (x0) and the equation

x2 + (
f (x)

)2 = 1

holds for all x in some interval containing x0. We may differentiate with respect to
x , using the differentiation rules, and obtain

2x + 2 f (x) f ′(x) = 0.

In particular f ′(x0) = −x0/ f (x0) = −x0/y0.
The calculation just given would normally be done without introducing a function

symbol, using Leibniz’s notation

x2 + y2 = 1 ⇒ 2x + 2y
dy

dx
= 0 ⇒ dy

dx
= − x

y

or else a form of Newton’s notation

x2 + y2 = 1 ⇒ 2x + 2yy′ = 0 ⇒ y′ = − x

y
.

This procedure is called implicit differentiation. The differentiation proceeds with
respect to x , but y is thought of as a function of x , the exact form of which is not
required. We obtain dy/dx , and express it as a function of x and y, without knowing
the function y = f (x). Logically, we only need to know that the function f (x) exists,
and is differentiable. This can usually be guaranteed by a theorem of multivariate
calculus, the implicit function theorem, which is beyond the scope of this text.

Example The equation 2y5 − xy − x4 = 0 defines some kind of curve in the coor-
dinate plane. We observe that it contains the point (1, 1). To solve for y as a function
of x , or for x as a function of y, is difficult (although some algebraic arguments show
that there is a unique positive y for each positive x ; see the nugget “Multiplicity”).
Nevertheless, we can calculate the tangent to the curve at the point (1, 1). Assuming
that we can represent the curve around the point (1, 1) as a graph y = f (x) with
differentiable f (a fact that can be justified using the implicit function theorem),
implicit differentiation gives

10y4y′ − y − xy′ − 4x3 = 0 ⇒ y′ = y + 4x3

10y4 − x
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and therefore at the point (1, 1)we have y′ = 5
9 . Note how differentiating the middle

term xy gives rise to y + xy′ because we are thinking of y as a function of x .
The equation of the tangent line is therefore y − 1 = 5

9 (x − 1), or more simply,
5x − 9y + 4 = 0.

5.3.5 Exercises

1. (a) Determine the equation of the tangent to the parabola y = x2 at the point
(t, t2).

(b) Show that the line perpendicular to the tangent of item (a) and intersecting it
on the x-axis, passes through the point (0, 1

4 ), independently of t .
2. Show that the equation of the tangent to the ellipse

x2

a2
+ y2

b2
= 1

at the point (x0, y0), assumed to be on the ellipse, is

x0x

a2
+ y0y

b2
= 1.

3. Give an example of a graph y = f (x) (with differentiable f ) and a point (a, f (a))

on the graph, such that the tangent at (a, f (a)) crosses the graph at (a, f (a)).
4. A vessel has the shape of a right circular cone standing on its apex. Let h be the

height of the cone and let r be the radius of its base. Mercury is poured into the
vessel, not necessarily at a constant rate. Introduce variables: t for the time, v for
the volume of mercury in the vessel and y for the height of the mercury in the
vessel.

(a) Find the relationship between
dv

dt
and

dy

dt
.

(b) Suppose that h = 1 m, r = 1 m, y = 0.5 m and the mercury is poured at a
constant rate of 1 litre per second. Approximately, how much time is needed
to raise the surface level by 1 cm?
Note. Physics and engineering abound with problems like this one. A bunch of variables

are connected by a constitutive relation. In this problem the relation between v and y is

geometric. Examples from physics are pressure, volume and temperature connected by the

ideal gas equation; or stress and strain connected by the law of elasticity. If the variables

change with time, then the constitutive relation implies a linear connection between their

derivatives with respect to time. If the variables are three or more then the problem really

requires multivariate calculus, in particular partial derivatives. With two variables we can

just about get by without them.
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5.4 Higher Order Derivatives

If the function f : ]a, b[ → R is differentiable, its derivative f ′ : ]a, b[ → R is a new
function. Now it could happen that f ′ is differentiable. If so, we can differentiate and
produce the function f ′′ : ]a, b[ → R, called the second derivative of f . Continuing
in this way as far as is allowable, we can define a whole sequence: second, third,
fourth, fifth, ..., nth derivatives of f . They are denoted by f ′′, f ′′′, f ′′′, f ′′′′ and so
on, but around the fourth it becomes more practical to write instead f (4), f (5), ....,
f (n)... as counting those little dashes becomes tiresome and irritating. When using
this notation it is often convenient to allow n = 0 and interpret f (0) to be the same
as f .

The differentiation can be continued beyond f (n) when the latter is differentiable
on the interval ]a, b[, where f was defined. It could happen that every function
produced in this way is differentiable. Then we say that f is infinitely often differen-
tiable. If the process can be continued at least as far as f (n) we say that f is n-times
differentiable, or that f is differentiable to order n, or that f has derivatives to order
n (none of which precludes going further).

Can we give any sense to the statement that f is n-times differentiable at the
point c? For a function to be differentiable at a given point it must be defined on an
interval that contains that point. Therefore the meaning to be attached to this phrase
is the following. There exists δ > 0, such that f is (n − 1)-times differentiable in the
interval ]c − δ, c + δ[ and f (n−1) is differentiable at c. We sometimes say in this case
that the derivatives f (k)(c) exist up to k = n; or, most briefly: f has n derivatives
at c.

Leibniz’s notation for the higher derivatives is

y = f (x),
dy

dx
= f ′(x),

d2y

dx2
= f ′′(x), . . .

dm y

dxm
= f (m)(x).

5.4.1 Exercises

1. Let f be a polynomial of degree m. Show that f (k) = 0 for all k > m.
2. Let g be a function having derivatives of all orders and let a be a real number,

such that g(a) �= 0. Set f (x) = (x − a)mg(x), where m is a positive integer.
Show that f (k)(a) = 0 for k = 0, 1, ...,m − 1, but that f (m)(a) �= 0.

3. Show that
dk

dxk
xa = a(a − 1)...(a − k + 1)xa−k .

Here you may assume that a is rational (pending the rigorous definition of irra-
tional powers in Chap.7). Also you may assume that x > 0 if a is not an integer.
If a is a positive integer show that
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dk

dxk
xa = a!

(a − k)! x
a−k

for k ≤ a. One can even allow k > a if we interpret 1/m! as 0 if m is a negative
integer.

4. We assume some knowledge of the exponential function ex , namely, that its
derivative is again ex . Let f (x) = e−1/x for x �= 0. Show that for all natural
numbers n we have

f (n)(x) = Pn

(
1

x

)
e−1/x , (x �= 0),

where for each n, Pn(t) is a polynomial in the variable t of degree 2n. Find a
recurrence formula for Pn(t).

5. ProveLeibniz’s formula for the nth derivative of a product. If u and v are functions
with derivatives up to order n, then uv has derivatives to order n and

(uv)(n) =
n∑

k=0

(
n

k

)
u(k)v(n−k).

6. Calculate some higher derivatives of the composite function y = g( f (x)), as far
as your patience allows.

7. A function is defined by

f (x) =
{−x5, if x < 0

x5, if x ≥ 0.

How many derivatives does f possess at x = 0?
8. A function with domainR is called an even function if it satisfies f (−x) = f (x)

for all x . It is called an odd function if it satisfies f (−x) = − f (x) for all x .

(a) Show that every function f with domain R has a unique decomposition
f = g + h where g is even and h is odd.

(b) Suppose that f has m derivatives at x = 0. Show that if f is even, then all
derivatives f (k)(0) with odd k ≤ m are zero. Show, on the other hand, that
if f is odd, then all derivatives f (k)(0) with even k ≤ m are zero.

9. How many derivatives does the function |x |7/2 possess at x = 0?
10. Define a function f on the domain ]−∞, 1[ by

f (x) =
{
0, if x < 0
1 − √

1 − x2, if 0 ≤ x < 1.

Show that f is differentiable at all points of its domain, that f ′ is continuous, and
that f is twice differentiable at all points except at x = 0. At x = 0 the second
derivative does not exist; but calculate its “jump”, the quantity
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lim
x→0+ f ′′(x) − lim

x→0− f ′′(x).

Note. Where a straight section of rail track joins a curved section, it is safer if the curve

is designed so that the second derivative is continuous and is 0 at the join. This is to avoid

discontinuities in the acceleration normal to the track. The graph in the exercise typifies the

join in a model railway, where the curves are usually arcs of circles, and that is where the

model train is most likely to leave the track.

11. Variables x and y are connected by the equation 2y5 − xy − x4 = 0. Calculate
the second derivative d2y/dx2 when x = 1 and y = 1.

12. In this exercise we assume some acquaintance with determinants. Let u1 and u2
be differentiable functions in an interval A.

(a) Suppose that the functions u1 and u2 are linearly dependent in A; by this is
meant that there exist constants λ1 and λ2, not both 0, such that

λ1u1(x) + λ2u2(x) = 0

for all x in A. Show that, for all x in A:

∣∣∣∣∣
u1(x) u2(x)

u′
1(x) u′

2(x)

∣∣∣∣∣ = 0.

(b) The example u1(x) = u2(x) = 0 for x < 0 and u1(x) = x2, u2(x) = 2x2

for x ≥ 0 shows that the converse is false.
(c) Extend the result of item (a) to the case of m functions u1,..., um , each

m − 1 times differentiable. Show that a necessary condition for their linear
dependence in A is that

∣∣∣∣∣∣∣∣∣

u1(x) u2(x) . . . um(x)
u′
1(x) u′

2(x) . . . u′
m(x)

...
...

. . .
...

u(m−1)
1 (x) u(m−1)

2 (x) . . . u(m−1)
m (x)

∣∣∣∣∣∣∣∣∣
= 0

for all x in A.

5.5 Significance of the Derivative

In this sectionwebegin to extract useful information about a function fromknowledge
of its derivative.
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If A is an interval we call a point c in A an interior point if c is not an endpoint
of the interval. In the next paragraphs a set denoted by A will always be an interval
with distinct endpoints.

Proposition 5.5 Let f : A → R, let c be an interior point of A and let f be differ-
entiable at c. Then the following hold:

(1) If f ′(c) > 0 there exists δ > 0, such that

f (x) < f (c) if c − δ < x < c, and f (x) > f (c) if c < x < c + δ.

(2) If f ′(c) < 0, then there exists δ > 0, such that

f (x) > f (c) if c − δ < x < c, and f (x) < f (c) if c < x < c + δ.

Proof Let f ′(c) > 0. Now

f ′(c) = lim
h→0

f (c + h) − f (c)

h
,

and taking ε to be 1
2 f

′(c) in the definition of limit we find that there exists δ > 0,
such that

f (c + h) − f (c)

h
>

f ′(c)
2

for all h that satisfy 0 < |h| < δ. For such h that are negative we have

f (c + h) − f (c) <
h f ′(c)

2
< 0

and for such h that are positive we have

f (c + h) − f (c) >
h f ′(c)

2
> 0.

The case when f ′(c) < 0 is treated similarly. �

We did not assume that f was differentiable at points other than c. But even if it
is, the assumption that f ′(c) > 0 tells us little about the derivative f ′(x), for x near
to c. We could have points x , arbitrarily near to c, at which f ′(x) < 0, for example.
Or even points at which f ′(x) is arbitrarily large.



5.5 Significance of the Derivative 151

5.5.1 Maxima and Minima

One of the main applications of the last paragraph is to the problem, familiar from
applied mathematics, of finding maxima and minima. Problems of this nature are
generally called extremal problems.

Let f : A → R. Recall that A denotes an interval, with or without endpoints,
though the latter must be distinct. The status of a point c in A regarding the local
extremal behaviour of f can be usefully, if somewhat pedantically, classified as
follows:

(a) The point c is called a local minimum point for f if there exists δ > 0, such that
f (x) ≥ f (c) for all x in A that satisfy |x − c| < δ.

(b) The point c is called a local maximum point for f if there exists δ > 0, such that
f (x) ≤ f (c) for all x in A that satisfy |x − c| < δ.

(c) The point c is called a strict local minimum point for f if there exists δ > 0,
such that f (x) > f (c) for all x in A that satisfy 0 < |x − c| < δ.

(d) The point c is called a strict local maximum point for f if there exists δ > 0,
such that f (x) < f (c) for all x in A that satisfy 0 < |x − c| < δ.

Note that c could be an endpoint of the interval A in these definitions. Moreover
c could belong to none of the above four classes, in which case it is of no interest as
regards the extremal problem for f .

The next proposition defines precisely the notion, loosely expressed, that the
derivative vanishes at a maximum or minimum.

Proposition 5.6 Let f : A → R, let c be a point in A and assume that c is either a
local minimum point, or a local maximum point, of f . If, in addition, c is an interior
point of A and f is differentiable at c, then f ′(c) = 0.

Proof Consider the case when c is a local minimum point. If f ′(c) < 0 then, by
Proposition 5.5, there exists δ > 0, such that f (x) < f (c) if c < x < c + δ. If
f ′(c) > 0 then there exists δ > 0, such that f (x) < f (c) if c − δ < x < c. In nei-
ther case can c be a local minimum point, so we have a contradiction. We conclude
that f ′(c) = 0. A similar argument is used for the case when c is a local maximum
point. �

That the derivative is 0, given that c is an interior point and f is differentiable
at c, is only a necessary condition for c to be a local minimum or maximum point.
It is not sufficient. There is a need for a term to cover the case that f ′(c) = 0,
irrespective of whether c is a local maximum or minimum point. The terms extreme
point, extremal point, stationary point and critical point have been used (and there are
probably others). The last two should be preferred as they do not suggest a maximum
or minimum.
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5.5.2 Finding Maxima and Minima in Practice

Let f : [a, b] → R be a continuous function. The domain [a, b] is a bounded and
closed interval. We know by the extreme value theorem (Proposition 4.11) that f
attains both a maximum and a minimum value in [a, b]. The problem of maxima and
minima is to find the points where these are attained, as well as the maximum and
minimum values.

Suppose that the maximum is attained at a point x = c (there could be more than
one such point). There are three possibilities (exclusive; each excludes the other two):

(a) The point c is either a or b.
(b) The point c is an interior point, that is, a point of the open interval

]a, b[, f is differentiable at c and (by Proposition 5.6) f ′(c) = 0.
(c) The point c is an interior point at which f is not differentiable.

The most usual situation is that there are only a finite number of points c in [a, b]
that satisfy any one of these three conditions. It may be feasible to find them, and
once found, to arrange them in a list. This might begin with the endpoints a and b,
continue with the points in ]a, b[ at which f is not differentiable (if finitely many)
and conclude with all the solutions of f ′(x) = 0 in ]a, b[ (if finitely many). Now it
only remains to calculate f at each of the points in the list and find the highest and
lowest of these values.

5.5.3 Exercises

1. In each of the following cases determine the maximum and minimum of the
function f over the interval A:

(a) f (x) = x3 − 3x2 + x, A = [1, 3].
(b) f (x) = max

(
1 − 2x − x2, 2 + x − x2, 1 + 3x − x2

)
, A = [−1, 2].

(c) f (x) = 5

1 + |x − 4| + 4

1 + |x − 5| , A = [−6, 6].

Hint. In items (b) and (c) it helps to express the functions by cases. For the
numerical work in these exercises it makes sense to use a calculator and state the
answers with a certain number of decimal digits, say, three.

2. Determine the minimum of the function

f (x) = x + 1

x3

in the interval ]0,∞[.
3. Let a1, a2,..., an be a strictly increasing sequence of real numbers. Let f (x) =∑n

j=1 |x − a j | for each real x . Determine the minimum of f over the whole real
line.
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4. Define the function f with domain R by f (x) = x2 sin(1/x) for x �= 0, and
f (0) = 0. Show that f is everywhere differentiable, including at x = 0, but that
f ′ is discontinuous at x = 0.

5. Find an example of a continuous function f that has a strict local minimum at
x = 0, and for every δ > 0 has also a strict local minimum in the interval ]0, δ[.
Hint. To help you think about it, note that there would have to be infinitely many
minima in ]0, δ[, each with a value higher than f (0).

6. Give an example of a differentiable function f , such that f ′(0) > 0, but there
exists no δ > 0 such that f is strictly increasing in the interval ]−δ, δ[.
Hint. Try to exploit the wildly oscillating function sin(1/x).

7. Give an example of a differentiable function f such that f ′(0) = 0 and in every
interval ]−δ, δ[ (with δ > 0) the derivative f ′ takes arbitrarily large positive values
and arbitrarily large negative values.

5.6 The Mean Value Theorem

It has been called the most useful theorem in analysis (notably by the influential
French mathematician and Bourbakiste, Jean Dieudonné, but he was probably echo-
ing G. H. Hardy). We leave it to the reader to judge the truth or otherwise of this
claim. It might seemmore logical to write “mean-value theorem”, as there is nothing
mean about it, nor is it one of a collection of value theorems. The lack of a hyphen is
sanctioned by usage, as it is in the names of other theorems with compound qualifiers
(as in “small oscillation theorem”).

In the following, the interval [a, b] has distinct endpoints, and is manifestly
bounded and closed.

Proposition 5.7 (Rolle’s theorem) Let f : [a, b] → R be a continuous function that
is differentiable for a < x < b. Assume that f (a) = f (b). Then there exists c, such
that a < c < b and f ′(c) = 0.

Proof Let m = inf [a,b] f and M = sup[a,b] f (both m and M are attained by the
extreme value theorem, so they are minimum and maximum). If m = M then f is a
constant and so f ′(x) = 0 for all x in ]a, b[ and we are done.

Assume next thatm < M . If these values are attained at the endpoints, then, since
f (a) = f (b), we again havem = M . So at least one of them is attained at an interior
point. Either there exists c in ]a, b[ such that f (c) = m or there exists c in ]a, b[
such that f (c) = M . In both these cases we have f ′(c) = 0. �

Proposition 5.8 (Mean value theorem) Let f : [a, b] → R be a continuous function
that is differentiable for a < x < b. Then there exists c in the open interval ]a, b[,
such that

f (b) − f (a) = f ′(c)(b − a).
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Proof Set

A = f (b) − f (a)

b − a
.

Then f (a) − Aa = f (b) − Ab. Define the function g(x) = f (x) − Ax for
a ≤ x ≤ b. Now g(a) = g(b) and we deduce that there exists c, such that a < c < b
and g′(c) = 0. Then f ′(c) − A = 0 and we find

f (b) − f (a)

b − a
= f ′(c) ,

which gives f (b) − f (a) = f ′(c)(b − a). �

5.6.1 First Consequences of the Mean Value Theorem

The following reformulation of the mean value theorem is often useful.

Proposition 5.9 (Mean value theorem, version 2) Let A = ]a, b[ and let f : A → R

be a differentiable function. Let x and x + h both lie in A (note that h could
be negative). Then there exists θ , such that 0 < θ < 1 and f (x + h) = f (x) +
h f ′(x + θh).

Proof Apply the mean value theorem to the interval with endpoints x and x + h,
and write the point c in the form c = x + θh. Then 0 < θ < 1. �

It is surprising that only now, with the mean value theorem in place, do we have
the machinery to give a nice proof of the following “obvious” result.

Proposition 5.10 Let A be an open interval (which could be unbounded), let f be
differentiable in A and suppose that f ′(x) = 0 for all x in A. Then f is a constant
in the interval A.

Proof Let a and b be points in A. By the mean value theorem we have f (b) − f (a)

= f ′(c)(b − a) for some c between a and b. But then f (a) − f (b) = 0, that is,
f (a) = f (b). We deduce that f is constant in A. �

It is important that A should be an interval. If, for example, A is the set
]0, 1[ ∪ ]2, 3[, then there exists a function with domain A, differentiable and sat-
isfying f ′(x) = 0 at every point of A, but f is not constant in A.

Another important application is to give a criterion for a function to be increasing
or decreasing.

Proposition 5.11 Let the function f :]a, b[→ R be differentiable and assume that
f ′(x) > 0 for all x in ]a, b[. Then f is strictly increasing. If, on the other hand,
f ′(x) < 0 for all x in ]a, b[, then f is strictly decreasing.
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Proof Let f ′(x) > 0 for all x in ]a, b[ and let a < x1 < x2 < b. Then there exists c in
]x1, x2[, such that f (x2) − f (x1) = f ′(c)(x2 − x1) > 0. The argument for decreas-
ing is similar. �

Note that if f is strictly increasing we cannot conclude that f ′(x) > 0 for all x .
However, dropping the strictness, we obtain a correct result: a function differentiable
in an open interval is increasing if and only if f ′(x) ≥ 0 for all x in its domain. See
the exercises. mul

5.6.2 Exercises

1. Find a function f for which the domain is the open set ]0, 1[ ∪ ]2, 3[, and is such
that the derivative of f is zero at each point in its domain, but f is not a constant
function.

2. Show that Rolle’s theorem is true in case f is defined and differentiable in the
open interval ]a, b[, and limx→a+ f (x) = limx→b− f (x). Note that a could be
−∞ and b could be +∞. Furthermore the two limits could also be infinite.

3. Find an example of a function f , differentiable and strictly increasing in an open
interval A, but for which the inequality f ′(x) > 0 fails for at least one point x .

4. Show that a function f , differentiable in an open interval A, is increasing if and
only if f ′(x) ≥ 0 for all x in A.

5. Let f be a function on the domain ]a, b[, where b is a finite number. Suppose that
f is differentiable and there exists a constant K , such that | f ′(x)| < K for all x
in the domain. Show that limt→b− f (t) exists and is a finite number.

6. Suppose that f is known to be continuous in an interval ]a, b[, differentiable at all
points in ]a, b[ except possibly at a point c, and it is known that limx→c f ′(x) = 	,
where 	 is a finite number. Show that f is differentiable at c and f ′(c) = 	.
Note. In cases when f (x) is given by a nice formula for x �= c (such as in Sect. 5.2, Exercise

3) many a beginning student might compute the derivative f ′(c) correctly by taking the limit

limx→c f ′(x) without appreciating that it needs justification. Should a teacher give “correct”?

7. Let the function f be defined and continuous in an open interval A. Suppose
that c is a point in A and that f has derivatives up to order m on the set A \ {c}.
Suppose further that limx→c f (k)(x) exists for k = 1, ...,m and the limits are
finite numbers. Show that f has derivatives up to order m in all of A. Moreover
f (k)(c) = limx→c f (k)(x), for k = 1, ...,m.

8. We have seen that a continuous function f on a domain A, where A is an open
interval, has the intermediate value property: if a and b are points of A, and η lies
strictly between f (a) and f (b), then there exists c strictly between a and b such
that f (c) = η.
There is another general class of functions that possess the intermediate value
property. Suppose that f is differentiable everywhere in A. There is no reason to
suppose that f ′ is continuous; indeed it may have discontinuities. Nevertheless
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f ′ has the intermediate value property. Prove this.
Hint. Begin with the case when f ′(a) > 0, f ′(b) < 0 and show that there exists
c between a and b such that f ′(c) = 0.
Note. The intermediate value property for derivatives is often treated as an intriguing but oth-

erwise rather abstruse fact. Actually it is often useful in conjunction with the fact embodied in

Sect. 4.3, Exercise 6, whenmultiple applications of the mean value theorem or Taylor’s theorem

are used to derive remainder formulas.

9. Suppose that f is differentiable and that f ′ is monotonic. Prove that f ′ is con-
tinuous.

5.7 The Derivative as a Linear Approximation

If f is differentiable at a we can rewrite the formula

f ′(a) = lim
x→a

f (x) − f (a)

x − a

by defining R(x, a) to satisfy

f (x) = f (a) + (x − a) f ′(a) + R(x, a),

and viewing R(x, a) as the error when f (x) is approximated by the first-degree poly-
nomial f (a) + (x − a) f ′(a). The approximation improves as x approaches a, not
just because limx→a R(x, a) = 0, but because of the stronger conclusion (embodied
in the definition of derivative as limit) that

R(x, a)

x − a
= f (x) − f (a)

x − a
− f ′(a) → 0, (when x → a).

The error becomes arbitrarily small in comparison with x − a as x approaches a.

5.7.1 Higher Derivatives and Taylor Polynomials

Now suppose that f ′(a), ..., f (m)(a) all exist (for the meaning of this see Sect. 5.4).
As a generalisation of the above approximation rule using the first derivative, we
have the more complicated

f (x) = f (a) + (x − a) f ′(a) + 1

2! (x − a)2 f ′′(a) + · · · + 1

m! (x − a)m f (m)(a)

+ Rm+1(x, a)
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and the error Rm+1(x, a) satisfies

lim
x→a

Rm+1(x, a)

(x − a)m
= 0.

The polynomial

Pm(x, a) := f (a) + (x − a) f ′(a) + 1

2! (x − a)2 f ′′(a) + · · · + 1

m! (x − a)m f (m)(a)

is called the Taylor polynomial of f with degree m centred at a. As a polynomial in
x it may have degree less thanm so maybe one should use the term “order” instead of
“degree”. Whichever term one uses it is an approximation to f (x) which improves
as x approaches a, in the sense that the error becomes arbitrarily small in comparison
with (x − a)m . The proof of this will be given shortly.

5.7.2 Comparison to Taylor’s Theorem

The claimmade in the last subsection is not what we nowadays call Taylor’s theorem.
That celebrated result, which will be proved later, consists essentially of an estimate
for the error Rm(x, a), that often allows us to conclude that if x is kept constant and
if f satisfies certain additional conditions, then Rm(x, a) tends to 0 as m → ∞.

Sometimes the conclusion stated in the previous section is called Peano’s form of
Taylor’s theorem, and sometimes Young’s, but these terms can be confusing and it
is better to maintain a clear distinction between it and Taylor’s theorem. One might
add another source of confusion, that most named attributions of versions of Taylor’s
theorem are historically questionable (including the attribution to Taylor).

Compare these conclusions. In all cases we have

f (x) = Pm(x, a) + Rm+1(x, a).

The conclusion stated in the previous section was

lim
x→a

Rm+1(x, a)

(x − a)m
= 0 (note: m is held constant).

Taylor’s theorem can sometimes justify the conclusion, that for all x in some interval
]a − h, a + h[, we have

lim
m→∞ Rm(x, a) = 0 (note: x is held constant)

but to obtain this conclusion a close examination of f is usually needed.
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5.7.3 Cauchy’s Form of the Mean Value Theorem

Proposition 5.12 Let f : [a, b] → R and g : [a, b] → R be continuous functions,
that are differentiable for a < x < b. Then there exists c in the open interval ]a, b[,
such that (

f (b) − f (a)
)
g′(c) = (

g(b) − g(a)
)
f ′(c).

Proof Let h(x) = A f (x) + Bg(x) for a ≤ x ≤ b. Choose the constants A and B
so that they are not both zero but h(a) = h(b) (possible in many ways by simple
algebra). Then there exists c in ]a, b[, such that h′(c) = 0, which is to say

A f ′(c) + Bg′(c) = 0.

But since h(b) − h(a) = 0 we also have

A( f (b) − f (a)) + B(g(b) − g(a)) = 0.

Now A and B are not both 0, so by a popular rule of linear algebra we must have

(
f (b) − f (a)

)
g′(c) = (

g(b) − g(a)
)
f ′(c)

as required. �

The formula in Cauchy’s mean value theorem can be written in the memorable
form

f (b) − f (a)

g(b) − g(a)
= f ′(c)

g′(c)

provided neither denominator is zero.
Another way to state and prove Cauchy’s mean value theorem uses determinants.

We set

φ(x) =
∣∣∣∣∣
f (b) − f (a) f (x)

g(b) − g(a) g(x)

∣∣∣∣∣ ,

note that φ(a) = φ(b), and deduce, by Rolle’s theorem that, for some c between a
and b we have ∣∣∣∣∣

f (b) − f (a) f ′(c)
g(b) − g(a) g′(c)

∣∣∣∣∣ = 0.

5.7.4 Geometric Interpretation of the Mean Value Theorem

Consider the curve y = f (x) in the (x, y)-plane between x = a and x = b. Themean
value theorem says that there exists a point c between a and b where the tangent line
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Fig. 5.3 The mean value
theorem at a glance

Fig. 5.4 Cauchy’s mean
value theorem at a glance

to the curve at the point (c, f (c)) is parallel to the chord joining the points (a, f (a))

and (b, f (b)). There may be more than one point with the property possessed by c.
This is illustrated in Fig. 5.3.

Cauchy’s mean value theorem also has a geometric interpretation, but requires
the use of plane, parametrised curves. We assume that the reader is acquainted with
these and with vectors in the plane.

The equation (
f (b) − f (a)

)
g′(c) = (

g(b) − g(a)
)
f ′(c)

says that the vectors
(
f (b) − f (a), g(b) − g(a)

)
and

(
f ′(c), g′(c)

)
are parallel (as

is clear from the determinantal version given in the last section). Consider now the
parametrised plane curve

x = f (t), y = g(t).

Given the parameters t = a and t = b, yielding points ( f (a), g(a)) and ( f (b), g(b))
on the curve, there exists a parameter t = c between a and b, such that the tangent
line to the curve at parameter t = c is parallel to the chord joining ( f (a), g(a)) and
( f (b), g(b)). This is illustrated in Fig. 5.4.

There may be more than one tangent to the curve at the plane point ( f (c), g(c)),
as the curve may happen to cross itself at this point. That is why we refer to the
tangent as being at parameter value c, rather than at the point ( f (c), g(c)).
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5.7.5 Exercises

1. The idea that f (a) + h f ′(a) is an approximation to f (a + h) gives us a useful
rule of thumb for improving an initial approximation to f (a + h). Try it in the
the following examples. You can test the improvement using a calculator.

(a)
√
65 with initial approximation 8.

(b) 3
√
28 with initial approximation 3.

(c) 6263/4 with initial approximation 125.

2. Let f be twice differentiable in an interval A. Show that for every distinct pair of
points a and x in A there is a point ξ , strictly between a and x , such that

f (x) − f (a) − f ′(a)(x − a) = 1

2
f ′′(ξ)(x − a)2.

Hint. Apply Cauchy’s mean value theorem twice in a row to the quotient

f (x) − f (a) − f ′(a)(x − a)

(x − a)2
.

Note. This result is a particular case of Taylor’s theorem. It enables us to estimate the error,

when f (x) is approximated by f (a) + f ′(a)(x − a), if we know some bound for the second

derivative.

3. Use the result of the previous exercise to estimate the error in the approximations
of Exercise 1.

4. Prove Liouville’s theorem. Let α be a root of the polynomial equation P(x) :=
anxn + an−1xn−1 + · · · + a0 = 0 where the coefficients a0, a1,... an are integers
and an �= 0. Assume also that this equation has no rational solutions. Prove that
there exists a number c > 0, such that for all rational numbers p/q the inequality

∣∣∣∣α − p

q

∣∣∣∣ >
c

qn

holds. Use this to show that the number

L :=
∞∑
n=1

10−n!

is not the root of any polynomial equation with integer coefficients.
Hint. Assuming first that |α − (p/q)| ≤ 1 apply the mean value theorem to the
difference P(α) − P(p/q). Then remove the assumption.
Note. Real numbers can be divided into two classes. The algebraic numbers are those that are the

roots of polynomial equations with integer coefficients. These include not only all the rational

numbers, but also numbers like
√
2,

√
2 + √

2 and 3
√
5, that is, numbers expressible by radicals.

They also include numbers like the positive root of x5 − x + 1 = 0 which cannot be expressed
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by radicals. Irrational numbers that are not algebraic are called transcendental numbers. For a

long time it was not known whether any transcendental numbers existed. Then finally, in 1844,

Liouville exhibited an example of a transcendental number, similar to the one appearing in this

exercise.

5.8 L’Hopital’s Rule

In its simplest form this popular and useful rule is as follows. Let A be an open
interval, and f : A → R, g : A → R differentiable functions. Let c be a point in A,
and suppose that f (c) = g(c) = 0, but that g′(c) �= 0. Then we have

lim
x→c

f (x)

g(x)
= f ′(c)

g′(c)
.

To prove this we simply observe that for x �= c we have

f (x)

g(x)
=

f (x) − f (c)

x − c
g(x) − g(c)

x − c

and this tends to f ′(c)/g′(c) as x tends to c, by the definition of derivative and the
rule for the limit of a quotient.

L’Hopital’s rule can be framed in a more general form that vastly increases its
usefulness. We no longer assume that the derivatives f ′(c) and g′(c) exist. Instead
we assume that f ′(x)/g′(x) tends to a limit as x tends to c. It is even more useful
to take the limit as one-sided; after all, a two-sided limit is just a pair of one-sided
limits that happen to be equal.

Proposition 5.13 (L’Hopital’s rule for 0/0) Let f : ]a, b[ → R, g : ]a, b[ → R be
differentiable functions such that g′(x) �= 0 for all x in the interval of definition.
Suppose that

lim
x→a+ f (x) = 0, lim

x→a+ g(x) = 0, lim
x→a+

f ′(x)
g′(x)

= t.

Then

lim
x→a+

f (x)

g(x)
= t.

A similar conclusion holds for the limit limx→b− f (x)/g(x).
The rule also holds if a = −∞ or b = ∞; or if t = ∞ or t = −∞.
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Proof Consider first the right-hand limit at a in the case that a is not −∞ and t is a
finite number.

Let ε > 0. There exists δ > 0, such that

∣∣∣∣ f
′(x)

g′(x)
− t

∣∣∣∣ < ε

for all x that satisfy a < x < a + δ. Let x and y satisfy a < y < x < a + δ. By
Cauchy’s form of the mean value theorem there exists z between x and y, such that

f (x) − f (y)

g(x) − g(y)
= f ′(z)

g′(z)
.

We deduce that for all such x and y we have

∣∣∣∣ f (x) − f (y)

g(x) − g(y)
− t

∣∣∣∣ < ε.

Let now y → a+. We have that

lim
y→a+

f (x) − f (y)

g(x) − g(y)
= f (x)

g(x)
,

so that the inequality ∣∣∣∣ f (x)g(x)
− t

∣∣∣∣ ≤ ε

holds for all x that satisfya < x < a + δ. This proves thefirst assertion ofL’Hopital’s
rule.

Next consider the case when b = ∞ and t is a finite number. We will determine
limx→∞ f (x)/g(x), the assumptions being that limx→∞ f (x) and limx→∞ g(x) are
both 0, and limx→∞ f ′(x)/g′(x) = t .

Let ε > 0. There exists K , such that

∣∣∣∣ f
′(x)

g′(x)
− t

∣∣∣∣ < ε

for all x > K . Let K < x < y. There exists z between x and y, such that

f (x) − f (y)

g(x) − g(y)
= f ′(z)

g′(z)
,

and therefore, for all such x and y we have

∣∣∣∣ f (x) − f (y)

g(x) − g(y)
− t

∣∣∣∣ < ε.
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Now let y → ∞. We find that

∣∣∣∣ f (x)g(x)
− t

∣∣∣∣ ≤ ε

for all x that satisfy x > K , thus proving the rule in this case.
Consider the case when t = ∞, and a is a finite number. We shall determine

limx→a+ f (x)/g(x), the assumptions being that limx→a+ f (x) and limx→a+ g(x)
are both 0, and limx→a+ f ′(x)/g′(x) = ∞.

Let K be a real number and choose δ > 0, such that

f ′(x)
g′(x)

> K

for all x that satisfy a < x < a + δ. For all x and y that satisfy a < y < x < a + δ

we obtain
f (x) − f (y)

g(x) − g(y)
> K .

Let y → a+. We deduce that f (x)/g(x) ≥ K for all x that satisfy a < x < a + δ.
The reader should write out the proofs for all the remaining cases; each is similar

to one of the cases treated above. The common feature is the use of Cauchy’s mean
value theorem. �

5.8.1 Using L’Hopital’s Rule

There are two important things to bear inmindwhen one usesL’Hopital’s rule. Firstly,
f (x) and g(x) should both tend to 0 at the point where the limit of f (x)/g(x) is
sought. This is why we sometimes say that the rule resolves the indeterminate form
0/0. Failure to observe this can lead to mistakes.

Secondly, we must observe the premise that f ′(x)/g′(x) has a limit. Thus it is not
strictly correct, having first observed that f (x) and g(x) both tend to 0, to write that

lim
x→a+

f (x)

g(x)
= lim

x→a+
f ′(x)
g′(x)

,

before ascertaining that the limit on the right actually exists. For example there are
cases when the limit on the left-hand side exists, but the limit on the right does not.
Even so, we often write this, in the spirit of “let’s wait and see,” especially when the
rule is used iteratively (more on this later) and it rarely leads to mistakes.
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5.8.2 Is There an Error in the Proof?

The claim that

lim
y→a+

f (x) − f (y)

g(x) − g(y)
= f (x)

g(x)

appears in the proof of L’Hopital’s rule. For this to be correct we must know that
g(x) �= 0. We are assuming that limx→a+ g(x) = 0 and there appears to be a danger
that g(x) might be 0 for some values of x near to a, maybe even for infinitely many
values.

In factwe are safe on this score.One assumptionwas that g′(x) �= 0 fora < x < b.
Therefore given ε > 0we can (referring to the proof) find δ > 0 having the properties
stated in the proof, but also such that g(x) �= 0 for all x that satisfy a < x < a + δ.
This is because the equation g(x) = 0 can have at most one solution in the open
interval ]a, b[, since otherwise, by Rolle’s theorem, g′ would have a zero in ]a, b[.

The assumption that g′(x) � = 0 for all x in its domain of definition is unnecessar-
ily strong for applying L’Hopital’s rule to calculate limx→a+ f (x)/g(x). Obviously
it is enough that there should exist h > 0, such that g′(x) �= 0 for a < x < a + h.

5.8.3 Geometric Interpretation of L’Hopital’s Rule

The two functions f and g define a parametric curve in the (x, y)-plane by letting
x = g(t), y = f (t) for a < t < b. The assumptions that limt→a+ f (t) = limt→a+
g(t) = 0 have the geometrical interpretation that the initial point of the curve is the
coordinate origin O = (0, 0). Let P(t) denote the point

(
g(t), f (t)

)
in the plane,

that is, the point on the curve with parameter t . Associated with the point P(t) on the
curve we can construct two lines. Firstly, the tangent at the point P(t), corresponding
to parameter t . Careful! The curvemight cross itself. Secondly the chord joining P(t)
to the origin O .

L’Hopital’s rule says the following: if the slope of the tangent has a limit as t
tends to a (from the right), then the slope of the chord joining P(t) to O has the same
limit. The result is also valid if the limit is infinite; both chord and tangent then tend
to a vertical position. The geometric interpretation of L’Hopital’s rule is illustrated
in Fig. 5.5.

5.8.4 Iterative Use of L’Hopital’s Rule: Taylor Polynomials
Again

If wewish to find the limit limx→a+ f (x)/g(x) using L’Hopital’s rule we are directed
to find the limit limx→a+ f ′(x)/g′(x). This limit, too, may be found by L’Hopital’s
rule if it happens that limx→a+ f ′(x) = limx→a+ g′(x) = 0; then we are directed
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Fig. 5.5 L’Hopital’s rule at
a glance

to the limit limx→a+ f ′′(x)/g′′(x). Again it could happen that limx→a+ f ′′(x) =
limx→a+ g′′(x) = 0. As long as numerator and denominator have the limit 0 we may
differentiate them, until a limit is found that we can easily compute.

The iterative use of L’Hopital’s rule gives an easy proof of the approximation prop-
erty of Taylor polynomials stated in Sect. 5.7 under the heading “Higher derivatives
and Taylor polynomials”.

Proposition 5.14 Let f : A → R, where A is an open interval, and let c ∈ A.
Assume that the derivatives f ′(c), ..., f (m)(c) all exist and define

E(h) = f (c + h) −
(
f (c) + 1

1! f
′(c)h + 1

2! f
′′(c)h2 + · · · + 1

m! f
(m)(c)hm

)

for all h such that |h| is sufficiently small. Then

lim
h→0

E(h)

hm
= 0.

Note that h can be positive or negative, but we require that c + h is in the interval A.
That is why we want |h| to be “sufficiently small”.

The assumption that f has derivatives at c up to orderm means that f is (m − 1)-
times differentiable in some open interval containing c, and f (m−1) is differentiable
at c.

Proof of the Proposition Differentiating E(h) repeatedly with respect to h we
obtain, for j = 1, ...,m − 1 and for all h such that |h| is sufficiently small,

E ( j)(h) = f ( j)(c + h) −
(
f ( j)(c) + 1

1! f
( j+1)(c)h + · · · + 1

(m − j)! f
(m)(c)hm− j

)
,

from which we see that E ( j)(0) = 0 for j = 1, ...,m − 1. We also have (convenient
to use Leibniz’s notation here)
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d j

dh j
hm = m!

(m − j)!h
m− j for j = 0, 1, 2, ...,m,

so that
d j

dh j
hm

∣∣∣
h=0

= 0 for j = 0, 1, 2, ...,m − 1.

Using L’Hopital’s rule iteratively (with a “wait and see” approach to the existence
of the limits) now gives

lim
h→0

E(h)

hm
= lim

h→0

E (m−1)(h)

m!h = 1

m! limh→0

f (m−1)(c + h) − f (m−1)(c) − f (m)(c)h

h
,

and this is 0 by definition of derivative (and it also tells us that E (m)(0) = 0). This
completes the proof. �

Let us write x − c for h in the formula for E(h). We obtain the conclusion

lim
x→c

f (x) − Pm(x, c)

(x − c)m
= 0.

This describes admirably how the approximation to f (x) by the Taylor polynomial
Pm(x, c) improves sharply as x approaches c. On the other hand there is no reason to
think that the approximation improves if we hold x fixed and increase m (assuming
we have the derivatives). This question is partly settled by Taylor’s theorem proper
in a later chapter.

5.8.5 Application to Maxima and Minima

If the derivative of f at c is zero, the examination of higher derivatives at c can
sometimes resolve the question as to whether c is a local maximum point or a local
minimum point.

Proposition 5.15 Let f : ]a, b[ → R and let a < c < b. Assume that f is (m − 1)-
times differentiable, that f ( j)(c) = 0 for j = 1, 2, ...m − 1, but that f (m)(c) exists
and is not 0. In addition to all this assume that m is an even number. The following
conclusions then hold:

(1) If f (m)(c) > 0 then c is a strict local minimum point.
(2) If f (m)(c) < 0 then c is a strict local maximum point.

Proof By Proposition 5.14 we have

f (c + h) − f (c) = 1

m! f
(m)(c)hm + E(h)
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where the error term E(h) satisfies

lim
h→0

E(h)

hm
= 0.

For h �= 0 we can write

f (c + h) − f (c)

hm
= 1

m! f
(m)(c) + E(h)

hm

and we know that f (m)(c) �= 0. Sincem is even wemust have hm > 0, both for h > 0
and for h < 0. We conclude that there exists δ > 0, such that f (c + h) − f (c) �= 0
and has the same sign as f (m)(c), for all h that satisfy 0 < |h| < δ. This is precisely
the sought-for conclusion. �

5.8.6 More on L’Hopital’s Rule: The ∞/∞ Version

Sometimes we consider L’Hopital’s rule as resolving the indeterminate form 0/0, an
expression that is really quite meaningless. Since we are indulging in meaningless-
ness we might suggest some other indeterminate forms, for example

∞
∞ , 0.∞, 00, ∞ − ∞.

These can often be resolved by some judicious manipulations combined with
L’Hopital’s rule. However there is a version of the rule directly applicable to ∞/∞
and, as we shall see, it turns out to be very useful.

Proposition 5.16 Let f : ]a, b[ → R, g : ]a, b[ → R be differentiable functions
such that g′(x) �= 0 for all x in its domain of definition. Assume that

lim
x→a+ g(x) = ∞, lim

x→a+
f ′(x)
g′(x)

= t.

Then

lim
x→a+

f (x)

g(x)
= t.

A similar conclusion holds for limx→b− f (x)/g(x).
The rule also holds if a = −∞ or b = ∞; or if t = ∞ or t = −∞.

Note that we made no assumption about limx→a+ f (x). This is not a mistake.

Proof of the Proposition We shall only consider the case when t and a are finite
numbers. The other cases are left to the reader to complete.

Let ε > 0. Since limx→a+ f ′(x)/g′(x) = t , there exists δ1 > 0, such that
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∣∣∣∣ f
′(z)

g′(z)
− t

∣∣∣∣ < ε

for all z that satisfy a < z < a + δ1.
Let a < x < y < a + δ1. It follows by Cauchy’s form of the mean value theorem,

that ∣∣∣∣ f (x) − f (y)

g(x) − g(y)
− t

∣∣∣∣ < ε,

which we rewrite in the form

t − ε <
f (x) − f (y)

g(x) − g(y)
< t + ε.

Now keep y fixed (if desired we could fix y as a + 1
2δ1, but the thing we do require

is that a < x < y < a + δ1). Since limx→a+ g(x) = ∞ we find that g(x) > 0 and
g(x) − g(y) > 0 when x is sufficiently close to a, for example for a < x < a + δ2,
and then we have, for a < x < y < δ1 and a < x < a + δ2, that

(
g(x) − g(y)

)
(t − ε) < f (x) − f (y) <

(
g(x) − g(y)

)
(t + ε).

Dividing by g(x) (which is positive) gives

(
1 − g(y)

g(x)

)
(t − ε) <

f (x) − f (y)

g(x)
<

(
1 − g(y)

g(x)

)
(t + ε),

and therefore

f (y)

g(x)
+

(
1 − g(y)

g(x)

)
(t − ε) <

f (x)

g(x)
<

f (y)

g(x)
+

(
1 − g(y)

g(x)

)
(t + ε).

As x → a+ the left-hand member of the inequalities tends to t − ε and the right-
hand member to t + ε (recall that we keep y constant). Hence there exists δ3 > 0,
such that the left-hand member is above t − 2ε and the right-hand member below
t + 2ε for all x that satisfy a < x < a + δ3. Let δ = min(δ2, δ3). If a < x < a + δ

we find

t − 2ε <
f (x)

g(x)
< t + 2ε.

This says that limx→a+ f (x)/g(x) = t and concludes the proof of the first claim.
The proofs of the remaining claims are left to the reader. �

The proof raises some interesting speculation about the meaning of “for each ε

there exists δ”. It is too simple to say that δ is supposed to be a function of ε. In the
above proof we first chose δ1, in a non-explicit fashion, from the set of all possible
numbers that would work for the limit limx→a+ f ′(x)/g′(x). Then y was chosen
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rather arbitrarily. A workable value was defined in an aside but that was not really
necessary. Finally we found a δ that worked.

Where desired and possible we can try to define the quantities we use by functions
(such as using the max function). But at times we have to say, as in effect we did
at the beginning of the above proof, “here is a set (of usable δ’s), known to be non-
empty; let us choose one”. Sometimes it is simply not very helpful to try to see δ as
an explicitly computable function of ε.

5.8.7 Exercises

1. Calculate the following limits:

(a) lim
x→1

x4 − x3 − x + 1

x4 − 3x3 + 2x2 + x − 1

(b) lim
x→0

√
1 + x − 1

3
√
1 + x − 1

(c) lim
x→∞

√
x2 + x − x .

2. Calculate the following limits. Use your school knowledge of the circular func-
tions sin x and cos x and their derivatives (or refer to Sect. 5.1, Exercise 2).

(a) lim
x→0

1

x
− 1

sin x

(b) lim
x→0

1

x2
− 1

x sin x

(c) lim
x→0

1

6x
+ 1

x3
− 1

x2 sin x
.

3. Exploiting only two properties of the exponential function:

lim
x→∞ ex = ∞ and

d

dx
ex = ex ,

show that for any natural number n we have limx→∞ ex/xn = ∞.
Note. The conclusion demonstrates the proverbial growth of the exponential function in a

graphic way; it overpowers any polynomial.

4. Let f be twice differentiable in an interval A, let a be a point in A and sup-
pose that f ′′(a) �= 0. Show that the tangent to the graph y = f (x) at the point
(a, f (a))does not cross the graph at (a, f (a)). Show, in addition, that there exists
δ > 0, such that the tangent and the graph have no common point in the interval
]a − δ, a + δ[, except at x = a.

5. Suppose the function f is differentiable in an interval A and let a ∈ A. Let λ

and μ be distinct numbers. Show that
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f ′(a) = lim
h→0

f (a + λh) − f (a + μh)

(λ − μ)h
.

Note.A case important for numerical differentiation is λ = 1,μ = −1. More general formulas

are known, approximating the first, and higher, derivatives. See the next exercises.

6. Suppose the function f is differentiable in an interval A and let a ∈ A. Show
that

f ′(a) = lim
h→0

− f (a + 2h) + 8 f (a + h) − 8 f (a − h) + f (a − 2h)

12h
.

7. Suppose the function f is twice differentiable in an interval A and let a ∈ A.
Show that

f ′′(a) = lim
h→0

f (a + h) − 2 f (a) + f (a − h)

h2
.

8. (a) Show that for all positive integers n

n∑
k=0

(−1)k
(
n

k

)
k j =

{
0, j = 0, 1, ..., n − 1
(−1)nn! j = n.

Hint. Expand (1 − x)n by the binomial rule. Repeatedly differentiate, but
with a twist.

(b) Suppose the function f is n times differentiable in an interval A and let
a ∈ A. Show that

f (n)(a) = lim
h→0

1

hn

n∑
k=0

(−1)k+n

(
n

k

)
f (a + kh).

9. We can define the left derivative of f at c, denoted by Dl f (c), and the right
derivative Dr f (c), in the obvious way:

Dl f (c) = lim
x→c−

f (x) − f (c)

x − c
, Dr f (c) = lim

x→c+
f (x) − f (c)

x − c

when these limits exist. Now suppose that f is differentiable in an interval
]c − α, c[, continuous in ]c − α, c] and the limit limx→c− f ′(x) exists and is a
finite number A. Show that Dl f (c) exists and equals A. A similar result holds
for the right derivative.
Show that the result also holds if A = ∞ or −∞, if we allow a derivative to be
infinite (the definition should be obvious).

10. The previous exercise has an interesting consequence. Suppose that f is differ-
entiable everywhere in an open interval A. Show that discontinuities of f ′, if
there are any, are never jump discontinuities.
Note. f ′ can be discontinuous. An example was exhibited in Sect. 5.5, Exercise 4.
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11. Show that if f is differentiable everywhere in an open interval A, and if f ′ is
increasing, then f ′ is continuous.

12. Find an example of differentiable functions f and g with domain R, such that
f (0) = g(0) = 0, limx→0 f (x)/g(x) exists, but limx→0 f ′(x)/g′(x) does not
exist.

13. Suppose that f has n derivatives at a point c (meaning that f has n − 1derivatives
in an interval A containing c, and that f (n−1) is differentiable at c) and that
f (c) = 0. One expects that the function f (x)/(x − c), extended to be f ′(c) at
c, should have (at least) n − 1 derivatives at c. This is quite tricky with such
minimalistic premises. One can prove the following proposition, in which, for
simplicity we take c = 0:

Suppose that f has n derivatives at 0. Suppose further that f (0) = 0. Let
g(x) = f (x)/x for x �= 0, and g(0) = f ′(0).Then g has n − 1 derivatives
at 0 and g(k)(0) = f (k+1)(0)/(k + 1) for k = 0, 1, ..., n − 1.

You can deduce the proposition from the following two steps:

(a) Show that

g(k)(x) = f (k)(x)

x
− kg(k−1)(x)

x
,

and
d

dx
(xkg(k−1)(x)) = xk−1 f (k)(x),

for x �= 0 and k = 0, 1, ..., n − 1. The condition f (0) = 0 is not needed for
this step.

(b) Show that

lim
x→0

g(k)(x) = 1

k + 1
f (k+1)(0)

for k = 0, 1, ..., n − 1.
Note. If f has continuous derivatives up to order n a much simpler proof can be given

by the fundamental theorem of calculus, a key result of integration theory. This is only a

slight strengthening of the premises. See Sect. 12.2, Exercise 4.

5.9 (�) Multiplicity

Let us assume that the function f has derivatives of all orders. Everything we are
going to say can be formulated for functions with finitely many derivatives, but
requires more circumlocution. Much of the material of this section will be developed
through exercises.

We say that a point c is a root of f (x) = 0 with multiplicity m, if f (k)(c) = 0
for k = 0, ...,m − 1 and f (m)(c) �= 0. As usual f (0) denotes f . We also speak of c
as an m-fold zero of f . A 1-fold zero is usually called a simple zero. A zero with
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multiplicity 2 or higher is called a multiple zero. When we talk of a zero of finite
multiplicity we mean one with multiplicity m for some positive natural number m.
When roots or zeros are counted according to multiplicity, it means that an m-fold
zero is accorded the number m; it is viewed as m zeros for the purpose of counting
them.

In general a point c of a set B of real numbers (not necessarily here an interval) is
called an isolated point of B if it is not a limit point of B. This is equivalent to saying
that there exists h > 0, such that c is the only point of B in the interval ]c − h, c + h[.

We now state the following facts. For simplicity we suppose that f is defined in
an open interval A.

(a) The point c is a zero with multiplicity m if and only if we can write f (x) =
(x − c)mg(x), where g is a function on the same domain as f , g has derivatives
of all orders and g(c) �= 0.

(b) A zero of finite multiplicity is an isolated point of the set of zeros (or, in short,
an isolated zero).

(c) The function f changes sign at a zero of multiplicity m if and only if m is odd.

5.9.1 Exercises

1. Prove claims (a), (b) and (c).
Hint. Section5.8, Exercise 13 could be useful.

2. Suppose that all zeros of f have finite multiplicity. Let a and b be points of A,
such that a < b and neither point is a zero. Show that f has at most finitely many
zeros in ]a, b[.
Hint. One can use the Bolzano–Weierstrass theorem.

3. In the previous exercise, if f (a) and f (b) have the same sign, show that the
number of zeros in ]a, b[, counted by multiplicity, is even. If f (a) and f (b) have
opposite signs, show that the number of zeros in ]a, b[, counted by multiplicity,
is odd.
Note. This extension to the intermediate value theorem, valid for functions with enough deriva-

tives and for which all zeros are known to have finite multiplicity, is very useful. It applies to

all polynomials, for example. More generally it applies to so-called analytic functions, studied

in complex analysis.

4. Let f be a polynomial with odd degree. Show that the number of real zeros of f ,
counted by multiplicity, is odd.

5. Suppose that f hasm zeros and g has n zeros in A, counted by multiplicity. Show
that f g has m + n zeros in A, counted by multiplicity.
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6. Suppose that f hasm zeros in A (an open interval, recall), counted bymultiplicity.
Show that f ′ has at least m − 1 zeros in A, again counted by multiplicity.

7. Show that the polynomial

Pn(x) = dn

dxn
(x2 − 1)n

has n distinct zeros in the interval ]−1, 1[, all simple.
8. Prove Descartes’ rule of signs. We consider a polynomial equation

anx
n + an−1x

n−1 + · · · + a0 = 0

with real coefficients.Without loss of generalitywe can assume thatan > 0.We let
σ denote the number of sign changes in the sequence (an, an−1, ..., a0) (omitting
any that are 0 for the purpose), and let r+ be the number of strictly positive roots,
counted by multiplicity. The rule of signs says: r+ ≤ σ and σ − r+ is even.
A proof might use the following steps:

(a) Show that the difference σ − r+ is even.
(b) Complete the proof by induction on the degree of f . The case of degree

1 is easy. Assuming that the rule of signs holds for polynomials of degree
less than or equal to n − 1, we let r ′+ be the number of positive roots of the
derivative f ′, and let σ ′ be the number of sign changes in the coefficients of
f ′. By the induction hypothesis, r ′+ ≤ σ ′. Deduce that r+ ≤ σ + 1 and use
(a) to get r+ ≤ σ .

5.9.2 Sturm’s Theorem

The intermediate value theorem can tell you that a continuous function has at least
one root in a given interval. Consideration of multiplicity can tell you the parity of
the total root-count. Sturm (1829) developed a method that can be used to compute
the actual number of real roots of a polynomial equation in an interval. It exploits
the Euclidean algorithm, which is used to find the highest common divisor of two
polynomials of one variable. We shall summarise the Euclidean algorithm here;
however, the reader unfamiliar with it should probably consult an algebra text.

Let f and g be polynomials such that deg(g) ≤ deg( f ). We can divide g into f ,
producing a quotient q with degree deg( f ) − deg(g), and a remainder r which, if not
zero, has degree strictly less than deg(g). This entails that f = gq + r , and either r
is zero or it is the unique polynomial, with degree less than deg(g), for which this
equation holds for some q. Putting it differently, r is the unique polynomial, with
degree less than deg(g), such that g divides f − r . Let us denote the remainder, when
f is divided by g, by rem( f, g).
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The Euclidean algorithm computes the greatest common divisor of f and g
in the following way. We set r0 = f and r1 = g and define recursively rk+2 =
rem(rk, rk+1), provided neither rk nor rk+1 is zero. The degrees of the polynomi-
als rk are strictly decreasing with increasing k (except that r0 and r1 could have the
same degree); so the process ends in a finite number of steps. This implies that there
is a least integer m such that rm+1 = 0. It is then not hard to see that rm is the highest
common divisor of f and g.

Sturm’s theoremcounts rootswithoutmultiplicity. It is best describedby supposing
that f and f ′ have highest common divisor 1. If this is not already the case we can
divide f by the highest common divisor of f and f ′. This does not change the roots
of f but converts all multiple roots into simple ones.

Given that the highest common factor of f and f ′ is 1, we apply the Euclidean
algorithm with a slight twist. We set p0 = f , p1 = f ′ and then, recursively, pk+2 =
−rem(pk, pk+1). After a finite number of steps the sequence terminates, with pm+1 =
0, say. As it is easy to see that pk is, up to sign, the same as rk , and as the highest
common factor of f and f ′ is 1, the polynomial pm must be a non-zero constant.

Now for each k we have
pk−1 = pkqk − pk+1

for a certain polynomial qk . It follows that for each j , the polynomials p j and p j+1

cannot have a common zero, for if they did, it would be a zero of every polynomial
pk , which is impossible since pm is a non-zero constant. Moreover, if for some x ,
and some k in the range 0 < k < m, we have pk(x) = 0, then clearly pk+1(x) and
pk−1(x) have opposite signs. These properties of the chain p0, p1, ..., pm are central
to the proof of the following result.

Proposition 5.17 (Sturm’s theorem) Suppose that a < b and neither a nor b is
a root of f (where f is assumed to have only simple roots). With p0, p1, ..., pm
defined as above, for each x we let σ(x) be the number of sign changes in the
sequence p0(x), p1(x), ..., pm(x) (ignoring zeros). Then the number of roots of f in
the interval ]a, b[ equals σ(a) − σ(b).

Exercise Prove Sturm’s theorem. You can use the following steps:

(a) Show that at a root of f the number σ(x) decreases by 1, (when the root is passed
with increasing x).

(b) Show that if k ≥ 1, then passing a root of pk , that is not also a root of f , does
not change σ(x).

(c) Deduce Sturm’s theorem from (a) and (b).

This result is so pretty that an illustrative example is called for.

Example Count and roughly locate the roots of the polynomial 4x4 − 16x3 +
11x2 − 16x + 7.

A calculation (done by hand) revealed the following.
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p0(x) = 4x4 − 16x3 + 11x2 − 16x + 7

p1(x) = 16x3 − 24x2 + 22x − 16

p2(x) = 13

2
x2 + 13

2
x − 3

p3(x) = −1214

13
x + 592

13

p4(x) is a negative constant (indicating that all roots are simple).

Tabulating the signs at x = 0, 1, 2, 3, 4 and ±∞ (that is, for x sufficiently high
or low to stabilise the signs) we find the following table of signs:

−∞ 0 1 2 3 4 +∞
p0 + + − − − + +
p1 − − − − + + +
p2 + − + + + + +
p3 + + − − − − −
p4 − − − − − − −

There is therefore exactly one root between 0 and 1, exactly one root between 3
and 4, and no subsequent positive root. There is no negative root. It is fascinating
to see the minuses drift upwards and vanish, like bubbles rising from a submerged
wreck.

By way of comparison, Descartes’ rule of signs (Exercise 8) indicates none, two
or four positive roots, and no negative roots. The intermediate value theorem (with
the supplement covered in Exercise 3) indicates (by the first row of the table) an
odd number of roots between 0 and 1, and an odd number of roots between 3 and
4, counted with multiplicity. This does not rule out three roots between 3 and 4, for
example; nor does it rule out two roots between 4 and +∞.

5.9.3 Exercises (cont’d)

9. Find the number of real roots of the equation

x5 − 20x + 1 = 0

along with their signs.
Hint. Use Descartes’ rule of signs (Exercise 8) and the intermediate value theo-
rem (Exercise 3).

10. Find the number of real roots of the equation
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5x4 − 10x2 + 2x + 1 = 0

in the given intervals:

(a) −∞ < x < −1
(b) −1 < x < 0
(c) 0 < x < 1
(d) 1 < x < ∞.

11. Find the number of positive roots and the number of negative roots of the equation

x4 + x3 − 2x − 3 = 0.

5.9.4 Pointers to Further Study

→ Theory of equations

5.10 Convex Functions

We first give a geometric definition of convex function based on the graph of the
function, viewed as a curve. The line segment joining two points on a curve is called
a chord, this being the standard usage in the case of a circle.

Definition Let A be an interval. A function f : A → R is said to be strictly convex,
if, for each pair of points a and b in the interval A, with a < b, the graph of f for
a < x < b lies strictly below the chord joining (a, f (a)) and (b, f (b)).

Plain convexity is a slightly, but significantly, weaker notion.

Definition Let A be an interval. A function f : A → R is said to be convex, if, for
each pair of points a and b in the interval A, with a < b, the graph of f between a
and b does not go above the chord joining (a, f (a)) and (b, f (b)).

Our focus is entirely on strict convexity.2 At the level of single-variable calculus
it is strict convexity that has all the interesting applications. In some calculus texts a
strictly convex function is called concave-up, a term that describes it admirably. Its
uses explored here (some of them in the exercises) include some interesting deduc-
tions about solutions of equations, minimisation problems, the Legendre transform,
inflection points and (in the next section) a sharp form of Jensen’s inequality. Last

2This focus produces a tiresome need to repeat the words “strict” and “strictly”. An alternative
would have been to use the term “convex” instead of “strictly convex” and in the few places where
convexity of the not necessarily strict kind ismentioned, to use “weakly convex”.There is a precedent
in some of the sources and it is consistent with the rule that the more useful version should have
the simpler name. But it is not consistent with multivariate calculus where the greater usefulness of
strict convexity compared to convexity is not so apparent.
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but not least, an understanding about where a function is strictly convex and where
strictly concave is a great aid to sketching its graph, still a useful mathematical skill.

Now we translate strict convexity into algebra. One way to write the equation of
the chord is to “proceed from the point (a, f (a))” thus

y =
(

f (b) − f (a)

b − a

)
(x − a) + f (a).

Using this we can write the condition that f is strictly convex as follows. For all a,
b and x in A such that a < x < b we require

f (x) <

(
f (b) − f (a)

b − a

)
(x − a) + f (a),

or equivalently
f (x) − f (a)

x − a
<

f (b) − f (a)

b − a
. (5.3)

This inequality asserts that the slope of the chord is an increasing function of its right
endpoint (just think of b as variable).

The inequality (5.3) is algebraically equivalent to each of two others; like it they
each compare the slope of two chords. They are

f (b) − f (a)

b − a
<

f (b) − f (x)

b − x
, (5.4)

which asserts that the slope of the chord is an increasing function of its left endpoint,
and

f (x) − f (a)

x − a
<

f (b) − f (x)

b − x
. (5.5)

It is a nice exercise for the reader to show that all three inequalities are algebraically
equivalent. Any one of them implies the other two. Geometrically this is obvious, as
the three quantities being compared are the slopes of three chords forming the sides
of a triangle whose vertices are the points (a, f (a)), (x, f (x)) and (b, f (b)) on the
curve y = f (x). A picture makes this rather obvious.

There is even a fourth version of the same inequality, also easy to obtain, that
rather obviously expresses the claim that the graph is below the chord, namely

f (x) <

(
b − x

b − a

)
f (a) +

(
x − a

b − a

)
f (b). (5.6)

Exercise Prove that the inequalities (5.3)–(5.6) are algebraically equivalent.

Putting this together we can set out a rather wordy necessary and sufficient condi-
tion for strict convexity of the function f ; that for every three points a, x and b in the
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interval of definition, such that a < x < b, at least one of the above four inequalities
is verified (and if one is true then all are true).

If, however, f is differentiable there is a much simpler criterion.

Proposition 5.18 A differentiable function f is strictly convex if and only if f ′ is
strictly increasing.

Proof Suppose that f is strictly convex and differentiable. Let a < b. It follows
from the inequalities that the quotient ( f (x) − f (a))/(x − a) is a strictly increas-
ing function of x for x > a, and the quotient ( f (b) − f (x))/(b − x) is a strictly
increasing function of x for x < b. Hence

f ′(a) = lim
x→a+

f (x) − f (a)

x − a
<

f (b) − f (a)

b − a
< lim

x→b−
f (b) − f (x)

b − x
= f ′(b)

giving f ′(a) < f ′(b).
Conversely suppose that f ′ is strictly increasing. Let a, x , b be in the interval of

definition of f and suppose that a < x < b. By the mean value theorem there are
points y between a and x , and z between x and b, such that

f (x) − f (a)

x − a
= f ′(y)

and
f (b) − f (x)

b − x
= f ′(z).

But f ′(y) < f ′(z) so we find

f (x) − f (a)

x − a
<

f (b) − f (x)

b − x
.

This is inequality (5.5) and shows that f is strictly convex. �

As an immediate consequence we have the most useful test for strict convexity;
it is based on calculus rather than geometry, but requires second derivatives.

Proposition 5.19 A sufficient condition for a twice differentiable function f to be
strictly convex is that f ′′(x) > 0 for all x in the interval of definition.

5.10.1 Tangent Lines and Convexity

Another useful conclusion, and a fifth necessary and sufficient, purely geometric
condition for strict convexity, but based on the assumption that the function is dif-
ferentiable, is the following.
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Fig. 5.6 Five views of strict convexity

Proposition 5.20 Let f be differentiable in the open interval A. A necessary and
sufficient condition for f to be strictly convex is that for every c in A, the tangent
line to the curve y = f (x) at the point (c, f (c)) lies wholly below the curve itself,
except that they both contain the point (c, f (c)).

Proof Suppose that f is strictly convex. We know that ( f (c) − f (x))/(c − x) is
a strictly increasing function of x for x < c; and that ( f (x) − f (c))/(x − c) is a
strictly increasing function of x for x > c. Hence if x < c we find

f (c) − f (x)

c − x
< lim

t→c−
f (c) − f (t)

c − t
= f ′(c)

which implies
f (x) > f (c) + f ′(c)(x − c)

and if c < x we find

f ′(c) = lim
t→c+

f (t) − f (c)

t − c
<

f (x) − f (c)

x − c

which implies
f (x) > f (c) + f ′(c)(x − c).

This shows that the condition is necessary.
The reader is invited to finish the proof by showing that the condition is sufficient

for strict convexity given that f is differentiable. �

The five geometrical conditions for strict convexity are illustrated in Fig. 5.6.
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5.10.2 Inflection Points

A function f such that − f is strictly convex is called strictly concave (in some
calculus texts it is called concave-down). Let f be differentiable in the interval A.
A point (a, f (a)) on the curve y = f (x) is called an inflection point of the curve
if there exists h > 0, such that f is strictly convex [respectively, strictly concave]
in the interval ]a − h, a[, and strictly concave [respectively, strictly convex] in the
interval ]a, a + h[.

In other words the function switches from strictly convex to strictly concave, or
from strictly concave to strictly convex, at the point a. We say loosely that f has an
inflection point at a. Inflection points are illustrated in Fig. 5.7.

For some reason the notion of inflection point is only applied to differentiable
functions; there has to be a tangent. Properly an inflection point is a property pos-
sessed by a plane curve and not just a graph; it is a point where the curvature changes
sign. The concept of curvature really belongs to the study of the differential geometry
of plane curves.

A necessary condition for an inflection point at a is that f ′ has either a local strict
maximum or a local strict minimum at a. This is not sufficient. Again if f is twice
differentiable it is necessary that f ′′(a) = 0, but still not sufficient. We have to force
f ′′ to change sign, to be strictly positive on one side of a and strictly negative on the
other.

A problem left to the exercises is to find a sufficient condition that f has an
inflection point at a that builds on higher derivatives of f at a alone.

We often want to sketch the graph of a given function. Nowadays there are many
good software packages that do this. A good sketch prepared without the help of a
computer should show roughlywhere the function is strictly convex andwhere strictly
concave. This means having some idea of where f ′′ is positive, where negative and
where the inflection points are that separate these regions.

Fig. 5.7 Inflection points of y = sin x
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5.10.3 Exercises

1. Let f be a strictly convex function defined in an open interval A and let c be a
point in A. Show that the limits

lim
t→c−

f (c) − f (t)

c − t
and lim

t→c+
f (t) − f (c)

t − c

both exist and that the first is less than or equal to the second. These limits are
the left and right derivatives, Dl f (c) and Dr f (c). Give an example to show that
they do not have to be equal.

2. Show that a strictly convex function, defined in an interval A, is continuous if A
is open, but that continuity may fail if A is not open.
Hint. One way is to use the previous exercise.

3. The function in Proposition 5.20 was assumed to be differentiable. Without
assuming differentiability it is possible to say something similar, and obtain a
sixth necessary and sufficient, purely geometric condition for strict convexity.
Prove the following:

A function f , defined in an open interval A, is strictly convex if and only if
it satisfies the following condition: for every c in A there exists a straight
line through the point (c, f (c)) that lies wholly below the graph of f ,
except that the line and graph both contain the point (c, f (c)).

4. Let f be a convex function and suppose that there exist points a < x < b, such
that the point (x, f (x)) lies on the chord joining (a, f (a)) and (b, f (b)). Show
that the whole of the chord lies on the graph of f . So the graph of a non-strictly
convex function differs from that of a strictly convex one by including some
straight line segments.
Hint.Consider how the inequalities (5.3)–(5.6) should bemodified for a function
that is convex but not necessarily strictly convex.

5. Let f be a strictly convex function on the interval [0,∞[ and suppose that
f (0) = 0. Show that f satisfies

f (a + b) > f (a) + f (b)

for all positive a and b.
6. Show that if f is a strictly convex function and a and b are constants, then the

function f (x) + ax + b is also strictly convex.
7. Suppose that a function f satisfies

f

(
a + b

2

)
<

1

2
f (a) + 1

2
f (b)

for all a and b in its interval of definition.
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(a) Show that
f
(
ta + (1 − t)b

)
< t f (a) + (1 − t) f (b)

for all a and b and for all dyadic fractions t in the interval 0 < t < 1; that
is, for all t of the form t = k/2n where n is a positive integer and k is an
integer in the range 1 ≤ k ≤ 2n − 1.

(b) Show that if f is continuous then f is strictly convex.
Hint. For item (a) use induction with respect to n. To get started figure
out how to handle the case t = 1

4 . For item (b) use the fact that every real
number in the interval [0, 1] can be approximated arbitrarily closely by
dyadic fractions, as is shown by the binary representation of real numbers,
analogous to the decimal representation but using 2 as a base instead of 10.
You will need to figure out why the inequality remains strict when t is an
arbitrary real number in the interval 0 < t < 1.

8. Show that a twice differentiable function is convex (of the not necessarily strict
kind) if and only if its second derivative is non-negative.
Note. This is a case where convexity is simpler than strict convexity. The counterpart of

Proposition 5.19 is a necessary and sufficient condition for convexity, whereas Proposition

5.19 is only a sufficient condition for strict convexity.

9. Let f be a strictly convex function. Show that a straight line intersects the graph
of f in at most two points. In other words, given constants a and b, the equation
f (x) = ax + b has at most two roots.

10. Let f be a strictly convex function defined in an interval A.

(a) Show that if f attains a minimum it does so at a unique point.
(b) Suppose that there exist distinct points a and b in A such that f (a) = f (b).

Show that f attains a minimum (which by (a) occurs at a unique point).
(c) Let c be an interior point of A (that is, c is not an endpoint). Show that

f attains a minimum at c if and only if Dl f (c) ≤ 0 and Dr f (c) ≥ 0 (see
Exercise 1).

(d) Suppose that c is an interior point of A and that f is differentiable at c. Show
that f attains a minimum at c if and only if f ′(c) = 0.

11. For the purposes of this exercise we shall call a line that cuts a curve y = f (x)
a secant line. A secant line meets the curve and crosses it; it contains points
(x1, y1) and (x2, y2), such that y1 < f (x1) and y2 > f (x2). Note that this is
slightly different from the common usage, which requires a secant to meet the
curve in two points, an assumption not made here.
Let f be strictly convex in the whole real line. Show that a secant line that is
parallel to some chord of the curve y = f (x) cuts the curve in two points.

12. Let f be strictly convex and defined in the whole real line. Suppose that f attains
a minimum. Prove that limx→−∞ f (x) = limx→∞ f (x) = ∞.

13. Let f be defined in an open interval A and let c be a point in A. Show that
the following is sufficient for f to have an inflection point at c: the derivatives
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f ( j)(c) exist up to j = m, f ( j)(c) = 0 for j = 2, ...,m − 1, f (m)(c) �= 0 and m
is odd.

In the following series of exercises we study the Legendre transform. This is an
important construction associated with convex functions that has many applications,
both theoretical and practical.

14. Let f be strictly convex and differentiable in the open interval A. Let c = inf f ′
and d = sup f ′. For each p in the interval B :=]c, d[ let gp be the function
gp(x) = px − f (x).

(a) Show that gp attains a maximum value at a unique point xp in A.
(b) For each p in B we let

f∗(p) = pxp − f (xp).

The function f∗ is called the Legendre transform of f . Now suppose that f
is twice differentiable and that f ′′ > 0. Show that

( f∗)′ = ( f ′)−1

and deduce that f∗ is strictly convex.
(c) What if the second derivative does not exist? Can you prove the formula in

item (b) fromfirst principles, that is, by arguing from the difference quotient?
(d) Show that f∗∗ = f . Algebraically, the operation of passing from f to f∗ is

an involution. The same operation applied to f∗ brings one back to f .

15. Prove Young’s inequality. Given that f is strictly convex and differentiable, then

px ≤ f∗(p) + f (x)

for all x in A and p in B (where A and B are the domains of f and f∗ respectively).
16. Show that the power function xa , with a > 1, is strictly convex in its interval of

definition 0 < x < ∞. It therefore has a Legendre transform. Obtain nice results
by computing the Legendre transform of xa/a and writing down the result of
Young’s inequality.

17. Try the previous exercise for the function ex . You will need some knowledge of
the exponential function and natural logarithm.

18. Let f be a strictly convex function defined in an open interval A. Let B be the
set of all real numbers p, such that the graph y = f (x) has a chord with slope p.

(a) Show that B is an interval.
(b) Show that for each p in B the function px − f (x) attains a maximum at a

unique point xp in A.
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This shows how the Legendre transform can be defined for strictly convex func-
tions that are not everywhere differentiable. We set f∗(p) = pxp − f (xp) for
each p in B. However, f∗, though convex, may fail to be strictly convex.

(c) Let f be defined by

f (x) =
{

(x − 1)2 if x < 0
(x + 1)2 if x ≥ 0.

Show that f is strictly convex and compute f∗. Show that the latter is convex
but not strictly convex.

5.11 (�) Jensen’s Inequality

Jensen claimed that his inequality implied almost all known inequalities as special
cases.3 If this was only partially true it would make it a remarkable object of study.
Actually Jensen’s inequality is a natural enough extension of the fourth inequality
characterising strictly convex functions, inequality (5.6).

Proposition 5.21 Let f be a strictly convex function with domain A, let x j , ( j =
1, 2, ..., n), be points in A, and let t j , ( j = 1, 2, ..., n), be positive numbers such that∑n

j=1 t j = 1. Then

f

( n∑
j=1

t j x j

)
≤

n∑
j=1

t j f (x j ).

Equality holds if and only if the numbers x j are all equal.

Proof We set c = ∑n
j=1 t j x j . Because the numbers t j are positive and sum to 1, it

follows that c belongs to the interval A. By the result of Sect. 5.10, Exercise 3, there
exists a line through (c, f (c)), that lies wholly below the graph y = f (x), except
that both the line and the graph contain the point (c, f (c)). Let the line have the
equation y = f (c) + m(x − c). Then for all x �= c we have

f (c) + m(x − c) < f (x)

whilst for x = c we have equality. We now find

n∑
j=1

t j
(
f (c) + m(x j − c)

) ≤
n∑
j=1

t j f (x j )

3This is stated in the book “A Course of Analysis” by E. G. Phillips, originally published in 1930.
I don’t know what the author’s source was; maybe he knew Jensen.
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with equality if and only if all the numbers x j are equal to c. Since c = ∑n
j=1 t j x j

and
∑n

j=1 t j = 1 we obtain

f (c) ≤
n∑
j=1

t j f (x j ),

which is Jensen’s inequality. �

Jensen’s inequality is also valid if f is merely convex. An analogue of Sect. 5.10,
Exercise 3 holds for (not necessarily strictly) convex functions. In this case a line
y = m(x − c) + f (c) can be found that nowhere goes above the graph y = f (x), so
that Jensen’s inequality results just the same. However, we no longer get the striking
conclusion that equality holds if and only if all the points x j are equal.

One of the spectacular applications of Jensen’s inequality is to proving a gen-
eral form of the inequality of arithmetic and geometric means. This is achieved by
applying it to the exponential function ax . We have not, so far, rigorously defined
this function, but we can summarise what we need as follows:

(a) For a given positive base a, the function ax extends to real x the power function
ax with rational x as already defined.

(b) We have the laws of exponents:

as+t = asat and (as)t = ast .

(c) The function ax has an inverse function (a being here a fixed base), the logarithm
with base a denoted by loga ; that is, the equation y = ax inverts to x = loga y.

(d) The function ax is convex.

Let x j , ( j = 1, 2, ..., n), be real numbers and let t j , ( j = 1, 2, ..., n), be positive
numbers such that

∑n
j=1 t j = 1. Applying Jensen’s inequality to the exponential

function 2x we obtain

2
∑n

j=1 t j x j ≤
n∑
j=1

t j2
x j

with equality only if all the numbers x j are equal. By the laws of exponents this gives

n∏
j=1

(2x j )t j ≤
n∑
j=1

t j2
x j .

Now let a j , ( j = 1, 2, ..., n), be positive real numbers and let x j = log2 a j .We obtain
the generalised inequality of arithmetic and geometric means

n∏
j=1

a
t j
j ≤

n∑
j=1

t j a j ,
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as well as the additional fact that equality only holds when the numbers a j are all
equal.

5.11.1 Exercises

1. Give a proof of Jensen’s inequality by induction on the number n. Note that the
case n = 2 is inequality (5.6). Some care is required to include the conclusion
that asserts when equality occurs.

2. The case n = 2 of the generalised inequality of the arithmetic and geometric
means,

asbt ≤ sa + bt

is sometimes called Young’s inequality. The assumptions are that a, b, s and t are
all positive, and that s + t = 1. Equality holds if and only if a = b.

(a) Use Young’s inequality to prove Hölder’s inequality:

n∑
k=1

akbk ≤
( n∑

k=1

a p
k

)1/p( n∑
k=1

bqk

)1/q

where p > 1, q > 1, (1/p) + (1/q) = 1, and for each k we have ak ≥ 0,
bk ≥ 0.
Hint. Do it first with the assumption

∑n
k=1 a

p
k = ∑n

k=1 b
q
k = 1. Apply

Young’s inequality with a = a p
k , b = bqk , s = 1/p, t = 1/q and sum over k.

Then remove the assumption.
(b) Show that equality holds in Hölder’s inequality if and only if the following

is satisfied: either bk = 0 for all k, or else there exists t such that ak = tbk
for all k.

5.11.2 Pointers to Further Study

→ Convexity theory
→ Inequalities

5.12 (�) How Fast Do Iterations Converge?

Given the iteration an = f (an−1), and knowing that limn→∞ an = t , where t is a root
of f (x) = x , we wish to study the speed of convergence. Can we usefully specify
how fast an tends to t? This could be of great importance in deciding whether a
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method of approximating the solution to an equation is practical. For example, can
we say approximately how many additional correct decimal digits are obtained in
passing from an to an+1?

The answer depends on studying the derivatives of f . The derivative f ′(t) at the
root being approximated plays a key role. We will assume some knowledge of the
common logarithm, and oncewe useTaylor’s theorem.More preciselywe use the fact
that for a twice-differentiable function f the error f (x) − f (a) − f ′(a)(x − a), in
using the first-degree Taylor polynomial as an approximation to f (x), is
1
2 f

′′(ξ)(x − a)2, for some ξ between a and x (this special case was the content
of Sect. 5.7, Exercise 2).

In the following we do not assume in advance that the iteration can be continued
indefinitely. We assume throughout that f is defined in an open interval A.

Proposition 5.22 Suppose that f is differentiable in A and that f ′ is continuous.
Let t be a point in A, such that f (t) = t , and assume that | f ′(t)| < 1. Then there
exists δ > 0, such that if |a0 − t | < δ the iteration can be continued indefinitely and
an converges to t .

Proof Since | f ′(t)| < 1 we can choose k so that | f ′(t)| < k < 1. Since f ′ is contin-
uous, there exists δ > 0, such that the interval ]t − δ, t + δ[ is included in the domain
of definition of f , and such that | f ′(x)| < k for all x that satisfy |x − t | < δ.

Suppose that |a0 − t | < δ. Then the iteration cannot quit the interval ]t − δ, t + δ[,
and so continues indefinitely. For suppose that we have reached an without quitting
the interval. By the mean value theorem we have

an+1 − t = f (an) − t = f (an) − f (t) = f ′(ξn)(an − t) (5.7)

for some number ξn between an and t . Hence

|an+1 − t | < k|an − t |

and since k < 1, the number an+1 is in the interval ]t − δ, t + δ[. The iteration con-
tinues indefinitely and satisfies |an − t | < kn|a0 − t |, and so an converges to t . �

The estimate |an − t | < kn|a0 − t | tells us something more that has practical
importance but is not very precise. Each iteration step contributes at worst roughly
the same number of additional correct decimal digits, the number obtained in each
step being approximately − log10 k.

Proposition 5.23 Suppose that f is differentiable in A and that f ′ is continuous.
Let t be a point in A, such that f (t) = t , and assume that | f ′(t)| > 1. Then, however
we choose a0, provided a0 �= t the iteration cannot converge to t.

Proof There exists k > 1 and ε > 0, such that | f ′(x)| > k for all x that satisfy
t − ε < x < t + ε. If an ∈ ]t − ε, t + ε[ then |an+1 − t | > k|an − t | according to
(5.7). After a finite number of steps a j will quit the interval ]t − ε, t + ε[ for some
j > n. It is impossible that N can exist, such that for all n ≥ N we have |an − t | < ε.

�
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We can obtain much faster convergence under some conditions. Suppose that f
is twice differentiable in A and that the second derivative f ′′ is bounded in absolute
value by a constant M . Let t be a point in A, such that f (t) = t , and assume that
f ′(t) = 0. We can find δ > 0, such that | f ′(x)| < 1

2 for all x that satisfy t − δ <

x < t + δ. If |a0 − t | < δ then (by the arguments above) |an − t | is decreasing and
an converges to t .

The condition that f ′(t) = 0 has a profound effect on the speed of convergence.
Let us suppose that an converges to t (as it will do if the initial point is near enough
to t as we have just seen), but we do not assume that |a0 − t | < δ. Since an tends to t
the inequality |an − t | < δ will certainly hold once n is large enough. Furthermore,
since f ′(t) = 0, it follows by Taylor’s theorem (see Sect. 5.7, Exercise 2), that if
|an − t | < δ then

an+1 − t = f (an) − f (t) = 1

2
f ′′(ξn)(an − t)2,

where the number ξn lies between an and t . Then we find

|an+1 − t | <
M

2
|an − t |2, (5.8)

which we modify to read

M

2
|an+1 − t | <

(
M

2
|an − t |

)2

.

Since an tends to t , there exists n0, such that (M/2)|an0 − t | < 1. Set

ρ = M

2
|an0 − t |.

For n ≥ n0 we have

M

2

∣∣an − t
∣∣ <

(
M

2

∣∣an0 − t
∣∣)2n−n0

= ρ2n−n0
.

To see what this means we consider the common logarithm of the error, namely
log10 |an − t |. We have

− log10 |an − t | > log10

(
M

2

)
+ 2n−n0(− log10 ρ).

As before we interpret the left-hand side as the approximate number of correct
decimal digits. The number on the right-hand side approximately doubles at each
iteration step (ifM is bigwewould have to add that nmust be sufficiently large).With
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some simplification we could say that the number of correct digits approximately
doubles at each step, at the very least.

The type of convergence described here, where the error at step n + 1 is bounded
by a constant times the square of the error at step n, as indicated in the inequality (5.8),
is called quadratic convergence. It is clearly very desirable if an efficient computation
method is sought. In the next sections we shall study some examples of this.

5.12.1 The Babylonian Method

A striking example of quadratic convergence occurs with the Babylonian method for
calculating the square root

√
c. This is the iteration

an+1 = 1

2

(
an + c

an

)
.

Set

f (x) = 1

2

(
x + c

x

)
, (x > 0).

Then f (
√
c) = √

c and f ′(
√
c) = 0. The conclusions of the last section tell us that

an → √
c if a0 is sufficiently near to

√
c, and the number of correct digits approxi-

mately doubles with each step.
Let us try this on

√
3. Take a0 = 1. The results are, up to a5:

2, 1.75, 1.73214285714286, 1.73205081001473, 1.73205080756888

The number of correct digits for a2, a3, a4 and a5 is successively

1, 3, 7, 13

roughly as predicted.
For which a0 can we assert that an tends to

√
c? This question is usually tricky.

But in this case we can start at any positive a0 whatever. The inequality of arithmetic
and geometric means gives

1

2

(
x + c

x

)
≥ √

c

(equality only if x = √
c). If a0 �= √

c then an >
√
c for n ≥ 1. And then an is

decreasing for n ≥ 1 since

an − 1

2

(
an + c

an

)
= a2n − c

2an
> 0.
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The limit limn→∞ an therefore exists and equals the unique positive root of f (x) = x ,
which is

√
c.

5.12.2 Newton’s Method

The Babylonian method for calculating
√
c is an instance of Newton’s method of

approximation, more precisely it results from using Newton’s method to solve the
equation x2 − c = 0.

Let g be twice differentiable. Newton’s method computes a solution of the equa-
tion g(x) = 0 by means of the iteration

an+1 = an − g(an)

g′(an)
.

Let

f (x) = x − g(x)

g′(x)
.

If t is a solution of g(x) = 0 and g′(t) �= 0, then f (t) = t and f ′(t) = 0.We therefore
have quadratic convergence to t if a1 is sufficiently near to t . How near it needs to
be to ensure convergence is a sensitive and tricky question, and the reader should
consult works on numerical analysis for further discussion.

Exercise Verify the claim that if f (x) = x − (g(x)/g′(x)) and f (t) = t then
f ′(t) = 0.

Newton’s method is based on the plausible notion that if f (a1) is small whilst
f ′(a1) is big, so that the graph is steep at

(
a1, f (a1)

)
and close to the x-axis, then the

graph must cross the x-axis at a point near to a1. Moreover, a better approximation
to the crossing point is found by following the tangent at

(
a1, f (a1)

)
until it crosses

the x-axis. Just what “small” and “big” mean in this context has to be made precise.
Sharp turning of the graph to defeat the crossing of the x-axis is prevented by having
a bound on the second derivative. This is illustrated in Fig. 5.8. Thus intuitively, the
success of Newton’s method beginning at a point a1 depends on a delicate interplay
between f (a1), f ′(a1) and a local bound on f ′′(x).

Nevertheless, in cases where f ′ and f ′′ do not change sign a relatively simple
analysis is possible. This is presented in Exercise 4.

As an example, the equation x3 − 2x + 2 = 0 has exactly one real root and it lies
between −2 and −1. The reader should check that Newton’s method gives rise to
the iteration

an+1 = 2a3n − 2

3a2n − 2
.
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Fig. 5.8 Newton’s method
for the root t of f (x) = 0

If a1 = 0 then an jumps repeatedly back and forth between 0 and 1. If, on the other
hand, a1 = −2 then an appears to converge fast, as a2 = −1.8, a3 = −1.769948,
a4 = −1.769292 and it looks as if we have already reached 3 correct decimal digits.

5.12.3 Exercises

1. Let (an)∞n=1 be the sequence of Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, ... and so on.
It is known that an+1/an → φ, where φ is the Golden Ratio. The convergence is
quite slow. Apply the heuristic analysis that followed Proposition 5.22 to estimate
roughly how many further correct decimal digits of φ are obtained with each
increment of n. Check your estimate against reality by calculating some values
of an+1/an .
Hint. Consult Sect. 3.3, Exercise 5.

2. Verify the claim that the Babylonian method results from applying Newton’s
method to the problem x2 − c = 0.

3. Apply Newton’s method to obtain an iteration scheme for the cube root, or, more
generally, for the r th root of c.

4. There is a simple situationwherewe can always infer thatNewton approximations
converge to a solution. Suppose that f is defined in an open interval A and that
f ′ and f ′′ are both strictly positive in A. Suppose further that there is a root t of
f (x) = 0 in A.

(a) Show that t is the only root of f (x) = 0 in A and that f changes sign at t .
(b) Let a1 be a point in A lying above t . Show that

t < a1 − f (a1)

f ′(a1)
< a1.

(c) Deduce that Newton approximations, beginning at a1, form a decreasing
sequence that converges to t .
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(d) Suppose thata1 < t .What can you say aboutNewton approximations begin-
ning at a1?
Note. Obviously there are variants of this conclusion in which f ′ and f ′′ are both nega-
tive, or have opposite signs. What they have in common is that neither f ′ nor f ′′ changes
sign in A. It is left to the reader to explore them.

5. Calculate all the real roots of the equation x5 − 20x + 1 = 0 to three correct
decimal places.

6. The calculation of Gauss’s arithmetic-geometric mean (Sect. 3.4, Exercise 10)
provides another nice example of the fast convergence found in Newton approx-
imations. Let a and b be distinct positive numbers and define sequences by

a0 = a , b0 = b

an+1 = 1
2 (an + bn) , bn+1 = √

anbn

for n = 0, 1, 2, .... The sequences satisfy bn < bn+1 < an+1 < an for n ≥ 1. The
limits limn→∞ an and limn→∞ bn are equal. Their common value is the arithmetic-
geometric mean of a and b, which we shall denote by M(a, b).

(a) Let cn = an/bn . Show that

cn+1 = 1

2

(√
cn + 1√

cn

)
.

(b) Deduce from item (a) that the convergence of cn to 1 is quadratic (that is,
the error |cn − 1| satisfies an inequality like (5.8)). In fact, show that, given
δ > 0, the inequality

|cn+1 − 1| <

(
1

8
+ δ

)
|cn − 1|2

holds for all sufficiently large n.
(c) Deduce that the convergence of an − bn to 0 is also quadratic.

Note. The fast convergence of an and bn to M(a, b) implied by the conclusion of item (c) has

applications to the computation of so-called elliptic integrals. See the exercises in Sect. 11.2.

7. Let A be a closed interval, which may be unbounded or even all of R. Let the
function f : A → A satisfy the following condition: there exists K , such that
0 < K < 1 and | f (s) − f (t)| ≤ K |s − t | for all s and t in A. Prove that there
exists a unique x in A, such that f (x) = x .
Hint. Let a0 be any point whatsoever in A and define the iteration an+1 = f (an),
n = 0, 1, 2, 3, .... Show that for all natural numbers n and p we have
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|an+p − an| ≤ |a1 − a0|
n+p−1∑
j=n

K j

and apply Cauchy’s principle to show that an converges. Argue that the limit x is
in A, that f (x) = x and that this equation can have only one solution in A. Note
how crucial it is that f maps A into itself and observe carefully why A must be
a closed interval.

8. Let f : R → R. Suppose that f is differentiable and that there exists K > 0, such
that K < 1 and | f ′(t)| < K for all t . Show that there exists a unique x , such that
f (x) = x .

9. Find an example of a function f : R → R, such that | f (a) − f (b)| < |a − b| for
all a and b, but the equation f (x) = x has no solution.

5.12.4 Pointers to Further Study

→ Dynamical systems
→ Numerical analysis



Chapter 6
Integrals and Integration

Any segment of a section of a right angled cone [i.e. a parabola]
is four-thirds of the triangle which has the same base and equal
height

Archimedes. The method of mechanical theorems

6.1 Two Unlike Problems

Problem A. To find an antiderivative for a given function.
If f ′(x) = F(x), then we call the function f an antiderivative for F . Now

d

dx
xn = nxn−1

for each integern. This tells us that xn+1/(n + 1) is an antiderivative for xn in the cases
n = 0, 1,±2,±3, .... But what can be an antiderivative for x−1? It makes no sense
to put n = −1 in this formula. This question greatly exercised the mathematicians
who invented calculus in the seventeenth century.

We can ask the more general question: which functions have an antiderivative?
Our problem is to solve the simplest of all differential equations: given the function
F to find a function y(x), such that

dy

dx
= F(x).

Problem B. To calculate the area of a plane figure bounded by a curve.
Historically this problemwas called quadrature, as assigning an area to a plane figure
meant that a square with the same area was determined. We will not give a general
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Fig. 6.1 Archimedes’
parabolic segment

definition of area; that is the subject of measure theory. Nevertheless this will not
stop us from discussing it, any more than it stopped the mathematicians of antiquity.

Archimedes calculated the area of a circle and the area of a parabolic segment
(the figure bounded by a parabola and one of its chords). He gave the formula πr2

for the circle and showed that 223/71 < π < 22/7. His greatest achievement in the
computation of area was the parabolic segment, stating that its area was 4/3 times
the area of a certain inscribed triangle (with base the given chord and top vertex
at the point on the parabola where the tangent was parallel to the chord). To reach
this conclusion he had to invent a method, the method of exhaustion, that in its use
of an infinite sequence of approximations from below resembles modern integration
theories.He also had to compute the sumof the geometric series

∑∞
n=0 1/4

n (Fig. 6.1).
Fast forward to the fifteenth century and we find Kepler considering the volume of

a wine barrel. This is a solid of revolution and the calculation of its volume depends
on calculating the area of a plane figure.

Only with the invention of calculus was a method proposed that could be used to
calculate the areas of general plane figures, starting with the area under the graph
of a function. In the first place we consider the area between the graph of a positive
function f and the x-axis, cut off by two vertical lines x = a and x = b (Fig. 6.2).
This leads to the definition of the Riemann integral or the Darboux integral; two
different approaches that turn out to be equivalent. We shall call it the Riemann–
Darboux integral, although in defining it we shall take Darboux’s approach.

We therefore proceed to Problem B and only later show how it leads to a solution
to Problem A.

6.2 Defining the Riemann–Darboux Integral

Let f : [a, b] → R be a bounded function. Its domain is a bounded and closed
interval. We do not assume that f is continuous. This is an advantage because it
is necessary for practical applications to be able to integrate some discontinuous
functions. But it is essential for the following considerations to make sense that f
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Fig. 6.2 Problem B.
Calculate the area of a plane
figure

should be bounded. This, and the requirement that the domain is a bounded and
closed interval, are defects of the Riemann integral that were successfully removed
by the introduction of the Lebesgue integral in the early twentieth century.

We do not assume that f is positive. However, in the case that f (x) > 0 for all x ,
the integral, when successfully defined, will give an acceptable notion for the area
bounded by the lines x = a, y = 0, x = b and the graph y = f (x).

Definition A partition P of the interval [a, b] is a finite sequence (t j )mj=0 (not nec-
essarily uniformly spaced), such that

a = t0 < t1 < t2 < · · · < tm = b.

The intervals [t j , t j+1] are called the subintervals of the partition.

For a given partition (t0, t1, t2, ..., tm) we set

m j = inf[t j ,t j+1]
f, Mj = sup

[t j ,t j+1]
f, j = 0, 1, ...m − 1

and define the lower sum L( f, P) and the upper sum U ( f, P) by

L( f, P) =
m−1∑

j=0

m j (t j+1 − t j ), U ( f, P) =
m−1∑

j=0

Mj (t j+1 − t j ).

It is clear that L( f, P) ≤ U ( f, P), since m j ≤ Mj for each j .

Definition A partition P ′ is said to be finer than the partition P if every point of P
is also a point of P ′.

In the next three propositions we assume that f is a bounded function on the
interval [a, b].
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Proposition 6.1 Let P and P ′ be partitions of [a, b]. If P ′ is finer than P then

L( f, P) ≤ L( f, P ′) ≤ U ( f, P ′) ≤ U ( f, P).

Proof Consider how L( f, P) changes if an additional point r is included in the
partition. Suppose that t j < r < t j+1. The only change in L( f, P) that arises is due
to the replacement of the term m j (t j+1 − t j ) by the sum of two terms

m ′
j (r − t j ) + m ′′

j (t j+1 − r),

where m ′
j = inf [t j ,r ] f and m ′′

j = inf [r,t j+1] f . But m ′
j ≥ m j and m ′′

j ≥ m j (since the
new infima are taken over smaller sets), so that

m ′
j (r − t j ) + m ′′

j (t j+1 − r) ≥ m j (t j+1 − t j ),

and therefore L( f, P) ≤ L( f, P ′). The other inequality is proved by a similar argu-
ment. �

Proposition 6.2 Let P1 and P2 be partitions of [a, b]. Then

L( f, P1) ≤ U ( f, P2).

Proof Create a new partition P3 by uniting the points in P1 and P2 into one sequence.
Then P3 is finer than P1 and also finer than P2. This implies that

L( f, P1) ≤ L( f, P3) ≤ U ( f, P3) ≤ U ( f, P2),

so that L( f, P1) ≤ U ( f, P2) as required. �

Consider next all numbers L( f, P), that is, all lower sums, as P ranges over
all possible partitions. These form a set (we could define it by specification for
example). This set is moreover bounded above; for example, if we fix a partition P1,
then L( f, P) ≤ U ( f, P1) for every partition P . Similarly the set of all upper sums
U ( f, P) is bounded below. We therefore define the lower and upper integrals

∫

f := sup
P

L( f, P),

∫

f := inf
P
U ( f, P)

as the supremum of the lower sums and the infimum of the upper sums respectively,
taken over all possible partitions.

If f is a positive function and we wish to assign an area to the region between
the graph y = f (x) and the x-axis, bounded by the lines x = a and x = b, then it
seems clear that whatever this area might be, it should lie between the lower and
upper integrals.
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Proposition 6.3
∫

f ≤
∫

f

Proof Let P1 and P2 be partitions of [a, b]. Then L( f, P1) ≤ U ( f, P2). Taking the
supremum over all partitions P1, we obtain

∫

f ≤ U ( f, P2).

Taking next the infimum over all partitions P2, we obtain
∫
f ≤ ∫

f as required. �

Nowwe can define theDarboux integral. It has to be said that the process leading to
this definition is remarkably short. As with the treatment of some previous concepts,
such as limit or derivative, the definition singles out a class of functions, here called
integrable, and for each integrable function defines a number called its integral.

Definition Let the function f be bounded on the interval [a, b]. If the upper and
lower integrals of f are equal, we say that f is integrable (on the interval [a, b]). If f
is integrable, the common value of its upper and lower integrals is called the integral
of f (on the interval [a, b]). It is commonly denoted by one of the following:

∫

f,
∫

[a,b]
f,

∫ b

a
f or

∫ b

a
f (x) dx .

6.2.1 Thoughts on the Definition

The concept of integral has a reputation for being hard to define. The definition we
have just given for the Riemann–Darboux integral is actually quite short and some
of its complexities may be concealed.

First of all the role of the completeness axiom comes out clearly in the repeated
use of supremum and infimum. The supremum of the set of lower sums (defining the
lower integral) is analogous to the supremum of a function. It is not though a function
that assigns a real number to each real number in its domain, for the domain here
is not a set of real numbers, but the set of partitions. The notation L( f, P) reflects
this and emphasises the dependence on P (whilst f remains fixed throughout the
discussion).

It appears that the integral is essentially a more complex concept than the deriva-
tive. Previously the only sets we encountered were sets of real numbers, mainly
intervals, or sets of natural numbers, and one could quite happily define the deriva-
tive without using more complex sets. When it comes to the integral, we have to
embrace the set of all partitions of an interval. A partition is a sequence of real num-
bers with certain constraints; so the set of all partitions is a set of sequences of real
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numbers. This is a higher level of complexity than a set of real numbers. It seems
that every approach to the integral involves complexity at this level.

Another approach to the integral is possible in which we approximate f from both
above and below by step functions. We will then encounter sets of step functions.

Definition A function g : [a, b] → R is called a step function if there exists a parti-
tion (t0, t1, t2, ..., tm) of [a, b], and numbers (c0, c1, c2, ..., cm−1), such that g(x) = c j
for t j < x < t j+1, j = 0, 1, 2, ...,m − 1. In other words g is constant on each open
interval ]t j , t j+1[.

The area under the graph of a positive step function ought by rights to be∑m−1
j=0 c j (t j+1 − t j ). This suggests that we first define the integral for the step func-

tion g, whether positive or not, as

S(g) =
m−1∑

j=0

c j (t j+1 − t j ).

For a function f , supposed bounded on [a, b], we can define the set of lower
approximations as the set of all numbers S(g) as g ranges through step functions
such that g ≤ f (it is here that a set of step functions is needed). This set is not empty
thanks to the boundedness of f . Similarly the set of upper approximations is the set
of all numbers S(g) as g ranges through step functions such that g ≥ f .

So far neither supremum nor infimum has been used. Next, we define the lower
integral as the supremum of the set of all lower approximations and the upper integral
as the infimum of the set of all upper approximations. Finally, the function is called
integrable when the lower and upper integrals coincide.

The idea of approximating a function from above and below by simpler functions
for which the integral has an obvious definition is common to many approaches to
defining integrals. In particular it recurs in the definition of the Lebesgue integral,
one of the greatest achievements of analysis in the twentieth century, to which the
Riemann–Darboux integral is but a halfway house, and many of its faults are thereby
alleviated.

Exercise Prove that the integral defined using approximation by step functions is
the same as the Riemann–Darboux integral.

6.3 First Results on Integrability

The definition of the Riemann–Darboux integral raises some questions:

(a) What functions are integrable? More precisely, what conditions can we impose
on f (in addition to its being bounded) that suffice for f to be integrable?

(b) Continuous functions on the interval [a, b] are necessarily bounded. Are they
integrable?
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(c) Are step functions integrable? If so, and if f is a step function, is
∫

f = S( f )
(as defined in the last section)?

(d) If f is integrable can we find a practical way to calculate the integral? It is clearly
impractical to compute the supremum over all lower sums.

We shall devote a considerable effort and a large part of this text to answering these
questions.

One step is used repeatedly in the proofs and it is useful to set it out in advance.
Let ε > 0. Since the lower integral is the supremum of the lower sums L( f, P) over
all partitions P , and the upper integral is the infimum of all upper sumsU ( f, P) over
all partitions P , there exists a partition P1, such that

L( f, P1) >

∫

f − ε,

and another partition P2, such that

U ( f, P2) <

∫

f + ε.

Now construct a partition P by uniting the points of P1 and P2. Then P is simul-
taneously finer than both P1 and P2. Hence in passing from P1 and P2 to P , the
lower sum cannot decrease and the upper sum cannot increase. Therefore the above
inequalities hold also for P in place of P1 and P2.

The convenience is that both inequalities hold for the same partition. We can even
do the same for a finite set of functions. For example, for two functions f and g, and
a given ε, we can find a single partition P , such that the inequalities hold for both f
and g.

6.3.1 Riemann’s Condition

The condition introduced here is basic for proving that given functions are integrable.

Proposition 6.4 The function f is integrable if and only if the following condition
(which we shall call Riemann’s condition1) is satisfied: for each ε > 0 there exists a
partition P, such that

U ( f, P) − L( f, P) < ε.

Proof Assume that f is integrable. Then
∫
f = ∫

f . Choose a partition P , such that

1The name “Riemann’s condition” appears in the book “Mathematical Analysis” by T. Apostol. I
do not know of any other author who names it after Riemann. It is, however, convenient to have a
name for it.
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U ( f, P) <

∫

f + ε

2
and L( f, P) >

∫

f − ε

2
.

It follows that

U ( f, P) − L( f, P) <

∫

f + ε

2
−

∫

f + ε

2
= ε.

Conversely, assume that Riemann’s condition is satisfied. Let ε > 0. Choose a
partition P , such that U ( f, P) − L( f, P) < ε. Now we have

L( f, P) ≤
∫

f ≤
∫

f ≤ U ( f, P)

so that
∫
f − ∫

f < ε. But this holds for all ε > 0. We conclude that
∫
f = ∫

f . �

The great strength of Riemann’s condition is that we only have to find a single
partition that satisfies U ( f, P) − L( f, P) < ε. At this point it is useful to note that

U ( f, P) − L( f, P) =
m−1∑

j=0

� j ( f )(t j+1 − t j )

where � j ( f ) denotes the oscillation of f on the interval [t j , t j+1], that is, the dif-
ference between the supremum and the infimum (see Sect. 4.5). We recall (Sect. 4.5
Exercise4) that the oscillation of f on the interval [c1, c2] is the same as the quantity

sup
c1≤x,y≤c2

| f (x) − f (y)|.

The supremum here is taken over all pairs of points, x and y, in the interval [c1, c2].
This formula is very useful for comparing the oscillation of two functions, espe-
cially when it is required to deduce the integrability of one of them from the known
integrability of the other, as we shall see.

6.3.2 Integrability of Continuous Functions and Monotonic
Functions

We begin to answer the question as to which functions are integrable. We shall
show that, loosely paraphrased, continuous functions and monotonic functions are
integrable.

Proposition 6.5 Let f : [a, b] → R be continuous. Then f is integrable.
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Fig. 6.3 Picture of the
proof, adapted from
Newton’s Principia

Proof Let ε > 0. We use the small oscillation theorem (Proposition4.14; now is
the time to read it). There exists a partition P , such that Mj − m j < ε for each
subinterval of the partition. But then

U ( f, P) − L( f, P) =
m−1∑

j=0

(Mj − m j )(t j+1 − t j ) <

m−1∑

j=0

ε(t j+1 − t j ) = ε(b − a)

and Riemann’s condition is satisfied. �
Newton’s pictorial proof of the integrability of monotonic functions is illustrated

in Fig. 6.3.

Proposition 6.6 Let f : [a, b] → R be monotonic. Then f is integrable.

Proof Assume for example that f is increasing (though not necessarily strictly). If
f (a) = f (b) then f is constant and obviously integrable; see the next section. So
we may suppose that f (a) < f (b).

Let ε > 0. Construct a partition P = (t0, t1, ..., tm), such that

t j+1 − t j <
ε

f (b) − f (a)

for j = 0, 1, 2, ...,m. Since f is increasing we havem j = f (t j ) and Mj = f (t j+1),
and we verify Riemann’s condition by the calculation

U ( f, P) − L( f, P) =
m−1∑

j=0

(Mj − m j )(t j+1 − t j )

=
m−1∑

j=0

( f (t j+1) − f (t j ))(t j+1 − t j )

≤ ε

f (b) − f (a)

m−1∑

j=0

( f (t j+1) − f (t j ))

≤ ε

f (b) − f (a)
( f (b) − f (a)) = ε. �
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6.3.3 Two Simple Integrals Computed

In this short section we shall compute our first integrals. The two results are not very
impressive, and the treatment of the first function may seem tortuous, but a wait and
see attitude is required. They will be used to find the integrals of step functions in
Sect. 6.4.

Function A. Let f : [a, b] → R where f (x) = 0 for a < x < b but f (a) and f (b)
are not necessarily 0. Then f is integrable and

∫
f = 0.

For each ε > 0 we consider the partition Pε = (a, a + ε, b − ε, b). If f (a) and
f (b) are positive, then, for all ε, we have

U ( f, Pε) = ε( f (a) + f (b)).

If f (a) > 0 ≥ f (b), then, for all ε, we have

U ( f, Pε) = ε f (a).

If f (b) > 0 ≥ f (a), then, for all ε, we have

U ( f, Pε) = ε f (b).

Finally, if neither f (a) nor f (b) is positive, then, for all ε, we have

U ( f, Pε) = 0.

From these facts it is clear that

∫

f = inf
P
U ( f, P) ≤ inf

ε>0
U ( f, Pε) = 0.

That is,
∫
f ≤ 0. Similar considerations apply to L( f, P) and show that

∫
f ≥ 0.

Hence
∫
f = ∫

f = 0 and sowe have
∫

f = 0. The argument is illustrated in Fig. 6.4.

Fig. 6.4 An upper sum for
function A
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Function B. Let g : [a, b] → R be the constant C . Then
∫
g = C(b − a).

Now U (g, P) = L(g, P) = C(b − a) for every partition and therefore g is inte-
grable with

∫
g = C(b − a).

6.4 Basic Integration Rules

The rules proved in this section enable us to build new integrable functions from the
old ones. Loosely described, the sum and product of integrable functions are inte-
grable. Moreover integration is a linear operation in the space of functions integrable
on a given interval.

In the preamble to rules and propositions, we shall often write that the functions
are bounded before assuming that they are integrable. Though logically unnecessary,
it could be useful to emphasise that Riemann–Darboux integration applies only to
bounded functions.

Proposition 6.7 (Sum of functions) Let f : [a, b] → R and g : [a, b] → R be
bounded functions and assume that they are both integrable. Then f + g is inte-
grable and ∫

( f + g) =
∫

f +
∫

g.

Proof Let P = (t0, t1, ..., tm) be a partition of [a, b]. Set

m j = inf[t j ,t j+1]
( f + g), m ′

j = inf[t j ,t j+1]
f, m ′′

j = inf[t j ,t j+1]
g,

with similar definitions for Mj , M ′
j , M

′′
j using suprema instead of infima.

For x in [t j , t j+1]we have f (x) + g(x) ≤ M ′
j + M ′′

j , so that we find Mj ≤ M ′
j +

M ′′
j . Similarly m j ≥ m ′

j + m ′′
j . These give the inequalities

U ( f + g, P) ≤ U ( f, P) +U (g, P), L( f + g, P) ≥ L( f, P) + L(g, P).

Let ε > 0. There exists a partition P (see the discussion in Sect. 6.3 on this point),
such that

U ( f, P) <

∫

f + ε, U (g, P) <

∫

g + ε

L( f, P) >

∫

f − ε, L(g, P) >

∫

g − ε.

We obtain

U ( f + g, P) − L( f + g, P) ≤ U ( f, P) − L( f, P) +U (g, P) − L(g, P) < 4ε.

This shows that Riemann’s condition holds for f + g. In addition we have
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∫

f +
∫

g − 2ε < L( f, P) + L(g, P) ≤ L( f + g, P)

≤
∫

( f + g) ≤ U ( f + g, P) ≤ U ( f, P) +U (g, P) <

∫

f +
∫

g + 2ε

so that the inequality

∫

f +
∫

g − 2ε <

∫

( f + g) <

∫

f +
∫

g + 2ε

holds for all ε > 0. We conclude that
∫
( f + g) = ∫

f + ∫
g. �

Proposition 6.8 (Multiplication by scalars) Let f : [a, b] → R be bounded and
integrable. Let α be a real number. Then the function α f is integrable on [a, b] and

∫

α f = α

∫

f.

Proof For an arbitrary set B we have the equalities

sup
B

(α f ) = α sup
B

f, inf
B

(α f ) = α inf
B

f (α > 0) (6.1)

and
sup
B

(α f ) = α inf
B

f, inf
B

(α f ) = α sup
B

f (α < 0). (6.2)

Hence
U (α f, P) = αU ( f, P), L(α f, P) = αL( f, P) (α > 0)

and
U (α f, P) = αL( f, P), L(α f, P) = αU ( f, P) (α < 0).

In the case α > 0 we therefore have

sup
P

L(α f, P) = α sup
P

L( f, P) = α

∫

f = α inf
P
U ( f, P) = inf

P
U (α f, P).

The extreme terms are therefore equal. Hence each is the same as
∫

α f and at the
same time α

∫
f .

In the case α < 0 we have

sup
P

L(α f, P) = α inf
P
U ( f, P) = α

∫

f = α sup
P

L( f, P) = inf
P
U (α f, P)

with the same conclusion. �

Exercise Prove the formulas (6.1) and (6.2) in the proof of Proposition6.8.
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Proposition 6.9 (Join of intervals) Let f : [a, b] → R be bounded and let a < c
< b. If f is integrable on [a, c] and also on [c, b] then f is integrable on [a, b] and

∫

[a,b]
f =

∫

[a,c]
f +

∫

[c,b]
f.

Conversely if f is integrable on [a, b], then f is also integrable on [a, c] and on
[c, b] and the same equation holds.

Proof Consider the first assertion. Let f be integrable both on [a, c] and on [c, b].
Denote by f1 the restriction of f to [a, c] and by f2 the restriction of f to [c, b].

Let ε > 0. Choose partitions P1 on [a, c] and P2 on [c, b], such that

U ( f1, P1) − ε <

∫

[a,c]
f < L( f1, P1) + ε

and

U ( f2, P2) − ε <

∫

[c,b]
f < L( f2, P2) + ε.

Next construct a partition P on [a, b] by uniting P1 and P2. It is clear that

L( f, P) = L( f1, P1) + L( f2, P2)

and
U ( f, P) = U ( f1, P1) +U ( f2, P2).

But then we get

U ( f, P) − 2ε <

∫

[a,c]
f +

∫

[c,b]
f < L( f, P) + 2ε.

This gives U ( f, P) − L( f, P) < 4ε and Riemann’s condition is satisfied for f on
[a, b]. This allows us to expand the last inequalities to

∫

[a,c]
f +

∫

[c,b]
f − 2ε < L( f, P) ≤

∫

[a,b]
f ≤ U ( f, P) <

∫

[a,c]
f +

∫

[c,b]
f + 2ε

which are valid for all ε > 0. The first claim of the proposition now follows.
For the second assertion we must show that f1 and f2 are integrable given that

f is integrable. Let ε > 0. We consider a partition P of [a, b], which contains the
point c and satisfies U ( f, P) − L( f, P) < ε. From P we make in an obvious way
partitions P1 of [a, c] and P2 of [c, b] which satisfyU ( f1, P1) − L( f1, P1) < ε and
U ( f2, P2) − L( f2, P2) < ε. �
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6.4.1 Integration of Step Functions

Let f : [a, b] → R be a step function. There is a partition (t0, t1, t2, ..., tm) of
[a, b], and numbers (c0, c1, c2, ..., cm−1), such that f (x) = c j for t j < x < t j+1,
j = 0, 1, 2, ...,m − 1.

Consider the restriction of f to the interval [t j , t j+1]. This is a constant c j , plus
a function that is 0 in the open interval ]t j , t j+1[, though not necessarily 0 at its
endpoints.

We conclude, by Proposition6.9 and the two simple integrals calculated in
Sect. 6.3, that f is integrable on each subinterval of the partition, and hence also
on [a, b], and moreover

∫ b

a
f =

m−1∑

j=0

∫ t j+1

t j

f =
m−1∑

j=0

c j (t j+1 − t j ).

The Riemann–Darboux integral gives the “right answer” for the integral of a step
function. Note that the values taken by f at the points of the partition do not influence
the outcome.

6.4.2 The Integral from a to b

Up to now the integral has been defined over the set [a, b]. A new twist introduces
integrals over directed intervals; the integral from a to b, or the integral with lower
limit a and upper limit b. The terminology is not supposed to imply that a < b;
indeed, we could have b < a or a = b. The use of the term “limit” is customary
here.

Definition Let A be a closed and bounded interval and f : A → R a bounded func-
tion that is integrable on A. Let a and b be points in A. We define

∫ b

a
f =

∫

[a,b]
f if a < b,

∫ b

a
f = −

∫

[b,a]
f if a > b,

and ∫ b

a
f = 0 if a = b.

Proposition 6.10 Let a, b and c be points of A in any order. Then
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∫ c

a
f =

∫ b

a
f +

∫ c

b
f.

Proof One can consider all six possibilities for the ordering of a, b and c and use
Proposition6.9 on the join of intervals. It all works out and the reader is invited to
check it. �

6.4.3 Leibniz’s Notation for Integrals

Leibniz denoted the integral
∫ b
a f by

∫ b
a f (x) dx . We often use this notation; it

has many advantages comparable to the advantages of using Leibniz’s notation for
derivatives.

As an example we can write

∫ π

0

√
sin x dx

to denote
∫ π

0 f where f is the function f (x) = √
sin x . This could then be read as

The integral of the square root of the sine of x with respect to x from 0 to π .

But I am sure most English-speaking mathematicians read it according to the fol-
lowing phonetics:

The integral of the square root of sine ex dee ex from nought [zero in US] to pie.

In differential geometry expressions like f (x) dx can be precisely defined and
are called differential forms. It is differential forms that are integrated, rather than
functions. But that is a whole new topic beyond fundamental analysis. In this text the
expression “dx” has no independent meaning, other than indicating how the integral
should be understood. Consider for example the two integrals

∫ 1

0

√
x2 + a4 dx,

∫ 1

0

√
x2 + a4 da.

Here, two unlike functions are to be integrated. In the first place f (x) = √
x2 + a4

where a is a constant; in the second place g(a) = √
x2 + a4 where x is a constant.

6.4.4 Useful Estimates

The reader who has studied vector spaces may recognise that the two integration
rules, Propositions6.7 and 6.8, assert that the set of all functions integrable on the
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interval [a, b] constitute a vector space over the fieldR and that the integral is a linear
functional.

Now functions also possess an ordering, where f ≤ g means that f (x) ≤ g(x)
for all x in the common domain. We shall see that integration is not only linear,
respecting addition and scalar multiplication, but it is a positive linear functional, by
which we mean that it respects the ordering.

Proposition 6.11 Let f : [a, b] → R be bounded and integrable, and assume that
f (x) ≥ 0 for all x ∈ [a, b]. Then

∫ b

a
f ≥ 0.

Proof It is obvious that L( f, P) ≥ 0 for every partition P . Hence also
∫ b
a f ≥ 0.

�
Proposition 6.12 Let f : [a, b] → R, g : [a, b] → R be bounded and integrable,
and suppose that f (x) ≤ g(x) for all x ∈ [a, b]. Then

∫ b

a
f ≤

∫ b

a
g.

Proof Because
∫ b
a (g − f ) ≥ 0 and it equals

∫ b
a g − ∫ b

a f . �
Proposition 6.13 Let f : [a, b] → R be bounded and integrable. Suppose that

m ≤ f (x) ≤ M

for all x in [a, b]. Then

m(b − a) ≤
∫ b

a
f ≤ M(b − a) .

Proof Integrating the inequalities m ≤ f (x) ≤ M we find

m(b − a) ≤
∫ b

a
f ≤ M(b − a) .

�
The inequalities appearing in the next two propositions are immensely important.

Proposition 6.14 Let f : [a, b] → R be bounded and integrable. Then the function
| f | is also integrable and ∣

∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ ≤

∫ b

a
| f |.
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Proof The proof that | f | is integrable is an exercise (see below). Now f ≤ | f | and
− f ≤ | f | on [a, b], so that

∫ b

a
f ≤

∫ b

a
| f | and −

∫ b

a
f ≤

∫ b

a
| f |.

One of the left-hand sides is equal to
∣
∣
∣
∫ b
a f

∣
∣
∣. �

Proposition 6.15 (Mean value theorem for integrals) Let f : [a, b] → R be con-
tinuous and let g : [a, b] → R be bounded, integrable and non-negative. Then there
exists ξ in [a, b], such that ∫ b

a
f g = f (ξ)

∫ b

a
g.

Proof Let M = max[a,b] f and m = min[a,b] f . Then, since g(x) ≥ 0, we have

mg(x) ≤ f (x)g(x) ≤ Mg(x)

for all x , and hence

m
∫ b

a
g =

∫ b

a
mg ≤

∫ b

a
f g ≤

∫ b

a
Mg = M

∫ b

a
g.

The number
∫ b
a f g lies between the minimum and the maximum of f (x)

∫ b
a g on

[a, b]. Since f is continuous, we can apply the intermediate value theorem and
conclude that there exists ξ in the interval [a, b], such that

∫ b

a
f g = f (ξ)

∫ b

a
g.

�

6.4.5 Exercises

1. Show that if f and g are bounded functions, both integrable on the interval [a, b],
then so is f g.
Hint. First show that the square of an integrable function is integrable. Then
use the identity 4 f g = ( f + g)2 − ( f − g)2. To show that f 2 is integrable,
given that f is bounded and integrable, you may want to compare the oscillation
�[c1,c2]( f 2) with �[c1,c2]( f ).

2. In the mean value theorem for integrals (Proposition6.15) it was assumed that
the function g was non-negative. Obviously the same result holds if it is assumed
instead that g is non-positive. Show, however, by means of an example, that the
conclusion may not hold if g takes both positive and negative values.
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3. Let f be bounded on [a, b]. Show that for any subinterval [c1, c2] of [a, b] we
have

�[c1,c2](| f |) ≤ �[c1,c2]( f ).

Deduce that if f is integrable then so is | f |.
4. Suppose that f is integrable on the interval [a, b] and that there exists α > 0

such that f (x) > α for all x in [a, b]. Show that
√

f is integrable on [a, b].
Hint. This is similar to the cases | f | and f 2. One can compare the oscillation
of

√
f on an interval with that of f . Try using the identity

√
x − √

y = x − y√
x + √

y
.

See also Exercise12 below.
5. Suppose that f is bounded and integrable on the interval [a, b]. Suppose that

g is obtained from f by changing the values of f at a finite number of points.
Show that g is integrable and that

∫
g = ∫

f .
6. Suppose that f is bounded on [a, b], and continuous except at a finite number

of points. Show that f is integrable.
Hint. By using the join of intervals one may assume that f is continuous except
at a.

7. Suppose that f is bounded on [a, b] and for each h > 0 it is integrable on
[a + h, b]. Show that f is integrable on [a, b].

8. Let f be defined on all of R. For each real number c, we define the translated
function fc by fc(x) = f (x − c). Suppose that f is integrable on all bounded
intervals. Show that ∫ b

a
f =

∫ b+c

a+c
fc

for all a and b.
9. Let f be integrable on the interval [−L , L] and define

F(x) =
∫ x

0
f, (−L < x < L).

Show that if f is an even function then F is an odd function, whereas if f
is an odd function then F is an even function. This results in the often useful
observation that ∫ L

−L
f = 0

if f is an odd function.
10. (♦) Prove Hölder’s inequality for integrals. Let f and g be positive functions,

integrable on the interval [a, b]. Let p and q be positive numbers that satisfy
(1/p) + (1/q) = 1. Then
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∫ b

a
f g ≤

(∫ b

a
f p

)1/p (∫ b

a
gq

)1/q

.

Hint. See the hint for Hölder’s inequality for series, Sect. 5.11 Exercise2.
11. A function can be integrable though it is discontinuous at infinitely many points.

Consider the function f with domain [0, 1] defined as follows. Firstly we set
f (0) = f (1) = 0 (these values donot of coursematter). Secondly, for 0 < x < 1
and x irrational we set f (x) = 0. Thirdly for 0 < x < 1 and x rational we write
x = a/b, where a and b are positive integers with highest common factor 1, and
set f (x) = 1/b. Show that f is integrable.
Hint. Obviously L( f, P) = 0 for any partition P . The thing is to show that
U ( f, P) can be made as small as we like by choosing an appropriate partition.

12. The proofs that f 2 and | f | were integrable (Exercises1 and 3) depended on the
Lipschitz continuity (see Sect. 4.5 Exercise1 for the definition) of the functions
x2 and |x |, for the former function on a bounded interval [−M, M]. The same
was true of

√
f given that f > α > 0 for some constant α (Exercise4). This

procedure will not work to prove that
√

f is integrable given only that f is inte-
grable on [a, b] and f ≥ 0. The problem is that

√
x is not Lipschitz continuous

on the interval [0, M] (where M = sup f ). To prove integrability of
√

f , we
need a more powerful approach. We frame a general proposition and invite the
reader to prove it. It includes probably all cases of Riemann integrability that
are met with in practice.

Let f be integrable on [a, b], let M = sup | f | and let g be continuous on
[−M, M]. Then g ◦ f is integrable on [a, b].

The following steps are suggested:

(a) Show that for every ε > 0 there exists δ > 0, such that for every interval
[c1, c2] ⊂ [a, b], if �[c1,c2]( f ) < δ then �[c1,c2](g ◦ f ) < ε.
Hint. Use uniform continuity of g on [−M, M] (Proposition4.15).

(b) Let K = sup |g ◦ f |. Let ε > 0. Let δ correspond to ε as in part (a). Choose
a partition P , such that U ( f, P) − L( f, P) < εδ. Show that

U (g ◦ f, P) − L(g ◦ f, P) < (2K + b − a)ε

and deduce that g ◦ f is integrable.

13. Use the result of the previous exercise to show that if f is integrable and non-
negative, then

√
f is integrable.

14. After all the preceding exercises, it is useful to have an example of a bounded
function that is not integrable. An oft quoted one is the function f on the interval
[0, 1] defined by

f (x) =
{
0, if x is irrational
1, if x is rational.
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Show that
∫
f = 1 and

∫
f = 0.

Note. This is a standard example of a function that is not Riemann integrable, but is Lebesgue

integrable.

15. Let f and g be integrable on the interval [a, b]. Show that the functions
min( f, g) and max( f, g) are integrable. In particular f+ := max( f, 0) and
f− := max(− f, 0), called the positive and negative parts of f , are integrable.
Note. These functions are defined pointwise: min( f, g)(x) = min( f (x), g(x)).

16. Find an example of a function f such that | f | is integrable but f is not.

6.5 The Connection Between Integration and
Differentiation

In this section we show that in some sense integration and differentiation are oper-
ations inverse to each other. This finds its expression in the fundamental theorem of
calculus. It means that integration can be used to solve the problem of antiderivatives
(Problem A) and conversely antiderivatives can be used to compute integrals. More
generally integrals can be used to solve differential equations.

An important role is played by the inequality

∣
∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ ≤

∫ b

a
| f |,

which holds if a < b. One has to be careful; if a > b the correct inequality is

∣
∣
∣
∣

∫ b

a
f

∣
∣
∣
∣ ≤

∫ a

b
| f |.

Proposition 6.16 Let f : [a, b] → R be bounded and integrable. Let

F(x) =
∫ x

a
f

for all x in [a, b]. Then the following hold:

(1) F : [a, b] → R is continuous.
(2) If a < x0 < b and f is continuous at x0, then F is differentiable at x0 and

F ′(x0) = f (x0).

Proof (1) Let K = sup | f |. Suppose first that a ≤ x < b and consider
limh→0+ F(x + h). For h > 0 we have

F(x + h) − F(x) =
∫ x+h

a
f −

∫ x

a
f =

∫ x+h

x
f
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|F(x + h) − F(x)| =
∣
∣
∣
∣

∫ x+h

x
f

∣
∣
∣
∣ ≤

∫ x+h

x
| f | ≤ Kh.

We conclude that limh→0+ F(x + h) = F(x). Similarly limh→0− F(x + h) = F(x)
for a < x ≤ b. This shows that F is continuous.
(2) Let f be continuous at x0. We will show that both left and right limits of the
difference quotient of F at x0 are equal to f (x0).

Let ε > 0. There exists δ > 0, such that | f (x) − f (x0)| < εwhenever |x − x0| <

δ. For the right limit of the difference quotient, we let 0 < h < δ and consider

F(x0 + h) − F(x0)

h
− f (x0) = 1

h

∫ x0+h

x0

f (t) dt − f (x0)

= 1

h

∫ x0+h

x0

f (t) dt − 1

h

∫ x0+h

x0

f (x0) dt

= 1

h

∫ x0+h

x0

( f (t) − f (x0)) dt.

We know that | f (t) − f (x0)| < ε if x0 < t < x0 + h. Hence for 0 < h < δ we have

∣
∣
∣
∣
F(x0 + h) − F(x0)

h
− f (x0)

∣
∣
∣
∣ ≤ 1

h

∫ x0+h

x0

| f (t) − f (x0)| dt ≤ 1

h
εh = ε

and conclude that

lim
h→0+

F(x0 + h) − F(x0)

h
= f (x0).

Next we consider the left limit. Whatever the sign of h, we always have

F(x0 + h) − F(x0)

h
− f (x0) = 1

h

∫ x0+h

x0

( f (t) − f (x0)) dt ,

but for h < 0 the estimate of the integral is trickier since x0 + h < x0. For −δ <

h < 0 we have

∣
∣
∣
∣
1

h

∫ x0+h

x0

( f (t) − f (x0)) dt

∣
∣
∣
∣ =

∣
∣
∣
∣−

1

h

∫ x0

x0+h
( f (t) − f (x0)) dt

∣
∣
∣
∣ ≤ 1

|h|ε|h| = ε

and find that

lim
h→0−

F(x0 + h) − F(x0)

h
= f (x0).

Putting together the left and right limits we conclude that F ′(x0) = f (x0). �
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Here are some further, often used, rules. They are simple consequences of Propo-
sition6.16 and the definition of integral with limits. The reader should supply the
proofs.

(i) If G(x) = ∫ b
x f for all x in [a, b], x0 is in the open interval ]a, b[ and f is

continuous at x0, then G ′(x0) = − f (x0).
(ii) If a < c < b, G(x) = ∫ x

c f for all x in [a, b], x0 is in the open interval ]a, b[
and f is continuous at x0, then G ′(x0) = f (x0).

Proposition 6.17 (The fundamental theorem of calculus) Let f : [a, b] → R be
bounded in [a, b] and continuous in ]a, b[. Suppose that there exists a function
g : [a, b] → R, continuous in [a, b] and differentiable in ]a, b[, such that f = g′ in
]a, b[. Then ∫ b

a
f = g(b) − g(a).

Proof Set

F(x) =
∫ x

a
f, (a ≤ x ≤ b).

Then F is differentiable with F ′(x) = f (x) for a < x < b, continuous for
a ≤ x ≤ b, and F(a) = 0. But f (x) = g′(x) for a < x < b. Hence (F − g)′ = 0
and F − g is therefore constant in ]a, b[. Now F and g are continuous in [a, b] so
that we can pass to the endpoints and deduce

F(b) − g(b) = F(a) − g(a),

that is, F(b) = g(b) − g(a). �

When the fundamental theorem is used to calculate an integral, it is usually applied
in the following way. The given function f (the integrand) is continuous in an open
interval A, possibly unbounded. An antiderivative g is known or found; that is g is
defined in A and g′ = f . Then for all a and b in A (their order does not matter) we
have, in the conventional notation:

∫ b

a
f = g(x)

∣
∣b
a = g(b) − g(a).

Rephrasing this slightly, let g be differentiable in the open interval A and let g′
be continuous in A. Let a be a point of A. Then for all x in A we have

∫ x

a
g′ = g(x) − g(a).

This brings out strongly the extent to which integration and differentiation are
inverse operations. But some emphasis falls on the requirement that g′ should be
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continuous. If we drop this requirement it may happen that g′ is not even integrable
on the interval [a, x]. This may be regarded as a defect of the Riemann–Darboux
integral, though opinions are divided on this point.

The fundamental theorem shows how an antiderivative, when known, can help us
calculate an integral. The converse of this is that integrals show that antiderivatives
exist. We can solve the simplest of all differential equations, dy/dx = f (x), using
an integral. The proof of the following proposition should now be obvious.

Proposition 6.18 Let f be continuous in the open interval A. We have the following
conclusions:

(1) The function f has an antiderivative, that is, there exists a function g with domain
A such that g′ = f .

(2) If g is one antiderivative, then the most general antiderivative is g + C where
C is a constant.

(3) Let a ∈ A. The function F(x) = ∫ x
a f , (x ∈ A), is an antiderivative for f .

The solution of the differential equation dy/dx = f (x) is often written as

y(x) =
∫

f (x) dx + C.

The formal integral here,written in Leibniz’s notation but without the limits, is called
an indefinite integral. It representsanyantiderivative of f . Finding an antiderivative is
often called solving the integral

∫
f (x) dx , especiallywhen it is achieved by applying

a set of techniques described later (in Chap.8). In contrast to this, an integral with
limits is sometimes called a definite integral.

6.5.1 Thoughts About the Fundamental Theorem

The fundamental theorem asserts that the formula
∫ b
a f = F(b) − F(a) holds, when

f is continuous and F is an antiderivative of f . This is the form of the fundamental
theorem as usually presented in analysis texts. However, the requirement that f is
continuous is restrictive since many discontinuous functions are integrable.

In applications (for example, Fourier series, technology and engineering) discon-
tinuous integrands arise frequently and it is therefore useful to extend the fundamen-
tal theorem to a larger class of integrands. Ideally we would like to extend it to all
integrable functions.

It is perhaps unhelpful to overemphasise the role of antiderivative as a central
concept in integration theory. It could be preferable to introduce instead a notion of
primitive function, distinct from that of antiderivative. A small warning: “primitive
function” is often used as a synonym for “antiderivative”, but in this text a different
usage is proposed.
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Definition Given an integrable function f on [a, b], by a primitive of f is meant
any function that differs from the function

F(x) :=
∫ x

a
f

by a constant.

We immediately extend this definition to the case of a function defined on an
interval A, which could be unbounded. Useful cases, to be considered later, are
A = [0,∞[ and A = ]−∞,∞[. Suppose that f is integrable on every bounded
subinterval [a, b] of A. We shall say that a function g with domain A is a primitive
of f , if there exists a in A, such that the function

g(x) −
∫ x

a
f

is a constant.

Exercise We can fix the point a in the definition of primitive in advance. Let c ∈ A.
Show that g is a primitive of f if and only if the function g(x) − ∫ x

c f is a constant.

The fundamental theorem states that if f is continuous in an interval A, then any
function g, continuous in A, and differentiable and satisfying g′(x) = f (x) at all
the interior points of A, is a primitive of f . This opens up the question of how to
find primitives for more general types of integrable function. An ideal version of the
fundamental theorem would enable us to identify the primitives of a given integrable
function quite generally.

We shall describe a class of functions that often arise in practical applications and
identify their primitive functions, thereby extending the fundamental theorem.

Definition A function f : [a, b] → R is said to be piece-wise continuous if there
exists a partition a = t0 < t1 < · · · < tm = b, such that for each k, the restriction of
f to the open interval ]tk, tk+1[ is continuous, and extends to a continuous function
in the closed interval [tk, tk+1].

Putting it differently a piece-wise continuous function f has only a finite number
of discontinuities and at each one, the left and right limits exist (though only the right
limit at a and only the left limit b). The values of f at the points t j are unimportant.

Weextend thedefinitionof piece-wise continuous function tounboundeddomains.
A function f defined in an interval A (possibly unbounded) is said to be piece-wise
continuous if its restriction to each bounded interval [a, b], included in A, is piece-
wise continuous in the sense of the previous paragraph. A piece-wise continuous
function in an unbounded interval can have infinitely many points of discontinuity,
but there are only finitely many in each bounded closed interval. An example of such
a function of some importance in technology is the infinite square wave.

We next extend the fundamental theorem and thereby identify the primitives of
all piece-wise continuous functions.
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Fig. 6.5 An infinite square
wave and one of its
primitives

Proposition 6.19 Let f : [a, b] → R be piece-wise continuous. Let F : [a, b] → R

be continuous in [a, b], differentiable except at a finite set of points (possibly empty),
and satisfy F ′(x) = f (x) for each x at which F is differentiable. Then

∫ b

a
f = F(b) − F(a).

In other words the function F is a primitive of f .

Proof The points t0 < t1 < · · · < tm , at which F is not differentiable, form a parti-
tion of [a, b] and wemay obviously include the endpoints, so that t0 = a and tm = b.
Moreover these points include all discontinuities of f (by, for example, Sect. 5.8
Exercise10). Now we have, by the fundamental theorem:

∫ b

a
f =

m−1∑

k=0

∫ tk+1

tk

f =
m−1∑

k=0

(
F(tk+1) − F(tk)

) = F(b) − F(a).

�
Several rules of integral calculus can be extended by using primitives instead of

antiderivatives as we shall see.

6.5.2 Exercises

1. Let f be a continuous function on an open interval A. We have seen that for
every choice of a in A, the function F(x) = ∫ x

a f is an antiderivative for f . It
can happen that f has antiderivatives that cannot be expressed in this form. Find
an example of this.
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2. Suppose that f is bounded on [a, b] and for each ε > 0, it is integrable on
[a + ε, b]. Show that f is integrable on [a, b] and limε→0+

∫ b
a+ε

f = ∫ b
a f .

3. Give an example to show that Proposition6.19 does not hold if the requirement
that F is continuous is omitted.

4. Let f (x) = x2 sin(x−2) for x �= 0 and f (0) = 0. Show that f is everywhere
differentiable, but that f ′ is unbounded in any interval containing 0. Thus the
integral

∫ 1
−1 f ′ does not exist (at least not as a Riemann–Darboux integral).

5. In this set of exercises we study periodic functions and their primitives. Recall
(Sect. 4.2 Exercise20) that a function f is periodic if there exists T �= 0 (a period)
such that f (x + T ) = f (x) for all x . Let f be a periodic function with funda-
mental period T (that is, T is the lowest positive period, supposing that one such
exists). Suppose that f is bounded and integrable on the interval [0, T ].
(a) Show that f is integrable on any bounded interval.
(b) Show that for any interval [a, b], such that b − a = T we have

∫ b

a
f =

∫ T

0
f.

(c) Show that

lim|y|→∞
1

y

∫ y

0
f = 1

T

∫ T

0
f.

(d) The quantity (1/T )
∫ T
0 f appearing in item (c) is called the mean of the

periodic function f . Show that there exists a unique constant C such that
f + C has mean 0.

(e) Let F(x) = ∫ x
0 f . Show that F is periodic if and only if f has mean zero.

(f) Suppose that f has mean zero and set F0 = f . Show that one may define
uniquely a sequence of functions (Fn)

∞
n=0, such that each function is periodic

with period T , each has mean zero, F1 is a primitive of F0, and F ′
n = Fn−1

for n = 2, 3, ... (so, in fact, Fn is a primitive of Fn−1 for n ≥ 1).

6.6 (♦) Riemann Sums

We have defined the integral of a bounded function f on an interval [a, b] as the
supremum over all lower sums or the infimum over all upper sums, provided these
two happen to be the same. This was not Riemann’s definition; actually it is due to
Darboux. However, it turns out that Riemann’s integral and Darboux’s are the same;
the same functions are integrable and the integral has the same value when it exists.
This is reflected in our choice of name: the Riemann–Darboux integral. In this nugget
we are going to consider how Riemann defined his integral, and show that the result
is equivalent to that of Darboux.
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Riemann approached the integral through what we call Riemann sums. Given a
bounded function f on a closed interval [a, b] the Riemann sums are defined in the
following way. Let P be a partition of the interval [a, b], let us say it is the sequence
P = (t0, t1, ..., tm). For each j we choose quite arbitrarily a point r j in [t j , t j+1], for
each j = 0, 1, ...m − 1. Now we form the sum

S =
m−1∑

j=0

f (r j )(t j+1 − t j ).

A sum formed in this way is a Riemann sum for the function f , corresponding to
the partition P and the choice of points r j . In an obvious way it is a candidate for an
approximation to the area under the graph y = f (x) (in the case when f is positive)
that is just as plausible as an upper or lower sum, if not more so.

The quantity max0≤ j≤m−1(t j+1 − t j ) is called the mesh size of the partition P (the
analogy is with a fishing net that lets fish below a certain size escape; how appropriate
this is remains moot). Riemann defined the integral as a kind of limit, when it exists.
More precisely it is a number A that has the following property: for each ε > 0 there
exists δ > 0, such that

∣
∣
∣
∣ A −

m−1∑

j=0

f (r j )(t j+1 − t j )

∣
∣
∣
∣ < ε

for all partitions P = (t0, t1, ..., tm) with mesh size less than δ, and for all possible
choices of the points r j in the intervals [t j , t j+1].
Proposition 6.20 The Riemann integral of a bounded function on an interval [a, b]
exists if and only if its Darboux integral exists. When the integrals exist, they are
equal.

Proof The proof of this is long and extends to the end of this subsection. We take
the shorter part first.

We assume that the integral of f on [a, b] exists according toRiemann’s definition,
and that the integral has the value A.Wewish to show that the Darboux integral exists
and also has the value A.

Let ε > 0. Choose δ > 0, such that

∣
∣
∣
∣ A −

m−1∑

j=0

f (r j )(t j+1 − t j )

∣
∣
∣
∣ < ε

for all partitions P = (t0, t1, ..., tm) with mesh size less than δ, and for all possible
choices of the points r j in [t j , t j+1].

Consider one such partition P and let
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m j = inf[t j ,t j+1]
f and Mj = sup

[t j ,t j+1]
f.

For each subinterval we can choose a point r j , such that f (r j ) < m j + ε. Then we
find

m−1∑

j=0

f (r j )(t j+1 − t j ) <

m−1∑

j=0

(m j + ε)(t j+1 − t j ) = L( f, P) + ε(b − a)

so that
A < L( f, P) + ε(b − a + 1).

In a similar way we can obtain

A > U ( f, P) − ε(b − a + 1).

But from this it follows that

A − ε(b − a + 1) < L( f, P) ≤ U ( f, P) < A + ε(b − a + 1).

This holds for all ε > 0, so that we conclude that f is integrable in the sense of
Darboux and the integral equals A. This concludes the first, and shorter, part of the
proof.

The proof that if f is Darboux-integrable, it is also Riemann-integrable, is more
complicated. We begin with some general considerations before turning to the actual
proof.

Let K be a constant, such that | f (x)| < K for all x in [a, b] (recall that we are
assuming that f is bounded). Suppose δ > 0 and consider a partition with mesh size
less than δ. We wish to give an upper estimate for how much the lower sum L( f, P)

and the upper sum U ( f, P) change, if P is replaced by a new partition P ′, which is
formed by adding p new points to P .

The new points land in at most p subintervals of P . First we will estimate the
contribution of these intervals to the lower and upper sums, before the inclusion of
the new points.

The absolute value of the contribution is less than pK δ, for there are at most p
intervals in question, each has length at most δ, and m j and Mj have absolute value
less than K .

Next we estimate the contribution to the lower and upper sums of these same
intervals after the insertion of the new points. The intervals in question get replaced
by at most 2p new intervals (how many they are will depend on how the new points
fall), and their contribution to L( f, P ′) and U ( f, P ′) has absolute value at most
2pK δ.
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The conclusion therefore is that

|L( f, P) − L( f, P ′)| ≤ 3pK δ, |U ( f, P) −U ( f, P ′)| ≤ 3pK δ.

Now we can prove that a Darboux-integrable function is Riemann-integrable.
Suppose that f isDarboux-integrable and that | f | < K . Let ε > 0.Choose a partition
P1, such that

U ( f, P1) − ε

2
<

∫

f < L( f, P1) + ε

2
.

Suppose that P1 has p points. Let δ = ε/6pK . Observe that δ depends only on ε and
f (the somewhat arbitrary choice of p depended only on ε and f ).
Let P be a partition with mesh size less than δ. Let P ′ be the partition that is

formed by uniting P and P1. Then P ′ is finer than P1 so that

U ( f, P ′) − ε

2
<

∫

f < L( f, P ′) + ε

2
.

But P ′ is obtained by adding p points to P , and the latter has mesh size less than δ,
so that we find

|L( f, P) − L( f, P ′)| ≤ 3pK δ, |U ( f, P) −U ( f, P ′)| ≤ 3pK δ,

and combining this with the previous inequalities we obtain

U ( f, P) − 3pK δ − ε

2
<

∫

f < L( f, P) + 3pK δ + ε

2
,

or, recalling the definition of δ:

U ( f, P) − ε <

∫

f < L( f, P) + ε.

To summarise, this holds on the sole premise that the mesh size of P is less than
δ. Furthermore a Riemann sum

∑m−1
j=0 f (r j )(t j+1 − t j ) for the partition P , formed

by taking points r j in the intervals [t j , t j+1], lies between L( f, P) andU ( f, P). We
conclude that ∣

∣
∣
∣

m−1∑

j=0

f (r j )(t j+1 − t j ) −
∫

f

∣
∣
∣
∣ < ε

whenever the mesh size of P is less than δ; that is, the Darboux-integral
∫

f is also
the Riemann-integral. �
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6.6.1 Things You Can Do with Riemann Sums

Riemann sums are highly versatile tools with both practical and theoretical uses. We
give one example of each.

Approximate an Integral

A Riemann sum is a simple approximation to the corresponding integral. Better
approximation methods have been developed but they are largely refinements of the
Riemann sum.

We can estimate the error if we know a little more about the function f . Suppose
that f is differentiable and that | f ′(x)| < M for all x in [a, b]. Then, by the mean
value theorem, we have

| f (x) − f (r j )| < M |x − r j | ≤ M(t j+1 − t j )

for all x in the interval [t j , t j+1]. Hence
∣
∣
∣
∣

∫

f −
m−1∑

j=0

f (r j )(t j+1 − t j )

∣
∣
∣
∣ =

∣
∣
∣
∣

m−1∑

j=0

∫ t j+1

t j

(
f − f (r j )

)
∣
∣
∣
∣ <

m−1∑

j=0

M(t j+1 − t j )
2.

To see what this means, let us suppose the partition P divides the interval [a, b]
into m equal intervals. Then the above error bound is

M(b − a)2

m
.

A natural way to implement such an approximation is to double the number of
partition points in each step. After n steps the error is bounded by

M(b − a)2

2n
.

This means that, at worst, each doubling contributes roughly 0.3 (approximately
log10 2) further correct decimal places. Plainly room for improvement!

Prove a Refinement of the Fundamental Theorem

Proposition 6.21 Let f : [a, b] → Rbe continuous in [a, b], differentiable in ]a, b[,
and suppose that f ′ is bounded in ]a, b[ and integrable on [a, b]. Then

∫

f ′ = f (b) − f (a).

Proof For each partition a = t0 < t1 < · · · < tm = b we have, by the mean value
theorem,
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f (b) − f (a) =
m−1∑

k=0

(
f (tk+1) − f (tk)

) =
m−1∑

k=0

f ′(sk)(tk+1 − tk)

for certain numbers sk in [tk, tk+1], k = 0, 1, ...m − 1.On the rightwehave aRiemann
sum for

∫
f ′, and it tends to

∫
f ′ as the mesh size tends to 0. We conclude that the

integral is equal to f (b) − f (a). �

The proposition says that given an integrable function g, a function f , continuous
in [a, b] and satisfying f ′(x) = g(x) at every point of ]a, b[, is a primitive (in the
sense of Sect. 6.5) of g. A nice result, but not nearly as practical as it might appear, as
the requirement that f ′(x) = g(x) at every point of the open interval means that g,
if discontinuous, cannot have jump discontinuities. In this connection see Sect. 5.8
Exercise10.

6.6.2 Exercises

1. Compute the following limits by interpreting them as Riemann sums:

(a) lim
n→∞

1

n2

n∑

k=1

k

(b) lim
n→∞

1

n3

n∑

k=1

k2

(c) lim
n→∞

1

np+1

n∑

k=1

k p where p > 0.

(d) lim
n→∞

n∑

k=1

n

n2 + k2

(e) lim
n→∞

n∑

k=1

1√
n2 + k2

.

6.6.3 Pointers to Further Study

→ Lebesgue integral
→ Numerical integration
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6.7 (♦) The Arc Length, Volume and Surface of Revolution
Integrals

Much of the motivation for the definition of the integral was derived from computing
the area of a particular kind of plane figure, and a fairly simple one at that, bounded
on three sides by segments of the straight lines, y = 0, x = a and x = b, the fourth
side being a part of the graph y = f (x). One can easily extend this to the area
between two graphs y = f (x) and y = g(x) between x = a and x = b, assuming
that f (x) < g(x) in the interval ]a, b[. The area is then ∫ b

a (g − f ). To go beyond
this in the calculation of area, we need to give a general definition of area of a plane
figure. This is not so simple and requires a study of the topological properties of the
plane.

The notion of arc length is by nature simpler than that of area, being essentially
one-dimensional. We can give a treatment of the length of a reasonably well-behaved
curve using approximations analogous to Riemann sums.

First let us look at a graph. Given a function f with domain [a, b] we obtain a
“curve”, the graph y = f (x). We can approximate what should turn out to be its
length by taking a partition P = (t0, t1, ..., tm) of [a, b] and writing down the sum

S(P) =
m−1∑

k=0

√
(tk+1 − tk)2 + ( f (tk+1) − f (tk))2.

Geometrically S(P) is the length of a polygonal curve inscribed in the curve y =
f (x). Now we can define the arc length in imitation of Riemann’s definition of the
integral, as the number L that has the following property, if such a number should
exist: for all ε > 0 there exists δ > 0, such that for all partitions of [a, b] with mesh-
size less than δ we have

|L − S(P)| < ε.

This construction is illustrated in Fig. 6.6.
The most important case for applications is when the curve has a continuously

varying tangent. Then we obtain the arc length integral.

Fig. 6.6 Approximating arc
length
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Proposition 6.22 Let f , with domain [a, b], be continuous in [a, b] and differen-
tiable in ]a, b[, and assume that f ′ extends to a continuous function in [a, b]. Then
the length of the curve y = f (x) is given by the arc length integral

L =
∫ b

a

√
1 + f ′(x)2 dx .

Proof For a given partition P , we can use the mean value theorem to find numbers
rk in [tk, tk+1] (for each k) so that we can write

S(P) =
m−1∑

k=0

√
(tk+1 − tk)2 + ( f (tk+1) − f (tk))2

=
m−1∑

k=0

√
1 + f ′(rk)2 (tk+1 − tk).

We have here a Riemann sum for the arc length integral so the result follows once
we show that the integrand is integrable (see the nugget on Riemann sums). The
integrability was covered in Sect. 6.4 Exercise4. �

The formula extends easily to the case of a curve that may have corners; more
precisely to the case when f is continuous but is only piece-wise continuously
differentiable. By the latter we mean that there is a partition (s0, s1, ..., sm) of [a, b],
such that the derivative exists except at the partition points sk , and for each open
interval ]sk, sk+1[ the derivative extends continuously to the closed interval [sk, sk+1].
This includes the case of polygons andmost curves that arise in practical applications.

6.7.1 Length of Parametric Curves

A plane parametric curve, expressed by x = f (t), y = g(t), where a ≤ t ≤ b, can
cross itself, double back along itself, or worse. As a geometric object it is tricky to
define its length. However we can compute the distance travelled as t goes from a to
b. This has obvious practical applications.

For each partition P = (t0, t1, ..., tm) of [a, b], we can approximate the distance
travelled by

d(P) =
m−1∑

k=0

√
( f (tk+1) − f (tk))2 + (g(tk+1) − g(tk))2.

Then we can say that the distance D is a number that has the following property, if
such a number exists: for all ε > 0 there exists δ > 0, such that for all partitions P
with mesh-size less than δ we have
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Fig. 6.7 Approximating the
length of a parametric curve

|D − d(P)| < ε.

How this leads to an integral is explored in the next exercises. The construction
is illustrated in Fig. 6.7.

6.7.2 Exercises

1. The upper unit semicircle is the curve y = √
1 − x2 for −1 < x < 1. Write the

integral for the arc length from x = 0 to x = c, where 0 < c < 1.
Note. The arc length is of course arcsin c. The integral obtained offers a geometrically appealing

way to define the circular functions rigorously and will be used for this purpose in the next

chapter.

2. The upper arc of the ellipse x2/a2 + y2/b2 = 1, with semi-major axis a and
semi-minor axis b is the curve

y = b

a

√
a2 − x2, −a < x < a.

It is often convenient to express properties of the ellipse in terms of a, and the
eccentricity e, defined as

e =
√

1 − b2

a2
.

Given c such that 0 < c < a, express the integral for the arc length of the ellipse,
from x = 0 to x = c, in terms of a, e and c.
Note. The apparent difficulty of computing this integral (given that a �= b) culminated in the

theory of elliptic functions early in the nineteenth century.

3. Show that the length of the curve y = f (x) between x = a and x = b, when it
exists, is actually the supremum of S(P) taken over all partitions P . Show the
same for the distance travelled along a parametric curve, that D is the supremum
of d(P) taken over all partitions.
Note. The arc length is often defined as the supremum of the lengths of inscribed polygons.

One might suppose that one could define the area of a surface as the supremum of the areas of

inscribed polyhedra. However, this does not work, as it leads to infinities.
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4. Suppose that the parametric curve x = f (t), y = g(t), a ≤ t ≤ b has the prop-
erties that f and g have continuous derivatives in ]a, b[ that extend to continuous
functions in [a, b]. Show that

D =
∫ b

a

√
f ′(t)2 + g′(t)2 dt.

This exceedingly natural formula shows that the distance travelled is the integral
of the speed, as we always knew it was.
Hint. One can write

d(P) =
m−1∑

k=0

√
f ′(αk)2 + g′(βk)2 (tk+1 − tk),

where, for each k, the numbers αk and βk are in the interval ]tk, tk+1[. As it stands
this is not a Riemann sum. One has to move the point βk to αk , thus obtaining a
Riemann sum, and estimate the total change. One can use the uniform continuity
of the function (g′)2 on the interval [a, b], and that of the function

√
x on the

interval [0, M], is an upper bound for f ′2 + g′2 on the interval [a, b].

6.7.3 Volumes and Surfaces of Revolution

Calculus books intended for users of mathematics introduce methods for calculating
the volume of a body of revolution and its surface area. Although these concepts
belong properly to multivariable calculus, they reduce to integrals of functions of
one variable. They can be motivated by the same type of approximation as we used
to motivate the integral

∫
f as the area under the graph y = f (x). The full details

will not be given here but the reader who has tackled Exercise4 should be able to
supply them.

Volume of Revolution Integral

Let f be a positive function with the domain [a, b]. The plane region bounded by
the graph y = f (x), the x-axis, and the lines x = a and x = b is rotated in three
dimensions about the x-axis to form a solid. One can introduce a third coordinate
axis, the z-axis, at right angles to the (x, y)-plane to effect the rotation analytically.
Let P = (t0, t1, ..., tm) be a partition of [a, b]. We can approximate the volume from
below by the total volume of a collection of cylinders, thus,

Vlower(P) =
m−1∑

k=0

πm2
k(tk+1 − tk)

and from above thus,
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Vupper(P) =
m−1∑

k=0

πM2
k (tk+1 − tk)

where, we recall, mk = inf [tk ,tk+1] f and Mk = sup[tk ,tk+1] f . We are proceeding intu-
itively here; a definition of π building on analysis alone will be given in the next
chapter.

Refinement of the partition leads to the volume of revolution integral

V = π

∫ b

a
f (x)2 dx .

Surface of Revolution Integral

A similar process leads to an integral for the surface of revolution. Using a partition
P we inscribe a polygon in the curve y = f (x), the same as we used to obtain arc
length. Rotate this polygon about the x-axis. The bit between x = tk and x = tk+1

turns into the frustum of a cone with surface area

π
(
f (tk) + f (tk+1)

)√
(tk+1 − tk)2 + ( f (tk+1) − f (tk))2.

The sum of these leads to the surface of revolution integral

A = 2π
∫ b

a
f (x)

√
1 + f ′(x)2 dx .

6.7.4 Exercises (cont’d)

5. Prove a theorem of Archimedes: the area of a parabolic segment cut off by a chord
is 4/3 times the area of the triangle whose base is the chord and whose height
equals the height of the segment measured from the chord.
Hint. It can help to set up coordinates in a convenient way. The following is
only a suggestion. Take the origin at the midpoint of the chord and the y-axis
parallel to the axis of the parabola. Let the equation of the chord be y = mx and
its endpoints (l,ml), (−l,−ml). Show that the parabola is one of a one-parameter
family

y = c(l2 − x2) + mx

where we may assume that the parameter c > 0 (this just means that the parabola
opens downwards). Now compute the area A of the segment by integration, and
the maximum area of a triangle with vertices at (l,ml), (−l,−ml) and the third
vertex on the arc joining (l,ml) and (−l,−ml).

6. Prove a theorem of Archimedes: when a sphere is inscribed in a cylinder (which
then has the same radius as the sphere) and both are cut by two parallel planes at
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right angles to the cylinder, the two planes cut equal areas off the sphere and the
cylinder.

6.7.5 Pointers to Further Study

→ Multivariable calculus
→ Differential geometry

6.8 (♦) Approximation by Step Functions

The small oscillation theorem (Proposition4.14) admits another interpretation. It
says that every continuous function on the interval [a, b] can be approximated by a
step function in a rather precise sense. Let f be continuous on [a, b]. Then for all
ε > 0 there exists a step function h with the same domain, such that for all x in [a, b]
we have

| f (x) − h(x)| < ε.

All we need to do to construct h is form a partition t0 < t1 < · · · < tm of [a, b], such
that the oscillation of f on each subinterval is less than ε. Then we define h to be
constant on each subinterval, with value equal to f at its midpoint, for example.

The graphs of the two functions, f and h, remain close, with error less than ε

throughout the whole interval [a, b]. This is called a uniform approximation of f by
a step function.

Certain functions other than continuous ones can be uniformly approximated
by step functions to arbitrary accuracy, monotonic functions for example. Sup-
pose that f is increasing on [a, b]. Let ε > 0. Partition the interval [ f (a), f (b)]
into subintervals of length less than ε. For example we can let y0 = f (a), ym =
f (b), choosing m so that ( f (b) − f (a))/m < ε. Then we construct the partition
y0 < y1 < y2 < · · · < ym with subintervals of equal length. Next we let A0 be the
set of points in [a, b], such that y0 ≤ f (x) ≤ y1 and then, for k = 1, 2, ...,m − 1,
we set Ak equal to the set of points in [a, b] such that yk < f (x) ≤ yk+1.

Exercise Show that each set Ak is an interval. It may be empty; if it is not empty,
it may contain neither of its endpoints, one of its endpoints, or both of them. Draw
some pictures illustrating each of these possibilities. Show also that if j < k, then
for all s in A j and t in Ak we have s < t . Show finally that the union of the sets Ak

is all of [a, b].
To construct a step function h that approximates f uniformly with error less than

ε, we define h(x), for x in Ak , to be equal to 1
2 (yk + yk+1), except at endpoints of

Ak (should either of them be in Ak). At every endpoint we let h be equal to f .
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This construction leads to a step function h, such that for all x in [a, b] we
have | f (x) − h(x)| < ε. We even have h(a) = f (a) and h(b) = f (b), and h is also
increasing, which all turns out to be quite useful as we shall see. We can use it to
prove the second mean value theorem for integrals, a result that one can sometimes
turn to when all else seems to fail.

Proposition 6.23 Let g be integrable on the interval [a, b] and let f be monotonic
on the same interval. Then there exists ξ in [a, b], such that

∫ b

a
f g = f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

Proof The proof is lengthy, so be prepared. We may suppose that f is increasing.
The proof is in two main steps.
Step 1. We prove the result in the case that f is a step function. Let a = t0 < t1 <

· · · < tm = b be a partition of [a, b] and suppose that

f (x) = ck, tk < x < tk+1, k = 0, 1, ...m − 1.

The values of f at the endpoints can be quite arbitrary, but we require that f is
increasing, which implies that the sequence ck is increasing.

LetG(x) = ∫ x
a g for each x in [a, b]. ThenG is continuous and satisfiesG(a) = 0.

Now we have

∫ b

a
f g =

m−1∑

k=0

ck

∫ tk+1

tk

g =
m−1∑

k=0

ck(G(tk+1) − G(tk))

=
m−1∑

k=0

(
ck+1G(tk+1) − ckG(tk)

) +
m−1∑

k=0

(ck − ck+1)G(tk+1)

= cmG(tm) +
m−1∑

k=0

(ck − ck+1)G(tk+1).

Recalling that tm = b and G(a) = 0 we obtain

f (b)G(b) −
∫ b

a
f g =

m−1∑

k=0

(ck+1 − ck)G(tk+1) + ( f (b) − cm)G(b),

so that

f (b)G(b) − ∫ b
a f g

f (b) − f (a)

= (c0 − f (a))G(a) + ∑m−1
k=0 (ck+1 − ck)G(tk+1) + ( f (b) − cm)G(b)

f (b) − f (a)
.
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On the right-hand side the coefficients in the numerator that multiply values of G,
that is, the factors ck+1 − ck , together with c0 − f (a) and f (b) − cm , are all non-
negative, and they add up to f (b) − f (a). So the right-hand side is a weighted
average of the values G(a), G(t1), G(t2),...,G(b), and it must therefore lie between
themaximumandminimumofG(x) on the interval [a, b]. Hence, by the intermediate
value theorem (and recall here that G is continuous), there exists ξ in [a, b], such
that G(ξ) is equal to this weighted average (compare Sect. 4.3 Exercise6). It follows
that

f (b)G(b) − ∫ b
a f g

f (b) − f (a)
= G(ξ)

or, equivalently

∫ b

a
f g = f (b)G(b) − (

f (b) − f (a)
)
G(ξ) = f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

This completes the proof in the case that f is a step function.
Step 2. To tackle the general case, we let f be an increasing function and approximate
it uniformly by a step function. We also introduce a constant K such that |g(x)| ≤ K
for all x in [a, b].

Now let ε > 0. There exists an increasing step function h, such that for all x in
[a, b] we have

| f (x) − h(x)| < ε,

and, moreover, h(a) = f (a), h(b) = f (b), a pair of equalities that should be borne
in mind while elucidating the remainder of the proof.

By the case of a step function (we refer to the penultimate equation in step 1),
there exists ξ in [a, b], such that

h(b)G(b) − ∫ b
a hg

h(b) − h(a)
= G(ξ),

and since ∣
∣
∣
∣

∫ b

a
hg −

∫ b

a
f g

∣
∣
∣
∣ ≤

∫ b

a
| f − h||g| < K (b − a)ε

we have that

∣
∣
∣
∣
f (b)G(b) − ∫ b

a f g

f (b) − f (a)
− G(ξ)

∣
∣
∣
∣ =

∣
∣
∣
∣
f (b)G(b) − ∫ b

a f g

f (b) − f (a)
− h(b)G(b) − ∫ b

a hg

h(b) − h(a)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ b
a ( f − h)g

f (b) − f (a)

∣
∣
∣
∣

≤ K (b − a)ε

f (b) − f (a)
,
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and rearranging this we obtain

G(ξ) − K (b − a)ε

f (b) − f (a)
<

f (b)G(b) − ∫ b
a f g

f (b) − f (a)
< G(ξ) + K (b − a)ε

f (b) − f (a)
.

Therefore

min[a,b] G − K (b − a)ε

f (b) − f (a)
<

f (b)G(b) − ∫ b
a f g

f (b) − f (a)
< max[a,b] G + K (b − a)ε

f (b) − f (a)
.

These inequalities hold for all ε. So we conclude that

min[a,b] G ≤ f (b)G(b) − ∫ b
a f g

f (b) − f (a)
≤ max[a,b] G.

Hence, by the intermediate value theorem, there exists η in [a, b], such that

f (b)G(b) − ∫ b
a f g

f (b) − f (a)
= G(η)

which leads to the required conclusion. �

Amuch simpler proof of the secondmean value theorem for integrals can be given
using integration by parts, but using the stronger assumptions that g is continuous,
f differentiable, f ′ is continuous and positive (see Sect. 8.2). However, the theorem
is often useful when g has discontinuities, as we shall see in the chapter on improper
integrals.

A corollary, the proof of which is left as an exercise, is called Bonnet’s theorem.

Proposition 6.24 Let g be integrable on the interval [a, b] and let f be increasing
and positive on the same interval. Then there exists ξ in [a, b] such that

∫ b

a
f g = f (b)

∫ b

ξ

g.

We now have two classes of functions that can be uniformly approximated by step
functions: the continuous functions and the monotonic functions. We can reasonably
ask what these classes have in common. Functions of both classes are integrable.
However there are integrable functions that cannot beuniformly approximatedby step
functions. This is because there is a very simple necessary and sufficient condition
for uniform approximation by step functions to be possible: that at every point the
one-sided limits f (x−) and f (x+) exist (though only f (a+) at a and f (b−) at b).
This is, of course, satisfied by continuous functions and bymonotonic functions. The
proof of this is not hard but uses the Heine–Borel theorem, which lies just outside
the scope of this work.
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Exercise Find an integrable function for which one of the one-sided limits fails to
exist for at least one point.

Even though we cannot always approximate an integrable function uniformly by
step functions, all is not lost. A different type of approximation is available, also by
step functions, known as approximation in the mean.

Let f be integrable on [a, b] and let ε > 0. Then there exists a step function h
such that ∫ b

a
| f − h| < ε.

This means that, on average, or to use the correct term, in the mean, h is close to f .
At the same time there may be points where f − h is big, even arbitrarily big, but
this can only occur on “small” sets of points. All we have to do to produce h is to
find a partition P for which U ( f, P) − L( f, P) < ε and set h equal to mk (or Mk)
on the subinterval ]tk, tk+1[.

In fact, approximation in the mean could have been used instead of uniform
approximation to prove the second mean value theorem, as the reader should be able
to check by looking over step 2 of the proof. However, nothing is gained in generality
as monotonicity of the function f seems to be essential.

The ideas explored in this nugget are very valuable and capable of much variation;
in order to prove something about a whole class of functions we may first be able to
prove it for a class of simpler functions (in this case step functions) and then use an
approximation technique to obtain the conclusion in general.

6.8.1 Exercises

1. Prove Bonnet’s theorem (Proposition6.24).
2. A function f possessing one-sided limits at each point of its domain has been

called a regulated function (notably by Bourbaki). Prove that the following con-
dition is necessary and sufficient for a function f with domain [a, b] to be reg-
ulated: for each ε > 0 and x in [a, b] there exists δ > 0, such that for all s and
t in [a, b] that satisfy either x − δ < s < t < x or x < s < t < x + δ we have
| f (s) − f (t)| < ε.

3. Let f be integrable on [0, 1]. Prove the following limits:

(a) lim
n→∞

∫ 1

0
f (x)xn dx = 0.

(b) lim
n→∞

∫ 1

0
f (x) sin nπx dx = 0.

Hint. Let 0 ≤ a < b ≤ 1 and do them for a function f equal to 1 for a ≤ x ≤ b
and equal to 0 otherwise. Extend the conclusions to the case when f is a step
function and finally use approximation by step functions in the mean. Use your
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school knowledge of the circular functions sin x and cos x and their derivatives.
Note. The second limit is a key result in the theory of Fourier series.

6.8.2 Pointers to Further Study

→ Functional analysis
→ Heine–Borel theorem



Chapter 7
The Elementary Transcendental
Functions

Whatever sines, tangents and secants
Present you with after lengthy and heavy labour;
Fair Reader, this little table of logarithms will give you,
Without serious toil immediately.

J. Napier

It is a part of all analysis courses to give definitions of the elementary transcendental
functions, namely trigonometric functions, logarithms and exponentials, that build
on ideas of analysis only and do not rely on geometry. In spite of the last denial,
the definition of the trigonometric functions in the analysis literature may often owe
something to geometric intuition, whilst not needing it logically. This is the case
here.

Before that though a word of explanation on the terminology is due. The term
“transcendental” does not reflect any particular wow-factor nor is it related to mysti-
cism. It refers to functions that cannot be built up starting with the function x , using
constants and algebraic processes. For example polynomials and rational functions,
together with roots of polynomial equations such as

√
x , are not transcendental; they

are algebraic. Even the function y = f (x), defined as the unique real root of the
equation y5 + y + x = 0, is algebraic, although we have no closed expression for it.

A precise definition of transcendental function is that it is a differentiable function
f , that does not satisfy a polynomial equation; that is, there is no polynomial P(x, y)
of two variables, such that P(x, f (x)) = 0 for all x . One really needsmore generality
here by allowing the coefficients of P , as well as the variables x and y to be complex
numbers. See Chap.9 for a brief introduction to complex numbers.

The term “elementary” refers here, rather arbitrarily it must be said, to a set of
functions that were available to mathematicians before the advent of calculus, and
were needed in geometry and arithmetic. They are of course just those functions
that are met with in high-school algebra, the trigonometric functions, exponential
functions and logarithms. As new transcendental functions were introduced, spurred
© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
R. Magnus, Fundamental Mathematical Analysis, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-3-030-46321-2_7
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largely by the work of Euler in the eighteenth century, who defined for example the
Gamma function, the epithet “elementary” began to be attached to the previously
known ones, whilst the new functions began to be called special functions, a term
which should probably be disparaged as having no useful meaning at all, unless it is
“non-elementary transcendental function that has received a name”.

Much of the material of this chapter, though not the way it is developed, will
be familiar from school mathematics. Where possible we move the text along quite
briskly, with short paragraphs producing the well known classical formulas, whilst
dwelling longer on the less familiar parts.

7.1 Trigonometric Functions

In the simplest geometric manifestation that goes beyond their use to solve triangles,
the functions sine and cosine, known as the circular functions, provide a parametri-
sation of the unit circle in the Euclidean plane, that starts at the point (1, 0), travels
anticlockwise and has speed 1. This is the reason for the name “circular functions”.

To be more precise the circle x2 + y2 = 1 is parametrised by setting x = cos t
and y = sin t ; the parametrisation satisfies

√
x ′(t)2 + y′(t)2 = 1 (that is, the speed

is 1), the starting point (x(0), y(0)) is (1, 0), and the direction of increasing t is
anticlockwise. In this context, anticlockwise simply means passing the points (1, 0),
(0, 1), (−1, 0), (0,−1) in that order; this choice of direction probably seems arbitrary
to all but mathematicians.

We are going to define these functions using analysis alone, but underlying our
approach is the idea of moving with speed 1 along the unit circle. Speed is a familiar
everyday concept; a car’s speedometer measures it for example. Underlying it is arc
length; it is measured by the car’s milometer and is also an everyday concept. Arc
length is amuch simpler concept than area,whichmany authors have used tomotivate
a rigorous definition of sine and cosine. One suspects a shift from thinking that area
is simpler than arc length to the opposite, that reflects a society in ever-increasing
motion.

7.1.1 First Steps Towards Defining Sine and Cosine

First we define arcsine. For all x in the interval ]−1, 1[ we define

arcsin x =
∫ x

0

1√
1 − t2

dt.

Underlying this is the idea that for x > 0 the integral is the length of the arc of the
unit circle x2 + y2 = 1 from the point (0, 1) to the point (x,

√
1 − x2). The angle
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Fig. 7.1 Defining arcsine by
arc length

that this arc spans is measured in radians by the length of the arc (this is just the
definition of radian), and its sine by trigonometry is x (Fig. 7.1).

The function arcsin x as just defined as strictly increasing on the interval ]−1, 1[
is an odd function, (that is arcsin(−x) = − arcsin x , compare Sect. 6.4 Exercise9),
and by the fundamental theorem satisfies

d

dx
arcsin x = 1√

1 − x2
, (−1 < x < 1).

These facts are immediate consequences of the definition that the reader is invited to
check.

Since for 0 < t < 1 we plainly have

1√
1 − t2

<
1√
1 − t

it follows, for 0 < x < 1, that

arcsin x <

∫ x

0

1√
1 − t

dt = −2
√
1 − t

∣∣∣
x

0
= 2 − 2

√
1 − x < 2.

The limit limx→1− arcsin x therefore exists (since the function is bounded above and
increasing), and is less than or equal to 2. We define the number π by setting

π

2
:= lim

x→1− arcsin x .

Since arcsin x is an odd function we also have

lim
x→−1+ arcsin x = −π

2
.

This definition of π virtually establishes it as half the perimeter of the unit circle;
about as classical a definition as one could wish for.

We define sin x (the sine of x) for −π/2 < x < π/2 as the inverse function to
arcsine. The function sin x is then strictly increasing odd, and carries the interval
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]−π/2, π/2[ on to the interval ]−1, 1[. The reader can convince themselves that this
is a sensible definition by trying the geometry exercise illustrated in Fig. 7.2.

Consider the relation y = sin x , still only defined for −π/2 < x < π/2. We are
going to compute the derivative dy/dx . Inverting, we find that x = arcsin y and
hence

dx

dy
= 1

√
1 − y2

,

so that
dy

dx
=

√
1 − y2 = (1 − y2)

1
2 .

Differentiate again, as we obviously may, using the chain rule. We find

d2y

dx2
= 1

2
(1 − y2)−

1
2 (−2y)

dy

dx
= 1

2
(1 − y2)−

1
2 (−2y)(1 − y2)

1
2 = −y.

The function sin x therefore satisfies the differential equation

d2y

dx2
+ y = 0

on the interval −π/2 < x < π/2. The equation is usually written as y′′ + y = 0.
We observe that sin x satisfies the conditions (using the notation explained in

Sect. 5.3)

y(0) = 0,
dy

dx

∣∣∣∣
x=0

= 1.

It is usual to write the second condition as y′(0) = 1. Another thing to note is that

lim
x→ π

2 −
d

dx
sin x = lim

x→− π
2 +

d

dx
sin x = 0.

Fig. 7.2 A geometry
exercise
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7.1.2 The Differential Equation y′′ + y = 0

The function f (x) = sin x , defined at present in the interval −π/2 < x < π/2, is
only one of infinitelymany functions that satisfy the differential equation y′′ + y = 0.

In general, by a solution to the differential equation y′′ + y = 0 in an interval
]a, b[, we shall mean a twice differentiable function f : ]a, b[→ R, that satisfies
f ′′(x) + f (x) = 0 for all x in ]a, b[. There are infinitely many such solutions. From
onewecanmakeothers by the operations of translation, reflection anddifferentiation.
From two we can make others by taking linear combinations. These claims are
summarised in the next proposition, and their proofs are left to the reader.

Proposition 7.1

(1) If f (x) is a solution of the differential equation y′′ + y = 0 in the interval ]a, b[,
then the function g(x) := f (x + c) is a solution in the interval ]a − c, b − c[
and the function h(x) := f (−x) is a solution in the interval ]−b,−a[.

(2) All solutions to y′′ + y = 0 have derivatives of all orders and they are themselves
solutions.

(3) If f and g are solutions in the interval ]a, b[, and A and B are constants, then
A f + Bg is also a solution in ]a, b[.

7.1.3 Extending sin x

Weextend the function sin x beyond the interval ]−π/2, π/2[ on to thewhole number
line R, in such a way that the extended function satisfies the differential equation
y′′ + y = 0.

Beginwith the function sin x on the interval ]−π/2, π/2[.Weare going to describe
operations on the graph y = sin x . Each operation is one of the transformations

Fig. 7.3 Extending sin x
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described inProposition7.1. First reflect the graph about the line x = 0.Next translate
the reflection rightwards to give a new graph on the interval ]π/2, 3π/2[. Glue this
graph to the first graph. This produces an extension to the interval ]−π/2, 3π/2[.
The extension process is illustrated in Fig. 7.3.

At the join x = π/2 the two graphs (the first graph and the reflected and translated
graph) have the same y-value, namely 1, and the same y′-value 0. Both graphs also
satisfy y′′ + y = 0 so that they have the same second derivative also. The extension
therefore satisfies y′′ + y = 0 in the interval ]−π/2, 3π/2[.

The extension just defined has the same values of y, y′ and y′′ at the endpoints
−π/2 and 3π/2. The length of this interval is 2π . We can therefore extend it by
repeated translation to the whole number line R in such a way that we obtain a
function with period 2π . This function will also satisfy the differential equation
y′′ + y = 0.

Exercise Explain why the result of glueing together the pieces of the graph in the
above construction produces a function that has derivatives of all orders everywhere,
unlike the function constructed in an apparently similar way in Sect. 5.4 Exercise10.

7.1.4 Defining Cosine

We define cosine by setting

cos x = sin
(π

2
− x

)
, x ∈ R.

Then by Proposition7.1 the function cos x is a solution to y′′ + y = 0. We note that
it satisfies the conditions y(0) = 1, y′(0) = 0.

Now we conclude that the function A cos x + B sin x is a solution to the differ-
ential equation y′′ + y = 0 that satisfies the initial conditions y(0) = A, y′(0) = B.
Much more is true.

Proposition 7.2 The function A cos x + B sin x is the unique solution to y′′ + y = 0
that satisfies y(0) = A, y′(0) = B.

Proof Let f be a solution of y′′ + y = 0 that satisfies the same initial conditions as
A cos x + B sin x . Set

g(x) = f (x) − (A cos x + B sin x).

Then g is a solution to y′′ + y = 0 that satisfies g(0) = g′(0) = 0. Let

φ(x) = g(x)2 + g′(x)2.

We then have

φ′(x) = 2g(x)g′(x) + 2g′(x)g′′(x) = 2g′(x)(g′′(x) + g(x)) = 0.
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We conclude that φ is a constant. But this constant is 0 because φ(0) = 0. Since we
now have g(x)2 + g′(x)2 = 0 for all x we conclude that g(x) = 0 for all x . �

We shall rely greatly on this proposition to derive properties of the circular functions.
Themethod serves as amodel for how to obtain properties of transcendental functions
from the differential equations that they satisfy.

7.1.5 Differentiating cos x and sin x

Proposition 7.3

d

dx
sin x = cos x,

d

dx
cos x = − sin x .

Proof Since the function y = sin x satisfies y′ = √
1 − y2 and y′′ = −y, we have

d

dx
sin x =

√
1 − (sin x)2,

d2

dx2
sin x = − sin x .

From this we get
d

dx
sin x

∣∣∣
x=0

= 1,
d2

dx2
sin x

∣∣∣
x=0

= 0.

By Proposition7.1 (item 2) the function (d/dx) sin x is a solution to y′′ + y = 0,
and we have just seen that it satisfies the same initial conditions at x = 0 as does
cos x . It therefore equals cos x by Proposition7.2.

Finally we obtain

d

dx
cos x = d

dx
sin

(π

2
− x

)
= − cos

(π

2
− x

)
= − sin x .

�

7.1.6 Addition Rules for Sine and Cosine

As usual we shall use the notation sin2x to mean (sin x)2 (and not sin(sin(x)), and
similarly for all positive integral powers. Negative powers are written differently;
sin−1x , if used at all, denotes the inverse function arcsin x and not 1/sin x .

Proposition 7.4 For all x and y we have the addition formulas

sin(x + y) = sin x cos y + cos x sin y
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cos(x + y) = cos x cos y − sin x sin y.

Proof Hold y fixed. Set

F(x) := sin x cos y + cos x sin y

G(x) := sin(x + y).

The function F satisfies F ′′ + F = 0, F(0) = sin y, F ′(0) = cos y as the reader can
easily check. The function G satisfies the same differential equation and the same
initial conditions. We conclude that F and G are the same function. This gives the
first rule.

For the second rule write

cos(x + y) = sin
(π

2
− x − y

)
= sin

((π

2
− x

)
+ (−y)

)

and apply the first rule. �

Proposition 7.5
cos 2x + sin 2x = 1, (x ∈ R).

Proof We have cos 2x + sin 2x = cos(x − x) = cos 0 = 1. �

7.1.7 Parametrising the Circle

Proposition 7.6 Cosine and sine provide a parametrisation of the unit circle. If x =
cos t and y = sin t then the point (x, y) travels once around the circle x2 + y2 = 1
as t goes from 0 to 2π ; more precisely each point on the circle is passed once as t
ranges over the interval [0, 2π [.
Proof Let (a, b) satisfy a2 + b2 = 1. We have to show that there exists a unique t in
[0, 2π [, such that a = cos t and b = sin t . Assume first that−1 < a < 1. There exist
a unique t1 ∈ ] 0, π [ and a unique t2 ∈ ]π, 2π [, such that cos t1 = a and cos t2 = a,
since cosine is strictly monotonic on each of these intervals and maps each of them
on to ]−1, 1[. Then wemust have either sin t1 = b or sin t2 = b, but not both because
sin t1 = − sin t2. Finally if a = −1 we must have t = π , and if a = 1 we must have
t = 0. �

7.1.8 The Trigonometric Functions tan x, cot x, sec x, csc x

We define tangent, cotangent, secant and cosecant as
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tan x = sin x

cos x
, cot x = cos x

sin x
, sec x = 1

cos x
, csc x = 1

sin x
.

Each of these functions is undefined at some points, namely at the points where the
denominator is zero. Together with the circular functions sin x and cos x and their
inverses, these functions and their inverses make up the collection of trigonometric
functions. The name “circular function” is widely applied to all these functions. Their
derivatives are (the reader may check them)

d

dx
tan x = sec 2x,

d

dx
sec x = sec x tan x

d

dx
cot x = − csc 2x,

d

dx
csc x = − csc x cot x .

The tangent function tan x has period π and its graph has vertical asymptotes at
odd multiples of π/2. Its restriction to the interval ]−π/2, π/2[ is strictly increasing
and maps that interval on to R. Its inverse function, arctangent, is important. It
maps R on to ]−π/2, π/2[. Let us find its derivative. Begin with y = arctan x . Then
x = tan y and dx/dy = sec 2y. Thus we find

dy

dx
= 1

sec 2y
= cos 2y = cos 2y

cos 2y + sin 2y
= 1

1 + tan 2y
= 1

1 + x2
.

7.1.9 The Derivatives of arcsin x, arccos x and arctan x

All of these derivatives are important for integration because they provide us with
some new and useful antiderivatives. They are

d

dx
arcsin x = 1√

1 − x2
,

d

dx
arccos x = − 1√

1 − x2
,

d

dx
arctan x = 1

1 + x2
.

Firstly, these formulas provide the antiderivative

∫
1√

1 − x2
dx = arcsin x + C or − arccos x + C.

These two versions indicate why mathematics teachers lay so much emphasis on
including the constant C . On the interval ]−1, 1[ (where the integrand is defined) we
have arcsin x = π

2 − arccos x .
Secondly, and it is one of the most useful antiderivatives, we have
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∫
1

1 + x2
dx = arctan x + C.

The interval of definition here is all of R.

7.1.10 Exercises

1. Check the formulas for the derivatives of tan x , sec x , csc x and cot x .
2. Obtain the addition formula for tan x (familiar from school mathematics)

tan(u + v) = tan u + tan v

1 − tan u tan v
.

3. Let t = tan(x/2). Express sin x , cos x and tan x as rational functions of t .
4. There is an addition formula for arctangent. It is often written simply as

arctan x + arctan y = arctan

(
x + y

1 − xy

)
.

Care is required because the range of arctangent is the interval ]−π/2, π/2[.
(a) Prove the formula in the case that

−π

2
< arctan x + arctan y <

π

2
.

(b) Howwould you modify the formula in the cases that arctan x + arctan y falls
outside the interval ]−π/2, π/2[?

5. Prove the following formulas, no doubt familiar to you from school mathematics.
They are important tools for integration.

(a) 1 + tan2x = sec2x
(b) sin 2x = 2 sin x cos x
(c) cos 2x = cos2x − sin2x
(d) cos 2x = 2 cos2x − 1
(e) cos 2x = 1 − 2 sin2x
(f) cos 3x = 4 cos3x − 3 cos x .
(g) sin 3x = 3 sin x − 4 sin3x .

6. Let a and b be distinct real numbers.

(a) Show that the function a cos x + b sin x is periodic with period 2π , and oscil-
lates between the values

√
a2 + b2 and −√

a2 + b2.
(b) Show that the function a cos 2x + b sin 2x is periodic with period π , and

oscillates between the values a and b.



7.1 Trigonometric Functions 247

(c) Perform a similar analysis on the function a cos 3x + b sin 3x . In addition to
finding its maximum and minimum values determine all other local maxima
and minima.

7. We cannot assign an angle t to each point P of the unit circle so that t is a
continuous function of P .We have to omit one point of the circle.Most commonly
it is the point (−1, 0) (for some reason this is thought to be the point one is least
likely to visit; but that varies of course). Omitting this point we assign an angle t
to the rest of the circle such that t is in the open interval −π < t < π . With this
definition for t , derive the following formulas. It is assumed that (x, y) lies on
the unit circle.

(a) t = arctan
y

x
if x > 0;

(b) t = arctan
y

x
+ π if x < 0 and y > 0;

(c) t = arctan
y

x
− π if x < 0 and y < 0;

(d) t = 2 arctan
y

1 + x
if x �= −1.

8. Prove that sin x is not an algebraic function.
Hint. Suppose that a formula f (x, sin x) = 0 is valid where f (x, y) =∑m

k=0 pk(x)y
k and the coefficients pk(x) are polynomials. We can assume that

p0(x) is not the zero polynomial (if it was we could lower m). From your knowl-
edge of sin x derive an impossible property of p0(x).

7.2 Logarithms and Exponentials

As in the case of the circular functions we use an integral to give the primary defi-
nition, which means that the logarithm is defined first and the exponential function
then appears as its inverse. Another important differential equation is introduced.

The exponential function with base a, denoted by ax , generalises the rational
power am/n . Most commonly when we talk about the exponential function, without
mentioning the base, we have in mind a particular base e, which has the property
that ex is a solution of the differential equation dy/dx = y. This makes ex the most
important function in analysis.

7.2.1 Defining the Natural Logarithm and the Exponential
Function

We begin by defining the natural logarithm by
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ln x =
∫ x

1

1

t
dt, (x > 0).

Then ln 1 = 0, ln x > 0 for x > 1, ln x < 0 for 0 < x < 1 and

d

dx
ln x = 1

x
, (x > 0).

This makes ln x an antiderivative for 1/x on the interval ]0,∞[, thus filling in an
important gap in the list of antiderivatives (by cheating as onemight say), and solving
the differential equation y′ = 1/x .

A point of notation. Some denote the natural logarithm by log x . Others use log x
for the common logarithm, that is, the logarithm to base 10. We prefer the formation
“ln”, inwhich the “n” could refer to “natural” or, and this seemsmore likely, toNapier,
the originator of logarithms. In fact natural logarithms were often called Napierian
logarithms. The situation is made all the more confusing by the fact that Napier did
not use what we now call the natural logarithm but another quantity closely related
to it.

The laws of logarithms follow from the differential equation that ln x satisfies.

Proposition 7.7 (First law of logarithms) For all x > 0 and y > 0 we have

ln(xy) = ln x + ln y.

Proof Fix y and set f (x) = ln(xy). Then

f ′(x) = y

xy
= 1

x
= d

dx
ln x .

We conclude that f (x) − ln x is a constant C . By putting x = 1 we see that
C = ln y. �

Proposition 7.8 The function ln x is strictly increasing on the interval ]0,∞[, and
we have the limits

lim
x→∞ ln x = ∞ and lim

x→0+ ln x = −∞.

Proof We have
d

dx
ln x = 1

x
> 0

and therefore ln x is strictly increasing. Now ln(2n) = n ln 2 for each natural number
n by the first law of logarithms, and since ln 1 = 0 and ln x is increasing we have
ln 2 > 0.We conclude, since ln x is increasing, that limx→∞ ln x = ∞. Set 1

2 in place
of 2 and conclude, since ln 1

2 < 0, that limx→0+ ln x = −∞. �
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We define the exponential function exp : R → ]0,∞[ as the inverse function to
ln x . Let us differentiate exp x . Set y = exp x . Then x = ln y and we find

dx

dy
= 1

y

giving
dy

dx
= y = exp x .

We have proved the following.

Proposition 7.9 The function y = exp x is a solution to the differential equation

dy

dx
= y.

The first law of logarithms turns into the first law of exponentials.

Proposition 7.10 For all real numbers x and y we have

exp(x + y) = exp x . exp y.

Proof Set x = ln s, y = ln t where s > 0 and t > 0. Now

exp(x + y) = exp(ln s + ln t) = exp(ln(st)) = st = exp x . exp y. �

We define the number e := exp 1. We will soon see that

e = 2.7
︷︸︸︷
1828

︷︸︸︷
1828

︷ ︸︸ ︷
459045 ....

The brackets are intended as an aid to memorising the digits.
The numbers π and e are irrational (we will prove these claims later), and are the

most important irrational numbers, though no doubt opinions may differ on this, and
on whether

√
2 should be included for historical reasons.

We now have exp n = en for all natural numbers n and it is easy to see that
exp(m/n) = em/n for all rationals m/n. The function exp x therefore extends the
power em/n to all the reals. We therefore define ex := exp x for all real numbers x .

7.2.2 Exponentials and Logarithms with Base a

Let a > 0.We define ax := exp(x ln a) for all real numbers x . This is the exponential
function with base a. The general power ax is not defined in real analysis for negative
a, at least not as a function. Even so, certain values exist; for example −1 has a real
cube root.
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The case a = 1 is uninteresting, since then ax is the constant 1. If a > 1 then
ln a > 0; ax is then strictly increasing and maps R on to ]0,∞[. If 0 < a < 1 then
ln a < 0; ax is strictly decreasing and maps R on to ]0,∞[.

The inverse function to ax in the case a �= 1 is the logarithm with base a. It is
denoted by the function symbol loga . In other words the equation y = ax inverts
to x = loga y. In practice we only use logarithms with base higher than 1, most
frequently e (the natural logarithm) or 10 (the common logarithm). We continue to
denote loge x by ln x .

If a > 1 then the function ax is strictly increasing and maps R on to ]0,∞[. It
follows that its inverse function loga is also strictly increasing and maps ]0,∞[ on
to R.

7.2.3 The Laws of Logarithms and Exponents

Proposition 7.11 For all a > 0 and all x, y in R, we have

(1) ax+y = ax · ay, (first law of exponents).
(2) (ax )y = axy, (second law of exponents).

For all a > 0, b > 0 and all real x, we have

(3) (ab)x = axbx , (third law of exponents).

For all a > 0 except a �= 1, and all x > 0 and y > 0, we have

(4) loga(xy) = loga x + loga y, (first law of logarithms).

For all x > 0 and all real y we have

(5) loga(x
y) = y loga x, (second law of logarithms).

Proofs (1) ax+y = e(x+y) ln a = ex ln aey ln a = axay .
(2) (ax )y = ey ln(a

x ) = ey ln(e
x ln a) = eyx ln a = axy .

(3) (ab)x = ex ln(ab) = ex ln a+x ln b = ex ln aex ln b = axbx .
(4) Let loga x = s and loga y = t . Then

xy = asat = as+t ,

so that
s + t = loga(xy).

(5) Let loga x = t . Then
x y = (at )y = aty,

so that
yt = loga(x

y).

�
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7.2.4 Differentiating ax and xa

Let a > 0 be a constant. Then

d

dx
ax = d

dx
ex ln a = (ln a)ex ln a = (ln a)ax , (−∞ < x < ∞).

On the other hand (and here we conclude the story of differentiating xa begun when
a was an integer):

d

dx
xa = d

dx
ea ln x = ea ln x · a

x
= xa · a

x
= axa−1, (0 < x < ∞).

The restriction to positive x is only made because a is unspecified. For certain values,
for example when a is an integer or a rational with odd denominator, we can allow
negative x .

7.2.5 Exponential Growth

The functions ex and e−x overpower all power functions xa as x → ∞. Conversely
the power functions overpower ln x .

Proposition 7.12 Let a > 0. Then we have the limits:

(1) lim
x→∞

ex

xa
= ∞

(2) lim
x→∞ xae−x = 0

(3) lim
x→0+ xa ln x = 0

(4) lim
x→∞

ln x

xa
= 0.

Proofs (1) The quickest way to obtain this, and indeed the other limits, is to use
L’Hopital’s rule in the ∞/∞ version (Proposition5.16). Repeated differentiation
of numerator and denominator of ex/xa leads eventually to ex/cxb with b ≤ 0 and
c > 0. This tends to ∞.

Another, and very natural, proof of this limit builds on the power series ex =∑∞
n=0 x

n/n!. However we do not yet have this at our disposal.
(2) This is the reciprocal of the first limit.
(3) We have xa ln x = ln x/x−a and the denominator tends to ∞ as x → 0+.

Differentiating numerator and denominator gives−xa/a with the limit 0 as x → 0+.
(4) Differentiating numerator and denominator leads to 1/axa with limit 0 as

x → ∞. �
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7.2.6 Hyperbolic Functions

We define the hyperbolic sine, hyperbolic cosine and hyperbolic tangent. These are
defined for all real x by

sinh x = ex − e−x

2
, cosh x = ex + e−x

2
, tanh x = ex − e−x

ex + e−x
.

Occasionally one sees also the functions

sech x = 1

cosh x
, csch x = 1

sinh x
, coth x = 1

tanh x
.

Westate themost important properties of the hyperbolic functions for ready reference,
leaving the proofs to the exercises.

For all x we have the important formula

cosh 2x − sinh 2x = 1.

This means that the parametrised curve x = cosh t , y = sinh t is the hyperbola
x2 − y2 = 1, and it explains the epithet hyperbolic.

The derivatives of the three important hyperbolic functions are

d

dx
sinh x = cosh x,

d

dx
cosh x = sinh x,

d

dx
tanh x = 1

cosh2 x
.

The inverses of the hyperbolic functions are used in integration, as they furnish
new antiderivatives. The function sinh is strictly increasing, odd and mapsR on toR.
The function cosh is even, strictly increasing on ]0,∞[, and maps this interval on
to ]1,∞[. The function tanh is strictly increasing, odd and maps R on to ] −1, 1[.
We therefore have three inverse functions, each defined with a different domain, and
bijective with the indicated codomains:

sinh−1 : R → R, cosh−1 : ]1,∞[ → ]0,∞[, tanh−1 : ]−1, 1[ → R.

Their derivatives are important as they provide valuable antiderivatives:

d

dx
sinh−1x = 1√

x2 + 1
,

d

dx
cosh−1x = 1√

x2 − 1
, (x > 1),

d

dx
tanh−1x = 1

1 − x2
, (−1 < x < 1).
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The following rules are frequently used to provide alternative versions of the
antiderivatives of the derivatives in the previous display:

sinh−1x = ln(x +
√
x2 + 1)

cosh−1x = ln(x +
√
x2 − 1), (x > 1),

tanh−1x = 1

2
ln

(1 + x

1 − x

)
, (−1 < x < 1).

7.2.7 The Differential Equation y′ = ky

We know that (d/dx)ekx = kekx . The function y = ekx is therefore a solution of the
differential equation dy/dx = ky. The function y = Cekx (where C is a constant) is
also a solution, and it satisfies the condition y(0) = C . It is an important fact that it
is the unique solution that satisfies this condition. We write the differential equation
in the short form y′ = ky.

Proposition 7.13 Let k �= 0. The differential equation y′ = ky has a unique solu-
tion, defined for all R, that satisfies the condition y(0) = C. This solution is
y = Cekx .

Proof Let y = φ(x) be a solution that satisfies φ(0) = C . Then

d

dx
(e−kxφ(x)) = e−kxφ′(x) − ke−kxφ(x) = e−kx (φ′(x) − kφ(x)) = 0.

We conclude that e−kxφ(x) is a constant, and by considering x = 0 we see that the
constant is C . That is, φ(x) = Cekx . �

7.2.8 The Antiderivative
∫
(1/x) dx

We have seen that ln x is an antiderivative for the function 1/x on the interval ]0,∞[.
What then is an antiderivative for 1/x on the interval ]−∞, 0[? For x < 0 we have

d

dx
ln(−x) = − 1

(−x)
= 1

x
.

We have therefore the two antiderivatives, each for the appropriate interval:

∫
1

x
dx = ln x + C (x > 0),

∫
1

x
dx = ln(−x) + C (x < 0).
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Some recommend writing this as one formula
∫
(1/x) dx = ln |x | + C , considered

as valid for all x �= 0. However this is not correct and should be discouraged.
Here’swhy.The domain of 1/x is the union ]−∞, 0[ ∪ ]0,∞[.We could construct

an antiderivative on this domain, not of the form ln |x | + C , by letting g(x) = ln x
for x > 0 and g(x) = ln(−x) + 1 for x < 0. This is possible because the domain is
disconnected.

It is possible, by using a more general interpretation of differentiation than the
usual one, to make the equation (d/dx) ln |x | = 1/x correct over the whole of R,
not excluding 0. This is accomplished by the theory of distributions (or generalised
functions). It is tricky; even 1/x has to be reinterpreted, but not as an ordinary function
assigning to each number its reciprocal, but as a distribution.

7.2.9 Exercises

1. Show that for all x > 0 we have

log10 x = ln x

ln 10
.

Note. This has the practical significance that once logarithms to base e have been tabulated the

logarithms to base 10 can be found by a straightforward multiplicative conversion, requiring

the single number ln 10. A good approximation to ln 10 is 2.3026 and a rough value 2.3, the

usefulness of knowingwhich is recounted in an anecdote in “Youmust be jokingMr Feynman”.

2. Find a formula for the derivative (d/dx) loga x .
3. The natural logarithm enables us to give a more accurate estimate of the diver-

gence of the harmonic series than could be obtained in Chap.3.

(a) Show that

ln(n + 1) < 1 + 1

2
+ 1

3
+ · · · + 1

n
< 1 + ln n.

Hint. Find lower and upper sums for the integral
∫ n
1 (1/x) dx with a suitable

partition.
(b) Give an estimate of how many terms of the harmonic series are needed to

exceed 100.

4. Let a, b and c be real numbers and suppose that b < c. Show that there exists
K , such that xaebx < ecx for all x > K .

5. Prove that

lim
x→∞

(
1 + 1

x

)x

= e.
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Hint. Take the logarithm. This is often a good idea in limits involving powers.
6. Continuation of the previous exercise. Refer to Sect. 3.8 Exercise2 and deduce

that

e =
∞∑

n=0

1

n! .

Use this to compute e to 12 places of decimals using a simple calculator, more
precisely, using only the numerical buttons together with M+ ÷ = and

MR . Keep off the factorial button!
Note. This is a beautiful example of how a highly impractical formula can be transformed into

highly practical one. To compute e to any accuracy from the limit formula of the previous

exercise one would have to calculate for example 1.00000001100000000, and that only gives

7 places of decimals and can hardly be computed without using the exponential function in

some form. From the series about 15 terms are enough to get 12 decimal places, and can be

computed rapidly.

7. Calculate the following limits (including proofs that they exist):

(a) lim
x→0+ xx

(b) lim
x→ π

2

cos2 x

(x − π
2 )2

(c) lim
x→π

sinmx

sin x
, where m is an integer.

(d) lim
x→ π

4

(tan x)tan 2x

(e) limx→∞ ln |P(x)|/ln |Q(x)| , where P and Q are polynomials, such that
P has degree m and Q has degree n.

(f) lim
x→∞

(x + 1)s − xs

xs+1
, where s is a real constant.

8. (♦) Determine the limit

lim
n→∞

n∑

k=1

1

n + k

by viewing it as a Riemann sum (Sect. 6.6).
9. (a) Show that for every power function xm we have

lim
x→∞ xme−x2 = lim

x→−∞ xme−x2 = 0.

(b) Show that for all positive integers n we can write

dn

dxn
e−x2 = Pn(x)e

−x2

where Pn(x) is a polynomial with degree n.
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(c) Show that, for all positive integers m and n

lim
x→∞ xm

dn

dxn
e−x2 = lim

x→−∞ xm
dn

dxn
e−x2 = 0.

Note. The property of e−x2 , that all its derivatives overpower all powers of x at ±∞, puts it

into a class of functions that have been called, rather prosaically, smooth functions of rapid

decrease. They are important in the theory of distributions, briefly mentioned in the text.

10. The equation x y = yx defines a curve (of a sort) in the quadrant of the (x, y)-
plane for which x > 0 and y > 0. Sketch this curve without the help of a calcu-
lating device.

11. Derive the law of exponents es+t = eset directly from the differential equation
y′ = y that is satisfied by ex . Note the role played by the uniqueness part of
Proposition7.13.

12. Let g be a continuous function on the domain R and suppose that for each c
the differential equation y′ = g(y) has a unique solution, that satisfies the initial
condition y(0) = c, and is defined on the domain R. We can define the function
φ(x, c) of the two variables x and c, so that, as a function of x , it is the solution
that satisfies the condition y(0) = c.

(a) Show that the translate of a solution of y′ = g(y) is again a solution; that is,
if y = f (x) is a solution and α a number then f (x − α) is also a solution.

(b) Show that there is a unique solution that satisfies y′(α) = c, and that it is
φ(x − α, c).

(c) Prove that for all c, s and t we have the formula φ(s + t, c) = φ(s, φ(t, c)).
Note. In case g(y) = y the formula in (c) is the law of exponents es+t = eset . As the existence

and uniqueness of solutions are widely applicable properties of differential equations, this

indicates that the exponential function is capable of great generalisation.

13. Prove the following (doubtlessly familiar) formulas. They are important tools
for integration.

(a) cosh2x − sinh2x = 1
(b) 1 + tan2x = sec2x .

14. Test the truth of the formula cosh2x − sinh2x = 1 on a calculator that has buttons
for computing the hyperbolic functions. You will probably find that the output
changes from1 to 0 somewhere between x = 10 and x = 20.Why is this? Should
we conclude that the formula is false in the “real world”?

15. Check the formulas for the derivatives of sinh x , cosh x and tanh x .
16. Check the formulas for the derivatives of sinh−1, cosh−1 and tanh−1.
17. Prove the formulas already given in the text:

(a) sinh−1x = ln(x + √
x2 + 1)

(b) cosh−1x = ln(x + √
x2 − 1), (1 < x < ∞)
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(c) tanh−1x = 1

2
ln

1 + x

1 − x
, (−1 < x < 1).

18. We saw that the function cosh−1x is an antiderivative of (x2 − 1)−1/2 on the
interval 1 < x < ∞. Write down an antiderivative for the function (x2 − 1)−1/2

on the interval −∞ < x < −1, utilising the function cosh−1 as it was defined
in the text with domain ]1,∞[.

19. Show that the addition formulas for the hyperbolic functions are as follows:

(a) cosh(x + y) = cosh x cosh y + sinh x sinh y
(b) sinh(x + y) = sinh x cosh y + cosh x sinh y

(c) tanh(x + y) = tanh x + tanh y

1 + tanh x tanh y

and the duplication formulas (useful for integration):

(d) cosh 2x = cosh2x + sinh2x = 2 cosh2x − 1 = 1 + 2 sinh2x
(e) sinh 2x = 2 sinh x cosh x

(f) tanh 2x = 2 tanh x

1 + tanh2x

20. Show that the formulas x = cosh t , y = sinh t , (−∞ < t < ∞), provide a
parametrisation of the right-hand branch of the hyperbola x2 − y2 = 1. You
will need to show that every point on the curve corresponds to a unique value
of t .

21. Prove that ex is not an algebraic function.
Hint. Suppose that f (x, ex ) = 0 where f (x, y) = ∑m

k=0 pk(x)y
k and the coef-

ficients pk(x) are polynomials. One may assume that neither p0(x) nor pm(x) is
the zero polynomial, and that m is the lowest number for which such a formula
is valid. What happens if one differentiates the formula f (x, ex ) = 0?

7.3 (♦) Defining Transcendental Functions

An important role was played by differential equations in the way we defined the
elementary transcendental functions and obtained their basic properties. The question
arises as towhetherwe could have gone further and actually defined cosine and sine as
the solutions of the differential equation y′′ + y = 0 that satisfy the initial conditions,
respectively, y(0) = 1, y′(0) = 0 and y(0) = 0, y′(0) = 1. Similarly whether we
could have defined exp x as the solution of y′ = y that satisfies y(0) = 1.

The answer is that this is a perfectly feasible procedure, but to carry it through
we need to know that these differential equations have unique solutions satisfying
given initial conditions. This is a proposition that typically comes later in courses
of analysis, relying, as it does, on the notion of uniform convergence. One does not
want to delay the definition of the elementary functions longer than is absolutely
necessary.
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When the existence and uniqueness theorem for differential equations is in place
it becomes an invaluable source for defining new transcendental functions. We give
here a brief preview, without proofs, of what is needed.

A linear homogeneous differential equation of order n has the form

pn(x)y
(n) + pn−1(x)y

(n−1) + · · · + p1(x)y
′ + p0(x)y = 0. (7.1)

The coefficient functions pk(x), k = 0, 1, ..., n are supposed to be continuous func-
tions on a common open interval A. A solution of the equation on A is an n-times
differentiable function φ(x) that satisfies

pn(x)φ
(n)(x) + pn−1(x)φ

(n−1)(x) + · · · + p0(x)φ(x) = 0, (x in A). (7.2)

Special cases are the first-order equation y′ − y = 0 and the second-order equation
y′′ + y = 0 that we have already studied and solved. In both these cases A = R.

The existence theorem for the problem (7.1) applies to an interval A on which the
leading coefficient function pn(x) has no zeros. If pn(x) has zeros one has to restrict
to an interval that excludes them before applying the existence theorem.

Proposition 7.14 If pn(x) has no zeros in A then the set of all solutions of (7.1) on
A is an n-dimensional vector space of functions over the real field R.

The proposition implies that if we can find n solutions on A that are linearly
independent over the reals, then they form a basis for the space of all solutions.
Every other solution is a linear combination of these n solutions in precisely one
way. For the first-order equation y′ − y = 0 the solution space is one-dimensional
and, for example, the function exp x , taken alone, forms a basis. Every solution is
of the form C exp x for some C . For the second-order equation y′′ + y = 0, the two
solutions cos x and sin x form a basis; every solution has the formC cos x + D sin x ,
for some constants C and D.

The second result concerns uniqueness.

Proposition 7.15 If pn(x) has no zeros in A, if x0 is a point in A and c0, c1,...,cn−1

given numbers, then there exists a unique solution of (7.1) that satisfies the initial
conditions

y(x0) = c0, y′(x0) = c1, ..., y(n−1)(x0) = cn−1.

Examples of transcendental functions that are defined by differential equations of
this kind include the following:

(a) Bessel functions. These are solutions on the interval ]0,∞[ of Bessel’s equation:

x2y′′ + xy′ + (x2 − α2)y = 0.

The constant α is called the order of the Bessel function.
(b) Legendre functions. These are solutions, usually studied on the interval ]−1, 1[,

of Legendre’s equation:
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(1 − x2)y′′ − 2xy′ + �(� + 1)y = 0

where � is a constant.
(c) Hypergeometric functions. These are solutions of the hypergeometric equation:

x(1 − x)y′′ + (c − (a + b + 1)x)y′ − aby = 0

where a, b and c are constants. They were extensively studied by Gauss and
include as special cases a vast range of transcendental functions.

Non-linear differential equations are also a major source of new transcendental
functions. Indeed we recall that in the interval ]−π/2, π/2[ the function sin x is a
solution of the non-linear differential equation

y′ =
√
1 − y2.

Problems in classical mechanics give rise to problems of the form

y′ = √
P(y)

where P(y) is a third-degree or fourth-degree polynomial. The solutions can be
expressed by a new class of periodic functions, the elliptic functions. The methods
used by Abel and Jacobi, to introduce these functions early in the nineteenth century,
showed that analysis was an inexhaustible source of new functions.

7.3.1 Exercises

1. We defined the circular functions by studying the integral

∫ x

0

1√
1 − t2

dt

and inverting the function defined by it. In a similar way we can study the more
general integral

F(x) :=
∫ x

0

1
√

(1 − t2)(1 − k2t2)
dt, −1 < x < 1

where k is a constant in the range 0 ≤ k < 1. This so-called elliptic integral was a
major puzzle to mathematicians until Abel and Jacobi, independently so it seems,
pointed out that one should think of F as an inverse function to an elliptic function.
In the following sequence of exercises the reader is invited to construct an elliptic
function using the same steps as were used in the text to construct sin x .
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(a) Show that F(x) is an odd function and is strictly increasing on the interval
]−1, 1[.

(b) Show that the limit
L := lim

x→1− F(x)

exists and that L < 2/
√
1 − k2.

(c) The inverse function to F maps the interval ]−L , L[ on to the interval ]−1, 1[.
We have here the function snk(x), one of a group of functions called Jacobi
elliptic functions with parameter k. Show that snk(x) satisfies the differential
equation

y′′ + (1 + k2)y − 2k2y3 = 0 (7.3)

in the interval ]−L , L[.
(d) The differential equation (7.3) shares many properties with the equation

y′′ + y = 0. Show that if y = f (x) is a solution in an interval ]a, b[, then the
translation y = f (x − c) is a solution in ]a + c, b + c[, and the reflection
y = f (−x) a solution in ]−b,−a[.

(e) Show that the function snk(x), initially defined in the interval ]−L , L[,
extends to a function, also denoted by snk(x), on all of R, that satisfies (7.3),
and has period 4L .

2. For each natural number n we define the function

fn(x) = ex
2 dn

dxn
e−x2 .

(a) Show that fn is a polynomial of degree n, and is moreover an even function
when n is even and an odd function when n is odd (for the definitions of even
and odd functions see Sect. 5.4 Exercise8).

(b) Show that fn+1(x) = f ′
n(x) − 2x fn(x) for n = 0, 1, 2, ...

(c) Show that fn has n distinct real roots.
(d) Show that fn satisfies the differential equation

y′′ − 2xy′ + 2ny = 0.

Note. The functions fn are (up to a normalisation constant) the Hermite polynomials. The dif-

ferential equation y′′ − 2xy′ + 2λy = 0, where λ is a real parameter, is known as Hermite’s

equation. Non-polynomial solutions to Hermite’s equation exist; they are transcendental func-

tions and some are non-elementary.

3. For each natural number n define

φn(x) = dn

dxn
(x2 − 1)n.
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Obviously φn is a polynomial of degree n. Up to a normalisation constant it is
the nth Legendre polynomial. Its zeros are all real and simple, and they lie in the
interval ]−1, 1[ (see Sect. 5.9 Exercise7).

(a) Derive the formulas

φ′
n+1(x) = 2(n + 1)xφ′

n(x) + 2(n + 1)2φn(x)

φ′
n+1(x) = (

(x2 − 1)φ′
n(x)

)′ + 2(n + 1)xφ′
n(x) + (n + 1)(n + 2)φn(x).

Hint. Attack the expressions

dn+2

dxn+2
(x2 − 1)n+1 and

dn+1

dxn+1
(x2 − 1)n+1

with Leibniz’s formula (Sect. 5.4 Exercise5).
(b) Deduce that φn(x) satisfies Legendre’s equation with � = n.
Note.Legendre’s equation also has transcendental solutions, some ofwhich are non-elementary.

The standard form of the Legendre polynomial is Pn(x) := φn(x)/2nn!.
4. Some Bessel functions are elementary.

(a) Show that the functions x−1/2 cos x and x−1/2 sin x satisfy Bessel’s equation
with α = 1/2 on the interval ]0,∞[.

To conjure up more examples you can use the following steps:

(b) We make a change of variables in Bessel’s equation. More precisely we
introduce a new variable u (really a function of x) related to the variable y by
u = x−α y. Show that y(x) satisfies Bessel’s equation with order α (as always
we mean in the interval ]0,∞[ ) if and only if u(x) satisfies the equation

xu′′ + (2α + 1)u′ + xu = 0. (7.4)

(c) Show that if u(x) is a solution of (7.4) for a given α then the function

v(x) = 1

x
u′(x)

is a solution of (7.4) in which α + 1 replaces α.
(d) Deduce that if y(x) satisfies Bessel’s equation with order α then the function

xα+1

(
1

x

d

dx

) (
x−α y(x)

)

satisfies Bessel’s equation with order α + 1.
(e) Deduce that if y(x) satisfies Bessel’s equation with order α then the function
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xα+n

(
1

x

d

dx

)n (
x−α y(x)

)

satisfies Bessel’s equation with order α + n.
(f) Deduce that the functions

xn+ 1
2

(
1

x

d

dx

)n (cos x
x

)
and xn+ 1

2

(
1

x

d

dx

)n (
sin x

x

)

satisfy Bessel’s equation with α = n + 1
2 .

In these formulas the expression 1
x

d
dx is a differential operator that converts

the following function u to u′/x . More precisely

(
1

x

d

dx

)
u(x) = 1

x
u′(x).

Its nth power is the differential operator that applies 1
x

d
dx to the succeeding

function n times in a row. More precisely, we have the inductive definition

(
1

x

d

dx

)n+1

u(x) :=
(
1

x

d

dx

)((
1

x

d

dx

)n

u(x)

)
.

7.3.2 Pointers to Further Study

→ Differential equations.
→ Special functions.



Chapter 8
The Techniques of Integration

Design is not making beauty, beauty emerges from selection,
affinities, integration, love.

Louis Kahn, architect

This chapter covers a classical set of techniques which essentially can be used to find
antiderivatives of common functions. The time was when a mathematical education
placed great emphasis on acquiring skill in using these techniques. Arguably they
are less important now, but many find that successfully using them to find a difficult
antiderivative is a satisfying experience.

8.1 Integration by Parts and by Substitution

Two immensely important rules for finding antiderivatives correspond, respectively,
to the rule for differentiation of a product and the chain rule, when these are inverted
by means of the fundamental theorem.

Proposition 8.1 (Integration by parts) Let f and g be functions defined in the open
interval A. Assume that f and g are differentiable and that their derivatives, f ′ and
g′, are continuous. Then

∫ b

a
f g′ = f (b)g(b) − f (a)g(a) −

∫ b

a
f ′g

for all a and b in A.

Proof We have that ( f g)′ = f g′ + f ′g, which is continuous; so the fundamental
theorem applies and we have
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∫ b

a
( f g′ + f ′g) = ( f g)

∣∣b
a = f (b)g(b) − f (a)g(a).

�

The rule ismost frequently used to handle antiderivatives in the followingway. If u
and v are functions of x and we know an antiderivative for u′v, then an antiderivative
for uv′ is given by ∫

uv′ = uv −
∫

u′v.

Given the task of finding an antiderivative
∫
f , skill and experience may suggest

suitable functions u and v, such that f = uv′, and an antiderivative for u′v is then
easy to find.

Proposition 8.2 (Integration by substitution) Let A and B be open intervals, let
f : A → R be continuous, and let φ : B → R be differentiable, with φ′ continuous.
Assume that φ(B) ⊂ A. Then for all a and b in B we have

∫ b

a
f ◦ φ φ′ =

∫ φ(b)

φ(a)

f,

or, in Leibniz’s notation

∫ b

a
f (φ(t))φ′(t) dt =

∫ φ(b)

φ(a)

f (x) dx .

The use of distinct variables t and x has no logical significance; they are bound
variables. However it supports the usual interpretation of the rule, that the integral
on the left is obtained from the integral on the right by means of the substitution
x = φ(t). The substitution replaces dx by φ′(t) dt , a replacement that is obtained
formally by writing

x = φ(t) ⇒ dx

dt
= φ′(t) ⇒ dx = φ′(t) dt.

This piece of Leibniz notation, though illegally separating dx and dt , is very useful
in practice.

Proof of the Rule Let F be an antiderivative for f (one exists since f is continuous).
The composed function F ◦ φ is defined on the domain B and by the chain rule

(F ◦ φ)′ = (F ′ ◦ φ)φ′ = ( f ◦ φ)φ′.

We see that (F ◦ φ)′ is continuous and therefore
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∫ φ(b)

φ(a)

f = (F ◦ φ)(b) − (F ◦ φ)(a) =
∫ b

a
(F ◦ φ)′ =

∫ b

a
( f ◦ φ)φ′.

�

We note two interesting points:

(a) It is not necessary forφ to bemonotonic. It does not even need tomap the interval
[a, b] on to the interval [φ(a), φ(b)], but we do not want φ(t) to go outside the
domain of f .

(b) The rule is often used to transform antiderivatives in the following way. If x =
φ(t) then ∫

f (x) dx =
∫

f (φ(t))φ′(t) dt + C. (8.1)

The equation in point (b) is interpreted tomean that if F is an antiderivative for f then
F ◦ φ is an antiderivative for ( f ◦ φ) φ′. Conversely, if we can find an antiderivative
for ( f ◦ φ) φ′, let us call it G, then G ◦ φ−1 is an antiderivative for f . This requires
us to deploy the inverse φ−1; so we would need to work on an interval in which φ is
monotonic.

Point (b) indicates two somewhat different ways to apply the rule; they are
explored in the next section.

8.1.1 Finding Antiderivatives by Substitution

Let us look at two examples of the use of substitution to find an antiderivative.
They illustrate two different ways for applying the rule. In each case we present the
calculation, as it would normally be presented, and then its explanation.

(A) Find the integral on the right in (8.1) by solving the integral on the left.

∫ √
1 − t2 t dt = −1

2

∫ (√
1 − t2

)
(−2t) dt

= −1

2

∫ √
x dx = −1

3
x
√
x = −1

3
(1 − t2)

√
1 − t2 .

Explanation. We have
√
1 − t2 t dt = f

(
φ(t)

)
φ′(t) dt where

φ(t) = 1 − t2, f (x) = −1

2

√
x .

The antiderivative obtained is valid on the interval −1 < t < 1.
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(B) Find the integral on the left in (8.1) by solving the integral on the right. This is
more complicated than case A because in the final step we have to substitute for t as
a function of x . This requires the inverse function φ−1.

As an example consider the following calculation. For −1 < x < 1 we have

∫ √
1 − x2 dx =

∫ √
1 − sin 2t cos t dt =

∫
cos 2t dt

=
∫

1

2
(1 + cos 2t) dt = 1

2
t + 1

4
sin 2t = 1

2
t + 1

2
sin t cos t

= 1

2
arcsin x + 1

2
x
√
1 − x2.

Explanation.We set x = sin t , dx = cos t dt . We have to choose an interval for t to
fix an inverse for sin t . The simplest is to keep t in the interval ]−π

2 , π
2 [. Then sin t is

increasing and maps this interval on to the interval ]−1, 1[. Moreover
√
1 − sin2 t =

cos t (and not − cos t , owing to the interval chosen for t). Finally x is reintroduced.
Since −π

2 < t < π
2 we have t = arcsin x and cos t = √

1 − x2 (and not −√
1 − x2,

again, thanks to the choice of interval).

Traditionally, finding an antiderivative of a function f by the techniques of this
chapter was called solving the integral

∫
f (x) dx . Every integral solved can be added

to a catalogue and used to solve further integrals.

8.1.2 Exercises

1. Solve the following integrals:

(a)
∫

xex dx

(b)
∫

x2 cos x dx

(c)
∫

ex cos x dx

Hint. Call the integral I . Integrating twice by parts leads to I = ex sin x +
ex cos x − I . Look out for other opportunities to use this trick.

(d)
∫

xex cos x dx

(e)
∫

ln x dx, (x > 0)

(f)
∫

x ln x dx, (x > 0)

(g)
∫

ln x

x2
dx, (x > 0)

(h)
∫

x(ln x)2 dx, (x > 0).
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2. Solve the following useful integrals, where a is a positive constant:

(a)
∫

1√
a2 − x2

dx, (−a < x < a)

(b)
∫

1√
a2 + x2

dx

(c)
∫

1√
x2 − a2

dx, (x > a)

Note. In this integral, as in some others in the following exercises, a different domain

from the one specified is possible, in which case a different formula may be needed for

the antiderivative. See the discussion of
∫ 1

x dx in Sect. 7.1.1.

(d)
∫

1

a2 + x2
dx .

3. Solve the following integrals:

(a)
∫

x
√
1 − x2 dx, (−1 < x < 1)

(b)
∫

x√
1 + x2

dx

(c)
∫

x√
x4 − 1

dx, (x > 1)

(d)
∫

x

1 + x2
dx .

4. Solve the following integrals:

(a)
∫

cos x

1 + sin2x
dx

(b)
∫

cos x√
1 + sin2x

dx

(c)
∫

xex
2
dx

(d)
∫

tan x dx,
(

− π

2
< x <

π

2

)

(e)
∫

sec4x dx,
(

− π

2
< x <

π

2

)
.

5. Solve the following integrals:

(a)
∫

sin2x dx

Hint. The standard trick for this and for
∫
cos2x dx is to use the duplica-

tion formulas cos 2x = 2 cos2x − 1 = 1 − 2 sin2x , as in example B of the
preceding section.

(b)
∫

cos2x sin2x dx

(c)
∫

cos3x sin2x dx
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(d)
∫

sin4x dx

(e)
∫

cosh2x dx

Hint. The same trick as in item (a) but using the duplication formula for
hyperbolic cosine (Sect. 7.2 Exercise 19). This also works for

∫
sinh2x dx .

(f)
∫

cos ax cos bx dx where a and b are real numbers.

Hint.Use the addition formulas for the circular functions. Variants in which
one or both factors are replaced by the sine are treated similarly.

6. Solve the following integrals:

(a)
∫ √

x2 + 1 dx

(b)
∫ √

x2 − 1 dx, (x > 1)

Hint. The integrals (a) and (b) occur often. A trigonometric or hyperbolic
substitution will work, but one can also integrate by parts. The similar inte-
gral

∫ √
1 − x2 dx was worked out in the text.

(c)
∫

x2√
x2 − 1

dx, (x > 1).

7. The integral
∫
sec xdx arises frequently in the course of solving other integrals.

Solve it by writing

sec x = sec2x + sec x tan x

sec x + tan x

and consulting the derivatives of the trigonometric functions listed in Sect. 7.1.
The most convenient domain is ]−π

2 , π
2 [ since sec x + tan x is positive there.

8. Solve the following integrals:

(a)
∫

sec3x dx,
(

− π

2
< x <

π

2

)

(b)
∫ √

1 + ex dx

(c)
∫

e
√
x dx, (x > 0)

(d)
∫

ln(1 + x2) dx

(e)
∫ √

x − 1

x + 1
dx, (x > 1)

(f)
∫ √

x − 1

x + 1

1

x2
dx, (x > 1)

(g)
∫ √

1 + √
x dx, (x > 0).
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9. Show that the function F(x) = ∫ x
0 cos(1/t) dt is differentiable at 0 and compute

F ′(0). This is so, despite the fact that the integrand is discontinuous at 0.
Hint. Integrate by parts in a cunning way.

10. Let f be continuous in an interval A and let a and b be points in A. Show that

∫ b

a
f =

∫ b

a
f (a + b − x) dx .

Can you prove this without assuming continuity, given that a < b and f is
integrable on [a, b]?

11. The length of the upper arc of the ellipse x2/a2 + y2/b2 = 1 (with a > b > 0),
from x = 0 to x = c (where 0 < c < a), is given by the integral (asked for in
Sect. 6.7 Exercise 2): ∫ c

0

√
a2 − e2x2

a2 − x2
dx

where e, the eccentricity (not necessarily 2.718...), is given by

e =
√
1 − b2

a2
.

Find a substitution that converts this integral to

a
∫ arcsin(c/a)

0

√
1 − e2 sin 2θ dθ.

Note. The integral obtained is one of the three standard forms that Legendre gave for elliptic

integrals.

12. Let f have a continuous derivative on an interval A and let a and b be integers
in A with a < b. For each real x , let [x] be the highest integer less than or equal
to x . Prove that

b∑
n=a

f (n) =
∫ b

a
f + f (a) + f (b)

2
+

∫ b

a

(
x − [x] − 1

2

)
f ′(x) dx .

Hint. Begin by computing the second integral.
Note. This formula is the simplest instance of the Euler–Maclaurin summation formula, and

is the first step in proving it. This will be taken up in an exercise in Chap. 12.

13. Let f be continuous in the open interval A and possess an inverse function
f −1. Suppose that an antiderivative F is known for f . Show how to express an
antiderivative for f −1 in terms of the functions x , f −1 and F .
Hint. This is easy if f has a continuous derivative, since one can write
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∫
f −1 =

∫
1. f −1

and integrate by parts. This produces a formula for an antiderivative of f −1. Then
one can try to show that the same formula gives an antiderivative of f −1 even
when f is not assumed to be differentiable. Note that f is strictly monotonic by
Sect. 4.4 Exercise 4.
Note. The result is connected with the Legendre transform, Sect. 5.10 Exercise 14.

14. Use the method of the previous exercise to solve the following integrals:

(a)
∫

ln x dx

(b)
∫

arcsin x dx

(c)
∫

arctan x dx

(d)
∫

cosh−1x dx .

15. Let the functions f and g be continuous in an open interval A. Suppose that
f is differentiable, and that f ′ is continuous and either entirely non-positive or
entirely non-negative. Show that for all a and b in A there exists ξ between a
and b, such that ∫ b

a
f g = f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

Hint. Integrate by parts and use themean value theorem for integrals, Proposition
6.15.
Note.This result, the secondmean value theorem for integrals, was proved in greater generality

in Sect. 6.8. See also Exercise 17 below.

The remaining exercises in this section are concerned with extending the rule for
integration by parts using the notion of primitive. It is a good idea to take another look
at the definition of primitive, as used in this text and introduced in Sect. 6.5, and recall
Proposition 6.19 which identified the primitives of piece-wise continuous functions.
The first, rather mild, extension allows piece-wise continuous integrands and has
some practical uses, as such integrands occur often in technology. A theoretical
application will occur in Chap.12. The second extension goes about as far as is
possible for the Riemann–Darboux integral.

16. Let f and g be piece-wise continuous functions in an interval A. Let F be a
primitive for f and G a primitive for g.

(a) Show that FG is a primitive for Fg + f G.
(b) Deduce the rule for integration by parts: for each a and b in A we have

∫ b

a
Fg = F(b)G(b) − F(a)G(a) −

∫ b

a
f G.
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17. (�) There is a very general version of the rule for integration by parts that does
not rely on derivatives at all. Its proof is based on the approximation of integrable
functions in the mean by step functions (Sect. 6.8).
Let f and g be integrable on an interval [a, b]. Let F be a primitive of f and G
a primitive of g. Then

∫ b

a
Fg = F(b)G(b) − F(a)G(a) −

∫ b

a
f G.

(a) Prove the formula in the case that f and g are step functions.
(b) Prove the formula in the case that f and g are integrable.

Hint. Approximate f and g in the mean by step functions.

Note. Applying the result of this exercise we get another version of the second mean value

theorem, where, in the notation of Exercise 15, f is a primitive of a positive integrable function

and g is integrable. It is still not as general as the version in Sect. 6.8, in which f is merely

monotonic.

8.2 Integrating Rational Functions

Every rational function has an antiderivative that may be expressed using elementary
functions. The proof of this remarkable fact will occupy the bulk of this section. Some
knowledge of algebra is assumed.

A rational function has the form P(x)/Q(x) where P and Q are polynomials. If
the degree of P is greater than or equal to the degree of Q we can divide Q into P and
obtain quotient and remainder. The quotient is a polynomial and its antiderivative
also a polynomial. The remainder is a polynomial with degree less than that of Q.

We can therefore concentrate on the case of a rational function P(x)/Q(x)where
the degree of P is lower than the degree of Q. We also assume that Q is a monic
polynomial, meaning that the leading coefficient of Q is 1.

We will need two major inputs from algebra:

(a) The fundamental theorem of algebra for real polynomials. The polynomial Q
has a factorisation:

Q(x) = (x − λ1)
r1 . . . (x − λm)rm (x2 + α1x + β1)

s1 . . . (x2 + αnx + βn)
sn

where the real numbers λ1, ..., λm are distinct, the real number pairs (α1, β1), ...,
(αn, βn) are distinct, the exponents, r1, ..., rm , s1, ..., sn , are positive integers, and
the second-degree factors have no real roots (they are, in other words, irreducible
over the reals). The factors x − λ j and x2 + α j x + β j are called the prime factors
of Q. A prime factor is said to be simple if its exponent in the factorisation is 1.
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First-degree polynomials and second-degree polynomials that do not factorise over
the reals are the prime elements in the ring of real polynomials in one variable. They
play a role in polynomial theory very similar to that of the prime integers in number
theory.

(b) The rational function P(x)/Q(x) has a partial fractions decomposition; see the
next section.

Exercise Show that
∑m

j=1 r j + 2
∑n

j=1 s j = deg Q (the degreeof thepolynomialQ).

8.2.1 Partial Fractions

The partial fractions decomposition of P(x)/Q(x), given that the degree of Q is
higher than the degree of P , and that Q has the factorisation as outlined above, is

P(x)

Q(x)
=

r1∑
j=1

a1 j
(x − λ1) j

+ · · · +
rm∑
j=1

amj

(x − λm) j

+
s1∑
j=1

b1 j x + c1 j
(x2 + α1x + β1) j

+ · · · +
sn∑
j=1

bnj x + cnj
(x2 + αnx + βn) j

.

It is guaranteed that the coefficients ai j , (1 ≤ i ≤ m, 1 ≤ j ≤ ri ), bi j and ci j , (1 ≤
i ≤ n, 1 ≤ j ≤ si ), can be found uniquely by solving simultaneous linear equations.
It is only necessary that the form of the fractions is correctly set down. A foolproof
method to find the coefficients is to clear the denominators by multiplying through
by Q(x) and then equate coefficients of like powers of x .

8.2.2 Practicalities

We look at some practical hints for finding the partial fractions decomposition of
P(x)/Q(x), on the assumption that the real factorisation of Q is already known.
Remember that one can always express the problem as a system of linear equations,
that is guaranteed a unique set of solutions when the form of the fractions is correct.
However, some of the tricks shown below can save labour.

Case A. The prime factors are simple and of first degree. This is the case

Q(x) = (x − λ1)(x − λ2)...(x − λm)

where the numbers λ1, ..., λm are real and distinct.
An example will illustrate a convenient method. Find a, b and c, such that



8.2 Integrating Rational Functions 273

x

(x − 1)(x − 2)(x − 3)
= a

x − 1
+ b

x − 2
+ c

x − 3
.

Clearing the denominators we find

x = a(x − 2)(x − 3) + b(x − 1)(x − 3) + c(x − 1)(x − 2).

Substituting the values x = 1, 2, 3 in turn, we get a = 1
2 , b = −2, c = 3

2 .

Case B. The prime factors are of first degree but are not all simple. This is the case

Q(x) = (x − λ1)
r1 . . . (x − λm)rm

where some exponents are greater than 1.
Again we give an illustrative example. Find a, b, c and d, such that

1

(x − 1)2(x − 2)2
= a

x − 1
+ b

(x − 1)2
+ c

x − 2
+ d

(x − 2)2
.

Clearing denominators we find

1 = a(x − 1)(x − 2)2 + b(x − 2)2 + c(x − 1)2(x − 2) + d(x − 1)2.

The substitutions x = 1 and x = 2 give b = 1 and d = 1. Next we differentiate and
obtain

0 = a
(
(x − 2)2 + 2(x − 1)(x − 2)

) + 2(x − 2)2

+ c
(
(2(x − 1)(x − 2) + (x − 1)2

) + 2(x − 1).

Now putting x = 1 and x = 2 gives a = −2 and c = −2.
An alternative to differentiating in the second step is to write (having already

determined that b = 1 and d = 1)

1 − (x − 2)2 − (x − 1)2 = a(x − 1)(x − 2)2 + c(x − 1)2(x − 2).

Now it will be found that x − 1 and x − 2 divide the left-hand side and can be
cancelled. A further substitution of 1, followed by 2, then reveals a and c.

Case C. Some prime factors are irreducible quadratics but all exponents are 1. This
is the case

Q(x) = (x − λ1) . . . (x − λm)(x2 + α1x + β1) . . . (x2 + αnx + βn).

Consider the example
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x2

(x − 1)(x2 + 1)
= a

x − 1
+ bx + c

x2 + 1
.

Clearing denominators we find

x2 = a(x2 + 1) + (bx + c)(x − 1).

Substituting x = 1 gives a = 1
2 . Now we write

x2 − 1

2
(x2 + 1) = (bx + c)(x − 1).

Now x − 1 divides the left-hand side and cancelling it we find

1

2
(x + 1) = bx + c

giving b = c = 1
2 .

Alternatively, if you know about complex numbers, you can substitute one of the
complex roots of x2 + 1 (they are i and −i), to find b and c.

8.2.3 Outline of Proof

The existence of the partial fractions decomposition can be proved by linear algebra.
We shall sketch a proof, accessible for the reader familiar with vector spaces, in
particular the notions of basis and linear independence. The idea is that the partial
fractions decomposition is merely a change of basis in a finite-dimensional vector
space over the real field. The reader unfamiliar with these ideas can simply skip this
section.

For a given positive integer d, the set of all polynomials with degree less than d
is vector space over the real field, and it has finite dimension d. In fact, a basis for it
is provided by the set

{1, x, x2, ..., xd−1}

comprising d polynomials.
Our real interest is rational functions. Let Q be amonic polynomial with degree d.

We shall denote by RQ the space of all rational functions, expressible in the form
P(x)/Q(x) for some polynomial P with degree less than d. It is a vector space of
dimension d. As a basis for RQ we can indicate the set

{
1

Q(x)
,

x

Q(x)
,

x2

Q(x)
, ...,

xd−1

Q(x)

}
.



8.2 Integrating Rational Functions 275

The polynomial Q has a factorisation as described in item (a) above (by the fun-
damental theorem of algebra). Deploying the constants λ1, ..., λm , the pairs (α1, β1),
..., (αn, βn) and the exponents r1, ..., rm , s1, ..., sn , we consider the functions in the
ensuing list:

1

(x − λk)p
, (1 ≤ p ≤ rk, 1 ≤ k ≤ m),

x

(x2 + αk x + βk)q
, (1 ≤ q ≤ sk, 1 ≤ k ≤ n),

1

(x2 + αk x + βk)q
, (1 ≤ q ≤ sk, 1 ≤ k ≤ n).

The functions in the list all belong to the vector space RQ , as they can obviously
be expressed with Q as denominator and with a numerator of degree less than d. The
number of functions in the list (the reader is invited to count them) is the same as the
degree of Q, that is, it is the same as the dimension of RQ . We can conclude that they
form another basis for RQ , provided they can be shown to be linearly independent.
We omit this step, which is most easily accomplished by exploiting the roots of Q,
including the complex roots of the irreducible quadratic factors. Complex numbers
will be considered in Chap. 9.

Having shown that the functions in the list constitute a basis for RQ , it follows that
every element of RQ can be expressed in a unique fashion as a linear combination of
them. This is, of course, just the partial fractions decomposition.

Exercise To get an idea of how an independence proof might proceed, the reader
can try to prove that the six functions

1

x − 1
,

1

(x − 1)2
,

1

x2 + x + 1
,

x

x2 + x + 1
,

1

(x2 + x + 1)2
,

x

(x2 + x + 1)2

are linearly independent. This is the case Q(x) = (x − 1)2(x2 + x + 1)2.

Hint. One has to show that if a relation

a1
x − 1

+ a2
(x − 1)2

+ b1 + b2x

x2 + x + 1
+ b3 + b4x

(x2 + x + 1)2
= 0

holds (for all x), then the coefficients a1, a2, b1, b2, b3 and b4 are all 0. One way to
start is to multiply by (x − 1)2 and set x = 1.
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8.2.4 How to Integrate the Fractions

The problem of integrating P(x)/Q(x) reduces to integrating each term in the partial
fractions decomposition.

Two of the fractions are easily dealt with:

∫
1

x − λ
dx = ln(x − λ) (or ln(λ − x) if x < λ)

and ∫
1

(x − λ)r
dx = 1

(1 − r)(x − λ)r−1
, (r 	= 1).

Next we write

bx + c

(x2 + αx + β)s
=

b
2 (2x + α)

(x2 + αx + β)s
+

1
2 (2c − bα)

(x2 + αx + β)s
.

The first fraction on the right is treated to the substitution u = x2 + αx + β, which
leads, in the case s 	= 1, to

∫
2x + α

(x2 + αx + β)s
dx = 1

(1 − s)us−1
= 1

(1 − s)(x2 + αx + β)s−1
,

and, in the case s = 1, to

∫
2x + α

x2 + αx + β
dx = ln u = ln(x2 + αx + β).

There remains the more difficult task of solving the integral

∫
1

(x2 + αx + β)s
dx .

First we write

x2 + αx + β =
(
x + α

2

)2 + β − α2

4
.

This is the familiar operation of completing the square. Set u = x + (α/2). The
constant β − (α2/4) is positive (because the polynomial has no real root) and we set
γ 2 = β − (α2/4). Now we have the integral

Is :=
∫

1

(u2 + γ 2)s
du.

Using integration by parts we find
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Is = u

(u2 + γ 2)s
+ 2s

∫
u2

(u2 + γ 2)s+1
du

= u

(u2 + γ 2)s
+ 2s Is − 2sγ 2 Is+1

and collecting multiples of Is we obtain

Is+1 = u

2sγ 2(u2 + γ 2)s
+ 2s − 1

2sγ 2
Is .

This is an example of a reduction formula. It is convenient for purposes of calculation
to knock 1 off s and write it as

Is = u

2(s − 1)γ 2(u2 + γ 2)s−1
+ 2s − 3

2(s − 1)γ 2
Is−1, s = 2, 3, 4, ...

After a finite number of applications we come down to the integral

I1 =
∫

1

u2 + γ 2
du = 1

γ
arctan

u

γ
= 1

γ
arctan

x + α

γ
.

We summarise the conclusions concerning the form of the antiderivatives just
derived.

Proposition 8.3 The antiderivative of a rational function P(x)/Q(x) can be
expressed as the sum of three functions G1(x) + G2(x) + G3(x) (some of which
may be 0), where

(1) G1(x) is a rational function.
(2) G2(x) is a linear combination, with real coefficients, of logarithms of first or

second-degree polynomials.
(3) G3(x) is a linear combination, with real coefficients, of arctangents of first-

degree polynomials.

Weoften distinguish the different parts of the integral by callingG1(x) the rational
part and G2(x) + G3(x) the transcendental part.

8.2.5 Integrating Rational Functions of sin θ and cos θ

We are going to solve the integral

∫
R(cos θ, sin θ) dθ (8.2)
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where R(x, y) = f (x, y)/g(x, y) is a rational function of x and y, that is, the quotient
of two polynomials in the two variables x and y. This can always be accomplished
by the half-angle substitution t = tan(θ/2). Its efficacy can be explained by the fact
that the circle x2 + y2 = 1 has the rational parametrisation:

x = 1 − t2

1 + t2
, y = 2t

1 + t2
.

Proposition 8.4 The substitution t = tan(θ/2) transforms the integral (8.2) into the
integral of a rational function of t .

Proof The perfectly explicit proof is the series of elementary calculations:

sin θ = 2 sin
θ

2
cos

θ

2
= 2 sin θ

2 cos
θ
2

cos 2 θ
2 + sin 2 θ

2

= 2t

1 + t2

cos θ = cos 2
θ

2
− sin 2 θ

2
= cos 2 θ

2 − sin 2 θ
2

cos 2 θ
2 + sin 2 θ

2

= 1 − t2

1 + t2

dt = 1

2 cos 2 θ
2

dθ = cos 2 θ
2 + sin 2 θ

2

2 cos 2 θ
2

dθ = 1 + t2

2
dθ

all of which leads to

∫
R(cos θ, sin θ) dθ =

∫
R

(
1 − t2

1 + t2
,

2t

1 + t2

)
2

1 + t2
dt.

�

8.2.6 Further Useful Reduction Formulas

We list some more reduction formulas that the reader is likely to encounter. They all
come in useful for finding antiderivatives. Yet others are explored in the exercises.

(i)
∫

(ln x)n dx = x(ln x)n − n
∫

(ln x)n−1 dx

(ii)
∫

xnex dx = xnex − n
∫

xn−1ex dx

(iii)
∫

sinnx dx = −1

n
sinn−1x cos x + n − 1

n

∫
sinn−2x dx

(iv)
∫

cosnx dx = 1

n
cosn−1x sin x + n − 1

n

∫
cosn−2x dx .
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The last two rules lead toWallis’ integrals:

∫ π
2

0
sinnx dx =

∫ π
2

0
cosnx dx =

⎧⎪⎪⎨
⎪⎪⎩

n − 1

n

n − 3

n − 2
...

1

2

π

2
if n is even

n − 1

n

n − 3

n − 2
...

2

3
if n is odd.

8.2.7 Exercises

In the case of a rational integrand the precise form of the antiderivative may depend
on which interval, whose endpoints are successive zeros of the denominator, is being
considered. If this is the case it is simplest to assume that x is higher than all roots
of the denominator. It is then easy to adjust the antiderivative thus obtained for other
intervals separated by roots of the denominator.

1. Solve the following integrals:

(a)
∫

x2

x2 + 1
dx

(b)
∫

x

(x2 − 1)(x2 − 2)
dx

(c)
∫

1

(x2 + 1)(x2 + 2)
dx

(d)
∫

x

(x2 − 1)(x2 + 2)
dx

(e)
∫

x2

(x − 1)2(x2 + 1)
dx

(f)
∫

1

(x − 1)2(x2 + 1)2
dx .

2. (a) Evaluate the integral ∫ 1

0

x4(1 − x)4

x2 + 1
dx .

(b) Using the estimate 1
2 < (x2 + 1)−1 < 1 obtain the inequalities

22

7
− 1

630
< π <

22

7
− 1

1260
.

Note.The approximation 22/7 toπ was known toArchimedes. The result shows that 1979/630,

or 3.14126.., is an approximation to π with error less than 1/1000. The actual error is around

3/10000.

3. Solve the integral ∫
1

a + sin θ
dθ



280 8 The Techniques of Integration

where a is a non-zero constant. Distinguish carefully between the cases a2 < 1,
a2 = 1 and a2 > 1.

4. Prove the reduction formulas listed in this section.
5. Verify the formulas known as Wallis’ integrals.
6. Obtain a reduction formula for

∫
secnx dx . This is useful because integrals

involving powers of secant often arise from using the substitution x = tan t in
integrals involving the factor

√
1 + x2.

7. To exploit the result of the previous exercise one needs the useful integral∫
sec x dx . Thiswas considered inSect. 8.1Exercise 7. Solve it again byusing the

half-angle substitution t = tan(x/2). Reconcile the result with that of Sect. 8.1
Exercise 7.

8. Using the previous two exercises and the substitution x = tan t solve the integral∫
(1 + x2)3/2 dx .

9. Obtain a reduction formula for
∫
xneax

2
dx . The results should show that this

integral can be expressed by elementary functions when n is odd, including the
case of negative n.

10. Show that the integral
∫
sinmx cosnx dx , where m and n are non-negative inte-

gers, reduces to one of the following easily solvable integrals:

∫
f (sin x) cos x dx,

∫
f (cos x) sin x dx,

∫
f (sin x) dx

where f is a polynomial.
11. Obtain reduction formulas for the integrals

(a)
∫

tannx dx

(b)
∫

tannx sec x dx

(c)
∫

xn√
x2 + 1

dx .

12. Some integrals involving fractional powers can be reduced to the integral of a
rational function by a suitable substitution, and the resulting integral solved by
the methods of this chapter. Try to do this (or at least the reduction part) for the
following integrals:

(a)
∫

1

x1/3 + x1/5
dx

(b)
∫ √

tan x dx

(c)
∫

3

√
x

x + 1
dx

(d)
∫

1

(x − a)3/2 + (x + a)3/2
dx .

13. Solve the following integrals:
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(a)
∫

1

x3 − 1
dx

(b)
∫

1

x4 + 1
dx

(c)
∫

1

x6 + 1
dx .

Hint. Try to find the irreducible quadratic factors using inspired guesswork.
Complex numbers can help in factorising the denominators; see the next chapter.

8.3 (�) Ostrogradski’s Method

In order to find the partial fractions decomposition of a rational function P/Q, prior
to integrating it, one must know the roots of the denominator. This may be a hard
task. In this nugget we shall explore what can be discovered about the integral

∫
P/Q

without finding the roots of the denominator. In particular it turns out that the rational
part of the integral, see Proposition 8.3, may be found by linear algebra alone. This is
variously known as Ostrogradski’s method or Hermite’s method (the former seems
to have priority but the latter is better known). Some knowledge of algebra will be
assumed.

We recall the fundamental theorem of algebra, according to which a real non-
constant polynomial Q has a factorisation into real prime factors

Q = gk11 gk22 ...gk



 .

The prime factors g j , all distinct, are first-degree polynomials, or second-degree
polynomials without real roots. The exponents are positive integers. Recall that a
prime factor g j of Q is called simple if k j = 1.

The polynomial Q is called square-free if all the exponents k j equal 1. The usage
is the same as for the factorisation of integers into primes. Square-free indicates that
it is not divisible by any perfect square (in which context constant polynomials do
not count).

Prime polynomials (for our purposes this means first-degree polynomials or
second-degree polynomials without real roots) have the following important prop-
erty: if P and Q are polynomials and a prime polynomial g divides PQ, then g
divides either P or Q.

The role that the following, rather mysterious, lemma plays will be apparent
shortly. The reader may prefer to look ahead and see how the lemma is used before
reading its proof.

Lemma 8.1 Suppose that P1, P2, Q1 and Q2 are polynomials that satisfy the con-
ditions:

(i)

(
P1
Q1

)′
+ P2

Q2
= 0
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(ii) All prime factors common to both Q1 and Q2 are simple factors of Q2.

Then Q1 divides P1 and Q2 divides P2.

Proof Our strategy for proving this is to show that all prime factors of the denomi-
nators Q1 and Q2 can be cancelled against the numerators P1 and P2, using a process
of descent (which is really the same as induction). There are two possible cases in
each step of the descent.

(A) The polynomial g is a prime factor of Q2 but not of Q1.

In this case we show that g divides P2. By condition (i) we have

Q1Q2P
′
1 − Q′

1Q2P1 + P2Q
2
1 = 0. (8.3)

Since g divides Q2 it must divide P2Q2
1 also. But g does not divide Q1, and therefore

g divides P2.

(B) The polynomial g is a prime factor of Q1.

In this case we show that g divides P1. To see this we first write Q1 = grψ1 and
Q2 = gsψ2, where ψ1 and ψ2 are polynomials not divisible by g, the exponent r
is a positive integer, and, according to assumption (ii), the exponent s is 0 or 1.
Substituting into (8.3) and cancelling powers of g we find

gψ1ψ2P
′
1 − rg′ψ1ψ2P1 − gψ ′

1ψ2P1 + gr−s+1ψ2
1 = 0.

We see that r ≥ 1 and r − s + 1 ≥ 1, so that g divides g′ψ1ψ2P1. But g does not
divide g′, nor by assumption does it divide ψ1 or ψ2. It follows that g divides P1.

In case A we replace P2 by P2/g and Q2 by Q2/g. In case B we replace P1 by
P1/g and Q1 by Q1/g. We proceed to eliminate all prime factors of Q1 and Q2, at
each step applying case A or B as appropriate. A simple way to implement this is to
apply case B until all prime factors of Q1 have been stripped, then to apply case A to
do the same to Q2. It is clear that this process eventually clears both denominators
of all their prime factors, and leads to the conclusion that Q1 divides P1 and Q2

divides P2. �

Suppose as before that Q has the prime factorisation

Q = gk11 gk22 ...gk



 . (8.4)

We define the polynomials

Q1 = gk1−1
1 gk2−1

2 ...gk
−1

 , Q2 = g1g2...g
. (8.5)

Exercise Show that the polynomial Q1 is the highest common factor of Q and Q′,
and that Q2 = Q/Q1. Show also that Q1 and Q2 satisfy condition (ii) of lemma 8.1.

We will also need the formula
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Q′
1

Q1
=


∑
j=1

(k j − 1)g′
j

g j
. (8.6)

Exercise Prove this formula.

We will need the following input from algebra. The highest common factor of
two polynomials can be computed without factorising them, using the Euclidean
algorithm (this was also referred to in the nugget “Multiplicity”). The reader unfa-
miliar with this should consult a book of algebra. The significance here is that the
polynomials Q1 and Q2 can be found without factorising Q, since Q1 is the highest
common factor of Q and Q′.

The following decomposition of P/Q is the basis of Ostrogradski’s method.

Lemma 8.2 Suppose that deg P < deg Q and let Q1 and Q2 be defined by (8.4) and
(8.5). Then there exist unique polynomials P1 and P2, such that deg P1 < deg Q1 and
deg P2 < deg Q2, satisfying

P

Q
=

(
P1
Q1

)′
+ P2

Q2
. (8.7)

Moreover P1 and P2 can be found by linear algebra, more precisely by the method
of undetermined coefficients.

Outline of Proof We first show that if deg P1 < deg Q1 and deg P2 < deg Q2, and
if (

P1
Q1

)′
+ P2

Q2
= 0,

then P1 = P2 = 0. This follows from lemma8.1, according towhichwe can conclude
that Q1 divides P1 and Q2 divides P2. Since deg P1 < deg Q1 and deg P2 < deg Q2

it follows that P1 and P2 are both 0.
The rest of the argument is linear algebra. We define two vector spaces. Firstly we

need the vector space RQ of all rational functions expressible in the form P(x)/Q(x)
with deg P < deg Q (also used in the discussion of partial fractions in Sect. 8.2). Sec-
ondly we need the vector spaceW comprising all pairs of polynomials (P1, P2), such
that deg P1 < deg Q1 and deg P2 < deg Q2. The first space has dimension deg Q and
the second deg Q1 + deg Q2, but these are equal since Q = Q1Q2.

We introduce a linear mapping T : W → RQ defined by

T (P1, P2) =
(
P1
Q1

)′
+ P2

Q2
.

That the right-hand side really belongs to the vector space RQ is easily seen by
expanding the derivative and using (8.6). The reader should check this point.

The argument at the beginning of the proof and based on the lemma tells us that
the kernel of T contains only the zero vector in W . Hence T is injective. Since
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the domain and codomain of T are vector spaces of the same dimension, it follows
by linear algebra that it is also surjective, and hence bijective. This establishes the
required decomposition. �

As a corollary of the decomposition (8.7) we obtain

∫
P

Q
= P1

Q1
+

∫
P2
Q2

.

The integral on the right-hand side is a transcendental function since the denominator
Q2 is square-free and the numerator has lower degree than the denominator. The first
term on the right-hand side P1/Q1 is the rational part of the integral.

8.3.1 Exercises

1. Let ψ be a square-free polynomial of degree d and let P have degree less than 2d
and no prime factor in common withψ . Show that the integral

∫
P/ψ2 is rational

if and only if ψ divides P ′ψ ′ − Pψ ′′.

2. Show that the integral
∫

4x3 − 3x2 − 2

(x3 + 1)2
dx is rational and evaluate it.

3. Solve the integral
∫

1

(x4 + 1)2
dx .

8.3.2 Pointers to Further Study

→ Symbolic integration

8.4 (�) Numerical Integration

If an antiderivative for f is not forthcoming, it is often the case that to calculate the
integral

∫ b
a f one has to approximate it.

We have seen how Riemann sums furnish an approximation, but one that yields
few extra decimal digits with each improvement step. More exact methods exist
that build on the same idea. Points tk are chosen in the interval [a, b] and the sum∑

αk f (tk) is formed with coefficients αk that satisfy
∑

αk = b − a. There are a
number of different prescriptions that have been developed. They are called numer-
ical integration rules. By choosing the points and the coefficients appropriately it is
possible to reach some remarkably accurate approximations.
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8.4.1 Trapezium Rule1

The interval [a, b] is divided into n equal parts. Let

h = b − a

n
, t0 = a, tk = a + kh, (k = 1, 2, ..., n − 1), tn = b.

The trapezium approximation is

Tn = h

2

(
f (a) + 2

n−1∑
k=1

f (tk) + f (b)

)
. (8.8)

It is possible to bound the error. Assume that f is twice differentiable and that
| f ′′(x)| < M in [a, b]. Then

∣∣∣∣
∫ b

a
f − Tn

∣∣∣∣ <
M(b − a)3

12n2
.

A convenient approach is to double n in each improvement step, as then previous
points can be used again. We can roughly say that each improvement step yields on
average at least 0.6 (being near to log10 4) extra correct digits after the decimal point,
as opposed to 0.3 digits for Riemann sums.

8.4.2 Midpoint Rule

The interval [a, b] is divided into n equal parts. Let

h = b − a

n
, t0 = a, tk = a + kh, (k = 1, 2, ..., n − 1), tn = b.

The midpoint rule is the approximation

Mn = h
n−1∑
k=0

f

(
tk + tk+1

2

)
. (8.9)

This is just a Riemann sum where in each subinterval we choose to evaluate f at the
midpoint.

1Also known as the trapezoidal rule.
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8.4.3 Simpson’s Rule

The interval is partitioned into 2n equal subintervals. Set

h = b − a

2n
, t0 = a, tk = a + kh, (k = 1, 2, ..., 2n − 1), t2n = b.

Simpson’s rule is the approximation

Sn = h

3

(
f (a) + 4

n∑
k=1

f (t2k−1) + 2
n−1∑
k=1

f (t2k) + f (b)

)
. (8.10)

The error is much improved over that for the trapezium rule. Assume that f is
four times differentiable and that | f (4)(x)| < M in the interval [a, b]. Then

∣∣∣∣
∫ b

a
f − Sn

∣∣∣∣ <
M(b − a)5

2880n4
.

Each doubling of n contributes, at a rough estimate, a further 1.2 (near to log10 16)
correct decimal digits. Note also that the rule is exact for third-degree polynomials,
as is clear from the error estimate.

The rule is easy to remember in the form:

∫ b

a
f ≈ h

3

[
initial + twice even + four times odd + final

]
.

8.4.4 Proof of the Error Estimate

We will prove the error estimate for Simpson’s rule in some detail. Error estimates
for the trapezium rule and the midpoint rule are simpler and are left to the reader as
exercises.

The interval is partitioned into an even number of intervals so we first estimate
the error for an interval partitioned into two subintervals. It is convenient to take the
interval as [−c, c], with partition points

t0 = −c, t1 = 0, t2 = c,

so that h = c. Simpson’s approximation is

c

3

(
f (−c) + 4 f (0) + f (c)

)
.

We set
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E(t) =
∫ t

−t
f − t

3

(
f (−t) + 4 f (0) + f (t)

)
, (0 ≤ t ≤ c).

Nowwedifferentiate repeatedlywith respect to t . The reader should check the algebra
in the following steps:

E ′(t) = 2

3
f (t) + 2

3
f (−t) − 4

3
f (0) + t

3
f ′(−t) − t

3
f ′(t)

E ′′(t) = 1

3
f ′(t) − 1

3
f ′(−t) − t

3
f ′′(−t) − t

3
f ′′(t)

E ′′′(t) = t

3
f ′′′(−t) − t

3
f ′′′(t).

Recall now that we are assuming that | f (4)(x)| < M for all x . By the mean value
theorem we therefore have

| f ′′′(s) − f ′′′(−s)| < 2Ms

for s > 0, so that

−2M

3
s2 < E ′′′(s) <

2M

3
s2, (s > 0).

Integrate these inequalities repeatedly from 0 to t ; the correct values for the middle
term at t = 0 can be read from the derivatives calculated above. After the third
integration we find

−M

90
t5 < E(t) <

M

90
t5,

which gives

|E(c)| <
M

90
c5.

We apply this to the partition of [a, b] into 2n intervals of length h. We have
h = (b − a)/2n and the error for each pair of consecutive subintervals is bounded
by

M

90
h5 = M(b − a)5

(90 × 25)n5
= M(b − a)5

2880n5
.

Adding together over the n pairs of intervals we get the error bound

M(b − a)5

2880n4

for Simpson’s rule.
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8.4.5 Exercises

1. Show that Simpson’s approximation for the two interval partition is the integral
from a to b of the second-degree polynomial whose graph (a parabola) passes
through the three points

(
a, f (a)

)
,

(
a + b

2
, f

(a + b

2

))
,

(
b, f (b)

)
.

This makes it obvious that Simpson’s approximation is exact for a parabola, but
does not reveal why it should be exact for a cubic.
Hint. It’s easy to do it for the case a = −b.

2. Prove the error estimate for the trapezium rule.
Hint. Do it first for a partition with only one subinterval. You can take the
interval as [−c, c] so the trapezium approximation is c( f (−c) + f (c)) and h =
2c. Estimate the error by copying the method used above for Simpson’s rule; only
it’s much easier.

3. Develop an error estimate for the midpoint rule. Compare it with the error in the
trapezium rule. Which is more accurate?

4. There is another way to write the error that sometimes gives more information,
for example it can tell you whether the approximation lies above or below the
true value. The treatment suggested here, and in the next two exercises, is closely
related to Taylor’s theorem (to be studied in Chap.11).
For the trapezium approximation show that if f is twice differentiable, the error
(the integral minus the approximation) is

− (b − a)3

12n2
f ′′(ξ),

for some ξ in ]a, b[. This gives the intuitive result that for a convex function the
integral is below the approximation.
Hint. Do it first for one interval, letting the interval be [−c, c] and h = 2c. Let

E(x) =
∫ x

−x
f − x

(
f (−x) + f (x)

)
,

so that the error is E(c). Apply Cauchy’s form of the mean value theorem repeat-
edly to the quotient E(x)/x3. You will need the fact that derivatives have the
intermediate value property (see Sect. 5.6 Exercise 8).

5. Develop a similar result for the midpoint rule and compare it with the trapezium
rule as regards magnitude and sign.

6. A similar result is also available for Simpson’s rule, but it is more complicated.
If f is four times differentiable then
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∫ b

a
f − Simpson’s approx. = − (b − a)5

2880n4
f (4)(ξ)

for some ξ in ]a, b[. A proof is outlined in the following steps:

(a) Obtain the result in the case of a Simpson approximation with two subinter-
vals.
Hint. You can take the interval [−c, c] subdivided at 0, so that h = c. Let

E(x) =
∫ x

−x
f − x

3

(
f (−x) + 4 f (0) + f (x)

)
.

Apply Cauchy’s form of the mean value theorem repeatedly to the quotient
E(x)/x5. Youwill again need the fact that derivatives satisfy the intermediate
value property.

(b) Obtain the result for 2n subintervals. Again you will need the intermediate
value property.

7. Let In denote the approximation to
∫ b
a f obtained from applying Simpson’s rule

with 2n subintervals. Define a new approximation

Jn = 16I2n − In
15

.

Find a formula for the error
∫ b
a f − Jn . The result should indicate that Jn is a

slight improvement over Simpson’s rule.

8.4.6 Pointers to Further Study

→ Numerical integration
→ Gauss quadrature
→ Numerical analysis



Chapter 9
Complex Numbers

The shortest path between two truths in the real domain passes
through the complex domain

J. Hadamard

Negative real numbers have no square root. This apparently regrettable fact is alle-
viated by extending the real number field R to the complex number field C. In it all
numbers have a square root.

9.1 The Complex Number Field

Formally the complex number field is a field C, that is, a set of elements satisfying
axioms A1–A6 of Chap.1, that includes the real numbers, contains an element i ,
necessarily non-real, that satisfies i2 = −1, and contains no other non-real elements
except those that it has to in virtue of being a field. Its non-real elements must include
all the elements of the form a + bi , where a and b are real numbers, but plainly we do
not have to include especially elements such as 1 + 2i + 3i2 + 4i3 + 5i5, involving
second and higher powers of i , since they can be expressed in the form a + bi by
using the property i2 = −1, and therefore are already there.

Interestingly we do not have to include especially the reciprocals of elements
(although fieldsmust contain reciprocals of all non-zero elements). They are express-
ible in the form a + bi and are already included. The reciprocal of the complex
number z = a + bi , assuming that z �= 0, is given by

z−1 = a

a2 + b2
− b

a2 + b2
i,
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as the reader should check.
The important identity

(a + bi)(a − bi) = a2 + b2

is used very frequently. As a simple instance suppose that a + bi = 0 (where a and
b are real numbers). We deduce

0 = (a + bi)(a − bi) = a2 + b2,

so that a = b = 0. This implies that the expression of a given complex number in
the form a + bi , with real a and b, is unique. This allows us to define the functions

Re z = x, Im z = y, (z = x + yi, x, y real)

called the real part of z and the imaginary part of z.
We often give ourselves a simple geometric picture of the complex numbers. Just

as we think of the real numbers as a line, we think of the complex numbers as forming
a plane, by identifying the number z = x + yi with the point (x, y) of the coordinate
plane. In this way the real numbers are identified with the x-axis, called the real axis,
and the complex numbers of the form yi with the y-axis, called the imaginary axis.
We sometimes identify z with the vector joining (0, 0) to (x, y), instead of simply
with the point (x, y). These identifications sometimes give a way of proving things
in Euclidean geometry using algebraic operations on complex numbers.

Extending a field by joining a new element to serve as a root of some equation is
one of the most elementary operations of field theory. For example we can start with
the field Q of rational numbers. We saw that the equation x2 − 2 = 0 has no root in
Q since there can be no rational square root of 2. Let us join a root, denoted by

√
2,

to Q. We obtain a new field, denoted by Q(
√
2), consisting of all elements of the

form a + b
√
2 with rational a and b. Again we can simplify an expression such as

1 + 2
√
2 + 3(

√
2)5 to the form a + b

√
2. And the reciprocal of a + b

√
2 is given

by

(a + b
√
2)−1 = a

a2 − 2b2
− b

√
2

a2 − 2b2
.

Note how the denominators fail to be 0; because the square root of 2 is not rational.
This procedure gives us another way to enlarge the field of rational numbers to

include the square root of two, quite different from that of Chap.1. And it seems
neither more nor less acceptable than conjuring up an element i to serve as a square
root of−1. But there is a big problem. The fieldQ(

√
2) takes us only part of the way

from Q to R. There is much still missing; for example there is no square root of 3.
We can join it, and then one by one, all square roots that are not so far expressible,
then all cube roots and so on. After that we can join roots of polynomials that are
still stubbornly unfactorisable. We obtain a whole sequence of fields intermediate
between Q and R. However we can never reach R by this piecemeal means; there
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are some irrationals that are not even expressible as a root of a polynomial equation
with rational coefficients. These are the transcendental numbers. They include e and
π for example.

So we have to arrive at R by a big leap, accomplished by means of the axiom
of completeness. From R to C is but a small further step, joining a non-real root of
x2 + 1 = 0. But the remarkable thing is that the process ends here. Every polynomial
equation with coefficients in C has a root in C; no further extensions are needed.

The fact just mentioned is called the fundamental theorem of algebra and it was
mentioned in the previous chapter in connection with the partial fractions decompo-
sition of a rational function, though without mentioning complex numbers. The fact
stated there is a simple corollary of the fundamental theorem of algebra.

9.1.1 Square Roots

We will take a little detour to examine the claim made before that every complex
number has a square root. As a corollary we solve any quadratic equation. We will
use purely algebraic arguments. Later we will examine radicals (cube roots, fourth
roots, etc.) by different methods.

Suppose we are given the complex number a + bi and we wish to find its square
root x + yi . We assume that x , y, a and b are real and in future will often not make
such assumptions explicit. If x + yi is a square root of a + bi then

(x + yi)2 = x2 − y2 + 2xyi = a + bi,

and so
x2 − y2 = a, 2xy = b.

Using the identity (x2 + y2)2 = (x2 − y2)2 + 4x2y2 we find that

x2 + y2 =
√
a2 + b2.

Solving for x2 we find

x2 = a + √
a2 + b2

2

and since a + √
a2 + b2 ≥ 0 we obtain

x = ±
√
a + √

a2 + b2

2
.

For each of the two values of x we find y by the relation y = b/2x , except that when
a = b = 0 we take x = y = 0.
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We thus get two square roots (except for when a = b = 0) given by

x =
√
a + √

a2 + b2

2
+ bi

2

/
√
a + √

a2 + b2

2

and its negative.
It will be rightly objected that we have not proved the existence of any square

root, merely shown that if a square root exists it must be given by this formula. The
reader is therefore invited to check that this is indeed the square root of a + bi by
squaring it.

Nowwe have the square root we can solve any quadratic equation, using the usual
formula.

Proposition 9.1 The quadratic equation ax2 + bx + c = 0, with coefficients a, b, c
in C and with a �= 0, has a root in C. Its roots are found by the usual formula. More
precisely, let d = b2 − 4ac and let ω be a square root of d. Then the roots are
1
2a (−b ± ω).

The reader is invited to check that these are the roots. They are the only ones; this
can be seen by the usual method of completing the square, based on observing that
the equation ax2 + bx + c = 0 is equivalent to

(
x + b

2a

)2

= 1

4a2
(b2 − 4ac).

We can also appeal to a simple fact of field theory, that a polynomial with degree n
cannot have more than n roots.

9.1.2 Modulus and Conjugate

Let z be a complex number and let z = x + yi , where x and y are real numbers. The
number

z := x − yi

is called the complex conjugate of z, or just conjugate for short. The real number

|z| :=
√
x2 + y2

is called the modulus of z, but is often called its absolute value. It has a geometric
interpretation. If you think of z as the coordinate vector (x, y) (if you like, the vector
joining (0, 0) to the point (x, y)), then |z| is its Euclidean length.
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The real part Re z = x and the imaginary part Im z = y have already been men-
tioned. Here is a list of important properties of these operations.

(1) z = z (2) z + w = z + w
(3) Re z = 1

2 (z + z) (4) Im z = 1
2i (z − z)

(5) zw = z w (6) z−1 = z−1

(7) |z|2 = zz (8) |zw| = |z| |w|
(9) Re z ≤ |z| (10) Im z ≤ |z|.

Some indications of the proofs. Rules 1–6 are obvious consequences of the defi-
nitions. Rule 7 is the identity x2 + y2 = (x + yi)(x − iy). Rule 8 follows from rule
7 using the calculation

|zw|2 = zwzw = zzww = |z|2|w|2.

Rule 9 (and similarly rule 10) is the inequality x ≤ √
x2 + y2.

The following result (more precisely the first inequality) is called the triangle
inequality and is immensely important.

Proposition 9.2 For all complex z and w we have

(1) |z + w| ≤ |z| + |w| (triangle inequality)
(2)

∣∣|z| − |w|∣∣ ≤ |z − w|.
Proof We calculate, applying at least seven of the rules listed above:

|z + w|2 = (z + w)(z + w)

= zz + zw + wz + ww = |z|2 + 2Re(zw) + |w|2
≤ |z|2 + 2|zw| + |w|2 = |z|2 + 2|z||w| + |w|2

= (|z| + |w|)2.

This proves the inequality in item 1.
Now z = z − w + w, so by item 1 we find |z| ≤ |z − w| + |w|, or

|z| − |w| ≤ |z − w|.

Interchange z and w. This makes no difference to the right-hand side. We find

|w| − |z| ≤ |z − w|.

In one of the displayed inequalities the left-hand side is
∣∣|z| − |w|∣∣. �

We see from the calculation proving the triangle inequality that equality holds
in it if and only if Re (zw) = |zw|, which is equivalent to saying Im (zw) = 0. If
z = a + bi and w = c + di then
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Im (zw) = bc − ad =
∣∣∣∣
b a
d c

∣∣∣∣

so the equality Re (zw) = |zw| says that the vectors (a, b) and (c, d) are linearly
dependent. Putting it differently it says that equality holds in the triangle inequality
if and only if either one or both of z and w are 0, or there is a non-zero real number
λ, such that z = λw.

There is a more geometric interpretation of Im (zw) that derives from its determi-
nantal form. Its absolute value is the area of the parallelogram with vertices 0, z, w
and z + w, or twice the area of the triangle with vertices 0, z and w. Even Re (zw)

has a geometric interpretation. It is the scalar product of the vectors z and w.

9.1.3 Exercises

1. Check the claim that the reciprocal of a + bi is (a − bi)/(a2 + b2).
2. Check thatRe (zw) is the scalar product of the vectors z andw, where the complex

numbers are identified with plane vectors.
3. Check that the formula

x =
√
a + √

a2 + b2

2
+ bi

2

/
√
a + √

a2 + b2

2

really does provide a square root of a + bi .
4. Show that the area of the triangle with vertices z1, z2 and z3 is the absolute value

of
1

2
Im (z1z2 + z2z3 + z3z1).

5. Prove the inequality
|z| ≤ √

2max(|Re z|, |Im z|).

Show that
√
2 cannot be replaced by a smaller number.

6. Let
f (x) = anx

n + an−1x
n−1 + · · · + a1x + a0

be a polynomial with real coefficients. Show that for all complex z we have

f (z) = f (z).

Deduce that if w is a complex root of f (z) = 0 so is w.
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9.2 Algebra in the Complex Plane

The identification of C with the plane produces a valuable geometric picture of the
algebra of the complex numbers. We can, for example, introduce polar coordinates
in the plane,

x = r cos θ, y = r sin θ, (r ≥ 0, −∞ < θ < ∞)

(we allow here the cases r = 0 and do not restrict θ to any particular interval) and
then write

x + yi = r(cos θ + i sin θ).

Here we have r = |x + yi |, but θ (called the argument of z) is not uniquely deter-
mined by z, as we may always add to it an integer multiple of 2π . The point 0 is an
exception, as it does not have an argument.

If we agree to choose θ in the interval ]−π, π ] then it is uniquely determined by
z (if z �= 0). It is then called the principal argument and is denoted by Arg z (always
with upper case “A” as befits its privileged status). The principal argument of z is the
polar angular coordinate according to the most common convention.

The following proposition describes complex multiplication in terms of polar
coordinates.

Proposition 9.3 Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2). Then

z1z2 = r1r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

Proof We multiply and use the addition formulas for sine and cosine:

r1(cos θ1 + i sin θ1) r2(cos θ2 + i sin θ2)

= r1r2
(
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

)

= r1r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

�

A special case is the rule known as de Moivre’s theorem,

(cos θ + i sin θ)n = cos nθ + i sin nθ, (n ∈ N).

9.2.1 nth Root of a Complex Number

Using de Moivre’s theorem we can show that every complex number has an nth root.
It is noteworthy that to express it we use transcendental functions, albeit elementary
ones, seemingly moving outside the realm of algebra.
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Fig. 9.1 The 5th roots of 1

Let w = r(cos θ + i sin θ) where r = |w|. Then one nth root of w is

α = r
1
n

(
cos

(
θ

n

)
+ i sin

(
θ

n

))
.

Others are

r
1
n

(
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

))
= α ηk, (k = 1, 2, ..., n − 1),

where α was the root given first and

η = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

These nth roots, a total of n of them, are all distinct if w �= 0.
Actually these are all the nth roots of w, as they are roots of the polynomial

equation xn − w = 0, and it is known from algebra that a polynomial equation of
degree n cannot have more than n roots.

The numbers ηk , k = 0, 1, ..., n − 1 are the nth roots of 1, and may be visualised
geometrically as the vertices of a regular polygon with n sides inscribed in the unit
circle as illustrated in Fig. 9.1.

9.2.2 Logarithm of a Complex Number

Properly, functions of a complex variable need a text of their own. The reason for
introducing logarithm here, perhaps prematurely, is the light that it throws on the
integration of rational functions.
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Let z be a complex number, not of the form x + 0i with x ≤ 0. We define

Log z = ln |z| + iArg z.

The use of upper case “L” is conventional here, the function being sometimes called
the principal logarithm.

Now we allow the differentiation of functions of a real variable with values in the
complex plane. This is accomplished in themost obviousway.A function f : A → C

(where A is an interval of real numbers) has the form

f (t) = u(t) + iv(t)

where u and v are real-valued functions with domain A. We define

f ′(t) = u′(t) + iv′(t)

for all t at which u and v are differentiable.
As an example we can consider the parametrisation of the unit circle

f (t) = cos t + i sin t.

Differentiation gives
f ′(t) = − sin t + i cos t,

and, identifying a complex numberwith a plane vector, we can interpret this as saying
that the velocity vector is normal to the radius and has length (speed) 1.

Now let a �= 0 and consider the function Log (x + ia) of the real variable x . We
have

d

dx
Log (x + ia) = 1

x + ia
, (−∞ < x < ∞). (9.1)

Note that there is no need to restrict x to positive values only.
We also have, for a positive integer exponent n,

d

dx

1

(x + ia)n
= − n

(x + ia)n+1
, (−∞ < x < ∞). (9.2)

The proofs of these formulas are left to the exercises. They are important because
they provide antiderivatives for functions that arise naturally when the fundamental
theorem of algebra is applied, in its more usual complex form, to the decomposition
of the rational function P/Q into partial fractions. According to the fundamental
theorem the polynomial Q (with leading coefficient 1) has a factorisation

Q(x) = (x − α1)
r1 ...(x − α�)

r�
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with complex numbers α j . The fraction P/Q decomposes into

polynomial +
�∑

j=1

r j∑

k=1

b jk

(x − α j )k
.

The transcendental part of the integral can then be expressed as a sum of logarithms
of the complex first-degree polynomials x − α j . Of course this implies a connection
between arctangent and the principal logarithm. It is left to the reader to show that

arctan x = 1

2i

(
Log (x − i) − Log (x + i)

) + π

2
. (9.3)

Complex numbers can also simplify the determination of the coefficients in the
partial fractions decomposition. Consider the case of a polynomial Q(x) that has
only simple roots, including all its complex roots. Then

Q(x) = (x − α1)(x − α2)...(x − αn)

with n distinct first-degree prime factors, where the numbers α j may be complex.
Still thinking of x as a real variable, we can differentiate. Leibniz’s rule applies (see
the exercises) so we find

Q′(x) = F1(x) + F2(x) + · · · + Fn(x)

where Fj (x) is the polynomial obtained by omitting the factor x − α j from Q(x).
Since Fk(α j ) = 0 if k �= j we have

Fj (α j ) = Q′(α j ).

Now we have a simple formula for the partial fractions decomposition:

1

Q(x)
=

n∑

j=1

1

Q′(α j )

1

x − α j
. (9.4)

More generally, if P(x) is another polynomial with degree lower than that of Q(x),
we have

P(x)

Q(x)
=

n∑

j=1

P(α j )

Q′(α j )

1

x − α j
. (9.5)

A theory of differentiation with respect to a complex variable is not needed for
this simple case. We create the polynomial Q′(x) by differentiating Q(x) in the
normal way and then substituting α j for x . If Q has multiple complex roots a similar
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formulation is possible using higher derivatives of Q. However, to treat this more
general case properly it is best to use the theory of complex analytic functions.

As we have seen, the antiderivative of a rational function can be expressed without
using arctangents, if we use instead the principal logarithm of complex first-degree
polynomials. Such formulations are often thrown up by computer algebra programs
that know how to find antiderivatives of elementary functions and understand com-
plex numbers. Thus, given the roots of the polynomial Q in the complex plane, and
assuming that they are simple, we have

∫
P(x)

Q(x)
dx =

n∑

j=1

P(α j )

Q′(α j )
Log (x − α j ). (9.6)

To ensure the validity of this formula we do not want x − α j to be a non-positive,
real number. This is ensured if x > α j , for all j such that α j is real. If α j is real and
x < α j we simply replace x − α j by α j − x in the corresponding term.

9.2.3 Exercises

1. Prove the formula

Arg z = 2 arctan

(
Im z

|z| + Re z

)
,

given that z is not of the form x + 0i with x ≤ 0.
Hint. A proof by geometry is easiest.

2. The real factorisation of x4 + 1 into irreducible quadratic factors is needed to
calculate the integral

∫
1/(x4 + 1) dx . Obtain the factorisation using complex

numbers by noting that the roots of x4 + 1 = 0, the four complex numbers

w1 = 1 + i√
2

, w2 = −1 + i√
2

, w3 = −1 − i√
2

, w4 = 1 − i√
2

,

form the corners of a square, and that the quadratics, (x − w1)(x − w4) and
(x − w2)(x − w3), have real coefficients.

3. Let η = cos(2π/5) + i sin(2π/5). The four non-real fifth roots of 1 are η, η2,
η3 and η4.

(a) Show that they are the roots of the polynomial

x4 + x3 + x2 + x + 1.

(b) Express the sum η + η2 + η3 + η4 in terms of λ := cos(2π/5).

(c) Deduce that cos(2π/5) =
√
5 − 1

4
.
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(d) Show that

x4 + x3 + x2 + x + 1 = (
x2 − 2λx + 1

)(
x2 − 2(2λ2 − 1)x + 1

)
.

Note. Item (c) shows that the number λ is constructible with straight edge and compass, and

therefore the regular pentagon is also constructible. One such construction is described in

Euclid (book 4, prop. 11).

4. In the previous exercise an expressionwas obtained for cos(2π/5) as an algebraic
number involving a square root.We now express angles in degrees, defining x◦ =
xπ/180. The formulas sin 30◦ = 1

2 , sin 45
◦ = 1/

√
2 are doubtlessly familiar.

We also have cos 72◦ = (
√
5 − 1)/4 by the previous exercise. Formulas such as

these are sometimes said to give “exact” values of the circular functions. They are
characterised by including only arithmetic operations on rationals, and radicals,
possibly nested.
Find exact values of the following circular functions of the given angles:

(a) sin 36◦
(b) cos 36◦
(c) sin 6◦
(d) cos 6◦
(e) sin 3◦
(f) cos 3◦

Conclude that the sine and cosine of any multiple of 3◦ are expressible exactly
with square roots.

5. Derive the rules for differentiation of product and reciprocal

d

dx
( f g) = f ′g + f g′,

d

dx

(
1

f

)
= − f ′

f 2

for complex-valued functions f and g of a real variable x .
Hint. It should be obvious just by looking at the real and imaginary parts that
1/ f is differentiable if f is. Knowing this means that the rule for reciprocal can
be obtained with little effort from the rule for product.

6. Derive formulas (9.1) and (9.2).
7. Derive formula (9.3).

Hint. Differentiate the formula.
8. Express the antiderivative ∫

1

x5 − 1
dx

using the principal logarithm of first-degree complex polynomials.
9. Let w = a + ib and let f (x) = eax (cos bx + i sin bx) for real x . Show that

f ′(x) = w f (x).
Note.We have not yet defined exponentials of complex numbers. When we study the unifica-
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tion of exponential and circular functions in Chap. 11, we will define e(a+ib)x and show that it

equals eax (cos bx + i sin bx).

10. We study Cardano’s solution of the cubic equation.

(a) Show that −b − c is a root of x3 + px + q = 0 if b and c satisfy

bc = − p

3
, b3 + c3 = q. (9.7)

Hint. One way is to use the identity

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ac).

(b) Show that the solutions to (9.7) are given by

b = 3

√
q + √

q2 + 4p3/27

2
, c = − p

3b
(9.8)

for any choice of the two possible square roots and the three possible cube
roots.

(c) Show that all solutions to x3 + px + q = 0 are obtained by fixing the square
root in (9.8) and using all three cube roots.

(d) Show that the substitution y = x − a/3 reduces the general cubic equation
x3 + ax2 + bx + c = 0 to an equation (for y) of the form y3 + py + q = 0,
that can then be solved by the preceding method.

11. In this problem we assume that the coefficients p and q in the cubic equation
are real. In the formula for the solution in the previous exercise the quantity
D := q2 + 4p3/27 plays a crucial role. Note that −27D is what in algebra is
called the discriminant. If D is positive then all three roots can be found by
taking the square root of a positive number followed by the cube root of a real
number. If D is negative it looks as if we are forced to find the cube root of a
complex, non-real number.

(a) Show that D = 0 if and only if the graph y = x3 + px + q is tangent to the
x-axis.

(b) Show, by examining the graph for example, that D > 0 if and only if there
is one real root and two complex, non-real roots.

The third case, D < 0, is the case when there are three distinct real roots. This
was known as the casus irreducibilis. It can be shown that in this case there is
in general no way to express the roots using only real radicals (that is, square
roots, cube roots etc. of real numbers).

12. We study the trigonometric solution of the cubic equation x3 + px + q = 0
with real coefficients p and q. In the case D < 0, (see the previous exercise),
there are three real roots and they cannot be found using Cardano’s method
without taking the cube root of a non-real number. The roots can be found
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more easily by exploiting the triplication rule for the cosine function, cos 3θ =
4 cos3 θ − 3 cos θ . In this exercise we assume that D < 0. Note that this implies
that p < 0.

(a) Let x = λ cos θ . Show that x satisfies the cubic equation if

λ = √−4p/3 and cos 3θ = −4q/λ3.

Check that |4q/λ3| < 1.
(b) Taking any θ that satisfies the second equation, show that the three real

solutions of the cubic equation are

λ cos θ, λ cos

(
θ + 2π

3

)
, λ cos

(
θ + 4π

3

)
.

13. In this series of exercises we look at the Chebyshev polynomials.

(a) Show that for all natural numbers n there exist polynomials Tn(x) andUn(x),
each of degree n, that satisfy

Tn(cos θ) = cos nθ, Un(cos θ) sin θ = sin(n + 1)θ

for all θ , and find explicit expressions for them.
Hint. Use de Moivre’s theorem.

(b) Show that in the interval [−1, 1] both Tn and Un have n distinct roots.
(c) Show that the polynomial Tn satisfies |Tn(x)| ≤ 1 in the interval [−1, 1],

and that it attains the value 1 at n points in [−1, 1].
(d) Youmay not think the explicit formulas (see item (a)) very appealing asways

to calculateTn andUn .However, it is easy to compute them recursively. Show
that both sequences of polynomials satisfy the same recurrence relation

Tn+2(x) = 2xTn+1(x) − Tn(x), Un+2(x) = 2xUn+1(x) −Un(x)

though with different initial conditions.



Chapter 10
Complex Sequences and Series

I mean the word proof not in the sense of the lawyers, who set
two half proofs equal to a whole one, but in the sense of a
mathematician, where half proof = 0, and it is demanded for
proof that every doubt becomes impossible.

C. F. Gauss

The main task of this chapter is to extend the theory of real sequences and real series
to complex sequences and complex series. In Chap.3 we dealt predominantly with
positive series and stopped short of saying anything useful about real series that were
not positive. This shortcoming will be amended here.

10.1 The Limit of a Complex Sequence

Let (zn)∞n=1 be a sequence of complex numbers and let w be a complex number.

Definition The number w is said to be the limit of the sequence (zn)∞n=1 if the
following condition is satisfied:

For every ε > 0, there exists a natural number N , such that |zn − w| < ε for
all n ≥ N .

Formally this definition is the same as that for convergence of real sequences;
only that the absolute value is reinterpreted as the modulus of a complex number.

A complex sequence (zn)∞n=1 is said to be convergent if there exists some w, such
that limn→∞ zn = w. If there is no such w then the sequence is said to be divergent.
We will not make any use of infinite limits in the complex realm.
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Let zn = an + bni and w = s + ti where an , bn , s and t are real numbers. That is,
an = Re zn , bn = Im zn , s = Rew and t = Imw. By the rules for complex numbers
listed in 9.1 we have

|an − s| ≤ |zn − w| and |bn − t | ≤ |zn − w|,

so that if limn→∞ zn = w then

lim
n→∞ an = s and lim

n→∞ bn = t.

But the converse of this last statement is also true because

|zn − w|2 = |an − s|2 + |bn − t |2.

We have proved the following.

Proposition 10.1 A complex sequence (zn)∞n=1 satisfies limn→∞ zn = w if and only
if limn→∞ Re zn = Rew and limn→∞ Im zn = Imw.

This also shows that if a complex sequence has a limit, then the limit is unique
(because that is known for real sequences). Another important conclusion is as fol-
lows.

Proposition 10.2 Let limn→∞ zn = w. Then limn→∞ |zn| = |w|.
Proof It follows from the inequality

∣
∣|z| − |w|∣∣ ≤ |z − w| stated in Proposition9.2.

�

Cauchy’s principle of convergence for real sequences (Proposition3.12) extends
almost without change to complex sequences.

Proposition 10.3 (Cauchy’s convergence principle) A complex sequence (zn)∞n=1 is
convergent if and only if it satisfies Cauchy’s condition: for each ε > 0 there exists
N , such that |zn − zm | < ε for all n and m that satisfy n ≥ N and m ≥ N.

Proof Let an = Re zn and bn = Im zn . Since (zn)∞n=1 is convergent if and only if
(an)∞n=1 and (bn)∞n=1 are both convergent real sequences, it suffices to show that
(zn)∞n=1 satisfies Cauchy’s condition for complex sequences if and only if (an)∞n=1
and (bn)∞n=1 satisfy Cauchy’s condition for real sequences. But that is obvious in
virtue of the inequalities (all of which appeared in Sect. 9.1):

|an − am | ≤ |zn − zm |, |bn − bm | ≤ |zn − zm |

|zn − zm | ≤ √
2max(|an − am |, |bn − bm |).

�
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10.2 Complex Series

A series of complex numbers
∑∞

k=1 zk is said to be convergent, and its sum is the
complex numberw, when the sequence (sn)∞n=1, given by sn = ∑n

k=1 zk , is convergent
and limk→∞ sn = w.

Proposition 10.4 A complex series
∑∞

k=1 zk is convergent if and only if it satisfies
the following condition: for each ε > 0 there exists N , such that for all m and n that
satisfy N ≤ m ≤ n we have

∣
∣
∣
∣

n
∑

k=m

zk

∣
∣
∣
∣
< ε.

Proof Since sn − sm−1 = ∑n
k=m zk , the condition of the proposition is equivalent to

Cauchy’s condition (Proposition10.3) applied to the sequence (sn)∞n=1. �

The condition of the proposition may also be written as follows: for each ε > 0
there exists N , such that for all m that satisfy m ≥ N , and for every natural number
p, we have

∣
∣
∑m+p

k=m ak
∣
∣ < ε. This throws into relief the point that there is no upper

limit placed on the separation of m and n.

10.2.1 Absolutely Convergent Series

Proposition 10.5 Let
∑∞

k=1 zk be a complex series and assume that the positive
series

∑∞
k=1 |zk | is convergent. Then the series

∑∞
k=1 zk is convergent and we have

∣
∣
∣
∣

∞
∑

k=1

zk

∣
∣
∣
∣
≤

∞
∑

k=1

|zk |.

Proof Let ε > 0. Choose N , such that for all m and n that satisfy N ≤ m ≤ n we
have

∑n
k=m |zk | < ε. Now if N ≤ m ≤ n we have

∣
∣
∣
∣

n
∑

k=m

zk

∣
∣
∣
∣
<

n
∑

k=m

|zk | < ε

and so, by Proposition10.4, the series
∑n

k=m zk is convergent.
Moreover, we have

∣
∣
∣
∣

n
∑

k=1

zk

∣
∣
∣
∣
≤

n
∑

k=1

|zk | ≤
∞

∑

k=1

|zk |,

and therefore going to the limit and applying Proposition10.2, we obtain
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∣
∣
∣
∣

∞
∑

k=1

zk

∣
∣
∣
∣
=

∣
∣
∣
∣
lim
n→∞

n
∑

k=1

zk

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n
∑

k=1

zk

∣
∣
∣
∣
≤

∞
∑

k=1

|zk |.

�

A series
∑∞

k=1 zk , which is such that the positive series
∑∞

k=1 |zk | is convergent,
is said to be absolutely convergent. As we have just seen, it is then convergent. The
inequality in Proposition10.5 may be viewed as an infinite version of the triangle
inequality.

10.2.2 Cauchy’s Root Test

Convergence tests for positive series can be applied to the series of moduli of a
complex series; they are therefore also tests for absolute convergence of complex
series. Themost important of these tests were covered in Chap.3.We include another
here, Cauchy’s test, also known as the root test.

Proposition 10.6 Let
∑∞

k=1 ak be a positive series and suppose that the limit
limn→∞ a1/nn exists and equals t . The following then hold:

(1) If t < 1 the series is convergent.
(2) If t > 1 the series is divergent.

There is no conclusion if t = 1.

Proof If t < 1 we choose s, such that t < s < 1, and choose N , such that a1/nn < s
for all n ≥ N . Then we have an < sn for all n ≥ N , and the series is convergent
by comparison with the geometric series

∑
sn . If t > 1 then a1/nn > 1 when n is

sufficiently high, and then an > 1 and cannot tend to 0. The series
∑∞

k=1 ak then
diverges.

The lack of a conclusion if t = 1 is illustrated by the series
∑∞

n=1 n
−1 and

∑∞
n=1 n

−2. �

We showed in Proposition3.25 (in the nugget on limits inferior and superior), that
if limn→∞ an+1/an = t (with all denominators strictly positive), then we also have
limn→∞ a1/nn = t . Hence, if a conclusion can be obtained from the ratio test, it can
also be obtained from Cauchy’s test. However, there are cases when Cauchy’s test
works, but the ratio test gives no conclusion.

10.2.3 Extended Forms of the Ratio and Cauchy’s Tests

In this section the series
∑∞

n=1 an is a positive series. The results are therefore applica-
ble to proving that a complex series is absolutely convergent. We list some versions,
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occasionally useful, of the ratio test and Cauchy’s root test with weaker conditions
than the usual ones. They are weaker in the sense that they do not require a limit,
only an inequality. The proofs, all easy, are left to the reader. Some of them can be
expressed using limit superior; it is left to the reader to see how.

Ratio Test

(a) Assume that an �= 0 for all n. Instead of requiring that limn→∞ an+1/an = t and
t < 1, it suffices for convergence to assume there exist N and s < 1, such that
an+1/an < s for all n ≥ N .

(b) Assume that an �= 0 for all n. Instead of requiring that limn→∞ an+1/an = t
and t > 1, it suffices for divergence to assume that there exists N , such that
an+1/an ≥ 1 for all n ≥ N .

Root Test

(c) Instead of requiring limn→∞ a1/nn = t and t < 1, it suffices for convergence to
assume that there exist N and s < 1, such that a1/nn < s for all n ≥ N .

(d) Instead of requiring limn→∞ a1/nn = t > 1, it suffices for divergence to assume
that a1/nn ≥ 1 for infinitely many n.

10.2.4 Conditional Convergence: Leibniz’s Test

A series that is convergent but not absolutely convergent is said to be conditionally
convergent . An example of such a series is

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · · =

∞
∑

n=1

(−1)n−1

n

the sum of which is ln 2, as we shall see. This is an example of an alternating series,
meaning that the terms are alternately positive and negative.

The following test is called Leibniz’s test, or, the alternating series test.

Proposition 10.7 Let (an)∞n=1 be a sequence of positive numbers, that are decreasing
and tend to 0. The following conclusions hold:

(1) The series
∑∞

n=1(−1)n−1an is convergent.
(2) Let sn = ∑n

k=1(−1)k−1ak and s = ∑∞
k=1(−1)k−1ak. Then s2n−1 tends to s from

above and s2n tends to s from below.
(3) We have the error estimate |s − sn| < an+1.

Proof The reader is invited to supply the proof, by induction, that

s2 < s4 < · · · < s2n < s2n−1 < · · · < s3 < s1 (n = 1, 2, 3, ...).
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It follows that the sequence s2n is increasing and bounded above, whilst the sequence
s2n−1 is decreasing and bounded below.We conclude that both sequences are conver-
gent. But s2n−1 − s2n = a2n → 0, so that both have the same limit s, which is then
the limit limn→∞ sn . This proves conclusion 1.

We next note that
s2n < s < s2n+1 < s2n−1,

which gives
s − s2n < s2n+1 − s2n = a2n+1

and
s2n−1 − s < s2n−1 − s2n = a2n.

This proves conclusions 2 and 3. �

Now we are going to study the series
∑∞

n=1 (−1)n−1/n which, as we said before,
has the sum ln 2. We are going to change the order of the terms.

We separate the terms of the series into two sequences: the positive terms form the
sequence (1/(2n − 1))∞n=1, and the negative terms the sequence (−1/2n)∞n=1. From
these two sequences we shall build a new series that has exactly the same terms as
the original series, but presented in a different order.

We take the first positive term, then the first and second negative terms, then the
next positive term, then the next two negative terms and so on, always taking one
positive term followed by two negative ones. Proceeding rather recklessly in the spirit
of the mathematicians of the eighteenth century, we write this down and calculate:

1 − 1

2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
+ 1

7
− 1

14
+ · · ·

=
(

1 − 1

2

)

− 1

4
+

(1

3
− 1

6

)

− 1

8
+

(1

5
− 1

10

)

− 1

12
+

(1

7
− 1

14

)

+ · · ·

= 1

2
− 1

4
+ 1

6
− 1

8
+ 1

10
− 1

12
+ 1

14
− · · ·

= ln 2

2
.

(10.1)

The striking conclusion thatwewish to draw is that the sumof the series in line 1 of
(10.1) is different from that of the series

∑∞
n=1 (−1)n−1/n, although both series have

the same terms, but presented in a different order. However, some doubt may linger
over the validity of the first equals sign. We have not shown that the series in line 1
is convergent. Although the series in line 2 is convergent (being

∑∞
n=1 (−1)n−1/2n),

it is not the same series as in line 1.
A more rigorous argument might proceed as follows. Let sn be the sum of the first

n terms of the series in line 1 of (10.1). Taking three terms at a time we have
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s3n = 1

2
− 1

4
+ 1

6
− 1

8
+ · · · + 1

4n − 2
− 1

4n
= 1

2

2n
∑

k=1

(−1)k−1

k
.

Hence s3n → ln 2/2. Now we note that the nth term of the series in line 1 tends to
zero as n tends to infinity. Hence we conclude, by an easy argument left to the reader,
that sn → ln 2/2.

It may seem a contradiction; by changing the order of the terms we obtain half
the original sum. But it simply means that the commutative rule that holds for finite
sums does not hold for infinite ones; and, after all, an infinite sum is really a limit.
For absolutely convergent series things are much tamer.

10.2.5 Rearrangements of Absolutely Convergent Series

A permutation of a set A is a bijective mapping φ : A → A. It is often convenient
to picture a permutation as a table. For example

n 1 2 3 4 5 6 7
φ(n) 2 7 1 3 5 4 6

describes a permutation of the set {1, 2, 3, 4, 5, 6, 7}. An infinite example might be

n 1 2 3 4 5 6 7 8 9 10 11 ...

φ(n) 1 2 4 3 6 8 5 10 12 7 14 ...

This is a permutation of N+. Is it obvious how to go on?
In fact a permutation of N+ may be viewed as a sequence of positive integers in

which every positive integer appears exactly once. To describe one a table may be
impracticable. In some cases a formula for φ(n) may be available. However, it may
not always be convenient to specify φ(n) by a formula; a verbal description may be
deemed enough to define it. The main thing is to ensure that every number in the
upper row of the table occurs exactly once in the lower row.

A permutation φ of the infinite set N+ produces a so-called rearrangement of the
series

∑∞
n=1 an . This is the new series

∑∞
n=1 aφ(n).

Proposition 10.8 Let
∑∞

n=1 an be an absolutely convergent series of real or complex
terms. Let φ be a permutation of N+. Then the rearranged series

∑∞
n=1 aφ(n) is

absolutely convergent and
∑∞

n=1 aφ(n) = ∑∞
n=1 an.

Proof Let ε > 0. Write bn = aφ(n). By Cauchy’s principle, there exists N , such that
∑m

k=n |ak | < ε for all m and n that satisfy N ≤ m ≤ n. More than this, because the
terms are positive, the sum of a finite number of terms |ak |, all of which have place
numbers k ≥ N , is less than ε. The place numbers here do not have to be consecutive.

There exists N1, such that the numbers φ(1), ..., φ(N1) include all the numbers
1, ..., N . This is so, because, as we recall, every number in the first row of the table
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representing the permutation appears exactly once in the second. If N1 ≤ m ≤ n then
all the numbers φ(m), φ(m + 1), ..., φ(n) are higher than or equal to N . But then
we have

n
∑

k=m

|bk | =
n

∑

k=m

|aφ(k)| < ε.

We conclude, by Cauchy’s principle, that the series
∑∞

k=1 |bk | is convergent.
Let t = ∑∞

n=1 an and s = ∑∞
n=1 bn .Wewish to show that s = t . Let ε > 0.Choose

N and N1 as we did above. If n ≥ N1 then the numbers φ(1), ..., φ(n) include all
the numbers 1, ..., N , and so

∣
∣
∣
∣

n
∑

k=1

bk −
N

∑

k=1

ak

∣
∣
∣
∣
=

∣
∣
∣
∣

n
∑

k=1

aφ(k) −
N

∑

k=1

ak

∣
∣
∣
∣
< ε,

as all the terms in the sum
∑N

k=1 ak get cancelled. Letting n → ∞ we conclude that
|s − ∑N

k=1 ak | ≤ ε. But now we find, applying the triangle inequality:

|s − t | =
∣
∣
∣
∣
s −

∞
∑

k=1

ak

∣
∣
∣
∣
≤

∣
∣
∣
∣
s −

N
∑

k=1

ak

∣
∣
∣
∣
+

∣
∣
∣
∣

∞
∑

k=N+1

ak

∣
∣
∣
∣
≤ 2ε.

Since this holds for all ε > 0 we must have s = t . �

10.2.6 Exercises

1. Test the following series for convergence. In each case determine whether the
series is absolutely convergent, conditionally convergent or divergent.

(a)
∞

∑

n=1

(−1)n√
n

(b)
∞

∑

n=1

(−1)nn(n + 1)

(n + 2)(n + 3)

(c)
∞

∑

n=1

(−1)nn(n + 1)

(n + 2)(n + 3)(n + 4)

(d)
∞

∑

n=1

(−1)nn(n + 1)

(n + 2)(n + 3)(n + 4)(n + 5)

(e)
∞

∑

n=1

(−1)n(n + a)(n + b)

(n + c)(n + d)(n + e)
,
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where a, b, c, d and e are real numbers and none of c, d or e is a negative
integer (but e is not necessarily the base of the natural logarithm).

(f)
∞

∑

n=1

n + a

(n + b)(n + c)(n + d)
,

where a, b, c and d are non-real complex numbers.

(g)
∞

∑

n=1

1

n + i

(h)
∞

∑

n=1

n + a

(n + b)(n + c)
,

where a, b and c are non-real complex numbers.

2. Test the following series for convergence. In each case determine whether the
series is absolutely convergent, conditionally convergent or divergent.

(a)
∞

∑

n=1

(−an)
n ,

where an = 1
2 if n is even and an = 1

3 if n is odd.
Note. The ratio of each term to its predecessor is unbounded; so the ratio test does not

work.

(b)
∞

∑

n=1

(−1)n ln n

n

(c)
∞

∑

n=1

ln n

n2

(d)
∞

∑

n=1

n!
nn

(e)
∞

∑

n=1

(

1 − cos
(1

n

))

(f)
∞

∑

n=1

an

bn + cn
,

where a, b and c are positive.

(g)
∞

∑

n=1

(−1)n

n

(

1 + 1

2
+ 1

3
+ · · · + 1

n

)

.

3. Compute the limit

lim
n→∞

n
∑

k=−n

1

k + i
.
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4. Let (an)∞n=1 and (bn)∞n=1 be sequences of complex numbers.

(a) Suppose that the series
∑∞

n=1 |an|2 and∑∞
n=1 |bn|2 are convergent. Show that

the series
∑∞

n=1 anbn is absolutely convergent.
(b) More generally, let p > 1 and q > 1 and suppose that (1/p) + (1/q) = 1.

Suppose that the series
∑∞

n=1 |an|p and∑∞
n=1 |bn|q are convergent. Show that

the series
∑∞

n=1 anbn is absolutely convergent.

5. Let (an)∞n=1 be a convergent sequenceof complexnumbers and let limn→∞ an = w.
Show that every rearrangement of the sequence has the same limit.More precisely,
if φ : N+ → N+ is a bijection then limn→∞ aφ(n) = w.

6. Let (an)∞n=1 be a bounded complex sequence and let
∑∞

n=1 bn be an absolutely
convergent complex series. Show that the series

∑∞
n=1 anbn is absolutely conver-

gent.

10.3 Product of Series

Given two sequences (an)∞n=0 and (bn)∞n=0 we can consider the set of all products of
the form anbm . The reason for beginning at place number n = 0, instead of n = 1 as
before, is that this topic has important applications to power series, to be considered
in Chap.11.

The set of products anbm do not form a sequence as they stand; they constitute
a family of elements indexed by the set of all pairs (n,m) of natural numbers. It is
most natural to see this family as an infinite two-dimensional array, as pictured here:

a0b0 a0b1 a0b2 a0b3 ...

a1b0 a1b1 a1b2 a1b3 ...

a2b0 a2b1 a2b2 a2b3 ...

a3b0 a3b1 a3b2 a3b3 ...
...

...
...

...

There are manyways to arrange the elements of the array as a sequence indexed as
usual by the natural numbers.We canwalk through the array taking in each element, a
bit like walking through a large shoppingmall and visiting every shop. The following
diagram shows one way to do this:
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a0b0 → a0b1 a0b2 → a0b3 ...

↓ ↑ ↓
a1b0 ← a1b1 a1b2 a1b3 ...

↓ ↑ ↓
a2b0 → a2b1 → a2b2 a2b3 ...

↓
a3b0 ← a3b1 ← a3b2 ← a3b3 ...

↓ ...
...

...

To interpret the diagram you must follow the arrows. The effect is to take in
square blocks of the array; a typical block consists of all terms anbm for which
max(n,m) ≤ N , say, and is completed each time you visit the upper or left-hand
edge of the array.

Another way through the array, which turns out to be very important, is shown in
the next diagram:

a0b0 → a0b1 a0b2 → a0b3 ...

↙ ↗ ↙ ↗
a1b0 a1b1 a1b2 a1b3 ...

↓ ↗ ↙ ↗ ↙
a2b0 a2b1 a2b2 a2b3 ...

↙ ↗ ↙ ↗
a3b0 a3b1 a3b2 a3b3 ...

↓ ↗ ... ↙ ... ↗ ... ↙

The procedure indicated is to collect whole diagonals. A diagonal consists of the
n + 1 terms of the form akbn−k for some n. These are assembled in increasing order,
starting at n = 0, then n = 1, 2, 3, etc.

These are just the two most important ways to arrange the elements anbm in a
simple sequence. There are clearly infinitely many ways to do it. In the following
proposition we make a remarkable claim that applies to any possible arrangement.

Proposition 10.9 Assume that the series
∑∞

n=0 an and
∑∞

n=0 bn are absolutely
convergent. Set A = ∑∞

n=0 an and B = ∑∞
n=0 bn. Consider an arrangement of the

products anbm, (m ∈ N, n ∈ N) in a sequence (dn)∞n=0. Then the series
∑∞

n=0 dn is
absolutely convergent and its sum is AB.

Proof Given the natural number n there exists a natural number N , such that all the
products d0, d1, ..., dn appear among the products that arise by multiplying out the
expression

(a0 + a1 + · · · + aN )(b0 + b1 + · · · + bN ).

But then we have
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|d0| + |d1| + · · · + |dn| ≤ (|a0| + |a1| + · · · + |aN |)(|b0| + |b1| + · · · + |bN |)

≤
( ∞

∑

k=0

|ak |
)( ∞

∑

k=0

|bk |
)

.

We conclude that the series
∑∞

n=0 dn is absolutely convergent. Its sum is therefore
independent of the order in which the terms are arranged.

One possible arrangement is

a0b0 + a0b1 + a1b1 + a1b0 + a0b2 + a1b2 + a2b2 + a2b1 + a2b0
+a0b3 + a1b3 + a2b3 + a3b3 + a3b2 + a3b1 + a3b0 + · · ·

=
e0

︷︸︸︷

a0b0 +
e1

︷ ︸︸ ︷

(a0b1 + a1b1 + a1b0)+
e2

︷ ︸︸ ︷

(a0b2 + a1b2 + a2b2 + a2b1 + a2b0)

+
e3

︷ ︸︸ ︷

(a0b3 + a1b3 + a2b3 + a3b3 + a3b2 + a3b1 + a3b0) + · · · (10.2)

Beneath “en” appear all products inwhich one of the factors is an or bn . It corresponds
to the collection-by-blocks arrangement pictured in the first diagram above.

Now we have

e0 + e1 + · · · + en = (a0 + a1 + · · · + an)(b0 + b1 + · · · + bn),

which tends to AB as n → ∞. The sequence of partial sums of the series
∑∞

n=0 en is
a subsequence of the sequence of partial sums of the series in the first line of (10.2).
Since the latter series is known to be convergent we conclude that its sum is AB.
The sum of the arrangement

∑∞
n=0 dn is therefore also AB. �

10.3.1 Cauchy Product of Series

By far themost important arrangement of the products anbm is by diagonals as shown
in the second diagram. This leads to the series:

a0b0 + a0b1 + a1b0 + a0b2 + a1b1 + a2b0 + a0b3 + a1b2 + a2b1 + a3b0 + · · ·

=
c0

︷︸︸︷

a0b0 +
c1

︷ ︸︸ ︷

a0b1 + a1b0 +
c2

︷ ︸︸ ︷

a0b2 + a1b1 + a2b0

+
c3

︷ ︸︸ ︷

a0b3 + a1b2 + a2b1 + a3b0 + · · ·

Here we have

cn =
∑

i+ j=n

aib j =
n

∑

k=0

akbn−k .
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The series
∑∞

n=0 cn is called the Cauchy product. By Proposition10.9, if
∑∞

n=0 an
and

∑∞
n=0 bn are both absolutely convergent, we can conclude that

∞
∑

n=0

cn =
( ∞

∑

n=0

an

)( ∞
∑

n=0

bn

)

.

10.3.2 Exercises

1. The series
∑∞

n=0 (−1)n/
√
n + 1 converges by Leibniz’s test. Let its Cauchy prod-

uct with itself be the series
∑∞

n=0 cn . Show that |cn| ≥ 1, so that
∑∞

n=0 cn diverges.
2. There are more ways to collect the pairs (n,m) into a simple sequence than the

two covered in the text. For example, we can group together all pairs (n,m) for
which n and m have a given product. This is like a Cauchy product, but uses the
product of place numbers instead of their sum.
Let the series

∑∞
n=1 an and

∑∞
n=1 bn be absolutely convergent, and let their sums

be A and B, respectively. For each n we can take all pairs of place numbers
(d, n/d) where d ranges over all the divisors of n (including 1 and n). This gives
the series

∑∞
n=1 cn where

cn =
∑

d | n
adbn/d .

Here, d | n means that d divides n, and instructs us to sum over all divisors of n.
By Proposition10.9 the series

∑∞
n=1 cn is convergent with sum AB.

The Riemann zeta function ζ(s) is defined for s > 1 by

ζ(s) =
∞

∑

n=1

1

ns
.

Show that
(

ζ(s)
)2 =

∞
∑

n=1

σ(n)

ns

where σ(n) is the divisor function, that is, σ(n) is the number of positive integral
divisors of n, including 1 and n.

3. Prove Mertens’ theorem. Let the series
∑∞

n=0 an and
∑∞

n=0 bn be convergent, let∑∞
n=0 an = A and

∑∞
n=0 bn = B. Assume that one of the series, let us say the

first, is absolutely convergent. Then the Cauchy product is convergent and its
sum is AB.
Hint. Let
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An =
n

∑

k=0

ak, Bn =
n

∑

k=0

bk, cn =
n

∑

k=0

akbn−k, Cn =
n

∑

k=0

ck .

Show that Cn = ∑n
k=0 ak Bn−k and use this to estimate Cn − B

∑n
k=0 ak for

large n.
4. In several places we have had occasions to sum a series by grouping its terms.

This appeared in the proof of Proposition 10.9 and in our study of rearranging
the series

∑∞
n=1 (−1)n−1/n in Sect. 10.2. It was also used in the treatment of the

positive series
∑∞

n=1 n
−p (see Sect. 3.8).

In this exercise we shall define and study a general version of grouping. Begin
with the series

∑∞
n=1 an . We do not assume that it is convergent. Let (kn)∞n=1 be

a strictly increasing sequence of positive integers, beginning with k1 = 1. We
replace the series

∑∞
n=1 an by the grouped series

∑∞
n=1 bn , where

bn =
kn+1−1
∑

j=kn

a j .

(a) Suppose that the series
∑∞

n=1 an is convergent. Show that the grouped series
∑∞

n=1 bn is convergent and has the same sum.
(b) Suppose that an → 0 and that the sequence kn+1 − kn is bounded above (in

other words there is a cap on the number of terms that are grouped together).
Show that the series

∑∞
n=1 an is convergent if and only if the grouped series∑∞

n=1 bn is convergent.
(c) Suppose that an ≥ 0 for each n. Show that the series

∑∞
n=1 an is convergent

if and only if the grouped series
∑∞

n=1 bn is convergent.
(d) Give an example where the series

∑∞
n=1 an is divergent but the grouped

series
∑∞

n=1 bn is convergent.

10.4 (♦) Riemann’s Rearrangement Theorem

Riemann proved a striking theorem that throws light on our experiments on rear-
ranging the series

∑∞
n=1 (−1)n−1/n.

Proposition 10.10 Let the real number series
∑∞

n=1 an be conditionally convergent
and let t be either a real number, or else +∞ or −∞. Then there is a rearrangement
∑∞

n=1 aφ(n) that has the sum t.

Proof It is important that the terms are real numbers. For each real number x , let x+ =
max(x, 0) and x− = −min(x, 0). Then x = x+ − x− and |x | = x+ + x−. Now the
series

∑ |an| is divergent (because ∑
an is conditionally convergent) and |an| =

a+
n + a−

n . Hence it is impossible for both the series,
∑∞

n=1 a
+
n and

∑∞
n=1 a

−
n , to

be convergent. But if one is convergent so is the other, since
∑∞

n=1(a
+
n − a−

n ) is
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convergent. We conclude therefore that both the series
∑∞

n=1 a
+
n and

∑∞
n=1 a

−
n are

divergent.
From this point we will assume that no term in the sequence an is 0 (we can strike

out all the zeros and put them back later if we so wish). We form two increasing
sequences of integers, kn and �n , which are such that the terms akn are all the positive
terms of the sequence (an)∞n=1 in order of increasing index; and the terms a�n are all
the negative terms of the sequence (an)∞n=1, again in order of increasing index. Both
these sequences can be defined formally by induction if we so wish.

Now set cn = akn and dn = a�n . It is helpful to imagine these two sequences spread
out before us from left to right like cards from a pack:

c1, c2, c3, c4, c5, c6, ... d1, d2, d3, d4, d5, d6, ...

The first sequence comprises all the positive terms, and the second all negative
terms, of the sequence (an)∞n=1, taken in order of increasing n. We know from the
first paragraph that

∑∞
n=1 cn = ∞ and

∑∞
n=1 dn = −∞. But also that limn→∞ cn =

limn→∞ dn = 0, as follows from the fact that
∑∞

n=1 an is convergent.
We now describe a rearrangement that sums to t . We take the case that t is a finite

number, leaving the two cases of infinite t to the reader. Starting with the left-hand
sequence cn (of positive terms) we take as many terms from left to right as are needed
to make a sum higher than t , stopping as soon as t is surpassed. Note that we want
to go higher than t ; if we land on t we take an additional term. This can be carried
out because

∑∞
n=1 cn = ∞, so any number can be surpassed by a sum

∑N
n=1 cn if we

take N large enough.
Let the last term taken from the left-hand sequence be cp1 . It is clear that the

error, that is the amount by which
∑p1

n=1 cn exceeds t , is at most cp1 . We continue the
sequence c1, ..., cp1 with as many terms from the right-hand sequence as are needed
to make, together with the positive terms already taken, a sum lower than t . Again
this is feasible because

∑∞
n=1 dn = −∞. Again we take only as many as are needed

stopping as soon as the sum passes below t (if we land on t we take an additional
term).

Suppose the last term taken to be dq1 . Then the sum so far,

c1 + · · · + cp1 + d1 + · · · + dq1

differs from t by at most |dq1 |. We return to the left-hand sequence from where we
left off and take just enough positive terms to surpass t again, say from cp1+1 to cp2 ,
then just enough negative terms from the right-hand sequence to pass below t again,
say from dq1+1 to dq2 and so on. This process will never terminate, because all terms
are non-zero and the series

∑
cn and

∑
dn both diverge, the first to +∞ and the

second to −∞. So in this fashion we construct a rearrangement
∑

aφ(n) of
∑

an .
The rearrangement sums to t . To see this observe first that if all the terms of an

satisfy |an| < M , then the error, the absolute difference between a partial sum of our
rearrangement and t , is less than M as soon as we reach the partial sum

∑p1
n=1 cn as

described above. It remains less than M from there on.
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Now let ε > 0. From some point on, from an index r say, all the terms cn and dn
with n ≥ r have absolute value less than ε. Eventually in our rearrangement we will
have exhausted all terms to the left of cr and dr . After this all unused terms have
absolute value less than ε; so by the argument of the last paragraph, the error will
drop below ε after a finite number of terms are added on, and will remain below ε.
In other words our rearrangement sums to t . �

10.4.1 Exercises

1. A proof like the one above that contains so much written text can leave a lingering
doubt about its correctness. Dispel some of these doubts by writing a nice defini-
tion by induction of the sequences kn , �n , pn , qn and the rearrangement mapping
φ(n). You may wish to use Proposition 2.1.

2. Prove Riemann’s theorem for the cases t = ∞ and t = −∞.
3. Show that a complex series

∑∞
n=1 zn is absolutely convergent if and only if the

real series
∑∞

n=1 Re zn and
∑∞

n=1 Im zn are absolutely convergent. Hence show
that if a complex series

∑∞
n=1 zn has the property that all its rearrangements are

convergent, then the series is absolutely convergent and all its rearrangements
have the same sum.

10.4.2 Pointers to Further Study

→ Series in Banach spaces
→ Orthogonal series

10.5 (♦) Gauss’s Test

When the ratio test is used to test a positive series
∑∞

n=1 an for convergence, it
often happens that no conclusion is obtained because limn→∞ an+1/an = 1. A more
delicate test is required. It is a trade secret that it is best to try Gauss’s test.

Proposition 10.11 (Gauss’s test) Let
∑∞

n=1 an be a positive series, such that an �= 0
for all n. Assume that

an+1

an
= 1 − μ

n
+ Kn

n1+r

where (Kn)
∞
n=1 is a bounded sequence,μ a constant, and r a strictly positive constant.

Then the series
∑∞

n=1 an converges if μ > 1 and diverges if μ ≤ 1.
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Here are some interesting points about Gauss’s test:

(a) There is no indeterminate case. Once μ is found a conclusion is reached.
(b) The equation is often written as

an+1

an
= 1 − μ

n
+ O

(
1

n1+r

)

.

The sequence cn is said to be O(dn) (and we write cn = O(dn)) if cn/dn is
bounded as n → ∞. See the nugget “Asymptotic orders of magnitude” for more
about this notation.

(c) If there exists a function g(x), such that g(0) = 1, g is twice differentiable at
x = 0, and an+1/an = g(1/n), then μ = −g′(0).

(d) It is commonly the case that an+1/an is a rational function of n and then μ is
easily found by point (c). This explains the great utility of Gauss’s test and was
the historical context for introducing it.

The proof of Gauss’s test is in several steps, in each of which another test is
introduced.
Step 1. Kummer’s tests.
Let (Dn)

∞
n=1 be a positive sequence and set

φ(n) = Dn − Dn+1
an+1

an
.

Then

(1) Suppose there exists h > 0 and N , such that φ(n) > h for all n ≥ N . Then
∑∞

n=1 an converges.
(2) Suppose

∑∞
n=1 D

−1
n is divergent and φ(n) ≤ 0 for all n ≥ N . Then

∑∞
n=1 an

diverges.

Proof of Kummer’s Tests (1) We have that

Dkak − Dk+1ak+1 = akφ(k) ≥ hak, (k ≥ N ).

Sum from k = N to k = n:

DNaN − Dnan ≥ h
n

∑

k=N

ak, (n ≥ N ).

But then
∑n

k=N ak ≤ DNaN/h and it is bounded above as n → ∞.

(2) We have that Dkak ≤ Dk+1ak+1 for k ≥ N , so that Dkak ≥ DNaN and
ak ≥ DNaN D

−1
k . But then

∑∞
n=1 an diverges since

∑∞
n=1 D

−1
n diverges. �
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Step 2. There are as many Kummer’s tests as there are ways to select the numbers Dn .
Let us look at some examples:

(a) Dn = 1 for all n.
Conclusions. If

1 − an+1

an
> h > 0

for n ≥ N , then the series converges. If

1 − an+1

an
≤ 0

for n ≥ N , then the series diverges. This is D’Alembert’s test (ratio test) in a
slightly more general form.

(b) Dn = n − 1.
Conclusions. If

n

(

1 − an+1

an

)

> 1 + h

for n ≥ N , then the series converges. If

n

(

1 − an+1

an

)

≤ 1

for n ≥ N then the series diverges. This is called Raabe’s test.

Step 3. Completion of the proof of Gauss’s test.
The condition that the series satisfies implies that

n

(

1 − an+1

an

)

→ μ.

By Raabe’s test ((b) of step 2) the series converges if μ > 1 and diverges if μ < 1.
Finally we consider the case μ = 1. So far Gauss’s test is just a special case

of Raabe’s test. It is because Gauss’s test resolves the case μ = 1 that it merits its
special status. We apply Kummer’s test with Dn = (n − 1) ln(n − 1). We know that
∑∞

n=3 D
−1
n diverges (or if not known it can be seen by Cauchy’s condensation test,

Sect. 3.8 Exercise12, for example). We have

φ(n) = Dn − Dn+1
an+1

an

= (n − 1) ln(n − 1) − n(ln n)

(

1 − 1

n
+ Kn

n1+r

)

= (n − 1) ln

(

1 − 1

n

)

− Kn ln n

nr
.
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Now Kn is bounded and limn→∞ ln n/nr = 0, so that limn→∞ Kn ln n/nr = 0. We
also have

lim
n→∞(n − 1) ln

(

1 − 1

n

)

= lim
t→0+

(
1

t
− 1

)

ln(1 − t)= lim
t→0+(1 − t)

ln(1 − t)

t
= −1.

We find that limn→∞ φ(n) = −1, so that φ(n) ≤ 0 when n is sufficiently big. We
conclude that

∑∞
n=1 an diverges. �

10.5.1 Exercises

1. Verify point (c). Let
∑

an be a positive series. Suppose there exists a function
g(x), such that g(0) = 1, g is twice differentiable at x = 0 andan+1/an = g(1/n).
Show that Gauss’s test can be applied with μ = −g′(0) and r = 1.

2. Use Gauss’s test to study the series
∑∞

n=1 n
−p where p is a real number.

3. Use Gauss’s test to study the series

∞
∑

n=0

(a)n(b)n
(c)n(d)n

where, for a real number t and natural number n, we define

(t)n =
{

1 if n = 0
t (t + 1)...(t + n − 1) if n ≥ 1.

We assume that neither c nor d is a non-positive integer in order to avoid zero
denominators. Careful! The series terminates for certain values of a and b.

10.5.2 Pointers to Further Study

→ Convergence tests.



Chapter 11
Function Sequences and Function Series

I shall apply all my strength to bring more light into the
tremendous obscurity which one unquestionably finds in
analysis. It lacks so completely all plan and system that it is
peculiar that so many have studied it. The worst of it is, it has
never been treated stringently. There are very few theorems in
advanced analysis which have been demonstrated in a logically
tenable manner.

N. H. Abel

11.1 Problems with Convergence

Consider the following example of a function series:

∞∑

n=1

(
x

x + 1

)n

, (0 ≤ x ≤ 1).

With a function series, as here, it is important to specify carefully the domain of the
functions in the series. It should be the same for all the terms. In this case it is the
interval [0, 1]. If we fix a value for x within the interval [0, 1], we obtain a number
series, in fact, a geometric series which is convergent, having the sum

(
x

x + 1

)
· 1

1 − (
x

x+1

) = x .

The function series is convergent for each x in the interval [0 , 1] and its sum is the
function x .
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Consider next the function series:

∞∑

n=1

x

(x + 1)n−1
, (0 ≤ x ≤ 1).

For each x in [0, 1], such that x > 0, this is a geometric series with ratio 1/(1 + x),
and the first term is x . This geometric series is convergent, since we have
1/(1 + x) < 1, and its sum is

x · 1

1 − 1
1+x

= x · 1 + x

x
= 1 + x .

But if we try to put x = 0 in the above equalities the first two members make no
sense. However, there is an obvious limit as x tends to 0, namely, 1. On the other
hand it is also obvious that if we put x = 0 in the terms of the series we obtain a
series in which every term is 0. The sum is therefore 0. So the sum of the function
series is a discontinuous function on the interval [0, 1], in spite of the fact that each
term is a continuous function on the same interval.

Of course the convergence of a series depends on the convergence of a sequence
of partial sums. So the phenomenon exhibited here should first be studied in the case
of function sequences.

Consider then the function sequence

fn(x) = xn, (0 ≤ x ≤ 1), n = 1, 2, 3, ...

Computing the limit for each x in the domain, we obtain the function g : [0, 1] → R,
where g(x) = 0 for 0 ≤ x < 1 and g(1) = 1. Again we have a discontinuous limit
of a sequence of continuous functions.

In order to understand better what is happening here, let us fix x in the domain,
such that x < 1. Now limn→∞ xn = 0. Let ε > 0.We ask: how large must we choose
N in order that |xn − g(x)| < ε for all n ≥ N? Here g(x) = 0. The obvious answer
is: it suffices if N exceeds | ln ε|/| ln x |.

It is interesting how the lowest N found in the previous paragraph depends on x .
Let us ask: can we choose N independent of x , such that |xn − g(x)| < ε for all
n ≥ N and x in the domain? Can we use the same N for all x and achieve an error
less than ε? The answer is no. We saw that the lowest available N for a given x must
exceed | ln ε|/| ln x |. But now limx→1− | ln ε|/| ln x | = ∞. Ever larger values of N
are required as x approaches 1. On the other hand, when x = 1 it suffices to choose
N = 1.

The phenomenon studied in the last paragraph, and pictured in Fig. 11.1, is par-
ticularly sensitive to the choice of domain. On the domain [0, 1 − δ] (we fix δ > 0)
we can find N , that suffices, independent of x , namely, we can take N as the smallest
integer that exceeds | ln ε|/| ln(1 − δ)| and achieve an error less than ε. For n ≥ N
and for all x in this restricted domain we have |xn − g(x)| < ε.
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Fig. 11.1 Non-uniform
convergence

Fig. 11.2 Uniform
convergence

11.2 Pointwise Convergence and Uniform Convergence

Let ( fn)∞n=1 be a sequence of functions defined in a common domain A.

Definition The function sequence ( fn)∞n=1 is said to converge pointwise to a function
g in the domain A if, for each x in A, we have limn→∞ fn(x) = g(x).

Definition The function sequence ( fn)∞n=1 is said to converge uniformly to a function
g in the domain A (or sometimes “with respect to A”) if the following condition is
satisfied: for each ε > 0 there exists a natural number N , such that for all x in A and
for all n ≥ N we have | fn(x) − g(x)| < ε.

Obviously if fn converges uniformly to g, it also converges pointwise to the same
limit. Uniform convergence is stronger in thatwe require that N should be specifiable,
for each given ε, independently of x in the domain.Uniformconvergence is illustrated
in Fig. 11.2.

The difference is apparent in the corresponding statements in quantifier logic,
which eliminate all the ambiguity that may reside in everyday language. The order
of the quantifiers is the only difference. First, fn converges to g pointwise:
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(∀x ∈ A)(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n ≥ N ⇒ | fn(x) − g(x)| < ε).

Next, fn converges to g uniformly:

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(∀x ∈ A)(n ≥ N ⇒ | fn(x) − g(x)| < ε).

The reader should practise reading aloud these two sentences in a literal translation
to ordinary speech.

Changing the domain may make a difference. The function sequence (xn)∞n=1
converges pointwise in the domain [0, 1]. The convergence is not uniform. The same
function sequence, but in the domain [0, 1 − δ], converges uniformly, as we saw in
the last section. If there is some ambiguity about the domain in question we may say,
“The sequence ( fn)∞n=1 converges to g, uniformly with respect to the domain B”.

11.2.1 Cauchy’s Principle for Uniform Convergence

Just as Cauchy’s principle for real number sequences gives a necessary and sufficient
condition for convergence without needing a candidate for the limit, for function
sequences there is aCauchy’s principle for uniformconvergence, that does not require
us to guess the limit in advance.

Proposition 11.1 Let ( fn)∞n=1 be a sequence of functions with common domain A.
The following condition, called Cauchy’s condition, is necessary and sufficient for
uniform convergence of the sequence ( fn)∞n=1: for all ε > 0 there exists N , such that
for all n ≥ N, m ≥ N and x in A we have | fm(x) − fn(x)| < ε.

Proof Suppose the function sequence is uniformly convergent and let the function
g be its limit. Let ε > 0. There exists N , such that for all n ≥ N and all x in A we
have | fn(x) − g(x)| < ε/2. Now for all n ≥ N , m ≥ N and x in A we have

| fm(x) − fn(x)| < | fm(x) − f (x)| + | f (x) − fn(x)| <
ε

2
+ ε

2
= ε.

Conversely, suppose that the function sequence ( fn)∞n=1 satisfies Cauchy’s con-
dition. Now for each fixed x the numerical sequence ( fn(x))∞n=1 satisfies Cauchy’s
condition for a real sequence, and hence is convergent as a sequence of real numbers.
Let its limit be the number g(x). This defines a function g with domain A. We shall
show that fn converges uniformly to g.

Let ε > 0. There exists N , such that for all m ≥ N , n ≥ N and x in A we have
| fm(x) − fn(x)| < ε. We may let m tend to infinity in this inequality and deduce
that |g(x) − fn(x)| ≤ ε, and this therefore holds for all n ≥ N and all x in A. This
shows that fn converges uniformly to g. �
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11.2.2 Uniform Convergence and Continuity

There follows a key reason why uniform convergence is so important. The proof is
the locus classicus for what is called the ε/3-argument.

Proposition 11.2 Let ( fn)∞n=1 bea sequenceof continuous functions on thedomain A.
Assume that the sequence converges uniformly on the domain A to a function g. Then
g is continuous in the domain A.

Proof Let c ∈ A. We shall show that g is continuous at c. Let ε > 0. There
exists N , such that | fn(x) − g(x)| < ε/3 for all n ≥ N and all x ∈ A. The
function fN is continuous by assumption. Hence there exists δ > 0, such that
| fN (x) − fN (c)| < ε/3 for all x in A that satisfy |x − c| < δ. We now find, if x
is in A and |x − c| < δ, that

|g(x) − g(c)| ≤ |g(x) − fN (x)| + | fN (x) − fN (c)| + | fN (c) − g(c)|
<

ε

3
+ ε

3
+ ε

3
= ε.

�

The proof actually shows that g is continuous at c, given only that, firstly, each
function fn is continuous at c, and secondly, fn converges uniformly to g in an open
interval containing c.

11.2.3 Uniform Convergence of Series

Let
∑∞

n=1 fn be a function series, such that each term has the same domain A.

Definition The series
∑∞

n=1 fn is pointwise convergent on the domain A and its sum
is the function g, if, for each x in A, we have limn→∞

∑n
k=1 fk(x) = g(x).

Definition The series
∑∞

n=1 fn is uniformly convergent on the domain A and its sum
is the function g, if limn→∞

∑n
k=1 fk(x) = g(x) uniformly with respect to x in A.

We may be able to infer about a series
∑∞

n=0 fn(x), that there exists a function
g, such that the series converges uniformly to g, and yet we may not know anything
about g. So to eliminate mentioning g at all, we simply say “The series

∑∞
k=1 fk(x)

is uniformly convergent”.
The importance of uniform convergence of a function series is obvious: if each

term is a continuous function, so is the sum function. For this to be useful we need
a convenient test for uniform convergence of a series. Fortunately we have one.

Proposition 11.3 (Weierstrass M-test) Let
∑∞

n=1 fn be a function series where the
terms have a common domain A. Assume that there exists a sequence of positive
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numbers (Mn)
∞
n=1, such that the series

∑∞
n=1 Mn is convergent, and such that for all

x in A and for all n we have | fn(x)| ≤ Mn. Then the series
∑∞

n=1 fn is uniformly
convergent.

Proof The numerical series
∑∞

n=1 fn(x) is convergent (indeed absolutely conver-
gent) for each x in A by the comparison test. The sum is then a function g with
domain A.

So far, the convergence to g is only pointwise. Let ε > 0. Since the series
∑∞

n=1 Mn

is convergent, there exists N , such that
∑∞

k=N Mk < ε. It follows, for all n ≥ N and
all x ∈ A, that

∣∣∣∣ g(x) −
n∑

k=1

fk(x)

∣∣∣∣ =
∣∣∣∣

∞∑

k=n+1

fk(x)

∣∣∣∣ ≤
∞∑

k=n+1

∣∣ fk(x)
∣∣ ≤

∞∑

k=n+1

Mk ≤ ε.

The convergence is therefore uniform. �

11.2.4 Cauchy’s Principle for Uniform Convergence of
Function Series

We can apply Cauchy’s principle for uniform convergence of function sequences to
the study of the function series

∑∞
n=1 fn(x), with common domain A. We find that

the series is uniformly convergent if and only if it satisfies the condition: for all ε > 0
there exists N , such that for all m and n that satisfy n ≥ m ≥ N , and all x in A, we
have ∣∣∣∣

m∑

k=n+1

fk(x)

∣∣∣∣ < ε.

Weierstrass’s M-test supposes that the terms fn(x) are bounded in modulus by
constants Mn > 0, such that

∑∞
n=1 Mn < ∞. Then we have, on choosing N so that∑∞

k=N Mk < ε, that

∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣ <

m∑

k=n+1

∣∣ fk(x)
∣∣ <

m∑

k=n+1

Mk < ε,

for all x in A, provided only that m ≥ n ≥ N . This is another proof of Weierstrass’s
test, appealing to Cauchy’s principle, but the perspicacious reader will see that it is
really the same as the first one.

The Weierstrass M-test can only prove uniform convergence of a function series
if, for each x , it is an absolutely convergent numerical series. To prove that a function
series, that is conditionally convergent for certain values of x , is uniformly convergent
can be trickier, but Cauchy’s principle can be a valuable tool as we shall see.
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11.2.5 Integration and Uniform Convergence

Let ( fn)∞n=1 be a sequenceof functions integrable on the interval [a, b]. If fn converges
pointwise to a function g on [a, b], we cannot in general infer that

lim
n→∞

∫ b

a
fn =

∫ b

a
lim
n→∞ fn =

∫ b

a
g .

Thefirst equality, involving the interchangeof limit and integral,maybe inadmissible.
In fact the function g may even fail to be integrable. And even if it is integrable it is
not guaranteed that equality holds.

We ask: when is it permissible to interchange the operations of limit and integral?
We have an extremely useful sufficient condition.

Proposition 11.4 Let ( fn)∞n=1 be a sequence of continuous functions on the interval[a, b] and assume that limn→∞ fn = g uniformly on [a, b]. Then g is integrable and

lim
n→∞

∫ b

a
fn =

∫ b

a
g.

Proof In the first place g is continuous and therefore integrable on [a, b]. Let ε > 0.
We choose N , such that | fn(x) − g(x)| < ε/(b − a) for all n ≥ N and all x in [a, b].
For such n we find

∣∣∣∣
∫ b

a
fn −

∫ b

a
g

∣∣∣∣ ≤
∫ b

a
| fn − g| < (b − a)

ε

b − a
= ε.

That is, limn→∞
∫ b
a fn = ∫ b

a g. �

And its counterpart for series, for which the proof should be obvious.

Proposition 11.5 Let
∑∞

n=1 fn be a function series, where each term is a continuous
functionon the domain [a, b]. Assume that the series∑∞

n=1 fn is uniformly convergent
on the domain [a, b] and let its sum be the function g. Then

∫ b

a
g =

∞∑

n=1

∫ b

a
fn.

The proposition is sometimes loosely described in the following way: it is per-
missible to integrate a function series term-by-term when the series in question is
uniformly convergent. It is surprising how often one wants to integrate a function
series term-by-term, so we are very glad to have this proposition.

It also introduces a seminal theme. Often it happens, just when we wish to inte-
grate term-by-term, that uniform convergence is wanting. More flexible criteria for
allowing this do exist for the Riemann integral, but it is preferable to adopt a more
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advanced integration theory, to wit, the Lebesgue integral, that allows for term-by-
term integration under much weaker conditions.

11.2.6 Differentiation and Uniform Convergence of Series

After term-by-term integration we turn to term-by-term differentiation. First we look
at the interchange of differentiation and limit for function sequences. This is a trifle
more complicated than for integration.

Proposition 11.6 Let ( fn)∞n=1 be a sequence of differentiable functions on a common
open interval A such that the derivatives f ′

n are all continuous. Suppose that there
exist functions g and h with domain A, such that for each x in A we have

lim
n→∞ fn(x) = g(x), and lim

n→∞ f ′
n(x) = h(x).

Assume that the second limit is uniform with respect to A. Then g is differentiable in
A and g′ = h.

Proof The function h is continuous by Proposition 11.2. Fix a in A. By the previous
proposition and the fundamental theorem we find, for all x ∈ A, that

∫ x

a
h = lim

n→∞

∫ x

a
f ′
n = lim

n→∞
(
fn(x) − fn(a)

) = g(x) − g(a).

But then g′ = h by the fundamental theorem. �

Now for series we have the following:

Proposition 11.7 Let
∑∞

n=1 fn be a function series on the open interval A, such that
each function fn is differentiable and the derivative f ′

n is continuous. Suppose that
the series

∑∞
n=1 fn(x) and

∑∞
n=1 f ′

n(x) are convergent for each x ∈ A and set

g(x) =
∞∑

n=1

fn(x), h(x) =
∞∑

n=1

f ′
n(x), (x ∈ A).

Assume that the second series is uniformly convergent. Then g is differentiable in A
and g′ = h.

Proof Fix a ∈ A. For all x ∈ A we have

g(x) − g(a) =
∞∑

n=1

(
fn(x) − fn(a)

) =
∞∑

n=1

∫ x

a
f ′
n =

∫ x

a
h

and the conclusion follows by the fundamental theorem. �
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11.2.7 Exercises

In problems where the uniform convergence of a function sequence ( fn)∞n=1 is to
be assessed on an interval A, it may be straightforward to determine the pointwise
limit g. It can then be useful, in order to decide about uniform convergence, to
determine the maximum of | fn − g| in A. Sketching the graph of fn and g can also
be helpful to orient one’s thinking.

1. Determinewhether the following limits exist, and are attained uniformly ormerely
pointwise, on the stated intervals A:

(a) lim
n→∞

1

nx + 1
, A = [0, 1]

(b) lim
n→∞

1

nx + 1
, A = [0, 1]

(c) lim
n→∞

1

nx + 1
, A = [δ, 1], where 0 < δ < 1.

(d) lim
n→∞

x

nx + 1
, A = [0, 1].

2. Determinewhether the following limits exist, and are attained uniformly ormerely
pointwise, on the stated intervals A:

(a) lim
n→∞ nx(1 − x)n , A = [0, 1]

(b) lim
n→∞ xn(1 − xn), A = [0, 1]

(c) lim
n→∞ e−nx2 , A = R

(d) lim
n→∞

1

n
e−nx2 , A = R

(e) lim
n→∞

x

nx + 1
, A = [0, 1]

(f) lim
n→∞ xe−nx , A = [0,∞[

(g) lim
n→∞ xe−nx , A = [δ,∞[, where δ > 0.

(h) lim
n→∞

√
x2 + 1

n2
, A = R.

3. The period of a pendulum of length � swinging in a uniform gravitational field of
strength (acceleration) g is given by

T (k) = 4

√
�

g

∫ π/2

0

1√
1 − k2 sin2 φ

dφ

where k = sin(θ0/2) and θ0 is the angular amplitude of the swing. Prove that

lim
k→0

T (k) = 2π

√
�

g
.
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Note. The limit is called the period of small oscillations and is the familiar approximate formula

for the period of swing given in books on elementary mechanics. For large values of k, the

approximationmay be too inaccurate and then one would want to calculate the integral.We have

here another of Legendre’s standard elliptic integrals. For a surprising method to approximate

it see Exercise 5 below.

4. Let (an)∞n=1 and (bn)∞n=1 be positive sequences and suppose that

lim
n→∞ an = lim

n→∞ bn = 1.

Show that

lim
n→∞

1√
an sin 2t + bn cos 2t

= 1

and that the limit is attained uniformly for 0 ≤ t ≤ 2π .
Deduce that

lim
n→∞

∫ 2π

0

1√
an sin 2t + bn cos 2t

dt = 2π.

5. The integral in the preceding exercise (actually another so-called elliptic integral)
can be computed numerically by using the arithmetic-geometric mean (Sect. 3.4
Exercise 10 and Sect. 5.12 Exercise 6). This discovery is due to Gauss, who
wrote down the change of variables in item (a) without giving the rather lengthy
calculations needed,merelywriting that if they are done correctly this is the result.
Perseverance and a cool head are needed to do them correctly, but the payoff in
item (b) is worth the effort.

(a) Let a and b be distinct positive numbers and set

I (a, b) =
∫ π/2

0

1√
a2 cos 2θ + b2 sin 2θ

dθ.

Carry out a change of variables, from θ to φ, where

sin θ = 2a sin φ

a + b + (a − b) sin2 φ
.

Show that the change of variables leads to the conclusion

I (a, b) = I (a1, b1)

where a1 = 1
2 (a + b) and b1 = √

ab.
Hint. It helps to take it in steps, by verifying the following formulas:

(i) cos θ = 2 cosφ
(
a21 cos

2 φ + b21 sin
2 φ

)1/2

a + b + (a − b) sin2 φ
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(ii) (a2 cos2 φ + b2 sin2 φ)1/2 = a
a + b − (a − b) sin2 φ

a + b + (a − b) sin2 φ

(iii) cos θ dθ = (2a cosφ)
(
a + b − (a − b) sin2 φ

)
(
a + b + (a − b) sin2 φ

)2 dφ .

(b) Applying the results of Exercise 4 together with Sect. 3.4 Exercise 10, show
that

I (a, b) = π

2M(a, b)

where M(a, b) is the arithmetic geometric mean of a and b.
Note. This gives an efficient way to calculate the integral. To see why consult Sect. 5.12 Exer-

cise 6.

(c) Show that the period of swing of the pendulum in Exercise 3 is given by

T (k) = 2π

M(1,
√
1 − k2)

√
�

g
= 2π

M(1, cos(θ0/2))

√
�

g
.

6. UsingWeierstrass’s test on a function series
∑∞

n=1 fn(x) is all about finding those
constants Mn . A useful approach can be to set Mn equal to the maximum of | fn|
in the interval A, if it exists and can be found.
Determine whether the following series converge uniformly or merely pointwise,
on the stated intervals A:

(a)
∞∑

n=1

1

n2
sin nx , A = R

(b)
∞∑

n=1

2n sin
( 1

3nx

)
, A =]0,∞[

(c)
∞∑

n=1

2n sin
( 1

3nx

)
, A = [δ,∞[, where δ > 0.

(d)
∞∑

n=1

xne−nx2 , A = R

(e)
∞∑

n=1

x

n p(1 + nx2)
, where p > 1

2 , and A = R.

Note. If 0 < p ≤ 1
2 the question of uniformity is trickier to resolve. The simplest way to

examine this is by comparing the sum for a given x to an improper integral, a topic studied in

Chap.12.

(f)
∞∑

n=1

x

n p(1 + nx2)
, where p > 0, and A = [δ,∞[, where δ > 0.

7. Express the notions of pointwise convergence and uniform convergence of a
function sequence using set theory. More precisely let ( fn)∞n=1 be a sequence
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of functions whose common domain is a set A of real numbers, and let g be a
function with domain A. For each pair (n, k) of positive integers we define a
subset of A by the specification

Bn,k = {
x ∈ A : | f j (x) − g(x)| < 1/k for all j ≥ n

}
.

(a) Show that for each k, the sequence of sets (Bn,k)
∞
n=1 is increasing, and for

each n, the sequence of sets (Bn,k)
∞
k=1 is decreasing. In other words show that

Bn,k ⊂ Bn+1,k and Bn,k+1 ⊂ Bn,k .
(b) Show that fn → g pointwise if and only if for each k we have

∞⋃

n=1

Bn,k = A.

(c) Show that fn → g uniformly if and only if, for each k, there exists n, such
that

Bn,k = A.

Note. Here, at last, we get to use a union of infinitely many sets. Precisely, the union of a

sequence of sets
⋃∞

n=1 Cn is the set of all x , such that there exists n, such that x ∈ Cn . The

formulation of convergence of a function sequence described in this problem is the key to some

important propositions; we can mention Dini’s theorem and Egorov’s theorem.

8. The assumptions of Proposition 11.6 can be weakened. Assume as in the propo-
sition that f ′

n(x) → h(x) uniformly with respect to A, but regarding the conver-
gence of fn(x) assume only that there exists a point x0 in A such that the numerical
sequence ( fn(x0))∞n=1 converges. Prove that there exists a function g, such that
fn(x) → g(x) pointwise in A and g′(x) = h(x) for all x in A.
Hint. Show that for each x the sequence

(
fn(x) − fn(x0)

)∞
n=1 satisfies Cauchy’s

condition.

11.3 Power Series

A power series is a function series of the form
∑∞

n=0 anx
n . The numbers an are

constants, called the coefficients of the power series. The terms anxn are meaningful
if an and x are complex numbers. So in our initial study of power series we shall
assume that this is the case, and write it as

∑∞
n=0 anz

n , where z is a complex variable
and the numbers an are complex coefficients.

The initial term a0z0 is always interpreted as the constant function a0 (this obviates
the need to interpret 00). The translated series

∑∞
n=0 an(z − c)n is called a power

series with midpoint c.
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11.3.1 Radius of Convergence

Given a power series the question of interest is: for which complex numbers z is it
convergent?

Proposition 11.8 If the power series
∑∞

n=0 anz
n is convergent for a given value

z = z0 
= 0, then it is absolutely convergent for all complex z that satisfy |z| < |z0|.
Proof Since the terms of a convergent series are bounded, there exists K > 0, such
that |anzn0 | < K for all n. Let |z| < |z0| and set r = |z|/|z0|. Then r < 1 and

|anzn| = |anzn0 |
∣∣∣∣
z

z0

∣∣∣∣
n

< Krn.

The geometric series
∑∞

n=0 Krn is convergent, and by the comparison test the series∑∞
n=0 anz

n is also convergent, in fact absolutely convergent. �

Proposition 11.9 For a given power series
∑∞

n=0 anz
n, exactly one of the following

is true:

(1)
∞∑

n=0

anz
n is convergent only if z = 0.

(2)
∞∑

n=0

anz
n is absolutely convergent for all z.

(3) There exists a real number R > 0, such that
∑∞

n=0 anz
n is absolutely conver-

gent for all z that satisfy |z| < R, and divergent for all z that satisfy |z| > R.

Proof If
∑∞

n=0 anz
n is convergent for all z then it is absolutely convergent for all z

by Proposition 11.8. If it is convergent for some z = z0 
= 0 (which excludes case
1), and divergent for some z = z1 (which excludes case 2), then we set

R = sup

{
|z| :

∞∑

n=0

anz
n is convergent

}
.

If |z| < R then there exists z0, such that |z| < |z0| < R and
∑∞

n=0 anz
n
0 is

convergent. But then
∑∞

n=0 anz
n is absolutely convergent. If |z| > R then

∑∞
n=0 anz

n

is divergent. �

The number R is called the radius of convergence of the power series. We extend
the notion of radius of convergence to cases 1 and 2 as follows. If

∑∞
n=0 anz

n is con-
vergent only for z = 0 then the radius of convergence is 0. If

∑∞
n=0 anz

n is convergent
for all z then the radius of convergence is infinity, or symbolically R = ∞.

If z is on the circle of convergence |z| = R, there is no general conclusion about
convergence. The series could be convergent for all z on the circle, divergent for all
z on the circle, or convergent at some points and divergent at others.



338 11 Function Sequences and Function Series

An example of the last kind is the series
∑∞

n=1

(
(−1)n−1/n

)
zn . This has radius

of convergence 1. It is easy to see that it is convergent for z = 1 but divergent for
z = −1. Actually, as we shall see later, it is convergent for all z on the unit circle,
except for z = −1, a conclusion that requires a fairly delicate test (Dirichlet’s test).

11.3.2 Determining the Radius of Convergence by the Ratio
Test

In most practical cases, the radius of convergence can be found using the ratio test.
We shall look at three examples, that adequately convey the method. In addition the
conclusions stated will prove useful.

(a) The series
∞∑

n=0

nzn .

Here we have

lim
n→∞

|(n + 1)zn+1|
|nzn| = lim

n→∞
n + 1

n
|z| = |z|.

We conclude that the series is convergent for |z| < 1 and divergent for |z| > 1. The
radius of convergence is therefore 1.

(b) The series
∞∑

n=0

zn

n! .

We have

lim
n→∞

∣∣∣∣
zn+1/(n + 1)!

zn/n!
∣∣∣∣ = lim

n→∞
|z|

n + 1
= 0.

The series is convergent for every z. The radius of convergence is therefore infinity.

(c) The series
∞∑

n=0

n! zn .

In this case

lim
n→∞

∣∣∣∣
(n + 1)!zn+1

n!zn
∣∣∣∣ = lim

n→∞(n + 1)|z| = ∞

provided z 
= 0. The series is convergent onlywhen z = 0. The radius of convergence
is 0.
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11.3.3 Uniform Convergence of Power Series

Now we restrict our study to real power series
∑∞

n=0 anx
n , with real coefficients an

and real variable x . We can still speak of the radius of convergence R. It is the radius
of convergence of the complex series

∑∞
n=0 anz

n .
Most of the material of this and subsequent sections carry over to the case of a

complex variable, but require considerations of continuity and differentiability with
respect to a complex variable that would carry us beyond the planned confines of
this text.

Proposition 11.10 Let R be the radius of convergenceof the power series
∑∞

n=0 anx
n.

Let [c1, c2] be a bounded and closed interval, such that −R < c1 < c2 < R. Then
the function series

∑∞
n=0 anx

n is uniformly convergent on the domain [c1, c2].
Proof If R is finite we choose K so that−R < −K < c1 < c2 < K < R. If R = ∞
we choose K so that −K < c1 < c2 < K . For x ∈ [c1, c2] we have |x | < K , and
therefore

|anxn| < |an|Kn.

Now the series
∑∞

n=0 |an|Kn is convergent since K < R. We conclude by theWeier-
strass M-test that the series

∑∞
n=0 anx

n is uniformly convergent on the domain
[c1, c2]. �

Proposition 11.11 Let
∑∞

n=0 anx
n be a power series with real coefficients and real

variable x. Let the radius of convergence satisfy R > 0 (includes R = ∞). Let

f (x) =
∞∑

n=0

anx
n, −R < x < R.

Then the function f is continuous in the interval ]−R, R[.
Proof Let −R < c1 < c2 < R. The series is uniformly convergent on the domain
[c1, c2]. We conclude that f is continuous in the interval [c1, c2]. But then f must
be continuous in ]−R, R[, since every x in ]−R, R[ lies in some interval of the form
[c1, c2]. �

11.3.4 The Exponential Series

The series
∑∞

n=0 z
n/n! is called the exponential series. We saw that it has infinite

radius of convergence. Let f (z) = ∑∞
n=0 z

n/n! for each z ∈ C. This defines a func-
tion of the complex variable z that has remarkable properties.

Proposition 11.12 The function f of the complex variable z defined by
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f (z) =
∞∑

n=0

zn

n! , (z ∈ C)

satisfies the functional equation

f (z + w) = f (z) f (w)

for all complex z and w.

Proof Let z and w be complex numbers. We calculate

f (z) f (w) =
∞∑

n=0

zn

n!
∞∑

n=0

wn

n!

=
∞∑

n=0

( n∑

k=0

zk

k!
wn−k

(n − k)!
)

(Cauchy product, Sect. 10.3)

=
∞∑

n=0

1

n!
( n∑

k=0

n!zkwn−k

k!(n − k)!
)

=
∞∑

n=0

1

n!
( n∑

k=0

(
n

k

)
zkwn−k

)

=
∞∑

n=0

1

n! (z + w)n (by the binomial rule)

= f (z + w). �

The foregoing proof is a beautiful example of how power series can be used to
obtain algebraic properties of functions. Note how Proposition 10.9 provides the
justification for the second equality sign.

Proposition 11.13 For all real x we have

ex =
∞∑

n=0

xn

n! .

Proof Let f (x) = ∑∞
n=0 x

n/n! for all real x . We have f (x + h) = f (x) f (h) for all
x and h. Therefore

f (x + h) − f (x)

h
= f (x)

f (h) − 1

h
.

For h 
= 0 we have

f (h) − 1

h
= 1 + h

2! + h2

3! + · · · ,
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which is a continuous function of h, and hence has the limit 1 at h = 0.We conclude,
by taking the limit of the difference quotient as h → 0, that f is differentiable at x
and the derivative satisfies f ′(x) = f (x), that is, f is a solution of the differential
equation y′ = y. Hence, by Proposition 7.13, we must have f (x) = Cex for some
constant C , and it is easily seen, for example by putting x = 0, that C = 1. �

The famous formula of this propositionmotivates the extension of the exponential
function to complex variables. For each complex z we define

exp z =
∞∑

n=0

zn

n! .

Then exp z extends to C the exponential function ex of the real variable x .

11.3.5 The Number e

Now we have

e = exp(1) =
∞∑

n=0

1

n! = 1 + 1

1! + 1

2! + 1

3! + · · ·

This provides a practical method (already studied in Sect. 7.2 Exercise 6) to calculate
e since the series converges fast. If we take terms up to and including 1/N ! then the
error is

1

(N + 1)!+
1

(N + 2)! + 1

(N + 3)! + · · ·

<
1

(N + 1)!
(
1 + 1

N + 2
+ 1

(N + 2)2
+ · · ·

)
= N + 2

(N + 1)(N + 1)!
For N = 10 this upper bound for the error is 0.0000000273..., whilst the sum to
N = 10 is 2.718281801... giving seven correct decimal digits of e.

The calculation of π is more difficult. In Sect. 8.1 Exercise 1 the value 1979/630
was obtained which is short of π by around 3/10000. Archimedes gave the bounds

223

71
< π <

22

7
.

The difference between these bounds is around 1/500. In fact the lower bound is
accurate to around 7/10000. Soonwe shall exhibit a series that can be used to calculate
π with arbitrary accuracy.
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11.3.6 Differentiating a Power Series

The series
∑∞

n=0(n + 1)an+1zn , or equivalently
∑∞

n=1 nanz
n−1, is obtained formally

by differentiating the series
∑∞

n=0 anz
n term-by-term with respect to z. We shall

call it the derived series of the series
∑∞

n=0 anz
n . Whatever may be the relationship

between the sums of the two series, we can study the derived series in its own right.

Proposition 11.14 The derived series
∑∞

n=0(n + 1)an+1zn has the same radius of
convergence as the original series

∑∞
n=0 anz

n.

Proof Let R be the radius of convergence of the original series
∑∞

n=0 anz
n , and R′

the radius of convergence of the derived series
∑∞

n=0(n + 1)an+1zn .
Suppose first that 0 < |z| < R and choose z0, so that |z| < |z0| < R. Then the

series
∑∞

n=0 anz
n
0 is convergent, so that there exists K , such that |anzn0 | < K for all

n. Now we find

∣∣(n + 1)an+1z
n
∣∣ = (n + 1)|an+1z

n+1
0 |

|z|
∣∣∣∣
z

z0

∣∣∣∣
n+1

<
K

|z| (n + 1)

∣∣∣∣
z

z0

∣∣∣∣
n+1

.

Since
∣∣z/z0

∣∣ < 1, we can refer to example (a) under “Determining the radius of
convergence by the ratio test” and conclude that the series

∞∑

n=0

(n + 1)

∣∣∣∣
z

z0

∣∣∣∣
n+1

is convergent. Hence, by the comparison test, the series

∞∑

n=0

(n + 1)an+1z
n

is convergent if |z| < R. But this means that R′ ≥ R. Note that if R = 0 the above
arguments are invalid but then it is trivial that R′ ≥ R.

Next we suppose that |z| < R′. The series
∑∞

n=0 |(n + 1)an+1zn| is now conver-
gent and for n ≥ 1 we have

|anzn| ≤ |z| |nanzn−1|,

so that the series
∑∞

n=0 anz
n is also convergent. This means that R ≥ R′. Again if

R′ = 0 the deduction is invalid but the inequality is then trivial.
Putting the inequalities together gives R = R′. �

Proposition 11.15 Let the power series
∑∞

n=0 anx
n have real coefficients and let R

be its radius of convergence. For all x in the interval ]−R, R[ we define the function
f (x) = ∑∞

n=0 anx
n. We have the following conclusions:



11.3 Power Series 343

(1) The derivatives f (k) of all orders exist for every x in ]−R, R[.
(2) The formula

f (k)(x) =
∞∑

n=k

n(n − 1)...(n − k + 1)anx
n−k =

∞∑

n=k

n!
(n − k)!anx

n−k

holds for every x in ]−R, R[. The equality is formally obtained by differentiating
the series

∑∞
n=0 anx

n term-by-term, k times.
(3) For each n we have an = f (n)(0)/n!
Proof However often we differentiate formally term-by-term we obtain a power
series with the same radius of convergence R. It therefore suffices to show that f ′
exists and equals

∑∞
n=1 nanx

n−1 for |x | < R. The rest is just repetition.
Let 0 < r < R. The series

∑∞
n=1 nanx

n−1 is uniformly convergent on the domain
[−r, r ]. We conclude by Proposition 11.7 that f is differentiable for −r < x < r
and f ′(x) = ∑∞

n=1 nanx
n−1. This holds for all r that satisfy 0 < r < R. This means

that the equation f ′(x) = ∑∞
n=1 nanx

n−1 must hold for −R < x < R.
By repeating this argument we find

f (k)(x) =
∞∑

n=k

n(n − 1)...(n − k + 1)anx
n−k =

∞∑

n=k

n!
(n − k)!anx

n−k

for all x in ]−R, R[. Finally, setting x = 0 gives f (k)(0) = k! ak . �

If a function f has derivatives of all orders at a point at x = 0, we may form the
power series (which merits a display because of its great importance):

∞∑

n=0

1

n! f
(n)(0)xn.

Whether or not this series has a positive radius of converges (and if it does it need
not converge to f (x) in its interval of convergence), we call it the Maclaurin series
of f . Proposition 11.15 shows that if a power series

∑∞
n=0 anx

n has a positive radius
of convergence, then it is the Maclaurin series of its sum function.

The permissibility of differentiating power series term-by-term makes them into
a powerful tool for investigating transcendental functions. As function series go it is
quite a luxury; one is apt to forget that term-by-term differentiation is not generally
permissible for function series, and not even for commonly used function series such
as Fourier series, without some extra conditions. In the next section we shall use
power series to study the elementary transcendental functions.
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11.3.7 Exercises

1. Determine the radius of convergence of the following power series:

(a)
∞∑

n=0

1

n + 1
zn

(b)
∞∑

n=0

2n

n + 1
zn

(c)
∞∑

m=0

(−1)m

m! z2m

Note. This type of formulation, where not all powers are displayed, is common. Here only

the even powers are displayed; the odd powers are understood to have the coefficient 0. In

other cases only odd powers may be displayed, or powers of the form z3k+1 where k is an

integer. The variations on this are many.

(d)
∞∑

n=0

(2 + n)n

n + 1
zn

(e)
∞∑

n=0

(2 + n)n

n! zn

(f)
∞∑

n=0

(−1)n−1(2n)!
(n!)2(2n − 1)22n

zn

2. (♦) Prove the following formula for the radius of convergence R of a power series∑∞
n=0 anx

n:

R = 1

lim supn→∞ |an| 1
n

.

The formula is interpreted as R = 0 when the denominator is ∞ and as R = ∞
when the denominator is 0.
Hint. Consult Sect. 10.2 under “Extended forms of the ratio and Cauchy’s test”.
Refer to Sect. 3.11 for an account of limit superior.

3. (♦) Use the formula obtained in the previous exercise to give a short proof that
the derived series

∑∞
n=0(n + 1)an+1xn has the same radius of convergence as the

original series
∑∞

n=0 anx
n .

Hint. Prove and use the rule

lim sup
n→∞

cndn = ( lim
n→∞ cn)(lim sup

n→∞
dn),

valid on the assumption that cn converges to a positive limit.
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11.4 The Power Series of Common Elementary Functions

The power series expansions of sin x and cos x were among the spectacular results
of the early decades of calculus. They led to the biggest advance in the practical
calculation of the circular functions since Ptolemy of Alexandria. The connection
between the exponential function and the circular functions followed and was seen
to justify fully the controversial introduction of the imaginary unit i .

The binomial series was studied by Newton, who conjectured its sum by extrapo-
lating from the case of a positive integer exponent. He probably found further support
for the conjecture by using the series to calculate some square roots. A reasonably
satisfactory proof was lacking until Abel gave one.

11.4.1 Unification of Exponential and Circular Functions

The power series defining the exponential of a complex number

exp z =
∞∑

n=0

1

n! z
n

is convergent for all complex z. We have seen that the function exp z satisfies the
functional equation exp(z + w) = exp z expw for all complex z andw.We also know
that for real x we have exp x = ex . This motivates the notion of e raised to the power
z, defined by

ez := exp z,

and justifies the use of the name exponential.
Now we consider the function eix of the real variable x , the restriction of ez to the

imaginary axis.We know that i2 = −1, i3 = −i and i4 = 1. In general i2m = (−1)m ,
i2m+1 = (−1)mi . We therefore have

eix =
∞∑

n=0

1

n! (i x)
n

=
∞∑

m=0

1

(2m)! i
2mx2m +

∞∑

m=0

1

(2m + 1)! i
2m+1x2m+1

=
∞∑

m=0

(−1)m

(2m)! x
2m + i

∞∑

m=0

(−1)m

(2m + 1)! x
2m+1.

This expresses the real and imaginary parts of eix as power series. Let us write
u(x) = Re eix , v(x) = Im eix . For all real x we have
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u(x) =
∞∑

m=0

(−1)m

(2m)! x
2m = 1 − x2

2! + x4

4! − x6

6! + x8

8! − x10

10! + · · ·

v(x) =
∞∑

m=0

(−1)m

(2m + 1)! x
2m+1 = x

1! − x3

3! + x5

5! − x7

7! + x9

9! − x11

11!+ · · ·

We can compute the derivatives of u and v by differentiating the series term-by-term:

u′(x) = − x

1! + x3

3! − x5

5! + x7

7! − x9

9! + x11

11! − · · · = −v(x)

v′(x) = 1 − x2

2! + x4

4! − x6

6! + x8

8! − x10

10! + · · · = u(x)

and from this we conclude

u′′(x) = −u(x), v′′(x) = −v(x).

We see that both u and v satisfy the differential equation y′′ + y = 0. Hence u(x) and
v(x) are each of the form A cos x + B sin x where A and B are constants (see Propo-
sition 7.2). But from the power series we see that u(0) = 1 and u′(0) = 0, giving
u(x) = cos x , and that v(0) = 0 and v′(0) = 1, giving v(x) = sin x . To summarise,
we have the following conclusions.

Proposition 11.16 For all real x the following formulas are valid:

(1) cos x =
∞∑

m=0

(−1)m

(2m)! x
2m = 1 − x2

2! + x4

4! − x6

6! + x8

8! − x10

10! + · · ·

(2) sin x =
∞∑

m=0

(−1)m

(2m + 1)! x
2m+1 = x

1! − x3

3! + x5

5! − x7

7! + x9

9! − x11

11! + · · ·
(3) eix = cos x + i sin x .

The third formula in the proposition (sometimes called Euler’s formula) tells us
that eix parametrises the unit circle. Setting x = π we derive the most beautiful
formula in mathematics,

eiπ + 1 = 0.

The five most important numbers of analysis, 0, 1, i , π and e are here quite unex-
pectedly, and one might even say poetically, intertwined.

11.4.2 The Binomial Series

The series in question is
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∞∑

n=0

a(a − 1)...(a − n + 1)

n! zn.

The number a is a constant, which could be complex. The term for n = 0 is always
interpreted as 1. Compare the binomial rule for a positive integral exponent m:

(1 + x)m =
m∑

n=0

m(m − 1)...(m − n + 1)

n! xn =
m∑

n=0

(
m

n

)
xn

and we see why it is a plausible conjecture that for real a the binomial series sums
to (1 + x)a .

If a is not a natural number then the radius of convergence of the binomial series
is 1. We only have to apply the ratio test:

a(a − 1)...(a − n)

(n + 1)! zn+1

/
a(a − 1)...(a − n + 1)

n! zn = a − n

n + 1
z → −z.

Hence the binomial series converges for |z| < 1 and diverges for |z| > 1.

Proposition 11.17 Let a be a real number. For all x in the open interval−1 < x < 1
we have

(1 + x)a =
∞∑

n=0

a(a − 1)...(a − n + 1)

n! xn .

Proof Let f (x) be the sum of the series for those x that satisfy |x | < 1. We shall
show that (x + 1) f ′(x) − a f (x) = 0.

Set

cn = a(a − 1)...(a − n + 1)

n! , n = 1, 2, 3, ... c0 = 1,

so that f (x) = ∑∞
n=0 cnx

n , for −1 < x < 1. We saw, in the calculation of the radius
of convergence, that

cn+1

cn
= a − n

n + 1
,

that is
(n + 1)cn+1 = (a − n)cn.

Differentiating the series term-by-term, and using this, we find

f ′(x) =
∞∑

n=1

ncnx
n−1

=
∞∑

n=0

(n + 1)cn+1x
n
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=
∞∑

n=0

(a − n)cnx
n

= a
∞∑

n=0

cnx
n − x

∞∑

n=1

ncnx
n−1

= a f (x) − x f ′(x).

Weconclude that (x + 1) f ′(x) − a f (x) = 0, that is, f is a solution to the differential
equation

(x + 1)y′ − ay = 0.

To see why this implies that f (x) = (1 + x)a we observe that

d

dx

(
(1 + x)−a f (x)

)
= (1 + x)−a f ′(x) − a(1 + x)−a−1 f (x)

= (1 + x)−a−1
(
(1 + x) f ′(x) − a f (x)

)

= 0,

and conclude that (1 + x)−a f (x) is a constant C for −1 < x < 1. By setting x = 0
we find that C = 1. �

The product a(a − 1)...(a − n + 1) that appears in the binomial series can often
be tidied up. Of course one way is to write it as �n

k=1(a − k + 1). There are others
that drastically alter its appearance, but are quite common. Consider the series

(1 + x)−1/2 =
∞∑

n=0

( − 1
2

)( − 3
2

)
...

(
1
2 − n

)

n! xn .

We rewrite the product in the numerator, noting that there are n factors:

(
− 1

2

)(
− 3

2

)
...

(
1

2
− n

)
= (−1)n

1.3....(2n − 1)

2n
.

Here we have a new product of n factors, increasing in steps of 2. We insert the even
numbers, above and below the line, to obtain

(−1)n
1.2.3....(2n − 1)(2n)

2n 2.4...(2n)
= (−1)n

(2n)!
22nn! .

This produces the series

(1 + x)−1/2 =
∞∑

n=0

(−1)n
(2n)!

22n(n!)2 x
n,
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not easily recognisable as a binomial series.
The binomial series makes sense when a is a complex number. This provides

the opportunity to take up again the story of the power function xa , prematurely
pronounced concluded in Sect. 7.2, and extend it to complex powers a. In what
follows x will be a positive real variable but a may be complex. We define

xa := exp(a ln x), (x > 0).

Exercise Show that complex powers obey the laws of exponents:

xa+b = xaxb, (xa)b = xab

where x > 0 and a and b are complex numbers.

Now we can calculate

d

dx
xa = d

dx
exp(a ln x)

= a

x
exp(a ln x)

= a exp(− ln x) exp(a ln x)

= a exp
(
(a − 1) ln x

)

= axa−1.

Exercise Justify the second equality sign by differentiating the real and imaginary
parts of the function.

Although we took a to be a real exponent in the proof of Proposition 11.17, there
is nothing in the proof that does not work if a is complex. All we need is the formula
giving the derivative of xa as axa−1, which we obtained just now for a complex
exponent a and a real variable x . In this text we do not go as far as considering
differentiation with respect to a complex variable.

Exercise Verify that term-by-term differentiation is valid for a power series∑∞
n=0 anx

n with complex coefficientswithin its interval of convergence−R< x< R.

11.4.3 Series for Arctangent

The case a = −1 of the binomial series gives us the formula

1

1 + x2
=

∞∑

n=0

(−1)nx2n, −1 < x < 1.
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If 0 < r < 1 the series converges uniformly for −r ≤ x ≤ r . We may therefore
integrate term-by-term from 0 to x and find

arctan x =
∞∑

n=0

∫ x

0
(−1)nt2n dt =

∞∑

n=0

(−1)n

2n + 1
x2n+1, −1 < x < 1.

It should be clear that this holds for all x in the interval ]−1, 1[ since we can move
r as near to 1 as we wish. But we should also notice that the series is convergent
for x = 1 (by Leibniz’s test), although the series for 1/(1 + x2) is divergent when
x = 1.

It is natural to ask whether arctan 1 is equal to
∑∞

n=0 (−1)n/(2n + 1). The argu-
ments given above do not settle this. If the answer is yes, then we obtain a series for
π , namely,

π

4
=

∞∑

n=0

(−1)n

2n + 1
.

11.4.4 Abel’s Lemma and Dirichlet’s Test

The answer to the question posed at the end of the last sectionwill soon be obtained by
the use of Abel’s theorem on power series. We postpone this topic to the next section
and turn instead to Abel’s lemma. On the face of it, this is a diversion, referring as
it does to numerical series (rather than function series); so it might have fitted better
into the previous chapter. However, its main use is in proving Dirichlet’s test, an
important application of which is to study the convergence of power series on the
circle of convergence. And that is exactly where we have arrived in the discussion
of power series.

Proposition 11.18 (Abel’s lemma) Let (an)∞n=1 be a complex sequence and let
(bn)∞n=1 be a decreasing sequence of positive, real numbers. Set sn = ∑n

k=1 ak, and
assume that there exists M > 0, such that |sn| ≤ M for all n. Then

∣∣∣∣
n∑

k=1

akbk

∣∣∣∣ ≤ Mb1.

Proof We have (as an exercise, the reader might try writing the calculation using∑
-notation throughout)

n∑

k=1

akbk = s1b1 + (s2 − s1)b2 + (s3 − s2)b3 + · · · + (sn − sn−1)bn

= s1(b1 − b2) + s2(b2 − b3) + · · · + sn−1(bn−1 − bn) + snbn.
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Since bk − bk+1 ≥ 0 for all k, we find

∣∣∣∣
n∑

k=1

akbk

∣∣∣∣ ≤ M
(
(b1 − b2) + (b2 − b3) + · · · + (bn−1 − bn) + bn

)
= Mb1.

�

Abel’s lemma leads to a convergence test for complex series that does not test
for absolute convergence. It is sometimes useful for proving that a power series
converges at a given point on the circle of convergence, where, naturally, absolute
convergence may fail.

Proposition 11.19 (Dirichlet’s test) Let (an)∞n=1 be a complex sequence, let (bn)
∞
n=1

be a decreasing sequence of positive real numbers, and assume that limn→∞ bn = 0.
Set sn = ∑n

k=1 ak and assume that there exists M, such that |sn| ≤ M for all n. Then
the series

∑∞
k=1 akbk is convergent.

Proof For integers m and � such that m < � we have

∣∣∣∣
�∑

k=m

ak

∣∣∣∣ ≤
∣∣∣∣

�∑

k=1

ak

∣∣∣∣ +
∣∣∣∣
m−1∑

k=1

ak

∣∣∣∣ ≤ 2M.

By Abel’s lemma we now find, for m < n, that

∣∣∣∣
n∑

k=m

akbk

∣∣∣∣ ≤
(
sup
�≥m

∣∣∣∣
�∑

k=m

ak

∣∣∣∣

)
bm ≤ 2Mbm .

Since limm→∞ bm = 0 the series
∑∞

k=1 akbk is convergent by Cauchy’s criterion
(Proposition 10.4). �

Asimple case ofDirichlet’s test is to takean = (−1)n−1, since then sn is alternately
1 and 0.We obtain Leibniz’s test, that

∑∞
k=1(−1)kbk is convergent if bk is decreasing

and tends to 0.
A popular choice that gives new conclusions is to take an = ηn , where η is a

complex number such that |η| = 1, but η 
= 1. Then we have

∣∣∣∣
n∑

k=0

ak

∣∣∣∣ =
∣∣∣∣

n∑

k=0

ηk

∣∣∣∣ =
∣∣∣∣
ηn+1 − 1

η − 1

∣∣∣∣ ≤ 2

|η − 1| .

Now suppose that the power series
∑∞

n=0 bnz
n has real coefficients and radius of

convergence R < ∞, and assume that the sequence (bn Rn)∞n=0 is decreasing and
tends to 0. If z is on the circle of convergence then z = Rη where |η| = 1, and we
can write ∞∑

n=0

bnz
n =

∞∑

n=0

(bn R
n)ηn.
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We conclude that the series converges if η 
= 1, that is, the power series
∑∞

n=0 bnz
n

converges on its circle of convergence except possibly at z = R.

11.4.5 Abel’s Theorem on Power Series

We come to the result of Abel postponed from a previous section. It is also commonly
known as Abel’s limit theorem.

Proposition 11.20 (Abel’s theorem)Let the power series
∑∞

n=0 anx
n have real coef-

ficients and let its radius of convergence R be finite. Set f (x) = ∑∞
n=0 anx

n for
−R < x < R. Assume that the series

∑∞
n=0 an R

n is convergent and let L be its sum.
Then limx→R− f (x) = L.

Proof We first treat the special case when R = 1 and
∑∞

n=0 an = 0. We must show
that limx→1− f (x) = 0.

Let sn = ∑n
k=0 ak , so that limn→∞ sn = 0. For 0 < x < 1 we have

f (x) = (1 − x)(1 − x)−1 ∑∞
n=0 anx

n

= (1 − x)
( ∑∞

n=0 x
n
)( ∑∞

n=0 anx
n
)

= (1 − x)
∑∞

n=0 snx
n

where the product in the second line is computed as the Cauchy product.
Let ε > 0. Choose N , such that |sn| < ε for all n ≥ N . Then for 0 < x < 1 we

have

| f (x)| ≤ (1 − x)

∣∣∣∣
N−1∑

n=0

snx
n

∣∣∣∣ + ε(1 − x)
∞∑

n=N

xn = (1 − x)

∣∣∣∣
N−1∑

n=0

snx
n

∣∣∣∣ + εxN .

The right-hand member of the equality has the limit ε when x → 1−. Hence there
exists δ > 0, such that it is below 2ε for all x that satisfy 1 − δ < x < 1. For such x
we have | f (x)| < 2ε. This shows that limx→1− f (x) = 0.

Finally the general case. Let s = ∑∞
n=0 an R

n . We note that the power series

(a0 − s) +
∞∑

n=1

(an R
n)xn

satisfies the conditions of the special case treated first. We conclude that

lim
x→1−

(
(a0 − s) +

∞∑

n=1

an R
nxn

)
= (a0 − s) +

∞∑

n=1

an R
n
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which is equivalent to

lim
x→R−

∞∑

n=0

anx
n =

∞∑

n=0

an R
n.

�

We can give some nice applications of Abel’s theorem.

(a) We saw that

arctan x =
∞∑

n=0

(−1)n

2n + 1
x2n+1, −1 < x < 1

and that the series converges for x = 1 by Leibniz’s test. We conclude that

π

4
= arctan 1 =

∞∑

n=0

(−1)n

2n + 1
.

This is sometimes called Gregory’s series for π .
(b) We know that (1 + x)−1 = ∑∞

n=0(−1)nxn for −1 < x < 1. Integrating we find

ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn, −1 < x < 1.

The series is convergent for x = 1. We conclude that

ln 2 =
∞∑

n=1

(−1)n−1

n
.

These are beautiful results. But neither series is very good for practical computa-
tion since they converge so slowly. This is not surprising as we are operating on the
circle of convergence.

11.4.6 Exercises

1. Show that ez = ez for all complex z.
2. Show that |ez| = eRe z for all complex z.
3. Show that if θ is real then

|eiθ − 1| = 2
∣∣∣ sin

θ

2

∣∣∣.
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4. Show that the set of all solutions in C of the equation ez = 1 consists of the
numbers 2πni where n is an integer, positive, negative or 0, in short the integer
multiples of 2π i .

5. Show that exp z is a periodic function of the complex variable z with basic
period 2π i . In other words show that exp z = exp(z + 2π i) for all z, and that if
exp z = exp(z + T ) for all z, then T is an integer multiple of 2π i .

6. Show that the range of exp is the whole complex plane with the exclusion of the
point 0.

7. Recall the principal logarithm of a complex variable, Log z, defined in 9.1 for
all z that are not negative real numbers or 0. The excluded set is the interval
]−∞, 0] considered as a subset of C. Show that Log and exp are inverses to
each other if we restrict the domain of exp suitably.
More precisely, let S be the strip {z ∈ C : −π i < Im z < π i}. Show that if z ∈ S
and w ∈ C\]−∞, 0], then w = exp z if and only if z = Logw.

8. Prove that if θ is not an integer multiple of 2π then

n∑

k=0

ekiθ = e(n+1)iθ − 1

eiθ − 1
.

What is the correct formula if θ is an integer multiple of 2π?
9. Let

Cn(θ) =
n∑

k=0

cos kθ, Sn(θ) =
n∑

k=0

sin kθ

for all real θ and positive integers n.

(a) Prove that if θ is not an integer multiple of 2π then

Cn(θ) = cos 1
2nθ sin 1

2 (n + 1)θ

sin 1
2θ

, Sn(θ) = sin 1
2nθ sin 1

2 (n + 1)θ

sin 1
2θ

.

What are the correct formulas if θ is an integer multiple of 2π?
(b) Show that for all δ > 0 there exists K > 0, such that for all n, and for all θ

in the interval δ < θ < 2π − δ, we have

|Cn(θ)| ≤ K and |Sn(θ)| ≤ K .

(c) In the previous item K depends on δ and we cannot replace δ by 0. Show
that

lim
n→∞ sup

0<θ<2π
Cn(θ) = lim

n→∞ sup
0<θ<2π

Sn(θ) = ∞.

10. (a) Derive a power series for the function
1

2
ln

(
1 + x

1 − x

)
from the power series

for ln(1 + x).
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(b) Set x = 1
3 in the power series obtained in the previous item and compute ln 2.

Use enough terms to get three correct decimal digits and for this purpose
estimate the tail of the series. You should only need a very few terms.
Compare with the series

∑∞
n=1 (−1)n−1/n = ln 2. How many terms are

needed of the latter series to get ln 2 to 3 decimal places?
(c) Set x = 1

9 and compute ln 5
4 .

(d) Find a nice approximation to ln 10 (and recall Sect. 7.2 Exercise 1).
11. Show that the series

∑∞
n=0(1/(n + 1))zn , which has radius of convergence 1,

converges for all complex z that satisfy |z| = 1, except for z = 1, where it
diverges.

12. Using the binomial series, obtain series for the following functions, and tidy
them up after the fashion of the text.

(a) (1 + x)1/2

(b) (1 + x2)−1/2

(c) (1 − x2)−1/2.

13. (♦) Let a be a real number, but not a natural number. You are asked to give an
exhaustive description of the convergence, or otherwise, of the binomial series

m∑

k=0

a(a − 1)...(a − k + 1)

k! xk

at the endpoints of its interval of convergence. For which values of a (excluding
here the natural numbers) is the following true of the series?

(a) It is absolutely convergent for x = 1.
(b) It is absolutely convergent for x = −1.
(c) It is conditionally convergent for x = 1.
(d) It is conditionally convergent for x = −1.
(e) It is divergent for x = 1.
(f) It is divergent for x = −1.
Hint. Let cn be the binomial coefficient. A good place to start is from the
ratio cn+1/cn . For absolute convergence Gauss’s test is useful. For conditional
convergence a useful first question is: for what a is the sequence of absolute
values |cn| decreasing for sufficiently large n? And for what a does |cn| tend
to 0?

14. Calculate some terms of theMaclaurin series (see Sect. 11.3 under “Differentiat-
ing a power series” for the definition of Maclaurin series) for tan x , for example
up to the term a3x3.

15. In the previous exercise the going gets tougher when higher powers are needed.
Obtain a simple recurrence formula for the coefficients in the Maclaurin series
for tan x , by showing that tan x satisfies the differential equation y′ = 1 + y2,
and using Leibniz’s formula for the nth derivative of a product.
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16. Using only the series for cos x and sin x and not relying on knowledge about
these functions, prove that cos x has a lowest positive zero, and that it lies
between

√
2 and

√
3.

Note. In texts that use the power series of sin x and cos x as definitions of the circular functions,

the result of this exercise is used to define the number π as twice the lowest positive zero of

cos x .

17. Suppose that the function f (x) has derivatives of all orders at x = 0, and that
f (0) 
= 0. Show that 1/ f has derivatives of all orders at x = 0.

18. Suppose that f has the Maclaurin series
∑∞

n=0 anx
n , with a0 
= 0, and that

1/ f has the Maclaurin series
∑∞

n=0 bnx
n . Show that the coefficients bn can be

calculated from the recurrence relations

bn = − 1

a0

n∑

k=1

akbn−k (n ≥ 1), b0 = 1

a0
.

This holds irrespectively of whether either of the two Maclaurin series has a
positive radius of convergence.

19. Suppose that f has the Maclaurin series
∑∞

n=0 anx
n , with a0 
= 0, and that 1/ f

has the Maclaurin series
∑∞

n=0 bnx
n . Suppose further that the series

∑∞
n=0 anx

n

converges to f (x) in an interval ]−R, R[ centred at 0. It is natural to ask whether
the series

∑∞
n=0 bnx

n converges to 1/ f (x) in some interval centred at 0. This
question can be answered most satisfactorily by means of complex analysis.
However, using only methods of this text, one can produce an interval in which∑∞

n=0 bnx
n converges to 1/ f (x), though it may fall far short of the largest one.

Assume that 0 < r < R and set M = maxk≥1 |ak |rk .
(a) Show that

|bn|rn ≤ M

|a0|
n−1∑

k=0

|bk |rk, (k ≥ 1).

(b) Deduce that

|bn|rn ≤ M

|a0|2
(
1 + M

|a0|
)n−1

, (k ≥ 1).

(c) Deduce that the series
∑∞

n=0 bnx
n converges if

|x | ≤ |a0|r
M + |a0|

and has the sum 1/ f (x).
(d) Obtain some lower estimates for the interval in which tan x can be repre-

sented by its Maclaurin series.

20. (a) Obtain the power series representation
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arcsin x =
∞∑

n=1

(2n)!
22n(n!)2

x2n+1

2n + 1

for −1 < x < 1.
(b) (♦) Show that the representation of arcsin x obtained in the previous item

remains valid at x = ±1. This gives two further series for π .
21. Let the series

∑∞
k=1 ak be convergent. Without using Abel’s theorem on power

series, show that the power series
∑∞

k=1 akx
k is uniformly convergent with

respect to x in the closed interval [0, 1].
Hint. Study the tail

∑∞
k=n akx

k , using a treatment similar to that in the proof of
Abel’s theorem.
Note. This gives another proof of Abel’s theorem.

22. Show that the Maclaurin series for f (x) := (1 − x)1/2 converges uniformly to
f (x) on the closed interval [0, 1].
Hint. By the previous exercise it is enough to show that the Maclaurin series
converges at x = 1. If you haven’t read the nugget on Gauss’s test you might try
to prove, since the terms plainly alternate in sign, that the coefficients tend to 0.
Note. The result shows that the function

√
x can be approximated uniformly by polynomials in

the interval [0, 1]. This is the first step in proving the Stone–Weierstrass theorem, a very general

result of metric space theory that includes as a special case the Weierstrass approximation

theorem,which tells us that a continuous function can be approximated uniformly in a bounded

interval by polynomials with arbitrary accuracy.

23. The convergence of the series for arctan x and ln(1 + x) at x = 1 can be
obtained, without usingAbel’s theorem, by keeping a close eye on the remainder
terms in the series being integrated. More precisely, write

1

1 + x
=

n−1∑

k=0

(−1)k xk + (−1)nxn

1 + x

and derive

ln(1 + x) =
n−1∑

k=0

(−1)k xk+1

k + 1
+

∫ x

0

(−1)ntn

1 + t
dt,

valid for all x > −1. Show that for x = 1 the remainder tends to 0 as n → ∞.
Carry out a similar analysis for arctan x .

24. Gregory’s series forπ converges too slowly to be practical as away of computing
π . Some gameswith the addition formula for arctangent give better series. Prove
the following formulas, and use the second to compute π .
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(a)
π

4
= arctan

1

2
+ arctan

1

3

(b)
π

4
= 4 arctan

1

5
− arctan

1

239
.

In the remaining exercises in this section, we look at some consequences of Abel’s
lemma and Dirichlet’s test. One benefit is a test that can decide uniform convergence
of a function series that is not absolutely convergent.

25. Show that the series
∑∞

n=1 sin(nx)/n is convergent for every x .
26. Prove the following useful variant of Dirichlet’s test which imposes stronger

conditions on an but weaker ones on bn . Suppose that the series
∑∞

k=1 ak (which
may be complex) is convergent and that (bk)∞k=1 is a monotonic and bounded
sequence of real numbers. Then the series

∑∞
k=1 akbk is convergent.

27. Let (an)∞n=1 and (bn)∞n=1 be complex sequences. Let sn = ∑n
k=1 ak for eachn ≥ 1.

Rewrite the calculation in the proof of Abel’s lemma to give the formula:

n∑

k=1

akbk = snbn+1 −
n∑

k=1

sk(bk+1 − bk).

Deduce from this another variant of Dirichlet’s test: if
∑∞

k=1 ak is convergent
and

∑∞
k=1(bk+1 − bk) absolutely convergent, then

∑n
k=1 akbk is convergent.

Note. This includes the result of the previous exercise as a special case, but is stronger; for

example, bn can be complex. For an example of its use see Exercise 32.

28. Dirichlet’s test is the basis of a test for uniform convergence, which is sometimes
useful for function series

∑∞
n=1 fn(x), that are not absolutely convergent for some

values of x . For such series the Weierstrass M-test cannot succeed. Prove the
following proposition. The proof is the same as for Dirichlet’s test but functions
replace numbers.

Let (un)∞n=1 and (vn)∞n=1 be function sequences on the same domain A. Sup-
pose that there exists M, such that for all n and for all x in A we have
| ∑n

k=1 vk(x)| < M. Suppose further that the functions un are real valued, that
un(x) decreases with increasing n for each x in A, and that un tends uniformly
to 0 on A. Then the series

∑∞
n=1 un(x)vn(x) converges uniformly with respect

to x in A.

There is a variant of this, similar to Exercise 26:

Let (un)∞n=1 and (vn)∞n=1 be function sequences on the same domain A. Assume
that the function series

∑∞
k=1 vk(x) is uniformly convergent for x in A. Suppose

further that the functions un are real valued, that un(x) decreaseswith increasing
n for each x in A,and that there exists K > 0, such that |un(x)| ≤ K for all n and
for all x in A. Then the function series

∑∞
n=1 un(x)vn(x) converges uniformly

with respect to x in A.
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29. Let f (x) = ∑∞
n=1 sin(nx)/n. Show that for all δ > 0 the series is uniformly

convergent with respect to x in the interval [δ, 2π − δ]. Conclude that f is
continuous in the open interval ]0, 2π [.
Hint. Use Exercise 9 and the previous exercise.
Note. The function f is actually discontinuous at multiples of 2π and exhibits a “saw tooth”

pattern. The series is a basic example of a Fourier series representation of a discontinuous

function.

30. Let s be a complex number. Show that the series
∑∞

n=1 n
−s is absolutely con-

vergent if Re s > 1..
Note. The function ζ(s) = ∑∞

n=1 n
−s is the Riemann zeta function and was referred to in

Sect. 10.3 Exercise 2. It plays a really important role in number theory. In this exercise we have

defined it for Re s > 1 but it can be extended to the left of the line Re s = 1 in an essentially

unique way.

31. Series of the form
∑∞

n=1 ann
−s , with complex coefficients an , are known as

Dirichlet series. They generalise the series of the previous exercise. Normally
they are studied with complex s, but in this exercise we restrict ourselves to
real s.

(a) Suppose that the series
∑∞

n=1 an is absolutely convergent. Show that for
every s ≥ 0 the series

∑∞
n=1 ann

−s is absolutely convergent.
(b) Suppose that the sequence of partial sums

∑n
k=1 ak is bounded (in particular,

this is the case if the series
∑∞

n=1 an is convergent). Show that for every s > 0
the series

∑∞
n=1 ann

−s is convergent.

32. Extend the conclusions of the previous exercise to complex s. The main differ-
ence lies in the test needed for item (b).

(a) Suppose that the series
∑∞

n=1 an is absolutely convergent. Show that for
every complex s such that Re s ≥ 0 the series

∑∞
n=1 ann

−s is absolutely
convergent.

(b) Suppose that the sequence of partial sums
∑n

k=1 ak is bounded. Show that for
every complex s such that Re s > 0 the series

∑∞
n=1 ann

−s is convergent.
Hint. Use the fact that if Re t > 0 the series

∑∞
n=1

(
n−t − (n + 1)−t

)
is

absolutely convergent. This can be seen by computing the limit

lim
x→∞

x−t − (x + 1)−t

x−t−1
,

where t is complex. Then use the version of Dirichlet’s test given in Exer-
cise 27.
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11.5 (♦) Summability Theories

There is an old puzzle about the light switch that is turned on at one minute to
midnight, off at half-a-minute to midnight, on again at a quarter-of-a-minute to
midnight, and so on, always halving the time between successive switchings. We
ask: is the light on or off at midnight?

It seems we are asking whether the infinite sum

∞∑

n=1

(−1)n−1 = 1 − 1 + 1 − 1 + 1 − 1 + · · ·

is 0 or 1. Of course the series is divergent; having a correct definition of limit seems
to dispense with the question as being meaningless. However, mathematicians are
not so ready to give up, and have invented summability theories to shed light on this
question.

A summability theory is a procedure for assigning values to infinite sums
∑∞

n=1 an ,
that assigns the correct value to convergent series, assigns a value to some divergent
series, and satisfies certain natural rules. We want the sum to be a linear operation,
that is,

∞∑

n=1

(αan + βbn) = α

∞∑

n=1

an + β

∞∑

n=1

bn,

and we want it to behave naturally with regard to tacking on extra terms at the front,

α +
∞∑

n=1

an =
∞∑

n=1

bn,

where b1 = α and bn+1 = an for n = 1, 2, 3, ...
These rules alone fix the value of

∑∞
n=1(−1)n−1 in any summability theory, for

calling the sum s, we have

1 − s = 1 −
∞∑

n=1

(−1)n−1 =
∞∑

n=1

(−1)n−1 = s

so that s = 1
2 . Quite a sensible conclusion which suggests that the light is equally

likely to be on or off.
There are two principal summability theories that are commonly seen.

Cesaro summation

Also known as (C,1)-summation or summation by arithmetic means. We let

sn =
n∑

k=1

ak, and σn = 1

n

n∑

k=1

sk .
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The Cesaro sum of the series
∑∞

k=1 ak is the limit limn→∞ σn , provided the limit
exists. By Proposition 3.23 this assigns the correct value to convergent series.

One can take this further by considering the sequence

σ ′
n = 1

n

n∑

k=1

σk,

of arithmetic means of the sequence (σn)
∞
n=1 of arithmetic means. The limit

limn→∞ σ ′
n , if it exists, is the (C,2)-sum of

∑∞
k=1 ak . In this way we can produce

a whole scale of summability methods, (C,m)-summability, for m = 1, 2, 3, ...

Abel summation

We consider the power series
∑∞

n=0 anx
n . If its radius of convergence is greater than

or equal to 1 we set F(x) = ∑∞
n=0 anx

n for |x | < 1. The limit, limx→1− F(x), if it
exists, is called the Abel sum of the series

∑∞
n=0 an . By Abel’s theorem on power

series this assigns the correct value to convergent series.

11.5.1 Abelian Theorems and Tauberian Theorems

It may be that a series, whose normal convergence status is unknown, can be shown
to be Abel summable, or Cesaro summable. We cannot of course deduce that the
series in question is convergent in the normal sense from either of these facts, as the
case of

∑∞
n=1(−1)n−1 shows. But an additional condition imposed on the sequence

(an)∞n=1 may suffice to make the deduction. Many such conditions are now known.
The following result is their prototype.

Proposition 11.21 (Tauber’s theorem) Suppose that the series
∑∞

n=0 an is Abel
summable with sum s, assumed to be a finite number. Assume that limn→∞ nan = 0.
Then the series is convergent in the normal sense, with sum s.

Proof Let F(x) = ∑∞
k=0 akx

k for 0 < x < 1. The assumption of Abel summability
means that limx→1− F(x) = s. Let sn = ∑n

k=0 ak . For each n and each x in the
interval ]0, 1[ we have

sn − s = F(x) − s +
n∑

k=0

ak(1 − xk) +
∞∑

k=n+1

akx
k .

Since 0 < x < 1 we have

1 − xk = (1 − x)(1 + x + x2 + · · · + xk−1) < k(1 − x).

And for k ≥ n + 1 we have 1 < k/(n + 1). Therefore



362 11 Function Sequences and Function Series

|sn − s| ≤ |F(x) − s| + (1 − x)
n∑

k=0

k|ak | + 1

n + 1

∞∑

k=n+1

k|ak |xk .

Let ε > 0. Since limn→∞ nan = 0 there exists N , such that

n|an| < ε and
1

n + 1

n∑

k=0

k|ak | < ε

for all n ≥ N . Then for 0 < x < 1 and n ≥ N we have

|sn − s| ≤ |F(x) − s| + (1 − x)(n + 1)ε + ε

(n + 1)(1 − x)
.

In particular, putting x = xn = 1 − 1/(n + 1), we find for n ≥ N that

|sn − s| ≤ |F(xn) − s| + 2ε.

Letting n → ∞ we obtain
lim sup
n→∞

|sn − s| ≤ 2ε

and since ε is arbitrary we conclude limn→∞ sn = s as required. �

In general a Tauberian theorem enables one to conclude that a series that is
summable by a given summability method is also convergent in the usual sense,
given some additional condition (a Tauberian condition) imposed on the terms. An
Abelian theorem enables one to conclude that a prospective summability theory
assigns the correct value to series convergent in the normal sense.

11.5.2 Exercises

1. Show that both the Abel sum and the (C,1)-sum of
∑∞

n=1(−1)n−1 is 1
2 .

2. Show that a series that is (C,1)-summable is also Abel summable, and has the
same sum by both methods.
Hint. Copy the proof of Abel’s theorem but using (1 − x)−2 instead of (1 − x)−1.
This might suggest the more general result that (C,m)-summability implies Abel-
summability, and a strategy for proving it.

3. Prove the following Tauberian theorem. Let an ≥ 0 for all n and suppose that the
series

∑∞
n=0 an is Abel-summable. Then the series is convergent in the normal

sense.
4. Suppose that the series

∑∞
n=0 an and

∑∞
n=0 bn are convergent, with sums s and

t respectively. Show that their Cauchy product is (C,1)-summable, with sum st .
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This implies a theorem of Abel: if the Cauchy product is convergent then its sum
is st .

11.5.3 Pointers to Further Study

→ Abelian and Tauberian theorems.
→ Fejer’s theorem.

11.6 (♦) The Irrationality of e and π

Euler published a proof that e is irrational in 1740. We present here a simple proof
due to Fourier (early nineteenth century).

We begin with

e =
∞∑

k=0

1

k! =
m∑

k=0

1

k! +
∞∑

k=m+1

1

k! .

We can estimate the tail as follows:

∞∑

k=m+1

1

k!

= 1

(m + 1)!
(
1 + 1

m + 2
+ 1

(m + 2)(m + 3)
+ 1

(m + 2)(m + 3)(m + 4)
+ · · ·

)

<
1

(m + 1)!
(
1 + 1

m + 2
+ 1

(m + 2)2
+ 1

(m + 2)3
+ · · ·

)

= 1

(m + 1)!
m + 2

m + 1

since the series after the inequality sign is a geometric series. We obtain an estimate
for the error

0 < e −
m∑

k=0

1

k! <
1

(m + 1)!
m + 2

m + 1

which leads to

0 < m!
(
e −

m∑

k=0

1

k!
)

<
m + 2

(m + 1)2
. (11.1)

If e = a/b, where a and b are integers, then the central quantity in the inequal-
ities (11.1) is an integer when m ≥ b. On the other hand the right-hand member
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(m + 2)/(m + 1)2 tends to 0 as m → ∞. It is clearly impossible that an integer can
lie strictly between 0 and (m + 2)/(m + 1)2 for sufficiently largem, in fact not even
for m ≥ 1. This proves the irrationality of e.

The first proof of the irrationality ofπ was published by Lambert in 1761. Another
proof, due to Hermite (second half of nineteenth century) is widely available in the
books.

Here is a proof, possibly due to Mary Cartwright (early twentieth century), who
was mistress of Girton College, Cambridge. In any case she set it as an examination
problem. The proof is in several steps, which Cartwright would have called exercises.
To encourage the reader to adopt the right spirit, we give the solutions in a separate
section.

For each real α let

In(α) =
∫ 1

−1

(
1 − x2

)n
cosαx dx, n = 0, 1, 2, ...

Step 1. Derive the reduction formula

α2 In(α) = 2n(2n − 1)In−1(α) − 4n(n − 1)In−2(α), n = 2, 3, 4, ...

Step 2. Show that there exist polynomials Pn(α) and Qn(α), with degree less than
or equal to n, and with integer coefficients, such that

α2n+1 In(α) = n! (Pn(α) sin α + Qn(α) cosα
)
, n = 0, 1, 2, ...

Step 3. Prove the following: if π/2 = b/a, where a and b are integers, then

b2n+1

n! In

(
b

a

)

is an integer.
Step 4. Show that the assumption that π/2 = b/a, where a and b are integers, leads
to a contradiction. In other words: π is irrational.

11.6.1 Solutions

Step 1. Let n ≥ 2. Integrate twice by parts and note that (1 − x2)n and (1 − x2)n−1

are both 0 for x = ±1:
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In(α) = 2n

α

∫ 1

−1
(1 − x2)n−1x sin αx dx

= 2n

α2

∫ 1

−1

(
(1 − x2)n−1 − 2x2(1 − x2)n−2

)
cosαx dx

= 2n

α2

∫ 1

−1

(
(1 − x2)n−1 + 2(n − 1)(1 − x2)n−1

− 2(n − 1)(1 − x2)n−2
)
cosαx dx

= 2n

α2

∫ 1

−1

(
(2n − 1)(1 − x2)n−1 − 2(n − 1)(1 − x2)n−2

)
cosαx dx

= 2n(2n − 1)

α2
In−1(α) − 4n(n − 1)

α2
In−2(α)

and the reduction formula is proved.
Step 2. We use induction. We assume that the claim is true for place numbers up to
n − 1, that is, we assume that Pk and Qk exist for k ≤ n − 1 and satisfy

α2k+1 Ik(α) = k! (Pk(α) sin α + Qk(α) cosα
)
.

By step 1 we then have

α2n+1 In = 2n(2n − 1)α2n−1 In−1 − 4n(n − 1)α2n−1 In−2

= 2n(2n − 1)(n − 1)!(Pn−1 sin αx + Qn−1 cosαx
)

− 4n(n − 1)(n − 2)!α2
(
Pn−2 sin αx + Qn−2 cosαx

)

and we obtain recurrence relations for Pn and Qn:

Pn = 2(2n − 1)Pn−1 − 4α2Pn−2

Qn = 2(2n − 1)Qn−1 − 4α2Qn−2

valid for all n ≥ 2.
From these relations we conclude that if Pn−1 and Qn−1 are polynomials with

degree less than or equal to n − 1 and with integer coefficients, and if Pn−2 and Qn−2

are polynomials with degree less than or equal to n − 2 and with integer coefficients,
then Pn and Qn are polynomials with degree less than or equal to n and have integer
coefficients.

To complete the induction we must examine the initial values. They are

P0 = 2, P1 = 4, Q0 = 0, Q1 = −4α,

so that P0, P1, Q0 and Q1 are polynomials with integer coefficients, and their degrees
satisfy the required bounds.
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Step 3. Suppose that π/2 = b/a. Since cos(π/2) = 0 and sin(π/2) = 1 the result of
step 2 with α = b/a implies

b2n+1

a2n+1
In

(
b

a

)
= n! Pn

(
b

a

)
.

Now the degree of Pn is less than 2n + 1, and so a2n+1Pn(b/a) is an integer. Hence
(b2n+1/n!)In(b/a) is an integer. This completes step 3.
Step 4. We show that (b2n+1/n!)In(b/a) cannot be an integer when n is sufficiently
high. In fact we have limn→∞ b2n+1/n! = 0, but also In(α) ≤ 2 (an obvious bound;
actually In(α) tends to 0 for each α). From this we find that (b2n+1/n!)In(b/a) tends
to 0, but it is manifestly never equal to 0, for cos(πx/2) > 0 on the interval ]−1, 1[
and so the integral is strictly positive. This is impossible because (b2n+1/n!)In(b/a)

is an integer for all n.

11.6.2 Pointers to Further Study

→ Irrationality theory
→ Diophantine approximation
→ Transcendence of e and π

11.7 Taylor Series

Let f (x) be a function with domain A, an open interval, and suppose that f has
derivatives of all orders. Fix a point c in A. The power series

∞∑

n=0

f (n)(c)

n! (x − c)n

is called the Taylor series of f with centre c. The Taylor serieswith centre 0 (formable
if 0 is in A) is, as we mentioned in Sect. 11.3, called the Maclaurin series of f .

We list some important points:

(a) The Taylor series of f can have radius of convergence 0. In fact, according to a
theorem of E. Borel, any sequence of real numbers is the coefficient sequence
of the Maclaurin series of some function. So, for example, there is a function
having derivatives of all orders, whose Maclaurin series is

∑∞
n=0 n! xn .

(b) Even if the radius of convergence R is not 0, the sum of the Taylor series of f ,
for c − R < x < c + R, need not be equal to f (x).

(c) The partial sums of the Taylor series of f are the Taylor polynomials with
centre c.
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(d) According to the theorem on the differentiation of power series (Proposition
11.15), if a power series

∑∞
n=0 an(x − c)n is convergent, with sum g(x), for

c − R < x < c + R, then the series is the Taylor series of g with centre c.
(e) A given power series can be the Taylor series of more than one function.

A key example for understanding the pitfalls of Taylor series is the function f
with domain R given by

f (x) =
{
e− 1

x , if x > 0
0, if x ≤ 0.

Obviously f has derivatives of all orders for x 
= 0; but what about x = 0?
By induction one may show that for x > 0 we can write

f (n)(x) = Pn

(
1

x

)
e− 1

x ,

where Pn is a polynomial of degree 2n. Since the exponential function overwhelms
any polynomial we see that limx→0+ f (n)(x) = 0 for all n. A further induction (see
Sect. 5.6 Exercises 6 and 7) now shows that all derivatives f (n)(0) exist and are 0.

But there is a further, immediate and surprising conclusion.AllTaylor polynomials
with centre 0 are 0. The Maclaurin series has every coefficient an equal to 0, and its
sum is 0 for every x .

11.7.1 Taylor’s Theorem with Lagrange’s Remainder

Proposition 11.22 Assume that f : A → R has derivatives of order up to n, let
c ∈ A, and let x ∈ A. Then there exists ξ in the interval ]c, x[ (if x > c) or in the
interval ]x, c[ (if x < c), such that

f (x) =
n−1∑

k=0

f (k)(c)

k! (x − c)k + f (n)(ξ)

n! (x − c)n.

Before proving this we shall discuss its meaning. The first expression on the right
is the Taylor polynomial of degree n − 1 centred at c (as a polynomial it may have
degree less than n − 1), and the second is the remainder, or error, that is incurred
when the Taylor polynomial is used to approximate f (x). The phrasing implies that
x 
= c; there can be no ξ in ]x, c[ if x = c as the interval is empty.

The exclusion of x = c is of no real consequence. There is another form of the
same expression that is sometimes easier to handle. Set x − c = h and set ξ = c + θh
where 0 < θ < 1. Then
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f (c + h) =
n−1∑

k=0

f (k)(c)

k! hk + f (n)(c + θh)

n! hn.

When using this formula one must remember that h can be negative, just as in the
first version x can be below c. Similarly |h| could be big. The only restriction on h
is that c + h should lie in the interval A, which could be unbounded. In this version
there is no problem with having h = 0.

Both forms of the formula fail to indicate the important point that ξ and θ depend
on x , c and n.

Taylor’s theorem takes as its starting point the formula

f (x) = Pn−1(x, c) + Rn(x, c)

involving the Taylor polynomial and the remainder, and the whole content is an
assertion that the remainder may be expressed variously as

Rn(x, c) = f (n)(ξ)

n! (x − c)n

where ξ is between c and x , or as

Rn(c + h, c) = f (n)(c + θh)

n! hn,

where 0 < θ < 1. Both of these expressions are called Lagrange’s form of the
remainder.

First proof of Taylor’s theorem with Lagrange’s remainder We prove the
proposition in the second version, the one in which x is replaced by c + h. Sup-
pose that h 
= 0. For 0 ≤ t ≤ h or h ≤ t ≤ 0 (depending on the sign of h), we set

g(t) = f (c + t) −
n−1∑

k=0

f (k)(c)

k! t k − tn

n! B (11.2)

where the constant B is chosen so that g(h) = 0, that is, B is determined by

f (c + h) =
n−1∑

k=0

f (k)(c)

k! hk + hn

n! B.

We only need to show that B is of the form

B = f (n)(c + θh)

for some θ between 0 and 1.
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Differentiating (11.2) repeatedly with respect to t we obtain

g( j)(t) = f ( j)(c + t) −
n−1∑

k= j

f (k)(c)

(k − j)! t
k− j − tn− j

(n − j)! B, ( j = 0, 1, ...n − 1),

and therefore

g( j)(0) = 0, ( j = 0, 1, ...n − 1)

g(n)(t) = f (n)(c + t) − B. (11.3)

We apply the mean value theorem (actually Rolle’s theorem) repeatedly and
exploit the first equation of (11.3). Recall that B was chosen so that g(h) = 0,
but that we also have g(0) = 0. Hence, there exists h1 between 0 and h, such that
g′(h1) = 0; then, if n ≥ 2 we have g′(0) = 0, and so there exists h2 between 0 and
h1, such that g′′(h2) = 0; then, if n ≥ 3 we have g′′(0) = 0, and so there exists h3
between 0 and h2, such that g′′′(h3) = 0, and so on, terminating in hn between 0
and hn−1, such that g(n)(hn) = 0. But then hn is between 0 and h and by the second
equation of (11.3) satisfies

f (n)(c + hn) − B = 0.

Set hn = θh. We have 0 < θ < 1 and B = f (n)(c + θh). �
Second proof of Taylor’s theorem with Lagrange’s remainder For 0 ≤ t ≤ h or
h ≤ t ≤ 0 (depending on the sign of h), we set

g(t) = f (c + t) −
n−1∑

k=0

f (k)(c)

k! t k .

Differentiating repeatedly we obtain

g( j)(t) = f ( j)(c + t) −
n−1∑

k= j

f (k)(c)

(k − j)! t
k− j , ( j = 0, 1, ...n − 1),

and therefore

g( j)(0) = 0, ( j = 0, 1, ...n − 1),

g(n)(t) = f (n)(c + t). (11.4)

We applyCauchy’smean value theorem repeatedly to the quotient g(t)/tn and exploit
the first equation of (11.4). We obtain the string of equalities:
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g(h)

hn
= g′(h1)

nhn−1
1

= g′′(h2)
n(n − 1)hn−2

2

= · · · = g(n)(hn)

n!

where h1 lies between 0 and h, and in general h j+1 lies between 0 and h j . Putting
hn = θh we see that 0 < θ < 1 and the extreme members of the string of equalities
together with the second equation of (11.4) give

f (c + h) −
n−1∑

k=0

f (k)(c)

k! hk = g(h) = f (n)(c + θh)hn

n! .

�

11.7.2 Error Estimates

When an approximation is used it can be useful to estimate the error. The main
force of Taylor’s theorem resides in the information it gives about the remainder
term. This can help us to estimate the error when a function is approximated by one
of its Taylor polynomials in a part of its domain of definition.

Let us look at some elementary functions, taking the point c to be 0, andwrite down
Lagrange’s remainder. For all x 
= 0 and m, there exists, in each of the following
cases, ξ between 0 and x (not necessarily the same for each case), such that

(a) cos x =
m∑

k=0

(−1)k

(2k)! x
2k + (−1)m+1(cos ξ)

x2m+2

(2m + 2)!

(b) sin x =
m∑

k=0

(−1)k

(2k + 1)! x
2k+1 + (−1)m+1(cos ξ)

x2m+3

(2m + 3)!

(c) ex =
m∑

k=0

xk

k! + eξ xm+1

(m + 1)! .

The sums appearing here are in each case partial sums of the Maclaurin series of
the corresponding functions. The Maclaurin series for cos x has only even powers
of x , that is, the coefficients of all odd powers are 0. In case (a) we can think of
the series as extending up to the unwritten term 0.x2m+1, and is followed by the
remainder that includes the power x2m+2. A similar remark holds for sin x , for which
the even powers are missing.

If the remainder tends to 0 asm → ∞we get a proof that the function in question
is the sum of its Taylor series. The problem is that we know nothing about ξ except
that it is confined between 0 and x . However we can make the following estimates:

| cos ξ | < 1, 0 < eξ < max(1, ex ).

Even without further knowledge of ξ we can conclude in all three cases that the
error tends to 0 as m → ∞, by exploiting the very useful limit limn→∞ xn/n! = 0,
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itself a consequence of the convergence of the exponential series. Taylor’s theorem
yields nice new proofs of the power series representations of the circular functions
and the exponential function.

However, the error estimates may seem disappointing. The problem is that we
know nothing about that number ξ . For the circular functions we can only say that
the error is bounded by the next unused term. For ex the Lagrange remainder does
not look very useful for estimating the error when x > 0, as the only thing one can
say about eξ is that it is less than ex .

The truth is that these are very simple Maclaurin series for which it is easy to
estimate the tail directly, giving results very similar to estimating the remainder term.
But suppose one wants to approximate the function sin x on the interval [π/6, π/4]
using its fourth-degree Taylor polynomial centred at π/6? The remainder term here
is a valuable source of information (see the exercises).

A computer calculates transcendental functions by using polynomial approxi-
mations tailored (pun intended!) to different parts of its domain of definition. An
estimate of the error is essential so that we can be confident of delivering a minimum
number of correct decimal digits. The remainder term offered by Taylor’s theorem
was the first important tool for accomplishing this, although more sophisticated ones
have since been developed.

11.7.3 Error Estimates for ln(1+ x)

We shall consider the Lagrange remainder for ln(1 + x), again taking c = 0. For
each x in the interval −1 < x < ∞ there exists ξ between 0 and x , such that

ln(1 + x) =
m∑

n=1

(−1)n−1

n
xn + (−1)m

(1 + ξ)m+1

xm+1

m + 1
.

Exercise Obtain this formula from Taylor’s theorem.

The first expression on the right, if extended indefinitely, is a power series with
radius of convergence 1. Nevertheless the above formula holds for all x and not just
those for which the power series converges. If x > 1 the series diverges and it is
impossible that the remainder should tend to 0 as m → ∞.

Analysis of the remainder term is a little tricky; certain difficulties will become
apparent. We have

∣∣∣∣
(−1)m

(1 + ξ)m+1

xm+1

m + 1

∣∣∣∣ =
∣∣∣∣

x

1 + ξ

∣∣∣∣
m+1 1

m + 1
.

In order to prove that the remainder tends to 0 it seems that we must show that
|x/(1 + ξ)| ≤ 1, whilst knowing nothing about ξ except that it lies between 0 and x .

To make further progress we must consider some special cases:



372 11 Function Sequences and Function Series

(a) If 0 < x ≤ 1 then 0 < ξ , 1 + ξ > 1 and so

∣∣∣∣
x

1 + ξ

∣∣∣∣ < x ≤ 1.

The remainder term is bounded by 1/(m + 1) and so tends to 0.
(b) If − 1

2 < x < 0 then − 1
2 < x < ξ < 0, 1 + ξ > 1

2 > |x | and so

∣∣∣∣
x

1 + ξ

∣∣∣∣ <
1

2
.

Again the remainder term tends to 0. In fact it is bounded by 2−m−1/(m + 1) so
we have reasonably fast convergence.

(c) What if−1 < x ≤ − 1
2 ?There seems to be noway to ensure that

∣∣x/(1 + ξ)
∣∣ ≤ 1,

which was the key to showing that the remainder tended to 0.

We seem to have aworse result on the representation of ln(1 + x) as a power series
than the one given previously and obtained by integrating the series for (1 + x)−1.
There is though a small bonus. We obtain convergence at x = 1 and hence another
proof of the formula ln 2 = ∑∞

n=1 (−1)n−1/n.

11.7.4 Error Estimates for (1+ x)a

We consider the Lagrange remainder for (1 + x)a again taking c = 0. Since we wish
to admit any real power a, we must assume that x > −1. We have

dk

dxk
(1 + x)a = a(a − 1)...(a − k + 1)(1 + x)a−k

(1 + x)a =
m∑

k=0

a(a − 1)...(a − k + 1)

k! xk + Rm+1(x).

The series, when extended indefinitely, has radius of convergence 1. Lagrange’s
remainder gives

Rm+1(x) = a(a − 1)...(a − m)

(m + 1)! (1 + ξ)a−m−1xm+1, (ξ between 0 and x)

and so

|Rm+1(x)| =
∣∣∣∣
a(a − 1)...(a − m)

(m + 1)!
∣∣∣∣(1 + ξ)a−m−1|x |m+1.

Note that 1 + ξ > 0 because x > −1.
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The remainder is again tricky to analyse. In order to prove that the remainder
tends to 0 we could exploit the limit

lim
m→∞

a(a − 1)...(a − m)

(m + 1)! xm+1 = 0,

which is valid if |x | < 1 (a detail for the reader to check). We would therefore seek
to prove that the factor (1 + ξ)a−m−1 is bounded as m → ∞. For this it is enough if
ξ > 0 for each m (remember that ξ actually depends on m).

We therefore have two cases. For 0 < x < 1 it is obvious that ξ > 0 and the
remainder tends to 0. But for −1 < x < 0? There seems to be no way to ensure that
(1 + ξ)a−m−1 is bounded.

11.7.5 Taylor’s Theorem with Cauchy’s Remainder

The deficiencies of Lagrange’s form of the remainder are partially remedied by a
different version: Cauchy’s remainder. The downside is that the formula is hard to
remember, not to mention the proof.

Proposition 11.23 Assume that f : A → R has derivatives of all orders up to n, let
c ∈ A, x ∈ A. Then there exists ξ , in the interval ]c, x[ if x > c, and in the interval
]x, c[ if x < c, such that

f (x) =
n−1∑

k=0

f (k)(c)

k! (x − c)k + f (n)(ξ)

(n − 1)! (x − ξ)n−1(x − c).

Again we rewrite this by letting x − c = h and ξ = c + θh, where 0 < θ < 1.
Then we have the slightly easier to remember formula:

f (c + h) =
n−1∑

k=0

f (k)(c)

k! hk + f (n)(c + θh)

(n − 1)! (1 − θ)n−1hn.

Proof of Taylor’s theorem with Cauchy’s remainder For all t , such that c + t is in
A, we set

F(t) = f (c + h) −
n−1∑

k=0

(h − t)k

k! f (k)(c + t)

and differentiate (for this proof a single differentiation suffices), as follows:
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F ′(t) =
n−1∑

k=1

(h − t)k−1

(k − 1)! f (k)(c + t) −
n−1∑

k=0

(h − t)k

k! f (k+1)(c + t)

=
n−2∑

k=0

(h − t)k

k! f (k+1)(c + t) −
n−1∑

k=0

(h − t)k

k! f (k+1)(c + t)

= − (h − t)n−1

(n − 1)! f (n)(c + t).

We apply the mean value theorem. There exists θ in the interval ]0, 1[, such that
F(0) − F(h) = −hF ′(θh). Noting that F(h) = 0 we obtain

f (c + h) −
n−1∑

k=0

hk

k! f
(k)(c) = (1 − θ)n−1hn

(n − 1)! f (n)(c + θh)

as was to be proved. �
Let us return to the problemof estimating the remainder for the function ln(1 + x).

We have

ln(1 + x) =
m∑

n=1

(−1)n−1

n
xn + Rm+1(x),

where Cauchy’s remainder gives

Rm+1(x) = (−1)m(x − ξ)mx

(1 + ξ)m+1

for some ξ between 0 and x .
Previously we were unable to control the error when −1 < x < − 1

2 . Now sup-
pose that −1 < x < 0. Then −1 < x < ξ < 0 and the reader should check that this
implies that

0 <
ξ − x

1 + ξ
< −x .

We therefore have

|Rm+1(x)| =
∣∣∣∣
(x − ξ)mx

(1 + ξ)m+1

∣∣∣∣ =
(

ξ − x

1 + ξ

)m |x |
1 + ξ

<
|x |m+1

1 + ξ
<

|x |m+1

1 + x

which tends to 0 as m → ∞.
Finally we return to the function (1 + x)a where a is a real number. We recall

that we were unable to control Lagrange’s remainder when −1 < x < 0. Cauchy’s
remainder is
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Rm+1(x) = a(a − 1)...(a − m)

m! (1 + ξ)a−m−1(x − ξ)mx,

(for some ξ between 0 and x)

= a(a − 1)...(a − m)

m! xm+1(1 + ξ)a−1

(
x − ξ

x(1 + ξ)

)m

.

We would like to exploit the known limit

lim
m→∞

a(a − 1)...(a − m)

m! xm+1 = 0,

a consequence of the convergence of the binomial series, but this requires gaining
control of the remaining factors.

Let −1 < x < 0. Then −1 < x < ξ < 0, and this gives

0 < 1 + x < 1 + ξ < 1

and
(1 + ξ)a−1 ≤ max(1, (1 + x)a−1).

Moreover

0 <
x − ξ

x(1 + ξ)
< 1.

Again the reader should check these three claims, bearing in mind for the second
claim that a − 1 can be negative.

Now we have

|Rm+1(x)| ≤
∣∣∣∣
a(a − 1)...(a − m)

m! xm+1

∣∣∣∣ max
(
1, (1 + x)a−1),

and this tends to 0 as m → ∞.

11.7.6 Taylor’s Theorem with the Integral Form of the
Remainder

Lagrange’s remainder and Cauchy’s remainder can be maddening because we do not
know that crucial number ξ . It is therefore a relief to have a form of the remainder in
which everything is known. There is a small price; the premises are slightly stronger,
though not such that it matters much in practice.

Proposition 11.24 Assume that f : A → R has continuous derivatives up to order
n, let c ∈ A, x ∈ A. Then
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f (x) =
n−1∑

k=0

f (k)(c)

k! (x − c)k + 1

(n − 1)!
∫ x

c
(x − u)n−1 f (n)(u) du.

Proof Write

Rn(x) = 1

(n − 1)!
∫ x

c
(x − u)n−1 f (n)(u) du.

Integrating by parts we obtain a reduction formula

Rn(x) = 1

(n − 1)! f
(n−1)(u)(x − u)n−1

∣∣∣
x

u=c
+ 1

(n − 2)!
∫ x

c
(x − u)n−2 f (n−1)(u) du

= − 1

(n − 1)! f
(n−1)(c)(x − c)n−1 + Rn−1(x)

provided n > 1, and repeated applications lead to

Rn(x) = − 1

(n − 1)! f
(n−1)(c)(x − c)n−1− 1

(n − 2)! f
(n−2)(c)(x − c)n−2

− · · · · · · − f ′(c)(x − c)+R1(x)

= −
n−1∑

k=1

f (k)(c)

k! (x − c)k + R1(x).

But R1(x) = f (x) − f (c) and we are done. �

As in previous versions of Taylor’s theoremwe rewrite the formula. Set u = c + s,
x = c + h, and write the integral with respect to s instead of u. This gives

Rn = 1

(n − 1)!
∫ h

0
(h − s)n−1 f (n)(c + s) ds.

Finally let s = ht and write the integral with respect to t . We find

Rn = hn

(n − 1)!
∫ 1

0
(1 − t)n−1 f (n)(c + th) dt.

This form of the remainder is often useful. For example, a variety of different
remainders, of which Lagrange’s and Cauchy’s aremere special cases, can be derived
from it. Let 1 ≤ p ≤ n. We first write

Rn = hn

(n − 1)!
∫ 1

0
(1 − t)n−p f (n)(c + th)(1 − t)p−1 dt.

Using the mean value theorem for integrals (Proposition 6.15) we deduce that there
exists θ in the interval ]0, 1[, such that



11.7 Taylor Series 377

Rn = hn(1 − θ)n−p f (n)(c + θh)

(n − 1)!
∫ 1

0
(1 − t)p−1 dt

= hn(1 − θ)n−p f (n)(c + θh)

p (n − 1)! .

This version of the remainder is known under several names, most frequently
Schlömilch’s remainder orRoche’s remainder. The case p = 1 is Lagrange’s remain-
der; the case p = n Cauchy’s.

11.7.7 Exercises

1. Calculate 3
√
28 to four correct places of decimals by using an appropriate Taylor

polynomial of 3
√
x centred at x = 27.

2. It is proposed to approximate
√
x in the interval 64 < x < 70 by

(a) Its first-degree Taylor polynomial centred at x = 64.
(b) Its second-degree Taylor polynomial centred at x = 64.
(c) Its third-degree Taylor polynomial centred at x = 64.

In each case estimate the maximum error.
3. It is proposed to approximate sin x on the interval π/6 < x < π/4 by its fourth-

degree Taylor polynomial centred at x = π/6. Determine the polynomial and
estimate the maximum error.

4. Suppose we want to use the exponential series truncated after the term xm/m!
to calculate ex for 0 < x < 1. There are several ways to estimate the error, from
using a form of the remainder provided by Taylor’s theorem, to estimating the
tail of the series directly.

(a) Obtain the upper bound exm+1/(m + 1)! for the error using Lagrange’s form
of the remainder.

(b) Estimate the tail directly. Show that

∞∑

k=m+1

xk

k! <
(m + 2)xm+1

(m + 2 − x)(m + 1)! .

Which estimate of the error is lower?
Note. An algorithm that calculates ex would only need to calculate it in the first place for 0 ≤
x < 1. Values for other inputs can then be found by a further finite number of multiplications

or divisions by e.

5. The error function is defined for all real x by

erf(x) := 2√
π

∫ x

0
e−t2 dt.
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Obtain the Maclaurin series of erf(x) and show that it converges to erf(x) for
all x .
Note.The error function is a non-elementary transcendental function. It is important in probabil-

ity and statistics. The factor 2/
√

π ensures that limx→∞ erf(x) = 1. See Sect. 12.2 Exercise 2.

6. Show that if f is a polynomial of degree m then for every c we have

f (x) =
m∑

k=0

f (k)(c)

k! (x − c)k .

7. In the exercises in Sect. 5.8 some so-called numerical approximations to deriva-
tives were studied. Using Taylor’s theorem one can estimate the errors. In each
item we assume that a is a point in the interval of definition of f , that |h| is
sufficiently small that a + h falls within A, and that f has enough derivatives in
A so that the statement makes sense. We begin with the usual difference quotient
so that a comparison can bemade. The intermediate value property of derivatives
(Sect. 5.6 Exercise 8) can be useful.

(a) Show that for each h 
= 0 there exists ξ in A, such that

f (a + h) − f (a)

h
− f ′(a) = 1

2
h f (2)(ξ).

(b) Show that for each h 
= 0 there exists ξ in A, such that

f (a + h) − f (a − h)

2h
− f ′(a) = 1

6
h2 f (3)(ξ).

This suggests that
(
f (a + h) − f (a − h)

)
/2h could be a superior approxi-

mation to f ′(a) than
(
f (a + h) − f (a)

)
/h.

(c) Show that for each h 
= 0 there exists ξ in A, such that

f (a + h) − 2 f (a) + f (a − h)

h2
− f (2)(a) = 1

12
h2 f (4)(ξ).

8. A popular method to interpolate between known values of a function is to use
the chord joining the two points on the graph. Thus if we have points (a, f (a))

and (b, f (b)) on the graph y = f (x) with a < b, the suggestion is to use

(b − x) f (a) + (x − a) f (b)

b − a

as an approximation to f (x) at points x between a and b. This is known as the
method of proportional parts and has a long history.
Assuming that f is twice differentiable, estimate the error by showing that for
each x in the interval ]a, b[, there exists ξ between a and b, such that



11.7 Taylor Series 379

f (x) − (b − x) f (a) + (x − a) f (b)

b − a
= 1

2
(x − a)(b − x) f (2)(ξ).

Deduce that if | f (2)(x)| < M in the interval [a, b], then
∣∣∣∣ f (x) − (b − x) f (a) + (x − a) f (b)

b − a

∣∣∣∣ <
1

8
(b − a)2M.

Hint. Let h = x − a and k = b − x . Expand f (a + h) and f (b − k) by Taylor’s
theorem and eliminate the term involving f ′(a).

9. Let the function f be defined on all of R and have derivatives up to order 2.
Suppose that | f (x)| ≤ A and | f ′′(x)| ≤ B for all x . Prove that

| f ′(x)| ≤ 2
√
AB

for all x .
Hint. Use Taylor’s theorem in the form

f (x + h) = f (x) + h f ′(x) + 1

2
h2 f ′′(x + θh)

and show that

| f ′(x)| ≤ 2

h
A + h

2
B

for all h.
10. Prove the following theorem of S. N. Bernstein:

Let f have derivatives of all orders in an open interval A. Let c and d be
points in A such that c < d, and assume that f (n)(x) ≥ 0 for all x in [c, d]
and for all n. Then the Taylor series of f with centre c converges to f in
the interval [c, d].

You might use the following steps to prove the theorem. Let r = d − c, and for
each x in [c, d] let h = x − c and view the remainder at x as a function Rn(h)

of h for 0 ≤ h ≤ r .

(a) Show that

0 ≤ Rn(h) ≤ hn

rn
Rn(r).

Hint. Use the integral form of the remainder.
(b) Show that Rn(r) ≤ f (d).
(c) Deduce that limn→∞ Rn(h) = 0 for 0 ≤ h ≤ r .

11. Show that theMaclaurin series of tan x converges to tan x throughout the interval
]−π/2, π/2[ and deduce that its radius of convergence is π/2.

12. Let g be an odd function on the interval ]−r, r [, with derivatives up to the fifth
order. Show that for each x in ]−r, r [ one can write
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g(x) = x

3

(
g′(x) + 2g′(0)

) − x5

180
g(5)(ξ)

for some ξ between 0 and x .
Hint. Apply Cauchy’s mean value theorem to the quotient

g(x) − x
3 g

′(x) − 2x
3 g

′(0)
x5

and remember that g being odd, g(n)(0) = 0 for all even n.
13. The argument used in the proof of Proposition 11.23 to obtain Cauchy’s form of

the remainder can be adapted to obtain Schlömilch’s, or Roche’s form, under the
same conditions. Define the function F(t) as in the proof of Proposition 11.23
and let φ(t) = (h − t)p for some exponent p ≥ 1. Apply Cauchy’s mean value
theorem to the quotient

F(h) − F(0)

φ(h) − φ(0)

and obtain the remainder in the form

Rn = f (n)(c + θh) hn(1 − θ)n−p

p (n − 1)! .

Note. This was previously obtained from the integral form of the remainder under slightly

stronger conditions (the nth derivative of f was required to be continuous).

14. An example of a function whose Maclaurin series has radius of convergence 0.
Define the function

f (x) =
∞∑

n=0

e−n cos(n2x), (x ∈ R).

(a) Show that f has derivatives of all orders.
(b) Show that

f (2k)(0) = (−1)k
∞∑

n=0

e−nn4k

for all k.
(c) Estimate | f (2k)(0)| from below and deduce that the radius of convergence

of the Maclaurin series of f is 0.

15. In this exercise you are asked to show that the Riemann zeta function ζ(s) =∑∞
n=1 n

−s has derivatives of all orders in the domain s > 1. Moreover its deriva-
tive can be obtained by differentiating the series term-by-term. We assume that
s is real, but the result (as well as the proof as suggested below) holds equally
for complex s with Re s > 1 in the context of complex derivatives.
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(a) Let k be a positive integer. Show that the series
∑∞

n=1 n
−s(ln n)k is convergent

for every s > 1, and that for all δ > 0 it is uniformly convergent with respect
to s ≥ 1 + δ.

(b) Deduce that ζ(s) has derivatives of all orders and

ζ (k)(s) =
∞∑

n=1

n−s(− ln n)k .

11.8 (♦) Bernoulli Numbers

In this nugget we shall meet the Bernoulli numbers, a sequence of numbers that
seem to crop up unexpectedly in all areas of pure and applied mathematics. Interest
in them was such, that they were the subject of the first computer program (Ada
Lovelace, 1843). The pointers to further study given at the end could easily read “all
of mathematics”.

The rule
n∑

k=1

k2 = 1

6
n(n + 1)(2n + 1)

is an easy consequence of the fact that if g(x) = 1
6 x(x + 1)(2x + 1) then

x2 = g(x) − g(x − 1).

To obtain a comparable rule for the sum
∑n

k=1 k
p, or more generally for a sum∑n

k=1 f (k), where f (x) is a polynomial, it would be enough to find another poly-
nomial g(x), such that

f (x) = g(x) − g(x − 1).

Then we would have
n∑

k=1

f (k) = g(n) − g(0).

Actually it is a little more convenient to seek g(x), such that

f (x) = g(x + 1) − g(x). (11.5)

The conclusion is then
n∑

k=1

f (k) = g(n + 1) − g(1).
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The involvement of the Bernoulli numbers in the solution of the functional equation
(11.5) is one of the surprises of mathematics.

Since g(x) is supposed to be a polynomial, we have, by Taylor’s theorem

g(x + 1) =
∞∑

k=0

1

k!g
(k)(x).

The sum is actually finite since all derivatives g(k)(x) are 0 for k higher than the
degree of g(x). Let D denote the operator of differentiation with respect to x , that is,
for a given function u(x) we now write Du for u′. The advantage of this notation is
that multiple differentiations are written as a power of D acting on u. Formally we
would like to write

g(x + 1) =
∞∑

k=0

1

k!D
kg(x) =

( ∞∑

k=0

1

k!D
k
)
g(x) = eDg(x).

The operator eD transforms g(x) to g(x + 1). But of course eD has no properly
defined meaning yet. It is a piece of useful nonsense such as has often been the
source of important discoveries in mathematics.

Let us continue calculating, using eD as if it was a well defined thing. Given the
polynomial f (x) we seek a polynomial g(x), that satisfies

eDg(x) − g(x) = f (x).

Write this as
(eD − 1)g(x) = f (x).

Shouldn’t the solution be somehow

g(x) = 1

eD − 1
f (x)?

We can even guess how to work this out. We continue without regard for rigour. We
write

1

et − 1
= 1

t

t

et − 1
.

Now t/(et − 1) extends to a function on R that has derivatives of all orders; we only
have to define its value as 1 for t = 0. It has a Maclaurin series

∞∑

k=0

Bk

k! t
k
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where the coefficients Bk are known as the Bernoulli numbers. They are all rational,
as we shall see.

A possible interpretation of
1

eD − 1
f (x) might begin with

1

eD − 1
f (x) = 1

D

D

eD − 1
f (x) = 1

D

( ∞∑

k=0

Bk

k! D
k
)
f (x) = 1

D

∞∑

k=0

Bk

k! f (k)(x).

Let m be the degree of the polynomial f . The infinite sum reduces to a finite one
and we have the formula

1

eD − 1
f (x) = 1

D

m∑

k=0

Bk

k! f (k)(x)

=
∫ m∑

k=0

Bk

k! f (k)(x) dx

= B0

∫
f (x) dx +

m∑

k=1

Bk

k! f (k−1)(x),

where we have naturally interpreted 1/D as the instruction to find an antiderivative.
We proceed to justify this calculation. Basic to this is the following proposition,

that enables us to calculate the Maclaurin series of 1/ f from that of f by algebra
alone.

Proposition 11.25 Let f be a function, with domain ]−r, r [, and derivatives of all
orders. Assume that f (x) 
= 0 for all x in ]−r, r [. Then
(1) The reciprocal 1/ f has derivatives of all orders in ]−r, r [.
(2) Let

∑∞
n=0 anx

n be theMaclaurin series of f and let
∑∞

n=0 bnx
n be theMaclaurin

series of 1/ f . Then for each m there is a polynomial Q(x) (depending on m),
such that ( m∑

n=0

anx
n

)( m∑

n=0

bnx
n

)
= 1 + xm+1Q(x).

Proof Conclusion 1 is a consequence of the formula (1/ f )′ = − f ′/ f 2. We can
clearly differentiate repeatedly.

As for conclusion 2, we know, by Proposition 5.14, that

m∑

n=0

anx
n = f (x) + xmg(x),

m∑

n=0

bnx
n = 1

f (x)
+ xmh(x)

where g and h are continuous in ]−r, r [ and g(0) = h(0) = 0. Therefore
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( m∑

n=0

anx
n

)( m∑

n=0

bnx
n

)
= (

f (x) + xmg(x)
)( 1

f (x)
+ xmh(x)

)
= 1 + xm R(x)

where

R(x) = g(x)

f (x)
+ f (x)h(x) + xmg(x)h(x).

The last two equations show that R(x) is of the form x−mS(x), where S(x) is a
polynomial, but also that R(x) is continuous in ]−r, r [. This can only hold if the
polynomial S(x) is divisible by xm , so that in fact R(x) is itself a polynomial. More
than that, R(0) = 0, so that R(x) is divisible by x . Then R(x) = xQ(x) and Q(x)
is a polynomial, as required. �

It is noteworthy that the proposition in noway requires convergence of theMaclau-
rin series of f and 1/ f ; they may diverge, or even converge but to functions different
from f and 1/ f .

Specialising to the case in hand, we have

( m∑

k=0

1

(k + 1)! x
k

)( m∑

k=0

Bk

k! x
k

)
= 1 + xm+1Q(x),

where Q(x) is a polynomial (which depends onm). All the functions in this equation
are now polynomials; so we can replace x by the operator D and assert the following
relation involving differential operators:

( m∑

k=0

1

(k + 1)!D
k

)( m∑

k=0

Bk

k! D
k

)
= 1 + Dm+1Q(D).

This we multiply by D to yield

( m∑

k=0

1

(k + 1)!D
k+1

)( m∑

k=0

Bk

k! D
k

)
= D + Dm+2Q(D).

Let f (x) now be a polynomial of degree m. We seek g(x) that satisfies

g(x + 1) − g(x) = f (x).

Let F(x) be an antiderivative for f (x). Then F(x) has degree m + 1 and so

( m∑

k=0

1

(k + 1)!D
k+1

)( m∑

k=0

Bk

k! D
k

)
F(x) = DF(x) + Dm+2Q(D)F(x)

= f (x).
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The solution to the problem g(x + 1) − g(x) = f (x) is therefore

g(x) =
( m∑

k=0

Bk

k! D
k

)
F(x) = B0F(x) +

m∑

k=1

Bk

k! D
k−1 f (x),

precisely the formula that we had guessed.
Now we can write down the desired sum formula, the original motivation for all

these calculations:

n∑

k=1

f (k) = B0F(n + 1) +
m∑

k=1

Bk

k! D
k−1 f (n + 1) − B0F(1) −

m∑

k=1

Bk

k! D
k−1 f (1)

= B0

∫ n+1

1
f +

m∑

k=1

Bk

k!
(
Dk−1 f (n + 1) − Dk−1 f (1)

)
.

It is interesting to replace n by n − 1 (on both sides of course), use the facts that
B0 = 1 and B1 = − 1

2 , and add f (n) to both sides. The result can be written as

n∑

k=1

f (k) =
∫ n

1
f + f (1) + f (n)

2
+

m∑

k=2

Bk

k!
(
Dk−1 f (n) − Dk−1 f (1)

)
.

This should be compared to the result of Sect. 8.1 Exercise 2. It is again an instance
of the Euler–Maclaurin summation formula.

11.8.1 Computing the Bernoulli Numbers

Onecan compute theMaclaurin series of 1/ f from theMaclaurin series of f bypurely
algebraic means, without requiring convergence of the series (compare Sect. 11.4
Exercise 18). We start from the equation

( m∑

k=0

1

(k + 1)! x
k

)( m∑

k=0

Bk

k! x
k

)
= 1 + xm+1Q(x).

Setting x = 0 we deduce that B0 = 1. We can multiply the polynomial factors on
the left-hand side, obtain the coefficient of xn in the product for n = 1, 2, ...,m, and
equate it to 0. This gives

n∑

k=0

Bk

k!(n − k + 1)! = 0

and there is clearly no cap on n since we may raise m as much as we like. It is
convenient to multiply by (n + 1)! and use binomial coefficients. We obtain the
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recurrence relations for the Bernoulli numbers

n∑

k=0

(
n + 1

k

)
Bk = 0, n = 1, 2, 3, ....

Some samples, after B0 = 1, are the relations:

B0 + 2B1 = 0 ⇒ B1 = −1

2

B0 + 3B1 + 3B2 = 0 ⇒ B2 = 1

6
B0 + 4B1 + 6B2 + 4B3 = 0 ⇒ B3 = 0

B0 + 5B1 + 10B2 + 10B3 + 5B4 = 0 ⇒ B4 = − 1

30
B0 + 6B1 + 15B2 + 20B3 + 15B4 + 6B5 = 0 ⇒ B5 = 0

B0 + 7B1 + 21B2 + 35B3 + 35B4 + 21B5 + 7B6 = 0 ⇒ B6 = 1

42

and so on.

11.8.2 Exercises

1. Prove that all the Bernoulli numbers are rational.
2. Prove that Bn = 0 if n is an odd number higher than 1.
3. Obtain a formula for

∑n
k=1 k

p as a polynomial P(n) of degree p + 1.
4. Prove the following formulas, in each case giving a lower estimate for the number r

in the range of validity (not necessarily the same in both formulas):

(a) cot x = 1

x
+

∞∑

k=1

(−1)k22k B2k

(2k)! x2k−1, (0 < |x | < r ).

(b) tan x =
∞∑

k=1

(−1)k−122k(22k − 1)B2k

(2k)! x2k−1, (−r < x < r ).

11.8.3 Pointers to Further Study

→ Euler–Maclaurin summation
→ Faulhaber’s formula
→ Number theory
→ Combinatorics
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11.9 (♦) Asymptotic Orders of Magnitude

Consider the function f (x) = x5 + 2x4 + 3x2 + 4x + 5. Suppose that we want to
give some idea of f (x)when x is large. Of course the question is rather vague. What
meaning should we attach to “some idea”? What meaning to “large”?

It all depends on context and purpose. It might be adequate to point out that
limx→∞ f (x) = ∞; f (x) is simply really big when x is really big. We may want to
give some idea of how big f (x) is when x is really big. Then we might point out
that f (x) grows at about the same rate as x5, vanishingly slowly compared to x6, but
much faster than x4.

To express such statements concisely, a notation has been devised and was pop-
ularised largely by the mathematician Edmund Landau. In the above example we
had a function f (x) and we wished to compare it to powers of x for large x . More
generally let h(x) be a function, positive on an interval ]K ,∞[, which will be used
for comparison. We write

f (x) = O(h(x)), (x → ∞)

to mean that f (x)/h(x) is bounded on some interval [L ,∞[. We write

f (x) = o(h(x)), (x → ∞)

to mean that limx→∞ f (x)/h(x) = 0.
The notation can be used for sequences. Let (an)∞n=1 be a sequence and let (hn)

∞
n=1

be a positive sequence, intended for comparison. We write

an = O(hn), (n → ∞)

to mean that an/hn is bounded. We write

an = o(hn), (n → ∞)

to mean that limn→∞ an/hn = 0.
Thus

x5 + 2x4 + 3x2 + 4x + 5 = O(x5), (x → ∞)

x5 + 2x4 + 3x2 + 4x + 5 = o(x6), (x → ∞).

It should be understood that these are statements about the functions named here; the
variable x is in fact a bound variable. This can be seen by spelling out the meaning
in full, which requires the quantifier “for all x > L”.

Now it has to be said that there is something a little strange about the use of an
equality sign here. The apparent equation expresses that f has a certain property;
for example f (x) = O(1) says that f is bounded in some interval [K ,∞[. And we
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certainly cannot write O(1) = f (x) to express the same thing. Nevertheless, certain
properties of equality do obtain here; for example if f (x) = O(h(x)) then it may be
possible, if care is taken, to substitute O(h) for f in a relation that contains f . We
shall see examples of this.

The notation extends naturally to other destinations than ∞. For example, the
statements

f (x) = O(h(x)), (x → a)

and
f (x) = o(h(x)), (x → a)

mean, respectively, that there exists δ > 0, such that f (x)/h(x) is bounded for
0 < |x − a| < δ, and limx→a f (x)/h(x) = 0.

What makes the notation useful is a certain flexibility. For example an expression
O(h) can appear in algebraic combinations. Some examples followwith elucidations
of the meaning where appropriate. The proofs are left as exercises.

(a) O(xn) + O(xm) = O(xmin(m,n)), (x → 0).

Meaning. If f (x) = O(xn) and g(x) = O(xm) then f (x) + g(x) = O(xmin(m,n)).
Here m and n are integers, positive or negative. Real m and n could be admitted if x
approaches 0 from above.

Exercise Write the corresponding statement in the case x → ∞.

(b) xmO(xn) = O(xm+n), (x → 0).

Meaning. If f (x) = O(xn) then xm f (x) = O(xm+n).

(c)
1

1 + x
= 1 − x + O(x2), (x → 0).

Meaning.
1

1 + x
− 1 + x = O(x2).

(d)
1

1 + x + O(x2)
= 1 − x + O(x2), (x → 0).

Meaning. If f (x) = O(x2) then

1

1 + x + f (x)
= 1 − x + O(x2).

Formula (d) can be thought of as the result of substituting x + O(x2) for x in formula
(c), thus exploiting the true formula x = x + O(x2). It is particularly useful for
obtaining asymptotic information about quotients from a few basic Maclaurin series.

Here are some further examples. The derivations are left as exercises.

(e)
1

x
− 1

sin x
= − x

6
+ O(x3), (x → 0).
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One can obtain this by using sin x = x − (x3/6) + O(x5). We deduce from (e) that

lim
x→0

1

x2
− 1

x sin x
= −1

6
.

The calculation of this limit using L’Hopital’s rule is much longer.

(f)
1

sin x
= 1

x
+ x

6
+ 7x3

360
+ O(x5), (x → 0).

We deduce from this that

lim
x→0

1

x3

(
1

sin x
− 1

x
− x

6

)
= 7

360
.

Obtaining this by L’Hopital’s rule is a long haul; compare the limits in Sect. 5.8
Exercise 2.

(g)
n5 − n3 + 1

n5 + n3 + 1
= 1 − 2

n2
+ 2

n4
+ O

(
1

n6

)
, (n → ∞).

11.9.1 Asymptotic Expansions

We recall Proposition 5.14, sometimes called Peano’s form of Taylor’s theorem.
This may be expressed using Landau’s notation. Suppose that f has derivatives of
all orders at the point a. Then, for each n we have

f (x) =
n∑

k=0

f (k)(a)

k! (x − a)k + o
(
(x − a)n

)
, (x → a).

This is an example of an asymptotic expansion. Note that the convergence, or other-
wise, of the Taylor series

∞∑

k=0

f (k)(a)

k! (x − a)k

is irrelevant. It could even be divergent for all x 
= a.
The sequence of functions (x − a)n , (n = 1, 2, 3, ...), form what is called an

asymptotic scale as x → a. More generally an asymptotic scale (as x → a) is a
sequence of functions hn(x), (n = 1, 2, 3, ...), such that for each n we have

hn+1(x) = o
(
hn(x)

)
, (x → a).

An asymptotic expansion of a function f relative to the asymptotic scale (hn)∞n=1 is
then of the form
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f (x) =
n∑

k=1

ckhk(x) + o
(
hn(x)

)
, (x → a)

where the coefficients ck are real numbers, which can be continued up to some index
k = N , or else indefinitely.

In spite of the ubiquity of Taylor series it seems unusual for them to be divergent
in practical applications. The most common type of asymptotic expansion is one that
gives successively better approximations as x → ∞.

We shall explore one simple example of this. For x > 0 we define

E(x) =
∫ 1

0

1

t
e−x/t dt.

There is no problem with the integral at t = 0 since the integrand tends to 0.
Successive integration by parts leads to a reversed reduction formula. It is simplest

to describe it by letting

In = (−1)nn!
xn

∫ 1

0
tn−1e−x/t dt, n = 0, 1, 2, ...

Then integration by parts gives

In = (−1)nn!e−x

xn+1
+ In+1.

Exercise Derive this formula.

Now we obtain, starting at I0,

E(x) = e−x
n∑

k=0

(−1)kk!
xk+1

+ In+1.

We shall see that this is an asymptotic expansion as x → ∞ relative to the asymptotic
scale

hn(x) = e−x n!
xn+1

, (n = 1, 2, 3, ...).

Exercise Check that hn+1(x) = o
(
hn(x)

)
, (x → ∞).

Next one has to check that In+1(x) = o
(
hn(x)

)
. This reduces to showing that

lim
x→∞ ex

∫ 1

0
tne−x/t dt = lim

x→∞

∫ 1

0
tne−x( 1

t −1) dt = 0.

Exercise Prove this. One way is to show that for each δ > 0 the integral from 0 to
1 − δ tends to 0 as x → ∞, by noting that the integrand converges to 0 as x → ∞,
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uniformly with respect to t in the interval [0, 1 − δ]. The remaining part of the
integral, from 1 − δ to 1, is bounded by δ.

In this example the series
∑n

k=0 (−1)kk!/xk+1 is divergent for all x > 0. Never-
theless its terms initially decrease; in fact they do so as long as k < x . Looking ahead
to the next nugget, on Stirling’s approximation to k!, we can see that with increasing
k, the term k!/xk+1 reaches a minimum at around k = x of around

√
2πk e−k . For

k = 10 this is about 10−4 so we might expect the sum of ten terms to give a nice
approximation to E(10). This is the case.

Exercise Show that |In+1| ≤ e−xn!/xn+1, and therefore the error is less than the last
term used of the expansion.

11.9.2 Pointers to Further Study

→ Special functions
→ Asymptotic expansions

11.10 (♦) Stirling’s Approximation

The factorial function n! grows rapidly with increasing n, and it quickly becomes
impossible to compute it by multiplying together all integers from 1 to n. In the
simplest instance Stirling’s approximation compares n! to nn , which is easier to
compute.

A good clue as to how to approximate n! comes from writing

ln n! =
n∑

k=2

ln k.

This suggests that we could approximate ln n!, or equivalently the sum
∑n

k=2 ln k,
by comparing it to the integral

∫ n
1 ln x dx , which is equal to n ln n − n + 1. So we

should compare n! to nne−n+1.We have arrived very near to Stirling’s approximation.

Proposition 11.26 (Stirling’s approximation)

lim
n→∞

n!
nn+ 1

2 e−n
= √

2π.

According to this, we can use nn+ 1
2 e−n

√
2π as an approximation to n!when n is big.

This is an example of an asymptotic approximation. For example 10! = 3628800
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and Stirling’s approximation is 3598696. The error is within 1%. For larger n we
can expect the percentage error to decrease, though the actual difference error may
increase. A stronger result yields upper and lower bounds:

nn+ 1
2 e−n

√
2π < n! < nn+ 1

2 e−n+ 1
12n

√
2π.

The proof of Stirling’s approximation is in several steps and builds strongly on
the strict concavity of the function ln x . The reader might like to treat these steps as
exercises; so we give the proofs in a separate section.
Step 1. If r is a natural number and r ≥ 2 then

∫ r+ 1
2

r− 1
2

ln x dx < ln r,
1

2

(
ln(r − 1) + ln r

)
<

∫ r

r−1
ln x dx .

Step 2. ∫ n

3
2

ln x dx < ln(n!) − 1

2
ln n <

∫ n

1
ln x dx .

Step 3. Let un = ln(n!) − (n + 1
2 ) ln n + n. Then

3

2

(
1 − ln

(3
2

))
< un < 1.

Step 4. (un)∞n=1 is a decreasing sequence.
Step 5. The limit

lim
n→∞

n!
nn+ 1

2 e−n
= A

exists and
(2e
3

) 3
2 ≤ A < e.

Step 6. A = √
2π .

11.10.1 Proofs

Proof of step 1 For the first inequality we use the strict concavity of the function
ln x . Its graph lies beneath its tangent at the point (r, ln r). The slope of the tangent
is 1/r . Hence we find

ln x < ln r + x − r

r
, (x 
= r)
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Integrate from r − 1
2 to r + 1

2 . We find

∫ r+ 1
2

r− 1
2

ln x dx < ln r.

For the second inequality we again use the strict concavity of ln x . The chord
joining (r − 1, ln(r − 1)) and (r, ln r) lies beneath the graph. That is,

(x − r + 1) ln r + (r − x) ln(r − 1) < ln x, (r − 1 < x < r).

Integrate from r − 1 to r . We find

1

2
ln r + 1

2
ln(r − 1) <

∫ r

r−1
ln x dx .

�
Proof of step 2 The first inequality from step 1, together with the fact that ln x is
increasing, gives

∫ n

3
2

ln x dx =
n∑

r=2

∫ r+ 1
2

r− 1
2

ln x dx −
∫ n+ 1

2

n
ln x dx <

n∑

r=2

ln r − 1

2
ln n

leading to ∫ n

3
2

ln x dx < ln(n!) − 1

2
ln n.

Sum the second inequality of step 1 from r = 2 to r = n. We find

1

2
ln

(
(n − 1)!) + 1

2
ln(n!) <

∫ n

1
ln x dx

or

ln(n!) − 1

2
ln n <

∫ n

1
ln x dx .

�
Proof of step 3 Compute the integral in step 2. We find

n ln n − n − 3

2
ln

(3
2

)
+ 3

2
< ln(n!) − 1

2
ln n < n ln n − n + 1

which implies the sought-after inequality. �
Proof of step 4 It is easily seen that

un − un−1 = 1 −
(
n − 1

2

)(
ln n − ln(n − 1)

)
.
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Compute the integral in the second inequality in step 1. We obtain (with n in place
of r ):

1

2

(
ln(n − 1) + ln n

)
< n ln n − n − (n − 1) ln(n − 1) + n − 1

or

1 <
(
n − 1

2

)(
ln n − ln(n − 1)

)

so that un < un−1. �
Proof of step 5 That the limit exists follows since un is decreasing, and it satisfies
the estimates of step 3. The lower estimate for A is about 2.43. �
Proof of step 6 Let

an = n!
nn+ 1

2 e−n
.

Then we have

a2n
a2n

= (2n)!
(2n)2n+ 1

2 e−2n

n2n+1e−2n

(n!)2 = (2n)!
(n!)2 = (2n)!√n

(n!)2 22n√2
.

Wallis’s product for π (see the exercises below) is

√
π = lim

n→∞
(n!)2 22n
(2n)!√n

.

We conclude that √
π = 1√

2
lim
n→∞

a2n
a2n

= A√
2

so that A = √
2π . �

11.10.2 Exercises

1. Prove Wallis’s product for π . You can do this in the following steps. First set
In = ∫ π/2

0 sin nx dx .

(a) Prove that I2m−1 > I2m > I2m+1.
(b) Show that

lim
m→∞

I2m+1

I2m−1
= 1.

Hint. Use Wallis’s integrals, (see Sect. 8.2.6).
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(c) Show that

lim
m→∞

I2m
I2m−1

= 1.

(d) Deduce Wallis’s product by applying Wallis’s integrals.

2. With the aid of Stirling’s approximation, determine whether the series

∞∑

n=0

(−1)n
(2n)!

22n(n!)2

is absolutely convergent, conditionally convergent or divergent.

11.10.3 Pointers to Further Study

→ Gamma function
→ Computational mathematics



Chapter 12
Improper Integrals

Hardy in his thirties held the view that the late years of a
mathematician’s life were spent most profitably in writing books

J. E. Littlewood

12.1 Unbounded Domains and Unbounded Integrands

The definition of theRiemann–Darboux integral assumes that the function is bounded
and its domain is a bounded and closed interval. It is desirable to have an integration
theory that can be applied directly if the function is unbounded, or the domain is
unbounded, or both. This is accomplished with the Lebesgue integral and deserves
properly a book of its own.

It is however possible to enlarge the scope of the Riemann–Darboux integral
by introducing improper integrals. These are defined as limits of proper (ordinary)
integrals. There is really nothing improper about improper integrals. The name simply
reflects the fact they are not defined by the normalmethod laid down for theRiemann–
Darboux integral, but byone that builds on it through an additional limitingprocedure.

As examples consider the two integrals:

∫ 1

0

1√
x

dx,

∫ ∞

0
e−x dx .

These are improper integrals and are defined as limits of normal integrals. Riemann–
Darboux integration is not immediately applicable; in the first integral the integrand
is unbounded so we cannot form upper or lower sums; in the second the interval
is unbounded so we cannot partition it into finitely many bounded intervals. These
typify the two primary cases, the only ones we shall consider here.
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Case A. For every ε > 0 the function f is bounded and integrable on the interval
[a + ε, b], but unbounded on [a, b]. The improper integral from a to b is defined as
the limit ∫ b

a
f = lim

ε→0+

∫ b

a+ε

f

if the limit exists. The endpoint b can be handled in a similar way if f is integrable
on [a, b − ε] for each ε.

Cauchy’s principle gives a necessary and sufficient condition for the limit to exist
and be finite: for all ε > 0 there exists δ > 0, such that

∣∣∫ y
x f

∣∣ < ε for all x and y
that satisfy a < x < y < a + δ.

Case B. For every L > 0 the function f is bounded and integrable on the interval
[a, L]. The improper integral from 0 to ∞ is defined as the limit

∫ ∞

a
f = lim

L→∞

∫ L

a
f

if the limit exists. Integrals with lower limit −∞ are handled in a similar way.
Again we have by Cauchy’s principle a necessary and sufficient condition for the

limit to exist and be finite: for all ε > 0 there exists K > 0, such that
∣∣∫ y

x f
∣∣ < ε for

all x and y that satisfy K < x < y.
In each case, if the limit exists and is a finite number, we say that the improper

integral is convergent. If the limit is infinite, or does not exist, we say that the integral
is divergent.

An integral such as
∫ ∞
−∞ f is improper at both ends. We say that it is convergent

if it is convergent at each end separately. This means that each of the integrals

∫ ∞

0
f and

∫ 0

−∞
f

is convergent.
Another example of an integral improper at both ends is

∫ 1

0
x−1/2(1 − x)−1/2 dx .

This is considered convergent if it is convergent at both ends; for example, if both
the integrals

∫ 1/2

0
x−1/2(1 − x)−1/2 dx and

∫ 1

1/2
x−1/2(1 − x)−1/2 dx

are convergent (the choice of where to split the interval clearly does not matter).
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12.1.1 Key Examples of Improper Integrals

We compile a list of improper integrals that can be used as yardsticks for studying
the convergence or divergence of a large number of cases. We assume that p is a real
number.

(1)
∫ ∞

1

1

x p
dx is convergent (at ∞) if and only if p > 1.

(2)
∫ 1

0

1

x p
dx is convergent (at 0) if and only if p < 1.

(3)
∫ ∞

0

1

x
dx is divergent at both ends.

To check these claims we note that if p �= 1 we have

∫ R

1

1

x p
dx = x1−p

1 − p

∣∣∣∣
R

1

= R1−p

1 − p
− 1

1 − p

and the limit as R → ∞ is a finite number if and only if p > 1, whereas the limit as
R → 0 is a finite number if and only if p < 1.

The case p = 1 is exceptional; for

∫ R

1

1

x
dx = ln R

and neither the limit as R → ∞ nor that as R → 0+ is finite.

Exercise Calculate the integrals in items 1 and 2 in the cases when they are conver-
gent.

We continue the list with

(4)
∫ ∞

1
xae−bx dx .

The integral is convergent (at ∞) in the following two sets of cases: if b > 0 with
no condition on a; or, if b = 0 and a < −1. In all other cases it is divergent.

(5)
∫ ∞

e
(ln t)at−b−1 dt .

The integral is convergent under precisely the same conditions as the integral in
item 4.

For item 5 we can set x = ln t and reduce it to item 4, which we now consider
in detail. We shall apply a comparison test for improper integrals, analogous to the
comparison test for series. The details of this are in the next section, but for now we
proceed intuitively.

Firstly, if b > 0 we let 0 < c < b. Then xae−(b−c)x tends to 0 as x → ∞. There
exists K > 0, such that xae−(b−c)x < 1 for all x > K . Hence
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0 < xae−bx < e−cx

for all x > K . The integral ∫ ∞

1
e−cx dx

is convergent by calculation. Now we can apply the comparison test for improper
integrals (see the next section) and conclude that the integral in item 4 is convergent.

Secondly, if b = 0 the integral reduces to item 1. Thirdly, if b < 0 we choose c,
such that 0 < c < −b. Then limx→∞ x−ae(c+b)x = 0 and there exists K > 0, such
that

xae−bx > ecx for all x > K .

The integral ∫ ∞

1
ecx dx

diverges by calculation. Again we can use the comparison test, referring the reader
to the next section, and conclude that the integral in item 4 is now divergent.

Exercise Calculate the integrals in items 4 and 5 in the cases when b > 0 and a is
a non-negative integer.

12.1.2 The Comparison Test for Improper Integrals

There is a certain similarity between improper integrals and infinite series. This is
exhibited first of all in the use of convergence tests for integrals, just as in the case
of series. We even have a comparison test, already used in the previous section. Just
as the comparison test for series is only applicable to positive series, the comparison
test for integrals is only applicable to positive integrands.

We shall look at two cases; other cases are similar and the reader should provide
the details. In all cases we assume that f (x) ≥ 0 for all x in the domain. The proofs,
as in the case of positive series, are simple applications of the fact that an increasing
function bounded above must converge to a finite limit.

Case A. The integral ∫ b

a
f,

where f (x) is unbounded as x → a+, but integrable on [a + ε, b] for each ε > 0.
The comparison test for case A assumes that we have another function g on [a, b],

that is bounded, positive and integrable on [a + ε, b] for each ε > 0. As in the case
of positive series there are twomodes of comparison: ordering of functions, and limit
comparison. The conclusions are as follows:
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(1) If f (x) ≤ g(x) in ]a, b] and ∫ b
a g is convergent (at a), then

∫ b
a f is also conver-

gent.
(2) If g(x) ≤ f (x) in ]a, b] and ∫ b

a g is divergent (at a), then
∫ b

a f is also divergent.
(3) If limx→a+ f (x)/g(x) exists and is neither 0 nor ∞, then either both integrals

are convergent or both integrals are divergent.

Case B. The integral ∫ ∞

a
f

where f is integrable on [0, L] for each L > 0.
The comparison test for case B assumes that we have a function g on [a,∞[,

positive and integrable on [a, L] for each L > 0. There are three conclusions, as
follows:

(1) If f (x) ≤ g(x) in [a,∞[ and ∫ ∞
a g is convergent (at ∞), then

∫ ∞
a f is also

convergent.
(2) If g(x) ≤ f (x) in [a,∞[ and ∫ ∞

a g is divergent, then
∫ ∞

a f is also divergent.
(3) If limx→∞ f (x)/g(x) exists and is neither 0 nor ∞, then either both integrals

are convergent or both integrals are divergent.

Limit comparison, that is, the third conclusion in both cases, is very useful as the
limit can often be found after guessing a suitable comparison function g. The key
examples given earlier provide a first catalogue of prospective comparison functions.

12.1.3 Exercises

(1) Test the following improper integrals for convergence. In the first two a compar-
ison function is suggested. After that you are on your own.

(a)
∫ 1

0

1√
x(1 + x2)

dx ; comparison function 1/
√

x .

(b)
∫ ∞

1

1

x
√
1 + x2

dx ; comparison function 1/x2.

(c)
∫ ∞

1

1

x

√
x + 1

x2 + 1
dx

(d)
∫ 1

0

1

x2(1 + x2)
dx

(e)
∫ 1

0

1

x

√
x + 1

x2 + 1
dx

(f)
∫ 1

0

1√
x
√
1 − x

dx (improper at both ends)
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(g)
∫ 2

1

√
x + 1√
x − 1

dx

(h)
∫ 2

1

√√
x + 1√
x − 1

dx

(i)
∫ 1

0
x p(1 − x)q dx (depends on p and q; improper at both ends for some

values).

(j)
∫ ∞

0
e−x x p−1 dx (depends on p; improper at 0 for some values).

(k)
∫ ∞

−∞
e−t2 dt .

Note. The integral has the value
√

π , see Sect. 12.2 Exercise 2. It is immensely impor-

tant in probability and statistics. See also Sect. 11.7 Exercise 5 and also this section,

Exercise 6.

(l)
∫ ∞

0
e100x−x2

dx .

2. Determine for which values of a and b the integral

∫ 1

0
xa| ln x |b dx

is convergent at 0.
3. Show that if the integral

∫ ∞
a f is convergent at ∞ then

lim
x→∞

∫ ∞

x
f = 0.

4. Give an example of a positive function f , such that the integral
∫ ∞

a f is conver-
gent at ∞ but f (x) does not tend to 0 as x → ∞.

5. (a) Let f be a function, differentiable in an interval A that contains −1 and 1.
Show that the limit

lim
ε→0+

(∫ −ε

−1

f (x)

x
dx +

∫ 1

ε

f (x)

x
dx

)

exists and is a finite number.

(b) Let g be a function, twice differentiable in an interval A that contains −1
and 1. Suppose that g has a simple zero at 0 (that is, g(0) = 0 but g′(0) �= 0)
and no other zero in the interval [−1, 1]. Show that the limit

lim
ε→0+

(∫ −ε

−1

1

g(x)
dx +

∫ 1

ε

1

g(x)
dx

)

exists and is a finite number.
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Note. The results of these calculations are called the Cauchy principal values of the improper

integrals
∫ 1
−1( f (x)/x) dx and

∫ 1
−1(1/g(x)) dx , respectively.

6. For n = 0, 1, 2, ..., we define the function

Jn(x) =
∫ ∞

x
t−2ne−t2 dt.

(a) Show that for all integers n ≥ 1 we have

J0(x) =
n−1∑
k=0

(−1)k(2k)!
22k+1k!

e−x2

x2k+1
+ (−1)n(2n − 1)!

22n−1(n − 1)! Jn(x).

Hint. Derive a reduction formula for Jn(x) and then use induction.
(b) Show that the series

∞∑
k=0

(−1)k(2k)!
22k+1k!

e−x2

x2k+1

is divergent for all x > 0.
(c) (♦) Show that the series is an asymptotic expansion for J0(x) as x → ∞,

with respect to the asymptotic scale

hk(x) = e−x2

x2k+1
(k = 0, 1, 2, ....).

Hint. The definition of asymptotic expansion was given in Sect. 11.9. To
verify the details L’Hopital’s rule can be helpful.

(d) Show that the remainder term in item (a) is numerically less than the last
term used in the series.

Note. The function erfc(x) := 2J0(x)/
√

π is called the complementary error function. It is

related to the normal error function by erfc(x) = 1 − erf(x). According to Sect. 11.7 Exercise

5 theMaclaurin series of erf(x) converges to erf(x) for all x and so the same is true of erfc(x).

For large x the convergence is too slow to give a practical method to calculate erfc(x) and then

the asymptotic series can be helpful, as its terms decrease in magnitude up to around k = x ,

and for only moderate x the smallest term would seem to be very small. Most significantly

for practical calculation, the remainder or error term is numerically bounded by the last term

used of the series.

12.2 Differentiation Under the Integral Sign

In this section we take up a topic that is somewhat overdue, and which in the first
instance is concerned only with proper integrals. In doing so we shall need to discuss
functions of two variables. Actually we only need the notion of partial derivative, in
its simplest manifestation. Given a function of two variables f (x, y)we shall denote
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by
D1 f (x, y)

the result of differentiating with respect to the first variable of f , whilst holding
the second constant. We shall also need to differentiate twice; this is written as
D2

1 f (x, y), (that is, D1D1 f (x, y)). We will never need D2 f (x, y), but we add that
it is the result of differentiating with respect to the second variable whilst holding
the first constant. This will be our furthest excursion into the analysis of functions
of two variables.

Suppose we can define a function by the formula

F(x) =
∫ b

a
G(x, y) dy.

What we are concerned with here is the validity (or otherwise) of the formula

F ′(x) =
∫ b

a
D1G(x, y) dy.

It is possible to derive some general results on this, using properties of continuous
functions of two variables, off bounds here. However, in practice, most problems
of this kind are treated in an ad hoc manner, typically using Taylor’s theorem to
estimate a remainder. We shall develop some useful approaches through a sequence
of exercises. The result of Exercise 1 is quite adequate formost applications involving
proper integrals.

12.2.1 Exercises

1. Suppose that [a, b] is a bounded interval, and A an open interval. Let G(x, y) be a
function defined for x in A and a ≤ y ≤ b. Suppose that G is twice differentiable
with respect to its first variable, whilst holding its second fixed, and that there
exists a constant M such that |D2

1G(x, y)| ≤ M for all x in A and y in [a, b].
Finally suppose that for each x in A the integrals

∫ b

a
G(x, y) dy and

∫ b

a
D1G(x, y) dy

exist. Prove that, for each x in A, we have

d

dx

∫ b

a
G(x, y) dy =

∫ b

a
D1G(x, y) dy.

Hint. Use Taylor’s theorem to estimate G(x + h, y) − G(x) − h D1G(x, y).
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2. Define the functions

f (x) =
( ∫ x

0
e−t2 dt

)2

and

g(x) =
∫ 1

0

e−x2(t2+1)

t2 + 1
dt.

(a) Show that g′(x) + f ′(x) = 0 for all x .
(b) Deduce that g(x) + f (x) = π/4.
(c) Prove that ∫ ∞

−∞
e−t2 dt = √

π.

3. Let

f (x) =
∫ ∞

−∞
e−t2 cos(xt) dt.

Show that 2 f ′(x) + x f (x) = 0. Deduce that f (x) = √
πe−x2/4.

Hint. Justify the differentiation under the integral sign by using Taylor’s theo-
rem. The simple differential equation can be treated like the one in the proof of
Proposition 11.17.

4. Let f have derivatives of all orders in an interval A, let c be a point of A and
suppose that f (c) = 0. Show that

f (x) = (x − c)
∫ 1

0
f ′(t x + (1 − t)c

)
dt.

Deduce, using differentiation under the integral sign, that f (x)/(x − c) extends
to a function in A having derivatives of all orders.
Note. The proof of the formula should only need the first derivative of f and its continuity. If

f has derivatives up to order m then we know, by Sect. 5.8 Exercise 13, that f (x)/(x − c) has

derivatives up to order m − 1 (including at c). However, it is quite problematic to obtain the last

derivative by the method of the present exercise.

12.3 The Maclaurin–Cauchy Theorem

Improper integrals provide a useful convergence test for positive series, possibly
the most useful after the ratio test. It underscores the intimate connection between
integrals and series.

The integral test. Let f : [1,∞[→ R be positive and decreasing. Then the integral∫ ∞
1 f is convergent if and only if the series

∑∞
n=1 f (n) is convergent.

As an example we can consider the series
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∞∑
n=2

1

na(ln n)b
.

It is convergent if and only if, either a > 1, or a = 1 and b > 1. This is because the
change of variables t = ln x gives

∫ ∞

2

dx

xa(ln x)b
=

∫ ∞

ln 2

e(1−a)t

t b
dt

and the integral obtained is convergent under the selfsame conditions.
The integral test results from the simple observation that

∑n
k=1 f (k) is an upper

sum for the integral
∫ n+1
1 f using a partition by integers, whilst

∑n
k=2 f (k) is a lower

sum for the integral
∫ n
1 f . Hence

∫ n+1

1
f ≤

n∑
k=1

f (k) ≤ f (1) +
∫ n

1
f.

Letting n → ∞ we obtain

∫ ∞

1
f ≤

∞∑
k=1

f (k) ≤ f (1) +
∫ ∞

1
f

where we are allowing the value ∞ for one or more of the limits. The comparison
embodied in these inequalities is often useful.

The integral test is also an immediate consequence of a most striking result,
that makes a sharper comparison between the sum and the integral under the same
conditions as the integral test.

Proposition 12.1 (Maclaurin–Cauchy theorem) Let f : [1,∞[→ R be positive and
decreasing. Then the limit

L = lim
n→∞

( n∑
k=1

f (k) −
∫ n

1
f

)

exists and 0 ≤ L ≤ f (1).

Proof Let

φ(n) =
n∑

k=1

f (k) −
∫ n

1
f.

Then
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Fig. 12.1 Maclaurin–
Cauchy. Picture of the
proof

φ(n) = f (1) +
n−1∑
k=1

f (k + 1) −
n−1∑
k=1

∫ k+1

k
f

= f (1) −
n−1∑
k=1

∫ k+1

k

(
f (x) − f (k + 1)

)
dx .

Each term in the final sum is positive. We conclude that φ(n) is decreasing and
φ(n) ≤ f (1). But we also have

φ(n) = f (n) +
n−1∑
k=1

f (k) −
n−1∑
k=1

∫ k+1

k
f

= f (n) +
n−1∑
k=1

∫ k+1

k

(
f (k) − f (x)

)
dx .

Again each term in the final sum is positive, and therefore φ(n) ≥ f (n) ≥ 0. We
conclude that the limit L = limn→∞ φ(n) exists, and 0 ≤ L ≤ f (1). �

The proof is strikingly illustrated in Fig. 12.1.

12.3.1 The Euler–Mascheroni Constant

An important and striking example of the Maclaurin–Cauchy theorem is provided
by setting f (x) = 1/x . We conclude that

γ = lim
n→∞

( n∑
k=1

1

k
− ln n

)

exists and 0 ≤ γ ≤ 1. A more precise value is γ = 0.5772156649.... As we shall
see, this number crops up in unexpected places in analysis and remains somewhat
mysterious. It is still not known whether it is rational or irrational.
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12.3.2 Exercises

1. Revisit Sect. 3.8 Exercise 10.
2. Study the following series and draw conclusions using the Maclaurin–Cauchy

theorem:

(a)
∞∑

n=1

1√
n

(b)
∞∑

n=1

1

n ln n

(c)
∞∑

n=1

1

n2 + 1
.

3. The series ∞∑
n=1

x

n p(1 + nx2)
(12.1)

was studied in Sect. 11.2 Exercise 6. It turned out the series was uniformly con-
vergent with respect to the whole of R in the case that p > 1

2 . If 0 < p ≤ 1
2 the

series remains pointwise convergent. Prove that in this case the series fails to be
uniformly convergent. Use the following steps:

(a) Show that for each x > 0 we have

∞∑
n=1

x

n p(1 + nx2)
≥

∫ ∞

1

x

t p(1 + t x2)
dt.

(b) Show that

∫ ∞

1

x

t p(1 + t x2)
dt ≥ x2p−1

p(1 + x2)p
.

(c) Let f (x) be the sum of the series (12.1). Show that f cannot be continuous
at 0 if 0 < p ≤ 1

2 .
(d) Conclude that if 0 < p ≤ 1

2 the series, though pointwise convergent, is not
uniformly convergent with respect to any interval that contains 0.

3. Show that

γ = 1 −
∫ ∞

1

x − [x]
x2

dx .

Hint. Use Sect. 8.1 Exercise 12.
4. Recall the Riemann zeta function (Sects11.4 Exercise 30 and 11.7 Exercise 15):
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ζ(s) =
∞∑

n=1

n−s .

Show that for s > 1 we have

ζ(s) = 1

2
+ 1

s − 1
− s F(s)

where

F(s) =
∫ ∞

1
x−s−1

(
x − [x] − 1

2

)
dx .

Prove that the function F(s) is differentiable for s > 0.
Hint. Use Sect. 8.1 Exercise 12 for the formula. To obtain differentiability at a
given s > 1 Taylor’s theorem can be helpful after guessing what the derivative
ought to be.

12.4 Complex-Valued Integrals

Complex-valued functions of a real variable have appeared in a desultory fashion
in the present text, never having a section of their own. We recall Sect. 9.2 (under
the heading “Logarithm of a complex number”) where differentiation of such func-
tions was considered, in particular we differentiated Log (x + ia) and (x + ia)m . In
Sect. 11.4 we studied the function eix , central to the unification of circular functions
and the exponential function, and later in the same section we differentiated xa for
a complex power a.

A complex-valued function f of a real variable can be expressed as f = u + iv
where u and v are real-valued functions. Concepts such as continuity, boundedness
and limit can be defined for them by reference to the real and imaginary parts, just as
we defined differentiation in Sect. 9.2. Thus f is said to bounded when u and v are
bounded, continuous when u and v are continuous, and we can define limx→c f (x)

to be limx→c u(x) + i limx→c v(x) provided the two limits on the right exist and are
finite.

A more satisfactory way to extend these concepts to complex-valued functions is
to use the modulus of a complex number as a metric assigning a distance between
two points in the complex field. Although metrics are definitely not intended to be
part of this text, this is what we did when defining the limit of a complex sequence
in Sect. 10.1.

Exercise Let f : A → C where A is a real number interval. Reformulate the above
definitions in terms of the modulus of a complex number as follows:
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(a) Let c ∈ A. Show that f is continuous at c if and only if it satisfies the following
condition: for all ε > 0 there exists δ > 0, such that | f (x) − f (c)| < ε for all
x in A that satisfy |x − c| < δ.

(b) Show that f is bounded if and only if the function | f | is bounded.
(c) Let c ∈ A and let � be a complex number. Show that limx→c f (x) = � if and

only if the following condition is satisfied: for all ε > 0 there exists δ > 0, such
that | f (x) − �| < ε for all x in A that satisfy 0 < |x − c| < δ.

We turn our attention to integrals. Let f : [a, b] → C and set u = Re f and v =
Im f . We define ∫

f :=
∫

u + i
∫

v

if both integrals on the right-hand side exist. The definition is then extended to
improper integrals; so for example

∫ ∞
0 f is said to be convergent when the integrals∫ ∞

0 u and
∫ ∞
0 v are both convergent and then we set

∫ ∞

0
f =

∫ ∞

0
u + i

∫ ∞

0
v.

It is easy to prove that the integrals of complex-valued functions satisfy similar
rules to those obeyed by real functions as regards the sum of two functions, and
the product of a function by a complex scalar. In other words integration is a linear
operation over the complex numbers. Moreover the fundamental theorem in its sim-
plest manifestation, Proposition 6.17, extends easily to the case of complex-valued
functions, as does also the rule for integration by parts.

Most importantly we can use Cauchy’s principle for a complex integrand, simply
by reinterpreting the absolute value as the modulus. The integral

∫ ∞
0 f is convergent

if and only if the following condition is satisfied: for all ε > 0 there exists K > 0,
such that

∣∣∫ y
x f

∣∣ < ε for all x and y that satisfy K < x < y.
The extension of Cauchy’s principle to the case of a complex integrand is a

straightforward exercise left to the reader

Proposition 12.2 Let f : [a, b] → C be integrable (that is Re f and Im f are both
integrable). Then | f | is integrable and

∣∣∣∣
∫

f

∣∣∣∣ ≤
∫

| f |.

Proof The proof that | f | is integrable is left to the reader (it may help to recall
Sect. 6.4 Exercise 13).

Let f = u + iv and
∫

f = A = a + ib (u, v real functions, a, b real numbers).
Now |A|2 is a real number, so that, using the Cauchy–Schwarz inequality (Sect. 2.2
Exercise 17), we find
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|A|2 = Ā
∫

f =
∫

( Āu + i Āv) =
∫

(au + bv) (it’s real!)

≤
∫

(a2 + b2)
1
2 (u2 + v2)

1
2 = |A|

∫
| f |.

We conclude that |A| ≤ ∫ | f |.
The preceding proposition is such a basic tool, and is used so often, that we rarely

refer to it in justification.

12.4.1 Absolutely Convergent Integrals

We can learn about the integral
∫ ∞
0 f by studying the integral

∫ ∞
0 | f |.

Proposition 12.3 Let f : [0,∞[→ C be integrable on [0, L] for all L > 0. If the
integral

∫ ∞
0 | f | is convergent then so also is the integral

∫ ∞
0 f .

The proposition applies, with obvious modifications, to other types of improper
integrals.

Proof For 0 < x < y we have

∣∣∣∣
∫ y

0
f −

∫ x

0
f

∣∣∣∣ =
∣∣∣∣
∫ y

x
f

∣∣∣∣ ≤
∫ y

x
| f |.

Assume that the integral
∫ ∞
0 | f | is convergent. Let ε > 0. By Cauchy’s principle

there exists K , such that ∫ y

x
| f | < ε

for all x and y that satisfy K < x < y. But for the same x and y we then have

∣∣∣∣
∫ y

0
f −

∫ x

0
f

∣∣∣∣ < ε

by the displayed inequality, and Cauchy’s principle tells us that the limit

lim
x→∞

∫ x

0
f

exists and is finite. �

The proposition motivates a definition, analogous to the case of infinite series.
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Definition If the integral
∫ ∞
0 | f | is convergent, then the integral ∫ ∞

0 f is said to be
absolutely convergent.

In analogy with series, and because it is convenient to have a term, we can call
integrals that are convergent, but not absolutely convergent, conditionally convergent.

Absolutely convergent integrals are generally easier to handle than conditionally
convergent ones, because integrals with positive integrands are easier to estimate.
In contrast, proving that an integral is conditionally convergent can be tricky. It is
striking, and the reader will be shown many examples in the material to follow, that
two tools often prove useful in conjunction with studying conditionally convergent
integrals. They are the second mean value theorem for integrals (see Sects. 6.8 and
8.1 Exercise 15) and Cauchy’s principle.

12.4.2 Exercises

1. Show that a complex integral
∫ ∞
0 f is absolutely convergent if and only if the

two real integrals
∫
Re f and

∫
Im f are absolutely convergent.

2. Solve the following indefinite integrals, given that the constantα may be complex:

(a)
∫

eαx dx

(b)
∫

xmeαx dx ,

where m is a positive integer.

(c)
∫

1

(x + α)m
dx ,

where m is a non-negative integer and Im α �= 0.

(d)
∫

Log (x + i) dx .

4. Solve the integral
∫

xm cos(λx) dx (where λ is real) by exploiting the formula
cos x = Re eix .

5. Show that the integral
∫ ∞
0 e−px dx is absolutely convergent for all complex p

such that Re p > 0, and evaluate it.
6. Show that the integral

∫ ∞
−∞ e−(x+i)2 dx is absolutely convergent.

7. Show that the integral ∫ ∞

0

sin x

x
dx

is convergent (at ∞) but that the integral

∫ ∞

0

∣∣∣∣ sin x

x

∣∣∣∣ dx

is divergent.
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Hint. For the first claim one approach is to integrate by parts. Note that the integral
is not improper at 0.

8. (♦) Extend Hölder’s inequality to improper integrals (see Sect. 6.4 Exercise 10).
Let f and g be functions defined in [0,∞[, integrable on every interval [0, L].
Let p and q be positive numbers that satisfy

1

p
+ 1

q
= 1.

Suppose that the integrals
∫ ∞
0 | f |p and

∫ ∞
0 |g|q are convergent. Then the integral∫ ∞

0 f g is absolutely convergent and

∫ ∞

0
| f g| ≤

( ∫ ∞

0
| f |p

)1/p( ∫ ∞

0
|g|q

)1/q

.

In the next three exercises we shall explore the improper integral
∫ ∞
0 f g. The

results are convergence tests that resemble the variants of Dirichlet’s test for series
given in Sect. 11.4. The proposed method is to obtain convergence at ∞ by using
the second mean value theorem for integrals and Cauchy’s principle. Recall that the
second mean value theorem asserts that, under the conditions that f is monotonic
and g is real valued and integrable on [a, b], there exists ξ in [a, b], such that

∫ b

a
f g = f (a)

∫ ξ

a
g + f (b)

∫ b

ξ

g.

In full generality this was proved in Sect. 6.8, and is the reason for marking the
exercises with the nugget symbol. Under stronger conditions, for example if f ′ is
continuous and positive (alternatively negative), and g continuous, easier proofs of
the second mean value theorem were suggested in the exercises in Sect. 8.1. The
reader who has not studied Sect. 6.8 might prefer to adopt these stronger conditions
on f and g rather than skip these exercises.

8. (♦)Let f and g be functions with domain [0,∞[, and assume that f is monotonic
and that g, which may be complex valued, is integrable on each interval [0, L].
Suppose that there exists a constant K > 0, such that

∣∣∣∣
∫ x

0
g

∣∣∣∣ < K

for all x > 0, and suppose that limx→∞ f (x) = 0. Show that the integral
∫ ∞
0 f g

is convergent.
9. (♦)Let f and g be functions with domain [0,∞[, and assume that f is monotonic

and that g, which may be complex valued, is integrable on each interval [0, L].
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Suppose that the integral
∫ ∞
0 g is convergent and that f is bounded as x → ∞.

Show that the integral
∫ ∞
0 f g is convergent.

The restriction in the second of the above two convergence tests to monotonic and
bounded f can be weakened. Obviously it is enough if f can be expressed as a linear
combination of functions that satisfy this condition. It turns out that a large class of
functions can be expressed as the difference of two bounded monotonic functions,
and requiring this of f , along with the stated conditions on g, clearly suffices to
guarantee convergence of the integral

∫ ∞
0 f g. This is the content of the following

exercise.
In the third item of the exercise we extend the test to allow complex-valued f .

Although it could totally supplant the test given in Exercise 9, the latter is still very
useful because of its relatively simple and memorable conditions.

10. Prove the following claims, of which the third is a convergence test for the
integral

∫ ∞
0 f g to stand alongside Exercises 8 and 9.

(a) Let f be real valued with continuous first derivative, and assume that the
integral

∫ ∞
0 | f ′| is convergent, and that f is bounded as x → ∞. Then there

exist functions g and h, both increasing and bounded as x → ∞, such that
f = g − h.
Hint. Take g(x) = ∫ x

0 | f ′|.
(b) Let f be complex valued with continuous first derivative, and assume that

the integral
∫ ∞
0 | f ′| is convergent, and that f is bounded as x → ∞. Then

there exist real-valued functions g1, g2, h1 and h2, all increasing and bounded
as x → ∞, such that f = (g1 − g2) + i(h1 − h2).

(c) Let f and g be complex-valued functions with domain [0,∞[, assume that g
is integrable on each interval [0, L], that f ′ is continuous and f is bounded
as x → ∞. Assume that the integrals

∫ ∞
0 g and

∫ ∞
0 | f ′| are convergent.

Then the integral
∫ ∞
0 f g is convergent.

Note. It is possible to go even further in weakening the conditions on the function f . Some

clues to this may be found in Sect. 6.5.

11. Here are some examples that illustrate the tests given in the preceding exercises.
Show that the following integrals are convergent:

(a)
∫ ∞

0

sin x√
x

dx

(b)
∫ ∞

0

sin x tanh x√
x

dx

(c)
∫ ∞

0

sin x tanh x sin(1/x)√
x

dx

(d)
∫ ∞

0

sin x tanh x sin(1/x)√
x (

√
x + i)

dx .

Note that all four integrals are proper at 0, in spite of the occurrence of 1/
√

x
and 1/x .
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12. (a) Show that the function F(x) = x − [x] − 1
2 is periodic with period 1 and

mean 0. For helpful information concerning periodic functions consult
Sect. 6.5 Exercise 5.

(b) Show that the integral

∫ ∞

1
x−1

(
x − [x] − 1

2

)
dx

is convergent.
13. (♦) Let

B =
∫ ∞

1
x−1

(
x − [x] − 1

2

)
dx

(see the previous exercise). Use Sect. 8.1 Exercise 12 to show that

B = lim
n→∞

(
ln(n!) −

(
n + 1

2

)
ln n + n − 1

)
.

Deduce that B = 1
2 ln(2π) − 1.

Hint. Use Stirling’s approximation to n! (see the eponymous nugget).
Note.This exercise can also be viewed as a proof of Stirling’s approximation, somewhat shorter

than the one given in Sect. 11.10. If regarded as such then one must determine B without using

Stirling’s formula; using, for example, Wallis’ product for π , as was proposed in Sect. 11.10

in order to determine the number A, related to B by B = ln A − 1.

In the remaining exercises of this section we shall study a remarkable result: the
Euler–Maclaurin summation formula. The reason for marking these exercises with
the nugget symbol is the important and surprising role played by the sequence of
Bernoulli numbers (Bn)

∞
n=0. These are defined so that the numbers Bn/n! are the

coefficients in the Maclaurin series of the function x/(ex − 1), which is extended
to have the value 1 at x = 0. The Bernoulli numbers were studied in Sect. 11.8; the
reader is advised to turn back some pages and read about them, if they have not
already done so, before proceeding.

14. (♦) Let f be infinitely-often differentiable in an interval A. Let a and b be
integers in A such that a < b. In a sequence of exercises the reader is invited to
prove the Euler–Maclaurin summation formula

b∑
k=a

f (k) =
∫ b

a
f + f (a) + f (b)

2
+

m∑
k=2

Bk

k!
(

f (k−1)(b) − f (k−1)(a)
) + Rm,

where the constants Bk are universal (that is, independent of f , a, b and m),
and Rm is a remainder term. The constants will be identified with the Bernoulli
numbers, and the remainder elucidated, in the course of the proof.
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We begin by recalling the formula

b∑
k=a

f (k) =
∫ b

a
f + f (a) + f (b)

2
+

∫ b

a

(
x − [x] − 1

2

)
f ′(x) dx

which was given in Sect. 8.1 Exercise 12. This will be the case m = 1 of the
summation formula.

(a) Let F1(x) = x − [x] − 1
2 . Show that there exists a unique sequence of func-

tions (Fn)
∞
n=1, in which each function is periodic with period 1 and mean 0,

and Fn+1 is a primitive of Fn for n = 1, 2, ....
Hint. Consult Sect. 6.5 Exercise 5.

(b) Show that the summation formula holdswith Bk = (−1)kk!Fk(0), for k ≥ 2,
and

Rm = (−1)m−1
∫ b

a
Fm f (m).

Hint. Consult Sect. 8.1 Exercise 16.
(c) Show that Bk (for k ≥ 2) is the kth Bernoulli number.

Hint. Consider the case f (x) = xm and compare with the nugget on
Bernoulli numbers.

Note that actually the Bernoulli numbers Bk satisfy Bk = k!Fk(0), for k ≥ 2, in
addition to Bk = (−1)kk!Fk(0), because in fact, aswe saw in Sect. 11.8, the Bernoulli
numbers Bk with odd k are 0 (except for B1). This observation can prevent much
anguish caused by the appearance of unwanted minus signs.

It also turns out that the function Fn(x) in theEuler–Maclaurin summation formula
is a polynomial function of degree n of the periodic function x − [x]. Define the
functions Pn(t) in terms of the coefficients in the Maclaurin series

xext

ex − 1
=

∞∑
n=0

Pn(t)

n! xn

as shown here. The series converges in an interval ]−r, r [, the same as the one in
which the formula

x

ex − 1
=

∞∑
n=0

Bn

n! xn

is valid. This is studied in the next exercise.

15. (a) Show that

Pn(t) =
n∑

k=0

(
n

k

)
Bktn−k .
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In particular Pn(0) = Bn .
(b) Show that P ′

n(t) = n Pn−1(t) for n = 1, 2, ...
(c) Show that Pn(1) = Pn(0) for n = 2, 3, ....
(d) Show that the function Fn in the summation formula is given by

Fn(x) = Pn(x − [x])
n! .

16. Suppose that for each j ≥ 1 we have limx→∞ f ( j)(x) = 0 and the function f ( j)

is monotonic.

(a) Prove, in the notation of the Euler–Maclaurin summation formula, that for
each m we have

∫ ∞

a

(
x−[x] − 1

2

)
f ′(x) dx =−

m∑
k=2

Bk

k! f (k−1)(a)+(−1)m−1
∫ ∞

a
Fm f (m).

(b) Show that the summation formula can be written as

b∑
k=a

f (k) =
∫ b

a
f + f (a) + f (b)

2
+

m∑
k=2

Bk

k! f (k−1)(b)

+
∫ ∞

a

(
x − [x] − 1

2

)
f ′(x) dx − (−1)m−1

∫ ∞

b
Fm f (m).

This can be useful because the last term tends to 0 as b → ∞.

17. (♦) Prove the following generalisation of Stirling’s approximation (see
Sect. 11.10). For each m we have, as n → ∞:

ln(n!) = n ln

(
n

e

)
+ 1

2
ln n + 1

2
ln(2π) +

m∑
j=2

(−1) j B j

j ( j − 1)n j−1
+ O(n−m).

The formula given here is an asymptotic expansion for ln(n!). The asymptotic
scale that appears here is pretty, comprising the sequence of functions

n ln n, n, ln n, 1,
1

n
,

1

n2
,

1

n3
, ...

exhibiting progressively slower “growth” as n → ∞. For an explanation of the
big-O notation and asymptotic expansions see the nugget “Asymptotic orders of
magnitude”.



418 12 Improper Integrals

12.5 (♦) Integral Transforms

In this section we shall look at the Fourier transform and very briefly at the Laplace
transform. These are examples of integral transforms, and are immensely important
in applications, both within mathematics, and to science and technology. The reason
for including them in this text is that they probably constitute the types of improper
integral that the reader is most likely to encounter. Their most important property,
that they can be inverted, will not be touched upon; that belongs to the area of further
study. We limit the discussion mainly to convergence of the integral, and properties
of the transformed function, chiefly continuity, differentiability and decay at infinity.
The conclusions will be developed as exercises.

An integral transform is used to transformagiven function f into a second function
F using the prescription

F(y) =
∫ b

a
K (y, x) f (x) dx

where the function K , of two variables, is called the kernel of the transform. The
integralmay be improper, as is the case for both the Fourier transform (b = ∞ = −a)
and the Laplace transform (a = 0, b = ∞), both considered here.

12.5.1 Fourier Transform

The function

F(y) =
∫ ∞

−∞
f (x)e−i xy dx

is called the Fourier transform of the function f . It can be defined when f is a
complex-valued function and the integral is convergent at both ends.

A simple sufficient condition for the existence of the Fourier transform, and the
starting point for all studies of the Fourier transform, is that there exists M , such that

∫ R

−R
| f | ≤ M

for all R > 0. A function f that satisfies this is sometimes called absolutely inte-
grable. It simply means that the integral

∫ ∞
−∞ f is absolutely convergent at both

ends. By Proposition 12.3 the integral defining the Fourier transform is absolutely
convergent for every real y.

The Fourier transform is just one of many ways, though perhaps the most impor-
tant, to transform one function into another using an integral transform. It is typically
applied to find solutions of differential equations defined over the whole line.
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12.5.2 Exercises

1. Calculate the Fourier transforms of the following functions:

(a) f (x) = 1 for a < x < b, f (x) = 0 otherwise.
(b) f (x) = e−ax for x > 0, f (x) = 0 for x < 0, where a > 0 and is a constant.
(c) f (x) = e−a|x |, where a > 0 and is a constant.

2. (a) Let f (x) be a real odd function and let F(y) be its Fourier transform. Show
that

F(y) = 2

i

∫ ∞

0
f (x) sin(xy) dx .

(b) Let f (x) be a real even function and let F(y) be its Fourier transform. Show
that

F(y) = 2
∫ ∞

0
f (x) cos(xy) dx .

Note. The integrals
∫ ∞
0 f (x) sin(xy) dx and

∫ ∞
0 f (x) cos(xy) dx , which can be defined for a

function f given on the interval [0,∞[, are called the Fourier sine transform and the Fourier

cosine transform of f .

3. Prove that the Fourier transform F(y) of an absolutely integrable function f is
continuous and tends to 0 at ∞ and −∞. This can be done in the following steps.
We let

Fn(y) =
∫ n

−n
e−i xy f (x) dx

for each natural number n.

(a) Show that Fn(y) is a continuous function of y for each n.
Hint.Use the equality |eit − 1|=2| sin(t/2)| and the inequality | sin t | ≤ |t |.

(b) Show that limn→∞ Fn(y) = F(y) uniformly with respect to y inR. Deduce
that F is continuous.

(c) Show that limy→±∞ Fn(y) = 0 for each n.
Hint. Prove this first in the case that f is a step function. If f is merely
integrable it may be approximated in the mean by a step function.
Note. In fact

lim
y→±∞

∫ b

a
eixy f (x) dx = 0

for any function f integrable on [a, b], a result known as the Riemann–Lebesgue lemma,

although this name is sometimes attached to the conclusion that limy→±∞ F(y) = 0.

(d) Deduce that limy→±∞ F(y) = 0.
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12.5.3 Laplace Transform

The Laplace transform is an important tool in applied mathematics, particularly for
solving linear differential equations in which time is the independent variable, and
solutions that satisfy initial conditions are sought forward in time. We will not go
into these applications here; they properly require another setting than the present
text.

Suppose that f is a real-valued function with domain [0,∞[, integrable on the
interval [0, L] for every L > 0. We define the Laplace transform of f by the integral

F(p) =
∫ ∞

0
e−px f (x) dx

the understanding being that F(p) is defined for all p such that the integral is con-
vergent. It is usual to study the Laplace transform for complex p, and only then can
its properties be fully appreciated. However, in order to remain within the confines
of fundamental analysis we shall restrict our attention to real p.

12.5.4 Exercises (cont’d)

4. Calculate the Laplace transforms of the following functions:

(a) xn , where n is a non-negative integer.
(b) ekx , where k is a real constant.
(c) cos kx , where k is a real constant.
(d) sin kx , where k is a real constant.
(e) f (x) = 1, if a < x < b, and otherwise f (x) = 0.

Note. The case of the last function with b = ∞ is called the Heaviside unit step at x = a.

It plays an important role in technology.

5. In all items of this exercise we assume that f is integrable on [0, L] for each
L > 0, and that the integral

∫ ∞
0 f is convergent.

(a) Show that the integrals
∫ ∞
0 e−px f (x) dx and

∫ ∞
0 e−px x f (x) dx are both

convergent for all p > 0.

We let

F(p) =
∫ ∞

0
e−px f (x) dx, (p ≥ 0)

G(p) = −
∫ ∞

0
e−px x f (x) dx, (p > 0)

and for each positive integer n we let
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Fn(p) =
∫ n

0
e−px f (x) dx

Gn(p) = −
∫ n

0
e−px x f (x) dx .

(b) Show that Gn(p) = F ′
n(p).

(c) Show that limn→∞ Gn(p) = G(p) uniformly with respect to the interval
δ ≤ p < ∞ for any given δ > 0,whereas limn→∞ Fn(p) = F(p) uniformly
with respect to 0 ≤ p < ∞.
Hint. Use Cauchy’s principle and the second mean value theorem.

(d) Show that F(p) is differentiable for p > 0 and F ′(p) = G(p).
(e) Show that F(p) has derivatives of all orders for p > 0 and they are given

by

F (k)(p) =
∫ ∞

0
(−x)ke−px f (x) dx .

(f) Show that lim p→∞ F(p) = 0.
(g) Deduce also that

lim
p→0+

∫ ∞

0
e−px f (x) dx =

∫ ∞

0
f.

Note. The last conclusion here is an Abelian theorem, comparable to Abel’s theorem on
power series. Imagine that a value is assigned to possibly divergent integrals

∫ ∞
0 f , a

kind of summability method (see Sect. 11.5), by computing the limit

lim
p→0+

∫ ∞

0
e−px f (x) dx,

if it exists. The exercise shows that the correct value is assigned to already convergent

integrals.

6. Prove that ∫ ∞

0

sin x

x
dx = π

2
.

Hint. Let

F(p) =
∫ ∞

0
e−px sin x

x
dx, (p ≥ 0),

compute F ′(p) for p > 0, and obtain an explicit formula for F(p).
7. Use the result of the previous exercise, along with some trigonometric identities,

to derive the following results:

(a)
∫ ∞

0

sin x cos x

x
dx = π

4

(b)
∫ ∞

0

sin2x

x2
dx = π

2
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(c)
∫ ∞

0

sin4x

x2
dx = π

4

(d)
∫ ∞

0

sin4x

x4
dx = π

3
.

12.5.5 Pointers to Further Study

→ Fourier analysis
→ Laplace transforms
→ Differential equations
→ Complex analysis

12.6 (♦) The Gamma Function

In this nugget we study the Gamma function, arguably the most important of the
special functions, and the first to be studied historically. The Gamma function has a
way of appearing, as you might say, unexpectedly, in formulas; in particular it is a
constituent of some important special functions, notably Bessel functions. There is
no better way to begin studying special functions than by learning about the Gamma
function.

We shall develop some of its properties through a series of exercises, using only
the toolsmade available in this text. The further study of theGamma function requires
methods that go beyond the fundamental analysis of this text, such as multiple inte-
grals and complex analysis. It is possible to prove some of the properties, normally
obtainedwith ease bymore advancedmethods, using only fundamental analysis. This
requires much ingenuity and effort, and one may ask what is achieved by demon-
strating that more powerful methods can be avoided.

The Gamma function �(x) extends the function f (n) = (n − 1)! from the
positive integers to the real numbers (with the exclusion of the negative inte-
gers and 0), while preserving the characteristic property of the factorial function,
�(x) = (x − 1)�(x − 1). It has been defined in many different ways, but by far the
simplest is to use the so-called Eulerian integral of the second kind. This defines
�(x) for x > 0 by the integral

�(x) =
∫ ∞

0
t x−1e−t dt.

The integral, whilst obviously improper because of its upper limit, is also improper
at 0 if x < 1.
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12.6.1 Exercises

1. Show that the integral defining the Gamma function is convergent at both ends if
x > 0.

2. Show that for x > 1 we have

�(x) = (x − 1)�(x − 1)

and deduce that
�(n) = (n − 1)!

if n is a positive integer.
Note. The property proved here can be used to extend the Gamma function to negative values
of x , except at negative integers, by setting

�(x) = �(x + m)

(x + m − 1)(x + m − 2)...x

using any integer m, such that x + m > 0. It does not matter what integer is used; the same

value is obtained by using m + 1 as by using m.

3. The Gamma function can be used to “tidy up” the coefficients in the binomial
series. Let a be a real number. Show that

a(a − 1)...(a − k + 1)

k! = �(a + 1)

�(k + 1)�(a − k + 1)
.

4. Show that �( 12 ) = √
π . Deduce that for all natural numbers n we have

�

(
n + 1

2

)
= (2n)!√π

4nn! .

5. Show that �(x) has derivatives of all orders and its nth derivative (for x > 0) is
given by the formula

�(n)(x) =
∫ ∞

0
t x−1(ln t)ne−t dt.

Hint. You will have to justify the repeated differentiation under the integral sign.
One possibility is to use Taylor’s theorem to estimate the quantity

t x+h−1 − t x−1 − ht x−1 ln t,

but youwill have to copewith the fact that the function t x−1, regarded as a function
of x , is decreasing if 0 < t < 1 and increasing if t > 1.
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6. (a) Show that for x > 0 the Gamma function can be written as the sum of two
series:

�(x) =
∞∑

n=0

(−1)n

n!
1

n + x
+

∞∑
n=0

cn xn

where

cn = 1

n!
∫ ∞

1
t−1(ln t)ne−t dt.

Hint. Split the integral into two: from 0 to 1, and from 1 to ∞. Expand
the integrands in power series and argue that the order of integration and
summation can be interchanged. This is tricky for the improper integral and
is a good example of an argument that is much easier to carry out using the
Lebesgue integral.

(b) Show that the power series
∑∞

n=0 cn xn has infinite radius of convergence.
(c) Show that the series

∞∑
n=0

(−1)n

n!
1

n + z

converges for all complex z, except for z = 0,−1,−2, ..., and that its sum
function, restricted to the real line, has derivatives of all orders on the real
line R minus the set {0,−1,−2, ...}.

We revisit the example treated in the nugget on asymptotic orders. It has a tenuous
connection to the Gamma function.

7. (♦) Recall the function

E(x) =
∫ 1

0

1

t
e−x/t dt, (x > 0)

that was studied in Sect. 11.9.

(a) Show that

E(x) =
∫ ∞

x

e−u

u
du, (x > 0).

So −E(x) is an antiderivative for the function e−x/x ; in fact the one that
tends to 0 at ∞. It solves the troublesome integral

∫
e−x/x dx .

(b) Show that for all x > 0 we have the series expansion

E(x) = C − ln x −
∞∑

n=1

(−1)n xn

n n!

where C is a certain constant.
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(c) Show that

C =
∫ ∞

0
(ln t)e−t dt = �′(1).

Note. �′(1) is known to be −γ , where γ is the Euler–Mascheroni constant. See

Exercise 8.

(d) The series in item (b) is convergent for all x . For x = 10, estimate the
size of the 10th term, and conclude that it is far better to use the asymptotic
expansion to 10 terms (see Sect. 11.9) than the convergent series to 10 terms.

8. We conclude with some final spectacular results concerning the Gamma function:

(a) Let (1/p) + (1/q) = 1, p > 1, q > 1. Show that

�

(
x

p
+ y

q

)
≤ �(x)1/p�(y)1/q .

Hint. Use Hölder’s inequality, Sect. 12.4 Exercise 7.
(b) Show that ln�(x) is convex on the interval ]0,∞[.
(c) Show that for all 0 < x < 1 and every natural number n we have

x ln(n) ≤ ln�(n + x + 1) − ln(n!) ≤ x ln(n + 1).

Hint.Use (b) and compare the chords of y = ln�(x) on the intervals [n, n +
1], [n + 1, n + x + 1] and [n + 1, n + 2].

(d) Deduce from (c) that for 0 < x < 1 we have

0 ≤ ln�(x) − ln

(
nx n!

x(x + 1)...(x + n)

)
≤ x ln

(
1 + 1

n

)
.

(e) Deduce that

�(x) = lim
n→∞

nx n!
x(x + 1)...(x + n)

,

not just for 0 < x < 1, but for all x > 0.
Note. This limit can be rewritten to give Euler’s original definition of the Gamma function

as an infinite product.

(f) The result of taking the logarithm on both sides of the limit formula for�(x)

obtained in the previous item, followed by differentiating both sides and then
interchanging the derivative and the limit, suggests that the following might
be true:

�′(x)

�(x)
= lim

n→∞

(
ln n −

n∑
j=0

1

x + j

)
.

Give a rigorous proof by showing that for any K > 0 the limit here is attained
uniformly with respect to 0 < x < K .
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(g) Deduce that −�′(1) is the Euler–Mascheroni constant γ .
(h) Prove the theorem of Bohr and Mollerup:

Let f be a function with domain ]0,∞[ that has the following three prop-
erties:
(i) ln f (x) is convex.
(ii) f (x) = (x − 1) f (x − 1), (x > 1).
(iii) f (1) = 1.
Then f (x) = �(x).
Hint. Repeat the arguments of items (c), (d) and (e), using f instead of �.

12.6.2 Pointers to Further Study

→ Special functions
→ Complex analysis
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that bits here and there are lifted out of some previous textbooks, whether I like it
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up on some detail of fundamental analysis. No recommendation is implied in this
list and it is certain that each has its virtues and faults, neither of which do I wish
to elaborate on here. However, it is also certain that some acknowledgement is due.
The dates are those of first publication.

(a) G. H. Hardy. A Course of PureMathematics. Cambridge University Press, 1908.
(b) E. G. Phillips. A Course of Analysis. Cambridge University Press, 1930.
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A
Abel, 2
Abelian theorems, 361, 421
Abel’s lemma, 350
Abel’s theorem on power series, 352
Abel summation, 361
Absolute value, 15
Absolutely convergent integral, 411
Absolutely convergent series, 307
Algebraic function, 237
Algebraic number, 160
Alternating series, 309
Antiderivative, 195, 217, 253, 265
Approximation in the mean, 235
Archimedean property, 29
Archimedes, 1
Archimedes’ theorem

for the inscribed sphere, 230
for the parabolic segment, 196, 230

Arc length integral, 226
Area, 195
Arithmetic axioms, 7
Arithmetic geometric mean, 57, 192, 335
Arithmetic mean and geometric mean

(inequality of), 56, 185
Asymptotic expansion, 389, 403, 417, 425
Axiom of choice, 107, 122
Axioms for the real numbers, 7–14

B
Babylonian method, 189
Basel problem, 71
Berkeley, 2
Bernoulli numbers, 381, 415–417

Bernstein’s theorem, 379
Bessel function, 258, 261
Big O notation, 387
Bijective function (definition of), 119
Binomial coefficients, 18
Binomial rule, 19
Binomial series, 346
Bohr and Mollerup (theorem of), 426
Bolzano, 2
Bolzano–Weierstrass theorem, 60, 115, 116
Bonnet’s theorem, 234
Bound variable, 43
Bounded function, 103
Boundedness theorem, 113
Bounded sequence, 47
Bounded set, 25, 26

C
Cantor, 2
Cantor’s reals, 78
Cauchy, 2
Cauchy principal value, 403
Cauchy product of series, 316
Cauchy–Schwarz inequality, 20
Cauchy’s condensation test, 73
Cauchy’s convergence principle, 63, 121,

306, 328, 330, 410
Cauchy’s remainder, see Taylor’s theorem
Cauchy’s root test, 308
Cesaro summation, 360
Chain rule, 136, 143
Chebyshev polynomials, 304
Circular functions, 132

addition rules for, 243
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definition of, 238–243, 356
derivatives of, 243
exact values of, 302
power series for, 346

Codomain of function (definition of), 91
Comparison test, 66

for integrals, 400
Complete induction, 7
Completeness axiom, 13, 25, 111
Complex numbers, 291

argument of, 297
conjugate of, 294
logarithm of, 299
modulus of, 294
nth root of, 297
real and imaginary parts of, 292
square root of, 293

Complex powers (differentiation of), 349
Complex-valued integrals, 409
Composition of functions, 106
Conditionally convergent series, 309
Continued fractions, 85–89
Continuity rules, 99
Continuous function (definition of), 94
Convergent sequence, 39, 47
Convergent series, 64
Convex function, 176, 182, 185
Critical point, 151
Cubic equation

Cardano’s solution of, 303
trigonometric solution of, 303

D
D’Alembert’s test, see Ratio test
Decimals, 20–24, 73–77

algorithm for, 22
Decreasing function, 104
Decreasing sequence, 49
Dedekind, 2
Dedekind section, 12, 13, 25, 27
Dedekind’s reals, 78
Definite integral, 217
De Moivre’s theorem, 297
Derivative (definition of), 130
Descartes’ rule of signs, 173, 175
Determinant, 149
Difference quotient (definition of), 130
Differentiable (definition of), 130
Differential equation, 195, 217, 249, 253,

257–260
Differential quotient, 142
Differentiation

of function sequences, 332
of function series, 332
of power series, 342
under the integral sign, 404

Differentiation rules, 134–140
Dirichlet series, 359
Dirichlet’s test, 351, 358, 413
Discontinuities of monotonic functions, 105
Divergent sequence, 40, 47
Divergent series, 64
Domain of function (definition of), 91
Dyadic fraction, 182

E
e (Euler’s constant)

calculation of, 255, 341
definition of, 249
irrationality of, 363

Elementary transcendental function, 237
Element (of a set), 3
Elliptic function, 228, 259
Elliptic integral, 269, 334
Empty set, 3, 12
Error estimate

for (1+ x)a , 372, 374
for cos x , 370
for ln(1+ x), 371, 374
for sin x , 370
for ex , 370

Error function, 377, 403
Euclid, 1
Euclidean algorithm, 89, 173
Eudoxus, 1
Euler, 2
Euler–Maclaurin summation formula, 269,

385, 415–417
Euler–Mascheroni constant, 407, 425, 426
Euler’s formula, 346
Even function, 148
Exponential function, 132, 148, 169

definition of, 249
laws of, 249, 250, 256
with complex argument, 341

Exponential series, 339
Extreme value theorem, 115

F
Factorial, 19
Favourite identity, 48
Fermat numbers, 7
Fibonacci numbers, 18, 51, 191
Finite set, 58
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Fourier, 2
Fourier transform, 418, 419
Free variable, 43
Function (definition of), 91
Function sequence

pointwise convergence of, 327
uniform convergence of, 327

Function series, 325
pointwise convergence of, 329
uniform convergence of, 329

Fundamental theorem
of algebra, 271
of calculus, 216–218, 224

G
Gamma function, 422–425
Gauss’ lemma, 12, 19
Gauss’ test, 320, 322
Geometric series, 23, 67
Golden Ratio, 51
Graph (of a function), 93
Greatest lower bound, see Infimum

H
Half-angle substitution, 278
Harmonic series, 71, 254
Heine–Borel theorem, 234
Hermite polynomial, 260
Higher derivatives, 147–149
Hölder’s inequality, 186, 212, 413
Hyperbolic function, 252
Hypergeometric function, 259

I
Implicit differentiation, 145
Improper integral, 397
Increasing function, 104
Increasing sequence, 49
Indefinite integral, 217
Indeterminate form, 167
Induction principle, 5
Infimum, 26–28
Infinite limit, 47, 101
Infinite series, 38
Infinite set, 58
Inflection point, 180
Injective function (definition of), 119
Integers, 11
Integrability

of continuous functions, 202
of monotonic functions, 203

of step functions, 208
Integrable function (definition of), 199
Integral test (for series), 405
Integral with limits, 208
Integration by parts (rule of), 263, 270, 271
Integration by substitution (rule of), 264
Integration of function sequences, 331
Integration of function series, 331
Integration rules

join of intervals, 207
multiplication by scalars, 206
sum, 205

Intermediate value property, 112, 117, 118,
156

Intermediate value theorem, 111, 172
Intersection, 3
Interval, 24
Inverse function

definition of, 119
differentiation of, 138

Irrational numbers, 12
Iteration, 50, 108, 125–127, 186, 187

J
Jensen’s inequality, 184
Jump discontinuity, 100

K
Kepler, 2
Kummer’s tests, 321

L
Lagrange’s remainder, see Taylor’s theorem
Laplace transform, 420
Laws of exponents, 18, 20
Least upper bound, see Supremum
Lebesgue integral, 200
Legendre

function, 258
polynomial, 261

Legendre transform, 183, 270
Leibniz, 1
Leibniz’s formula, 148
Leibniz’s notation

for derivatives, 141, 143, 147
for integrals, 209, 217

Leibniz’s rule, 134
Leibniz’s test, 309
L’Hopital’s rule, 161–167
Limit

of a complex sequence, 305
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of a function, 96
of a real sequence, 39

Limit at infinity, 101
Limit inferior, 80–85, 110, 118
Limit point (of a set), 57–60, 95, 107
Limit rules

for functions, 97–99
for sequences, 52–57

Limit superior, 80–85, 110, 118
Liouville’s theorem, 160
Lipschitz condition, 124, 213
Local maximum point, 151
Local minimum point, 151
Logarithms

definition of, 247, 250
laws of, 248, 250
natural, 248, 254

Lower integral (definition of), 198
Lower sum (definition of), 197

M
Maclaurin–Cauchy theorem, 406
Maclaurin series, 343
Maxima and minima, 151–153, 166
Maxima and minima (problem of), 116
Maximum, 28
Maximum function, 15
Mean (of periodic function), 220
Mean value theorem, 113, 153, 154, 156,

158–160, 178, 187
Cauchy’s form of, 158

Mean value theorem for integrals, 211
Mertens’ theorem, 317
Method of bisection, 112, 113
Method of proportional parts, 378
Midpoint rule, 285
Minimum, 28
Minimum function, 15
Model railway (join in track), 149
Monotonic function, 104
Monotonic sequence, 49
Most beautiful formula, 346
Multiplicity (of a root), 171

N
Natural numbers, 3–6, 10
Newton, 1
Newton’s method, 190, 191
Non-Archimedean field, 32
nth root function, 17, 113, 120
Numerical differentiation, 170, 378
Numerical integration, 224, 284

O
Odd function, 148
One-sided limits, 99
Ordering axioms, 9
Oscillation (of a function), 123, 212
Ostrogradski’s method, 281

P
Partial fractions decomposition, 272–275
Partial sum, 64
Partition (definition of), 197
Periodic function, 110, 220
Period of pendulum, 333, 335
π (Archimedes’ constant)

calculation of, 357
definition of, 239, 356
estimate of, 280, 341
irrationality of, 364
series for, 350, 353

Piece-wise continuous function, 218
Postal charges, 92
Power series, 336

for arcsin x , 356
for arctan x , 350
for cot x , 386
for ln(1+ x), 353
for tan x , 379, 386

Preservation of inequalities, 50
Primitive function, 218–220, 270
Product of series, 314
p-series, 70

Q
Quadratic convergence, 189, 192
Quadrature, 195
Quantifier, 40

R
Raabe’s test, 322
Radius of convergence, 337

formula for, 344
Ramanujan (series for π ), 70
Range (of function), 111
Ratio test, 67, 309, 322
Rational function (integration of), 271, 281
Rational numbers, 11
Rational powers, 17, 20, 121

differentiation of, 139
Real powers (differentiation of), 251
Rearrangement of series, 310, 311
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Reduction formula, 277, 278, 280
Removable discontinuity, 100
Repeating decimals, 23
Riemann–Darboux integral, 196

definition of, 199
Riemann’s condition for integrability, 201
Riemann’s rearrangement theorem, 318
Riemann sum, 220, 223–227, 229, 255, 284
Riemann zeta function, 317, 359, 380, 408
Ring of Power, 124
Rolle’s theorem, 153

S
Sandwich principle, 55
Second mean value theorem for integrals,

232, 234, 270, 271, 412, 413
Semi-continuous function, 95, 110, 118
Sequence, 35, 107
Simpson’s rule, 286
Small oscillation theorem, 123
Specification, 4
Square root of 2, 13
Squeeze rule, 55
Stationary point, 151
Step function, 231

definition of, 200
Stirling’s approximation, 391, 415, 417
Strict local maximum point, 151
Strict local minimum point, 151
Strictly concave function, 180
Strictly convex function, 176–178, 180–184
Strictly decreasing sequence, 49
Strictly increasing sequence, 49
Sturm’s theorem, 173, 174
Subsequence, 60–63
Subset, 3
Summability theory, 360, 421
Sum (of a series), 64, 307
Supremum, 26–28
Surface of revolution integral, 226, 229, 230
Surjective function (definition of), 119

T
Tangent line, 141, 144, 179
Tauber’s theorem, 361
Tauberian theorems, 361
Taylor polynomial, 156, 165, 166, 367
Taylor series, 366
Taylor’s theorem, 157, 166, 187

Peano’s form of, 157, 389
with Cauchy’s remainder, 373
with integral remainder, 375
with Lagrange’s remainder, 367
with Schlömilch’s remainder, 377, 380

Telescoping series, 71
Transcendental function, 237, 257–260
Transcendental number, 161
Transitivity, 10
Trapezium rule, 284
Trichotomy, 10
Trigonometric functions, 245

U
Uniform approximation, 231
Uniform continuity, 124
Union, 3
Uniqueness of the real numbers, 79
Upper integral (definition of), 198
Upper sum (definition of), 197

V
Volume of revolution integral, 226, 229

W
Wallis’ integrals, 279
Wallis’ product for π , 394, 415
Weierstrass, 2
Weierstrass M-test, 329
Weierstrass’ theorem, 59

Y
Young’s inequality, 183
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